
Virtualization in an embedded environment

Joakim Svensson
Henrik Andersson
Lunds University

Abstract

Up until now, the security in a mobile phone has not been
a very big issue. But with the increased use of computer-like
smartphones, and particularly the introduction of the open-
source Android operating system, it is more important to
make the phone safe from malicious software, to not com-
promise the security of individual users. This article will
give an introduction on how virtualization can help increas-
ing the security of a mobile phone, without decreasing the
performance of a device already low on resources. It will
describe what virtualization is, some different types of vir-
tualization and why para-virtualization seems to be the best
method to use on a mobile phone. It will also show some
things needed to be done in order to port an operating sys-
tem to support the para-virtualized hypervisor Xen-ARM.

1 Background

As more complex operating systems for mobile phones
are being developed, they can possibly make the phone
more sensitive to malicious attacks. The recently intro-
duced Android platform has made manufacturers more
aware of this than ever. Android is built on the Linux
kernel and is open source, meaning everyone may view,
and rewrite, the source code. Virtualization, and especially
para-virtualization, can provide a method to make the mo-
bile phones more secure. The use of virtualization can help
protecting the parts of the device that might be extra sensi-
tive. In order to explain this concept it is to have some basic
knowledge of virtualization.

2 Virtualization

Virtualization is a technique that provides a virtual in-
terface between one or more operating systems and the
hardware of a machine. It was developed by IBM in the
1960’s[1], to get as much out of a mainframe computer as

possible. Users could login to the mainframe and use its re-
sources such as the CPU or the RAM. This was important
since mainframes were very expensive and users needed to
get as much out of them as possible. Nowadays, computers
provide a lot more performance for much less money. Every
user can have their own computer instead of having to lo-
gin to a mainframe. Virtualization is no longer needed in the
same way as before. Instead, new areas of use have been de-
veloped. Today virtualization exists in many different ways,
and many users are using a virtualized environment without
even knowing. For example, when executing a Java pro-
gram, it is run in a virtualized environment that shares the
same resources to the application regardless of which oper-
ating system it is run in. This environment is called the Sun
Java Virtual Machine[2] and is used to achieve platform in-
dependency for the Java programming language.

In contrast to virtualization being hidden from the user,
there are also types that are more hands-on. One example
is when using an emulator to run an application that usually
requires another hardware platform than the current system
is using. One popular emulator is the Qemu that for in-
stance can emulate a device with an ARM architecture, pop-
ular in mobile phones and embedded devices. Qemu makes
software that normally only would run on an ARM device
available to run on an ordinary PC using x86. This is very
helpful when developing applications for an ARM device,
but the programming is done on a x86 computer. The de-
veloper is able to start and test the software in the emulator
even without the correct hardware at hand.

Another use of virtualization is when running two dif-
ferent operating systems at the same time. For instance, if
a developer wants his software to be able to run in differ-
ent operating systems, he may export it to the other systems
and test it without switching computer or even rebooting to
switch operating system. Virtualization can also help dur-
ing bug testing. If the application causes a bug that normally
would make the operating system crash, in a virtualized en-
vironment only one system would crash, the other would
stay intact.

To achieve this type of virtualization, a certain kind of
software needs to handle the communication between oper-



ating systems and the physical hardware of the machine.
The software also needs to take responsibility of setting
up the needed virtual environments regarding memory ad-
dresses, hard disk drive location, network interface, etc.
This software is usually referred to as a hypervisor1. How
the hypervisor works depends a lot of what kind of virtual-
ization and which specific hypervisor that is used.

One popular hypervisor is VMware[3], commonly used
to run another operating system inside an already working
one, for instance running a Linux distribution within Win-
dows. VMware makes a virtual copy of the hardware and
lets the virtualized operating system see this copy. The vir-
tualized guest will believe that this is the real machine, and
communicates with it as it usually does. Whenever the vir-
tual OS tries to communicate with hardware, VMware uses
different lookup tables to translate between virtual and real
hardware. This method of virtualizing, when the operating
system think it is installed on the real hardware, but it rather
is a virtual version of the real hardware, is called full virtu-
alization.

When using VMware as mentioned above there are quite
a large loss of performance because a lot of overhead work
is needed by the hypervisor to translate between virtual and
physical hardware all the time. This makes the method not
very attractive to use in a mobile phone system, where the
resources are low compared to a PC. One way to increase
the performance and decrease the work of the hypervisor is
to let the virtualized operating systems be able to commu-
nicate with the real hardware instead of a virtual copy. That
way, the virtualized guest can make the calls to the hard-
ware and the hypervisor does not need to translate them all
the time. The hypervisor will, besides creating and config-
uring the virtual environment, only be responsible for as-
suring that the calls are correct. For example if one vir-
tual guest tries to access memory that belongs to another
guest, the hypervisor will deny access. This virtualization
method is called para-virtualization and even though there
are some drawbacks it is the best suited method to use in
a mobile phone environment because of the gain in perfor-
mance. One of the more popular hypervisors that imple-
ments para-virtualization is Xen and in this article its ARM
derivate Xen-ARM[4] will be used as an example. This be-
cause Xen-ARM is open source, free to download and ex-
amine. It is also intended to work with the hardware on a
mobile phone.

3 Security

As stated earlier, virtualization can be used in order to
increase the security of a mobile phone. With Xen-ARM
the running operating systems are isolated from each other.

1Another common name is Virtual Machine Monitor.

Both have access to the same hardware and share for in-
stance network card and monitor drivers, but when it comes
to the memory the hypervisor divides the RAM so that one
operating system never will have access to any memory that
belongs to another system[5]. However, by going through
the hypervisor, information can be passed from one operat-
ing system to another. This leads to interesting cases where
developers can use the hypervisor to define what informa-
tion may be passed between the systems. One system can
handle all interaction with the user while sending all critical
data to another, secured system, minimizing the risk of ma-
licious software accessing sensitive areas. The non-secure
operating system could for instance be Android, which the
user may tamper with as much as he wants, while the secure
system could be a system specifically programmed for han-
dling secure critical tasks. Figure 1 shows how this could
look.

Figure 1. Isolation of the domains

This makes para-virtualization and Xen-ARM excellent
candidates for creating a secure environment on a mobile
phone. One disadvantage however, is that the operating sys-
tem needs to be modified. What is required to be changed,
and why, will be discussed soon.

4 Hypercalls

A hypercall is to the hypervisor what a system call is to
an operating system, or in other words, a hypercall is a way
for the virtualized operating systems to make the hypervisor
handle privileged operations. Much like a system call which
lets a user application communicate to the operating system
that it needs to execute a command with higher priority than
normal[6].

The hypercall system is an important mechanism when
para-virtualizing, since the hypervisor replaces the operat-
ing system as the most privileged software. Some com-
mands, such as memory management instructions, are re-
quired to run with the highest level of priority in the CPU.
The operating system therefore needs a way to communi-
cate with the hypervisor and this is why hypercalls was in-



vented.
In Xen-ARM, a hypercall is basically a function added

to the operating system that can be called whenever it is
needed. All current implemented hypercalls sets important
information in various CPU registers and then invokes a
certain software interrupt. Xen-ARM is designed to trig-
ger whenever that software interrupt is invoked and checks
the registers to determine which hypercall that the OS has
called. Every hypercall is mapped to a function in the hy-
pervisor source code and the specific function is executed.

Hypercalls is used for instance when an OS needs to up-
date the memory management unit (MMU) of the proces-
sor, to switch between foreground domains or to retrieve
the system time. To report back the results of a hypercall to
the OS, Xen-ARM makes use of a mechanism called event
channels. An event channel is like a communication link
where the hypervisor can queue different events and let the
OS take the appropriate actions based on the queued events.
This way, the OS can call for a MMU update; the hypervi-
sor executes the update instructions and returns information
about which memory addresses the OS can use. The OS
then updates its internal memory structures with the new
memory addresses and any current user process can con-
tinue to run. An example of this hypercall can be viewed in
Figure 2.

Figure 2. How hypercalls is used to for in-
stance update the MMU.

5 Modifications of Linux

As previously stated, an OS needs to be modified to
work with Xen-ARM. It is necessary for the OS to have
knowledge about being virtualized, because when para-
virtualizing, it will handle some hardware communication
itself. There are quite a few different places to change the
source code, but the most extensive changes are made to the
interrupt handling system and the memory management.

When different interrupts occur in the system, Xen-ARM
will trigger and find out what interrupt that has been in-
voked. If it is a timer interrupt or a serial interrupt, Xen-
ARM has internal functions that will handle the interrupts
and for instance, increase the system time structure. All
other interrupts will be put in an event channel, mentioned
earlier. Those interrupts will be handed back to the OS that
will execute its own event handler to take care of them. To
clarify, the modifications include adding support for event
channels instead of handling interrupts. They also include
functions to disable or enable the event channels when nec-
essary.

The memory management of the OS is also modified.
The guest will have access to read memory on addresses that
is valid for that specific guest, but to write something to the
memory the OS will have to go through Xen-ARM. In full
virtualization, all communication is run through the VMM,
which requires a lot more work since the VMM translates
every virtual memory address to a real address. Xen-ARM
on the other hand gives the guests access to different areas
of the memory (at some occasions, guests even get to share
memory) and also provides them with the real addresses.
In this way, the guests get instant access to read hardware,
and when writing to the memory all Xen-ARM does is to
validate that the guest actually have the right to write to that
specific memory.

Linux (and other operating systems) have a clever way to
make use of more memory than actually is available. This
is done by dividing the memory into pages, which basically
are chunks of consecutive addresses. To reach a specific
page, the OS goes through a chain of page tables that in
the end points to actual memory (it can be RAM or a hard
disk drive)[7]. Xen-ARM provides page tables for the guest
operating systems, both tables that a guest can use for its in-
dividual user processes, and tables that the guest can use as
machine memory. This is in contrast to a ”normal” system,
where the OS have access to all real memory, and handles
the page tables itself. Therefore, it is necessary to rewrite
the memory management code to support the virtual ma-
chine’s memory, and the memory that user processes will
use.

When initializing the kernel, all the interrupts and the
memory is setup, the OS also saves important information
about the machine and the hardware. In the para-virtualized
system however, Xen-ARM will handle a lot of the infor-
mation, and provide it to the guest OS. The kernel setup
procedure is therefore the third main thing that is changed
in the OS source code. Instead of having the guests com-
municating with the hardware to find out for instance CPU
ID, they will get this information directly from Xen-ARM.

There are more changes to the source code that is nec-
essary, for instance driver code and functions that will print
text to a console, but the three areas previously mentioned



is where the biggest modifications are made.

6 Conclusions

As you probably can understand it is not an easy task to
virtualize the Android platform on a mobile phone. It is nec-
essary to configure the hypervisor for the target hardware
and modify the Android kernel source to be compatible with
the hypervisor and the para-virtualization technique. It is
also required to implement a protocol that can be used for
secure communication between the multiple operating sys-
tems in the phone. On top of that the word secure must be
defined in terms of what operations that absolutely needs
to stay uncompromised (target for malicious attacks); also,
one or more operating systems must be configured or im-
plemented according to the desired security level.

However, all the extra work aside, the para-virtualization
technique has potential to provide for a very secure mo-
bile phone environment, without losing too much perfor-
mance due to overhead virtualization operations. In the fu-
ture, embedded CPUs might include hardware support for
para-virtualization, which will remove the need to modify
the operating systems, further improving the feasibility of
this virtualization method.

References

[1] John Fisher-Ogden. Hardware support for efficient vir-
tualization. Background and information about differ-
ent virtualization styles, 2006.

[2] Sun java official homepage. http://java.sun.
com/.

[3] Vmware hompage. http://www.vmware.com.

[4] Homepage of the xenarm project. http://wiki.
xensource.com/xenwiki/XenARM.

[5] Rafal Wojtczuk. Subverting the xen hypervisor, 2008.

[6] hypercall article on xenwiki. http://wiki.
xensource.com/xenwiki/hypercall.

[7] Wolfgang Mauerer. Professional Linux Kernel Archi-
tecture. Wrox Press Ltd., Birmingham, UK, UK, 2008.


