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Abstract

Since its origin in the 1960’s, virtualization techniques have been used in a num-
ber of different areas. In the past years, it has had a series of new and innovative
uses — from virtualizing corporate server parks to home users running Windows
applications inside a Linux distribution. There are also occasions where virtu-
alization is used without the user’s knowledge, such as applications written in
Java being run in a virtual machine, in order to for instance achieve platform
independence, avoid having to compile the source code and increase security.
Virtualization techniques are no longer reserved for personal computers. There

is an increasing interest in how to virtualize a mobile phone environment to en-
hance security and performance of the device. This report will try to provide the
first step towards virtualizing Android for a cell phone. It will cover different vir-
tualization techniques, how to decide which one is fit for the job and also give an
introduction on how a Linux kernel can be prepared for the virtualized system.
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Theory






Chapter 1

Introduction

A few years ago, a mobile phone was a device used for making phone calls when
away from a stationary phone. Today it has become a multifunctional tool that
is used everyday for very different tasks such as reading emails, text messaging,
playing music and taking pictures. It has also gone from being a gadget mainly
used by well-paid professionals interested in technology, to becoming so common
that almost every member of a family (in the Western world) owns at least one
cell phone. According to Gartner, 1.2 billion mobile devices was sold in 2009[1],
compared to 280 millions 10 years earlier[2]. But with this increased popularity
comes also an increased risk of compromising the experience and safety of the
user. This thesis will try to explain how virtualization can improve the security.

1.1 Background

The growing number of smart phones during the last years has also led to an
increased number of mobile platforms! where different manufacturers provides
their own platform such as Windows Mobile, SymbianOS, Linux and [Phone OS.
With the introduction of the open source platform Android, it has become even
more important to consider the safety when using the mobile phone. Since the
source code for the platform is released, mean-spirited people could insert harm-
ful code to for instance bypass the DRM protection on music files or log a user’s
credit card information if the user is making payments with the phone.

One way to improve the safety is to put all the critical tasks into a secure en-
vironment, away from Android, and then let the two different systems commu-
nicate with each other in a limited, yet secure way. Figure 1.1 shows the basics
of this concept. The picture shows two operating system being run on one mo-
bile phone. The first operating system is secure and cannot be altered by the user
or malicious code. The other operating system is not secure and can be altered.
The developer can make the different operating systems have different kinds of
access to the hardware thus keeping the mobile phone safe even if the unsecured
operating system is affected by malicious code or users.

!The operating system which handles all the non-hardware intelligence in the phone
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Secure OS Android

Hypervisor

Mobile phone hardware

Figure 1.1: The final goal for this project

1.2 Project goal

The long term goal is to present a mobile phone that runs the Android platform
in a virtualized environment, alongside another, secure system. The focus will be
to show how this technique can provide security for the user, operators and for
service providers, and how to allow the two systems to share enough information
to cooperate but without compromising this security. Due to the relatively short
time limit of this project, and the fact that it is an academic study, the report will
not result in a product ready to be sold. Rather it will provide a first step in
the right direction, obtaining knowledge about virtualization in a mobile phone
environment. The report will therefore have two main goals.

The first main goal is to introduce the reader to the benefits and challenges
of virtualization, and more specifically, virtualization in a mobile phone envi-
ronment. The report will provide a comparison between different virtualization
methods and select one of them as most suited to use for a mobile phone. It will
also compare different software that implements the chosen method based on a
set of criteria.

Secondly, a real life example of a patch to the Linux kernel will be studied.
This patch will allow for the Linux kernel to be run as a guest operating system
with Xen-ARM as a hypervisor. The report will explain the different modifica-
tions done to the kernel, to make a better understanding of the challenges associ-
ated with preparing a mobile platform for the virtualized environment.

The focus will mainly be on Xen[3] as the hypervisor. The operating system
that will have the focus in this report will be Android[4]. As for the hardware the
most important thing is that it is an ARM-based hardware. Our goal was to get
an understanding about how this all worked together as shown in Figure 1.2.

But in order to understand this picture there are some other things that need
to be understood. Both the operating system and the hypervisor are initially
made for the x86-architecture. The operating system needs to be modified to
work with the hypervisor and the hypervisor might need to be modified to work
with the hardware. In order to understand how both the operating system and
the hypervisor works, information was gathered about how they worked on the
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Figure 1.2: Linux on Xen on ARM

x86 architecture first, and then how they worked on the ARM architecture.

The first step is to understand how the Xen hypervisor works on the x86 ar-
chitecture as shown in Figure 1.3. There is a lot of information about Xen where
a lot later may be applied to Xen on the ARM architecture since many of the con-
cepts are the same. There are however things that differs also. Xen will be briefly
introduced in Chapter 4 and is then discussed more in Chapter 5.

Xen

x86

Figure 1.3: Xen on x86

The second step is to put an operating system on top of the hypervisor. The
operating system needs to be modified in order to work with Xen. This had to
be learned in order to know how to later move it on to the ARM architecture.
In what way the operating system needs to be modified in order to run on Xen
on the x86 architecture is discussed later in Section 5.2.3. Figure 1.4 shows what
this step would look like. This figure resembles the final goal, except that the
hardware in this case is x86 instead of ARM.

The third step was to know how the hypervisor was changed in order to work
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x86

Figure 1.4: Linux on Xen on x86

on the ARM architecture. The Xen-ARM project is an ongoing project, and it is
not very stable at the moment. This means that this step did not give informa-
tion about how Xen-ARM works, but rather how it is meant to work. Figure 1.5
shows how this step would look like. Section 5.2.6 shows the relevant differences
between the Xen on x86 and Xen-ARM.

Figure 1.5: Xen on ARM

Since ARM differs from x86, the operating system used in this project is a
modified version of Linux. Therefore the next step was to understand how the
operating system was modified in order to work on the ARM architecture. This is
the fourth step is therefore illustrated in Figure 1.6. The way the operating system
for the x86 architecture differs from the one on the ARM architecture is discussed
in Section 6.1.

When all the above steps were finished the information were sufficient to
understand how figure 1.2 works. Even if it needed some more information then
to just understand how the steps above worked, they gave a lot of information
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Figure 1.6: Linux on ARM

that helped in order to reach the goal of this project.

1.3 Approach

In environments where the hardware setup changes a lot, software needs to be
configured to fit that specific platform to be able to run directly on top of that
hardware. To keep evaluating and testing time to a minimum, and also since
this report has its focus on theory, a hardware environment is not being set up.
Instead, an emulator of the hardware is used, namely Qemu, mentioned in Sec-
tion 3.3.1. Qemu is a free, open source emulator which supports a large range of
architectures and devices and there is a lot of documentation about it[5].There is
a modified version of Qemu that is configured to emulate a machine built on the
ARM architecture which is called Goldfish. The Goldfish emulator is included in
the Android developer kit and is used by developers to emulate devices running
Android. Goldfish can also emulate some things that are specific for a mobile
phone, such as the touchpad and the audio device.

The emulation of the mobile phone hardware results in an extra layer of ab-
straction in the system. In this project, the lowest layer will be the hardware of a
personal computer. On top of that the Linux distribution Ubuntu will be installed
as an operating system[6]. Above Ubuntu, the Goldfish emulator will run.

In the next layer the Xen hypervisor will run. How Xen works will be cov-
ered in Chapter 5. On top of Xen, the operating systems will be installed (this
project will be limited to running a minimal OS, but the ultimate goal is to in-
stall Android). The whole system, where dom0 and domU will contain operating
systems, can be seen in Figure 1.7.

A more detailed list over the programs used in order to build and test the
system will be included in appendix A.

1.4 Assumptions

At the time of writing this report, the current Xen-ARM version is based on Xen
v3.0.2. There is ongoing work to update the Xen-ARM hypervisor and accord-
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Mobile phone environment

Dom( DomU

Xen-ARM

Qemu

Ubuntu

Hardware

Figure 1.7: A picture of the whole system used in this project in
order to achieve virtualization of operating systems on an
emulated mobile phone.

ing to the head of the project, it will be released sometime during the first half
of 2010. This will also apply to the patched version of the Linux kernel, which
in its current state is based upon kernel version 2.6.21.1. This will presumably
change the implementation to differ a lot from what is described in Chapter 7.
The underlying mechanisms will not be changed however, and what this report
describes may (hopefully) be applicable even on the new hypervisor version and
kernel patch.

1.5 Summary of results

This report will show that para-virtualization (described in Section 3.3.3) seems
to be the best choice of virtualization method to use in a handheld device. This
is due to the limited resources such a device can offer. To save battery and avoid
the mobile unit to be amazingly slow, it seems as the disadvantage of having to
maintain the operating system will have a good pay-off.

We will also see that virtualization on a mobile software phone requires quite
an amount of work. It is required to modify the mobile platform to support all
the ideas of virtualization, and to be sure it is free from privileged operations.
This also implies that a lot of knowledge, both about the ARM architecture and
programming the Linux kernel is needed. The report will only go through an
already patched kernel but to make a fresh start would require a lot more work.



Introduction 9

1.6

Outline of the report

Chapter 2 will give a brief description of the world’s two most commonly
used CPU architectures. It will discuss some of the differences between the
famous x86, used in personal computers, and the ARM processor archi-
tecture, the CPU currently used in most of the mobile phones around the
world; also, the Android platform is built for ARM and requires a compat-
ible machine to work.

In Chapter 3, the reader will be introduced to the basic concepts and ideas
of virtualization. The chapter will go through the history, benefits and dif-
ferent methods of virtualization.

As different types of virtualization is good for different settings, some cri-
teria was setup to choose a hypervisor to fit this specific project. These cri-
teria will be discussed in Chapter 4. This chapter will also briefly describe
a few candidates for hypervisor.

Chapter 5 will describe the Xen hypervisor, as the conclusion was that Xen
was best fit for this project. The chapter will describe why Xen was chosen,
how it works on x86, and how it has been adopted in an ARM environment.

The report is, as stated earlier, investigating how to virtualize an Android
environment in a mobile phone. Since Android is a platform based on the
Linux kernel, and configured to run on an ARM machine, some knowledge
about the Linux kernel for ARM is in order. Chapter 6 will try to provide
this knowledge. The reader will be presented with the origins of ARM-
Linux and also a description of how to port the Linux kernel from x86 to
ARM, to gain further understanding of the differences between x86 and
ARM.

Some methods of virtualization requries the operating system to be modi-
fied in order to be run as a guest in the virtualized environment. Chapter 7
will explain the changes made to a Linux kernel to allow it as a guest oper-
ating system on the Xen-ARM hypervisor.

During the project, Xen-ARM has been tested along with a minimal operat-
ing system called Mini-OS. Chapter 8 will provide the results of the testing
sessions made with this setup.

After reading the report there are some conclusions that can be drawn
about virtualization in a mobile environment and how it is currently in
progress. These conclusions will be presented in Chapter 9.

Finally, Chapter 10 will describe the authors’ thoughts about the project, as
well as the challenges that have arisen during the process. The reader will
also obtain suggestions of how future work in the area can proceed.
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Chapter 2

CPU Architectures

There are plenty of different types of processors on the market today. The archi-
tecture of the processors differ in many ways, such as size, implementation, func-
tionality and area of use. One of the most famous architectures is the x86; the ma-
jority of all desktop personal computers are compatible with this architecture[7,
20].

For mobile and embedded devices however, the ARM processor architecture
is more popular[8]. This chapter will give an introduction to the ARM proces-
sor and its advantages to x86 in a mobile phone system. But first it would be
appropriate to define some basic concepts about processors.

Instruction Set Architecture

An instruction is an operation of a processor. Traditionally, it consists of an
opcode such as add, subtract or jump and zero or more operands (registers,
memory locations or data). All instructions available in a specific processor
is defined in an Instruction Set Architecture or ISA. Different processor fam-
ilies implement different instruction set architectures and this is one of the
main reasons why an operating system is not necessarily compatible with
every single computer; the OS (as well as user software) has to be written
and compiled for the specific architecture in order to work.

Register
A register is a temporary storage located on the CPU itself. It is used to
place fixed constant values that software can use, and the registers improve
the execution performance as data that is accessed frequently can be placed
directly in the CPU instead of on the RAM.

Complex Instruction Set Computer

Complex Instruction Set Computer, or CISC, is an instruction set architec-
ture where every instruction can execute more than one low-level opera-
tion. It is possible to load from memory, perform an arithmetic operation
(such as add or subtract) and store back the value to memory in a single
instruction. This decreases the number of instructions per program to re-
duce the size of the source code. However, executing multiple operations
requires an equal amount of clock cycles in the processor.

Reduced Instruction Set Computer
This is another common instruction set architecture, made as an alternative

11
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to the CISC architecture. Every instruction in the set can only execute one
low-level operation such as loading a value from memory, inserting into a
register or comparing two registers. This makes every instruction take only
one clock cycle to execute and helps increasing the legibility of the source
code (as every instruction is responsible for exactly one action). The use
of reduced instructions also allows a uniform format of the instructions,
making decoding less demanding.

Furthermore, where CISC based processors often provides different types
of registers for different data, RISC processors makes use of general pur-
pose registers (i.e. any register can hold any type of data, assumed that it
has the correct size). This reduces the complexity of compiler designs for
the architecture.

However, while the CISC design depend on the processor implementation
to achieve high performance, the RISC approach leaves it up to the de-
veloper to make sure the instructions are utilized for optimization. The
simplicity might lead to software design errors where the developer uses
more instructions than necessary to execute a specific operation.

2.1 The x86 architecture

The term x86 refers to an architecture family based on — and backwards compat-
ible with — the Intel 8086 processor. This is one of the most common architecture
in home personal computers today. The only real competitor to x86 compatible
processors was the PowerPC architecture, used in Apple computers until 2006,
when they was replaced by Intel’s version of x86. One of its main advantages is
that every generation of x86 implements backwards compatibility for previous
generations, which removes the need to rewrite and recompile software already
built when upgrading to a newer processor.

The x86 is based on the CISC design; it allows single instructions to execute
computational operations with values in both registers and memory. The instruc-
tions in x86 can also be of variable sizes, from 1 to 17 bytes long[9], which will
increase the complexity of decoding instructions to machine operations.

2.2 The ARM architecture

ARM, previously known as Advanced RISC Machine has its origin in the 1980s
(back then it was actually called Acorn RISC Machine). It started out as a micro-
processor meant to be used in personal computers manufactured by the Acorn
company, and it was based on the RISC design principles that recently had been
designed at the Stanford and Berkeley universities. The designers of the ARM
processor concentrated on keeping the architecture as simple as possible, which
resulted in the processor being very customizable and also keeping the size down,
making it power efficient, although still delivering high performance[10].
Despite its advantages, the Acorn did not receive very much attention in the
personal computer market, since manufacturers converged to the x86 architec-
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ture. However, the ARM processor was very suitable to use in embedded com-
puters because of its low power consumption and at that time the interest for
such systems were rapidly increasing. Another aspect why ARM has grown so
popular is the configurability, since it is easy to customize the ARM architecture
to individual requirements of different systems. As of 2007, more than 90 % of
all mobile phones use an ARM processor of some kind[8], and with the recent
introduction of netbooks using the ARM based Snapdragon processor, ARM has
taken a step into the personal computer business again.

2.2.1 Instruction Set

As previously mentioned, the ARM is based on the RISC design, and implements
design principles such as the load-store architecture. This means that the processor
only allows computational operations on values in registers, not memory. The
only way to operate the memory is to load a value into a register, execute the
desired operations and then store it back into the memory. Another important
design feature is the fixed instruction length of 32 bits which will make the de-
coding of instructions easier, reducing the workload of the processor.

The gain in performance comes with the cost of requiring more memory for
programs, since every instruction only executes a single CPU operation. To re-
duce this cost, ARM comes with an extension called Thumb technology[11]. This
technology basically consists of a subset of the most used 32-bit instructions, but
the operation codes are reduced to 16-bits. The extension handles real-time trans-
lation to 32-bits operations on execution without losing performance in the pro-
cess, resulting in lower memory cost while still executing the program as fast
as normally. This technology further improves ARM status as one of the most
appropriate processors for embedded devices.
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Chapter 3

Virtualization

" Virtualization is the creation of something virtual (vather than actual), such as an op-
erating system, a servet, a storage device or network resources"[12]. This is only one
of many definitions of the concept of Virtualization that can be found on the In-
ternet. The idea has been around for a few decades, though the reasons for vir-
tualization and its benefits has changed over the course of time. This report will
mainly focus on hardware virtualization and particularly on how to virtualize an
operating system in an embedded environment.

3.1 History of virtualization

Virtualization of hardware has its origin in the 1960’s[13]. The main reasons for
using virtualization back then was to get as much out of expensive mainframes as
possible as well as getting a backward comparability when migrating the system
to new hardware.

The first reason was because mainframes were big and expensive. To max-
imize their utilization was very important. Virtualization could achieve this by
dividing the mainframe to several smaller virtual computers. In this way it could
be used as if there were several computers instead of one. This resulted in more
people being able to use the mainframe at the same time. One of the first systems
that used this was the CP/CMS that could manage to handle several small simple
operating systems on one computer. The controller of this was called CP (Control
Program) that handled the other operating systems. The small operating systems
were called CMS (Conversational Monitor System). A user could use his own per-
sonal computer to connect to the mainframe to a CMS in order to run commands
on the mainframe. It was also possible to use the memory on the mainframe as
an extra memory space. How this worked is illustrated in Figure 3.1.

The backward issue could be a problem when migrating to new hardware.
If a company chose to upgrade some of the hardware it could result in a com-
patibility issue. Hardware manufacturers had not agreed on a standard for how
computers and their peripherals should communicate. In order to solve this is-
sue one could use virtualization in order to make a virtual interface between
the computer and the peripheral so they "thought" that they were speaking to
a compatible hardware although they actually made the communication through

15
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CP/CMS

Mainframe
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] i
Gaining access Gaining access
to CMS to memory

Figure 3.1: The CP/CMS system developed by IBM in late 1960’s
and early 1970’s

a translating interface.

This kind of virtualization was popular and very utilised until the 1980’s and
90’s. By then the so called client/server applications were being used which made
the virtualization not as important as before. The client/server means that there is
a server which share its resources to several clients. Another thing that made the
use of virtualization less necessary was that companies and consumers began to
use servers and computers that was based on Intel’s x86-architecture. Having this
standard architecture led to larger production quantities, which in turn, resulted
in the computers becoming cheaper then before, making it possible to invest in
more computers. The need for expensive mainframe computers decreased since
it was cheaper to buy multiple smaller computers instead. This also reduced the
comparability problems since they now started to have a more uniform set of
computers where the hardware all had more similar interfaces.

As the computers evolved the need for virtualization began to decrease. Cheaper

computers with high performance made the mainframes superfluous. As for
backward compatibility, manufacturers began to agree on interface standards,
which also reduced the usefulness of virtualization. Both these issues were not
entirely solved, but the use of virtualization decreased and it was said that it
would be useless to virtualize hardware in the future. During the last decades
though, there has been a lot of new innovative applications for virtualization and
today the technique is a highly topical subject. These ideas will be introduced in
the next section.
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3.2 Virtualization today

As said earlier, virtualization was developed in the 1960’s. When the computers
became cheaper and the performance increased the old ways of using virtualiza-
tion were not needed any more. But virtualization was to get a comeback in new
areas of use. Still it can often be about making a computer as efficient as possible,
but it is no longer a mainframe that is being virtualized, the implementation has
been extended to personal and client computers in order to make them capable
of doing more things than before. This section will cover some of the new ways
of using virtualization.

During the last years, hardware have become better and is most of the time
not used to its full potential. Often a computer can be in an idle state where it is
just waiting for something to do. Although the computers have become cheaper,
the cost for electricity and cooling have become more expensive. The awareness
of the environmental problems is something that makes us want to be more ef-
ficient in order to save resources. This has made the use of virtualization more
important again. You want to use the resources more efficiently and then decrease
the number of computers you have. This in turn will lower the cost of space and
cooling of the computers and thus lower the electricity consumption.

Another area where virtualization has exploded the last couple of years is the
possibility of having multiple operating systems being run on the same computer
at the same time. This is a good approach when you need to test applications
in different operating systems, or simply another system setup than the devel-
opment configuration. It is also useful when developing an operating system.
Without virtualization the process becomes a tedious task of rebooting to change
to the other operating system, which will be time consuming and inefficient. An-
other alternative would be to use a second computer with the other operating
system running, but this would in turn become a lot more expensive. When us-
ing virtualization to have several operating systems running at the same time on
one computer both these problem are minimised. Switching between the operat-
ing systems can be quite easy and fast depending on what virtualization method
is being used, and if one operating system would crash it would not freeze the
whole computer, but only the environment the operating system that crashed is
running in.

A popular use of virtualization among home users is to boot an operating
system inside the one currently running. This is very useful when another oper-
ating system is needed. For example running an application built for Windows
inside a Linux-based operating system. There are several methods to virtualize a
Windows environment that the application can be run in and the most common
methods will be discussed in Section 3.3.

Sometimes there can be a problem with the compatibility of a software when
running on different operating systems. This can be prevented if the applications
are run in an environment that provides the same interface on every operating
system. This will make the applications made for that environment run on every
operating system that is configured with that environment. This is something
used in some programming languages in order to make sure that they are plat-
form independent. One of these environment is the Sun Java Virtual Machine[14]



18 Virtualization

which is required to run applications written in the Java programming language.
The virtual machine works differently depending on the operating system, but
has the same interface against the programmer.

Security is another aspect to take into consideration. Virtualization can in-
crease the security in the sense that it is possible to isolate the virtualized system
from the real system, and then be able to test applications to see if they contain
harmful source code before it is used in a real environment. This way the harmful
application can’t access areas of the operating system that would make it crash
and maybe even destroy it. The only thing it can destroy is the virtualized oper-
ating system. To minimise the risk for security critical tasks to leak information
in a possible attack these tasks can be run in a virtual, secured instance. This is
also a good way of controlling users of a system when not all of the users can be
trusted. By isolating the users to the virtualized environment this could prevent
them from accessing areas where they have no right to be.

There are many more areas of use for virtualization. New areas and innova-
tive solutions are being developed all the time. More and more developers have
started to make it in the market and today there are many developers of virtual-
ization solutions that have their own niche.

3.3 Virtualization methods

There are 4 main branches of virtualization. These are emulation, full virtualiza-
tion, para-virtualization and virtualization on operating system level. In addition to
these branches this report will briefly explain two additional variants, library and
application virtualization. The different methods divert in many ways, but are also
having a lot in common. This can sometime make it hard to place some products
in a special category since they might contain little bits from several categories.
But it is these six categories which are the most common today.

Another expression often used when speaking of virtualization is hypervisors.
A hypervisor is the software that allows the virtualization in the first place, and it
is in control of the system’s processor and resources and is responsible of allocat-
ing what each virtualized system requires. A hypervisor can be of either type 1 or
type 2[15]. Type 1 means that the hypervisor is installed directly on the hardware
without any underlying software installed. Xen[3] is an example of a hypervisor
that is classified as type 1. Type 2 on the other hand is not installed directly on the
hardware, instead it is installed inside an already running operating system. An
example of this type is VMWare[16]. In books and articles covering this subject,
the term Virtual Machine Monitor or VMM is frequently used. This is basically
another word for hypervisor and the two terms can be interchanged.

3.3.1 Emulation

This technique is used when an application emulates a special kind of hardware.
One example of software that does this is Qemu which emulates all the necessary
hardware and shares library which can translate machine code for the chosen
system. This means that a computer that has Intel’s x86 architecture, an emulator



Virtualization 19

can be run to emulate an environment that for example has an ARM architecture
instead. An application responsible for emulating hardware this way is called a
Hardware Virtual Machine or HVM. It is useful when the final hardware that an op-
erating system or application is supposed to be run on is missing. The emulator
can then emulate the hardware on an ordinary computer and then the software
can be tested before the hardware is finished. Emulation lets the operating sys-
tem believe that it is being run directly in the hardware that it requires. Figure 3.2
shows the architecture of an emulator.

Emulation

Application Application Application

HVM

Physical hardware architecture

Figure 3.2: Simple description of emulation

One benefit with this technique is that no modification to the operating sys-
tem that is being emulated is needed. This makes it easy and quick to get started
with using emulation.

3.3.2 Full virtualization

In full virtualization the hypervisor is simulating the complete hardware that it
itself is running on. This means that the guest operating systems which the hy-
pervisor is taking care of have to be compatible with the hardware the hypervisor
knows of, as opposed to emulation. When the guest operating system needs to
send commands which demands access to the hardware the hypervisor catches
the command and interpret it. If it is an allowed command it sends it to the cor-
responding hardware. This means that the hypervisor in a way works like an
interface between the hardware and the guest operating system. Figure 3.3 gives
a picture of what full virtualization may look like.

Full virtualization

Application Application Application
Unmodified | Unmodified | Ui
Guest OS Guest 0§ Guest OS e HMI
Hypervisor (VIVIM)
Physical hardware architecture

Figure 3.3: Simple description of full virtualization
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With this method the access to the real hardware for the guest operating sys-
tems is limited. One example of this is the access to the memory. If the guest
operating system wants access to the memory it sends a command which the hy-
pervisor catches. The command contains the address the guest operating system
wants to access. But the address isn’t pointing to a place in the real memory, but
rather an address to the virtual memory that the hypervisor provides. The guest
operating system thinks that it is the real address and acts just as if it would be
the real memory. The hypervisor then interpret the command and with the help
of a table, it translates the requested address to an address in the real memory.
This means that it is the hypervisor that handles all the access to the real mem-
ory. This is done so that there will be no collisions with memory addresses if
you have multiple guest operating systems installed on the hypervisor and all of
them wants to access the same memory.

This will demand a lot of extra work for the hypervisor who has to translate
addresses every time a guest operating system wants access to the memory. Then
it has to send the information to the real memory by itself. The advantage is
that the hypervisor has good control over what memory is to be used and which
commands that are being used. Another advantage is that as with emulation,
there is no need to modify the guest operating system since it thinks it is running
directly on the hardware.

3.3.3 Para-virtualization

Para-virtualization has a lot in common with full virtualization. The big differ-
ence is that the guest operating system is allowed to know about the real re-
sources and make certain operations by itself. An example is when the guest
operating system wants access to the memory. As described earlier, in full virtu-
alization the hypervisor handles the communication with the actual memory. In
para-virtualization the guest operating system is allowed to make memory han-
dling. The hypervisor’s task is to check if the memory address is valid and then
grant or deny access to the memory for the guest operating system. If it is granted
access the guest operating system will handle the communication by it self. An
example of what para-virtualization looks like is illustrated in Figure 3.4.

In order to accomplish para-virtualization, the guest operating system is re-
quired to be modified. For example the hypervisor can’t grant or deny access to
a memory address that the guest operating system wants to use if the processor
will prioritize the hypervisor and the guest operating system equally. The prior-
ity of the operating system has to be lowered. If you are using the x86-architecture
there are four rings of priority. They are numbered from 0 to 3, where ring 0 has
the highest priority and ring 3 has the lowest. Normally an operating system will
run in ring 0 and thus have the highest priority. Applications run in ring 3. Ring
1 and 2 are not usually used. When using para-virtualization there is a problem
with the priority. Since the hypervisor has to have higher priority then the guest
operating system the hypervisor needs to be run in ring 0 and the guest operating
system in ring 1 and thus having lower priority then the hypervisor .

This is one of the modifications needed in the guest operating system to make
it work in a para-virtualized environment. There are other things that needs to
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Paravirtualization
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Figure 3.4: Simple description of para-virtualization

be modified and some of them are depending on what hypervisor and guest op-
erating system that are used. These will be discussed in Chapter 7.

3.3.4 Operating system level virtualization

The fourth method, operating system level virtualization, differs quite a lot com-
pared to the previous methods. In this case an operating system acts like a hy-
pervisor where guests are logged in as clients. This method is efficient in the way
that you don’t need to have many operating system installed at the same time.
All the clients are logged in on the same operating system. Every user will be
given their own IP-address, their own file system, but the hardware resources
will be shared between the users. The advantage with this is that there is no need
to duplicate the machine resources. Figure 3.5 gives a view of how it may work.

Operating system level virtualization

Private server 1 Private server 2 LI Private server N

Single shared operating system images

Physical hardware achitecture

Figure 3.5: A graphical description of operating system level vir-
tualization

3.3.5 Library virtualization

Library virtualization is a simpler form of virtualization. With this method, only
libraries from an operating system is used. One example is Wine[17] that virtual-
ize a Windows library in a Linux environment. This makes it possible to run some
applications in Linux that normally requires a Windows environment to execute
correctly. This is not the same as running for instance a Java application in either
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Windows or Linux, it’s rather allowing Linux to run software that is compiled for
Windows.

3.3.6 Application virtualization

Application virtualization means creating a virtual environment in which appli-
cations can run without being adjusted for the physical hardware. This method
is not intended to run operating systems in a virtualized environment but aimed
at running applications independent of what the underlying operating system
is. One example of this is the Sun Java Virtual Machine[14] that creates a virtual
environment in which the Java applications can be run without them knowing
the operating system that is being run beneath. The support for different operat-
ing systems and architectures is instead handled by the Virtual Machine, which
acts as a middle-hand between the application and the system. It is the Virtual
Machine that has to be programmed differently according to what functions the
operating system provides.



Chapter 4

Choosing a hypervisor

This report is meant to be a theoretical ground on how to increase the safety in a
mobile phone by letting a hypervisor virtualize two operating systems, where
one of them would be a more secure and reliable environment and the other
would be the platform where all the day-to-day tasks are handled. What this
means is that there would be two operating systems on the mobile phone. One
instance is the one that the user have access to. This is not secure because the user
can change it and flash a new operating system with potentially malicious code.
The secure instance on the other hand is something that the user wouldn’t be able
to see. The user couldn’t change or flash a new version of this operating system.
The secured environment would therefore have to be able to handle tasks that the
developers and manufacturers of the phone want to keep safe. This chapter will
discuss a few criteria on how to choose the correct hypervisor for the task.

4.1 Criteria

On the market there are today several companies that makes and creates hyper-
visors. These implementations may differ a lot from each other in many ways
as how to use it, how much it costs and what hardware it works on. In order
to know what hypervisor that will be the most suitable for the task a couple of
criteria set to help decide which one to use.

41.1 ARM architecture

In a regular Personal Computer the most common processor is either the x86
or the x64. These architectures means that the hardware needs a special type of
instructions in order to understand how a program should execute. The very idea
with the project is to make virtualization work on the ARM architecture. These
processors has another set of machine instructions which is not compatible with
the x86- and the x64-architecture. This is why it is important that the hypervisor
must be able to support the ARM architecture, or that it is possible to implement
the support.

23
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4.1.2 Modification

In order to make the software work as intended and to be able to easily modify it
in order to adapt it to unpredictable obstacles the hypervisor has to be modifiable.
It is required to change certain modules so that they might be adopted to a new
situation. This could be achieved by using a hypervisor that has an open source.
If the source code is included with the program it is possible to change the hyper-
visor in a way that suits the needs. An alternative would be to use a hypervisor
that lets much of the configuration be done with the help of configuration files.
In the case of adapting a virtualization technique in the environment of a mobile
phone it is important that the configuration is easy to modify and even that it
is easy to find information on how to modify both the hypervisor and the other
things that might need to be changed in order to make the whole system work.

4.1.3 Documentation

In order to facilitate the work and to be able to run and modify the hypervisor ac-
cording to the task’s purpose it is important that the software is well documented.
"Well documented" means that you should be able to understand how the pro-
gram works and the technique behind it from reading the documentation. The
documentation can be a manual, source code comments, a instruction video and
such. It is important that the hypervisor is well documented in this project since
it is limited to 20 weeks. Lack of documentation can stall the project by spending
too much time searching for information.

It is also important that the documentation is good in order to make it easier
to achieve the point above, about modification. If there is no good documentation
it can be hard to know where the required modifications are to be made.

One thing that is very important in the beginning in order to understand
how the hypervisor works is if there exists a homepage for the hypervisor that is
updated when something is changed in the hypevisor.

It is also good if there is any related work available that could have informa-
tion useful to the project. If there already exists a project with a similar goal this
can be a huge source of information.

A mailing list is also a good information source. In a maillist questions can be
asked and information can be sent out that might not be posted on the web page.
It is also a good thing to look through old mails in a mail list if someone else has
been asking the question one self needs to have an answer on.

Documentation of source code is also an important thing to have when deeper
knowledge is needed. With documented code it is easier to know exactly how
things work and what the developer wants the code to do. It is very important
to have some kind of documentation of code if it is desired to change the source
code. Otherwise it can be hard to know exactly where to make the changes, and
how.



Choosing a hypervisor 25

41.4 Performance

In a mobile phone the CPU is relatively slow, the memory small and the resources
are very limited. The hypervisor must therefore not demand too much from the
hardware to be able to run easily and not be an annoying experience for the user.
The source code must be optimized regarding this. That means that it should
not have unnecessary functionality that isn’t being used. Thus, the implementa-
tion has to decrease the performance as little as possible in order for it to work
smoothly on a mobile phone.

Another aspect of the performance is the battery in a mobile phone. If the
code is efficient and don’t run too much overhead functionality it is also possible
that it will use less battery power to get different tasks done. The user should
not be required to charge his or her device more than normally. This will have
the side benefit of keeping down the ecological footprint of the phone, which is
important to manufacturers of electronical devices.

4.1.5 Security

Security is also something that is important when it comes to virtualization. There
are several types of security depending of what perspective you are looking from.
In the case of virtualization on mobile phones the developer might want to have
one operating system running that can not be affected by the user (the secure
domain mentioned earlier) and one that the user can use as needed (non-secure
domain).

This means that the user can’t modify or access the secure domain in a way
that the developer don’t want the user to do. This means that the hypervisor also
has to be protected from the user since the hypervisor has higher CPU priority
then the operating systems. If the user would get access to the hypervisor, access
to the secure domain is also possible. There has to be a distinct separation of the
non-secure domain and the rest in order to achieve this.

Another security issue is from the users’ point of view. It should not be pos-
sible for a user to be able to gain access to the other users’ data. This is however
more related to how the operating system is implemented rather than the hyper-
visor and will not be covered in this project.

4.1.6 Remaining functionality

As described earlier, the idea behind the master thesis is to investigate the possi-
bility to use an operating system, but at the same time let some security critical
tasks to be run on a parallel secure instance of the same, or another, operating
system. This is why it is desirable that the hypervisor is supporting two or more
guest operating systems to be run simultaneously, isolated from each other. This
means that they should not be aware that the other exists.

In the same time it should be possible to have some kind of communication
between the different guest operating system in order to let each of the two deal
with their appointed tasks. In order not to risk the security it is a big advantage if
the communication takes place through the hypervisor. This can be by listening
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to certain function calls from the different guest operating systems and then direct
the information to the right guest operating system.

There are other functionalities that also are desirable in the hypervisor, such
as being able to have different types of operating systems being run at the same
time and to have functions that allows easy switching between operating sys-
tems. These are not as desirable as the isolation utility, but they are nice to have
when testing the system.

41.7 Low cost

The cost can be described in many ways depending on who the user is. For a
home user it might be desirable to use a free hypervisor since hypervisors can
cost quite a lot. For a company on the other hand the cost is not just the cost of
buying the hypervisor. There are hidden costs in things such as training the staff,
further development, licensing and support for the virtualization technique. For
a company it can be cheaper to buy a complete and ready-to-use solution from a
vendor rather then buying a free open source solution that needs to be modified
by the company itself.

Because this project is a master thesis it is desirable to keep the cost down as
much a possible. Since the work is being done in collaboration with a company
it is also interesting to find a solution that in the end does not cost too much in
order to make it profitable for the company.

4.2 List of Hypervisors

Hypervisors are usually classified into two types[18, 22-26] and it is important to
decide which of the types to use. In an embedded environment it is important to
have a small and efficient hypervisor and this is where the type matters.

Type 1 means that the hypervisor is run directly on the machine’s hardware,
just like if it was an operating system. It is not required to be installed inside an
operating system, though there are variations where the hypervisor is embedded
in the firmware of the of the platform, for instance KVM[19].

Type 2 hypervisors are installed as a software inside an already existing sys-
tem. The virtualized operating system is then run in the environment that in turn
is being run in the first operating system. This type may simplify the program-
ming of the hypervisor but also gives a lot of extra layers that might slow down
the virtualized operating system. Since the recourses are very limited in an em-
bedded system this would lead to that the users would find the mobile phone
unusable[20]. Type 1 was therefore chosen as the most suitable type of hypervi-
sor. It is not as heavy to run and is faster when the virtualized operating system
is going to be used much.

The next thing to decide is whether to use para-virtualization or full virtual-
ization. These two are the best choices of hypervisors since they have the least
overhead execution, and are therefore the least resource demanding. There are a
lot of discussions on which of these two methods that is the best and the answer
is that both can be best depending on the situation. Para-virtualization is known
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for being the fastest method, almost as fast as running a native operating system
and it is not very resource demanding[21]. This is, to some extent, dependent
on the port of the operating system. If the port is poorly made it can be slower
than full virtualization. There is research on making processors more adopted to
para-virtualization that would make the porting of the operating system much
easier[13]. For this project the port of the operating system will be assumed to be
a good port and thus making para-virtualization the best choice in order to get
the best performance out of the virtualization.

Now that type 1 and para-virtualization is chosen for the project the number
of potential hypervisors are less and it is easier to look into the criteria of these.
The demand of low cost together with the criteria of being able to modify had a
pretty high priority in this project. Therefore there where a couple of candidates
that were looked into, where these two aspects were taken into extra considera-
tion.

421 L4

L4 is a so called microkernel. That is a minimal kernel that an operating system
then is built upon. For example a virtualized version of Linux can be run on top of
L4. The microkernel is intended to minimize unnecessary information and func-
tionality in the kernel and just contain what is necessary to be able to run. This
will increase the performance. L4 have come to be an umbrella term of a com-
plete family of microkernels where it nowadays are a number of derivatives that
have been implemented to add or optimize functionality. L4Ka::Pistachio from
the University of Karlsruhe is one of these which is created to be platform inde-
pendent and at the same time support more platforms than the original. Among
these are the ARM architecture[22]. The team behind L4Ka::Pistachio have how-
ever chosen to stop the development for the support of ARM in the kernel[23].
L4 is a type 1 hypervisor and it uses para-virtualization.

422 OKL4

Another one of the descendants from the L4 is created by Open Kernel Labs and
is intended to be a commercial software. The core of the "microvisor" OKL4 is
based on L4 and is therefore open source. The changes made to the base in OKL4
is not open source and therefore not being submitted with the software. OKL4
is aimed towards mobile virtualization[24]. This direction has made OK Labs
develop versions specially fit for Windows Mobile, Symbian OS and Android.
OKL4 as a base system is, as mentioned before, open source and is available from
OK Labs homepage[25], while the versions specifically made for the Android has
a license cost on over $100,000. Just like L4, OKLA4 is also a type 1 virtualization
and uses para virtualization.

4.2.3 KVM (Kernelbased Virtual Machine)

KVM is a module to the Linux kernel that allows the user to run guest oper-
ating systems with Linux itself as the hypervisor[19]. It supplies the necessary
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functions to for instance share the hardware resources to the guest operating
system. This is made with help from the emulator Qemu. Unfortunately, KVM
doesn’t come with support for the ARM architecture, it needs to be run on a x86
machine[26]. The availability of the source code makes it possible to implement
support for ARM though. KVM is a type 1 hypervisor. It can use both para-
virtualization and full virtualization.

424 Xen

Xen is a stand alone hypervisor which is intended to run directly on top of the
hardware, as a thin layer between the hardware and the guest operating systems|[3].
It needs to run on x86-architecture[27], but thanks to that the project being open
source there are a couple of ports to ARM avaliable, among these are Xen-ARM[28]
and EmbeddedXen[29]. When one or several guest operating systems are vir-
tualized with Xen it is most often done using the para-virtualization technique
described in 3.3.3. As mentioned in this chapter, this technique requires modi-
fication of the guest operating system[30]. Xen is a type 1 hypervisor and can
use both para-virtualization and full virtualization. Most commonly it is using
para-virtualization though.

4.2.5 Denali

The project on the University of Washington was created in order to extend the
performance of virtualization and to give the opportunity of having parallel ex-
ecution of a vast number of server applications on the same machine[31]. Denali
does, as Xen, use the para-virtualization technique to virtualize the application.
Denali is a type 1 hypervisor and it uses para-virtualization.



Chapter 5

Xen

The Xen hypervisor, or more specifically the deviate project Xen-ARM, was se-
lected as the best choice of hypervisor for this project. This chapter will give a
closer look at Xen as a hypervisor, how it works, its basic concepts and how it can
be used in this project. This is connected to Figure 1.3 where the hypervisor is
put on top of the x86 architecture. The end of this chapter will give information
about how the hypervisor works on the ARM architecture and will therefore give
enough information to understand Figure 1.5. This chapter will also give infor-
mation about what needs to be modified in an operating system in order to make
it work on Xen. This means that Figure 1.4 is also covered in this chapter.

5.1 Why Xen?

The reason Xen seemed to be the best fit for the project is based on that there
already exists modifications to the source to make Xen configured for the ARM
architecture. Xen is open source, and there are a lot of information and documen-
tation to find on the Internet. There are a lot of books available about Xen to find
information from as well. It is also free to download and try which lowers the
cost a lot, it is even possible to use Xen in a commercial product since the source
code is licensed under GPL, GNU General Public License. For this to be allowed
though, every bit of source code that falls under this license has to be published
for everybody to see[32]. The accessibility of documentation can simplify the un-
derstanding of the basic concepts of the Xen-ARM. Even though the information
is mainly about the x86 version, it can be used to understand Xen-ARM.

The security is also a thing that is a positive point of Xen. There can be a
distinct separation between different operating systems in order to make them
isolated from each other. This can help the developer create secure and non-
secure domains as described in Section 4.1.5, thus keeping the user from data that
the developers want to keep safe. How this would look in Xen can be viewed in
Figure 5.1.

This figure shows that the non-secure domain is separated from the secure
domain, making the secure domain less sensitive to harm from the one that is
not secured. There can however be communication between the domains. This
is done through Xen and can thus be controlled. The developer can specify what
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Figure 5.1: Description of the isolation of domains in the Xen
hypervisor

information is allowed for one domain to send to the other domain. This will
prevent malicious users or applications to access the secure domain in a way that
is not allowed by the developers.

Xen uses para-virtualization which increases the performance by letting the
guest operating system have access to the real hardware and letting other parts
being virtualized[33], compared to full virtualization where everything is virtual-
ized, as mentioned in Chapter 3.3. Tests have been made where the performance
have been measured and compared between Xen, VMWare and native Linux. The
result of these tests are that Xen adds very little overhead performance loss to na-
tive Linux, while using VMware had a significant decreace of performance[21].

The gain in performance however comes with the cost of having to modify
the guest operating system in order to support the para-virtualization technique®.
If this is made poorly it can decrease the performance too much. This makes the
performance in para-virtualization dependent on a combination of the modifica-
tions of the operating systems and the implementation of the hypervisor. Since
version 2.6.23, the Linux kernel has support for Xen[34], which can be a big ad-
vantage because Android (release 1.6) is based upon version 2.6.29 of the Linux
kernel[35]. However, the support for Xen in the Linux kernel is currently limited
to the x86- and x64-architectures.

A matrix over what criteria the hypervisors mentioned in Section 4.2 fulfill
can be seen in Figure 5.2. In this matrix Xen seems like the best choice. The criteria
security is however not included in the matrix. The reason for this is that the
security is pretty much dependent on how the hypervisors were to be modified.
They all have some kind of security in and isolation of the domains. The security
can also depend on what kind of operating system is being used on top of the
hypervisor. Therefor we can say that all hypervisors can potentially be safe.

The modifications depends on how the hypervisor is implemented, a real life example
will be described in Chapter 6.
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Figure 5.2: A matrix over the demands and which candidate that
fulfills them

5.2 Xen hypervisor

As mentioned before Xen is a hypervisor that uses para-virtualization to virtu-
alize a number of instances of operating systems. When installing Xen it is also
mandatory to install an operating system that will act as an administrative op-
erating system?. The reason for this is that the administrative operating system
and Xen is working close together. In fact, the operating system is compiled with
support for Xen. This administrative operating system have direct access to the
hardware, and is also the system used to create and destroy other operating sys-
tems on Xen. Every operating system that is installed on Xen will be installed
in their own domain. Every domain will be given a certain amount of memory
and access to generic drivers to the hardware so that an operating system can be
installed in the domain. All operating systems are usually referred to as guest
operating systems . The domains are usually named domU (U stands for unprivi-
leged) for the ordinary guest operating system, and dom0 for the administrative
guest operating system.

5.21 Dom0O

Domo0 is the only domain that is required when installing Xen and contains a
guest operating system that is given more privileges than guest operating sys-
tems in other domains. The ability to create and destroy other domains is only
available in dom0. It is also dom0 that has access to the real I/O device drivers.
When the other domains are installed they are by default not given access to
the I/O device drivers, they are rather given access to generic devices instead.
This means that instead of knowing that a wireless network card is wireless it
only knows that it is a network card arbitrary type and dom0 is the domain that
shares these generic drivers. There is however an option to give domU access to
the I/O drivers. This can be preferred to keep the workload of the guest operat-
ing system in domO0 down if it will be used for other work than just handling the

’There are however some package solutions that makes it possible to run Xen without
a operating system installed. These will not be handled in this project.



creation and destruction of other domains. This means that another guest oper-
ating system that is using the wireless networking card doesn’t have to use the
generic drivers.

There are two ways to create or destroy other domains in dom0. The first way
is to use the console to send commands to Xen. The other way is to use a graphical
interface that comes with some of the operating systems that are adapted to work
on Xen.

5.2.2 DomU

DomU is the unprivileged guest operating system that can be run on Xen. When
Xen is started it does not by default start any other domain besides dom0. When
dom0 has booted the administrative operating system an unprivileged guest op-
erating system can be started. This is run inside a domU and has less priority to
some of the I/O perhipials by default. When Xen is running it can only have one
dom0 but it can have many domU running at the same time. The first domU that
is created will have the id #1. The second will have id #2 and so on. Even if the
domU witch id #1 is not running anymore the next domU will not get id #1[36].
There are no upper limit to how many domU that can be created in the hypervi-
sor, but depending on how much resources the created domains need and how
much that is available the number of domains that will be able to run can vary
much.

5.2.3 Adapting an operating system to para-virtualization

One of the main things that needs to be considered when choosing to para-virtualize
a system is that the technique requires modification of the operating systems that
are being virtualized. These modifications varies depending on the choice of hy-
pervisor and also what operating system that is to be run. The main reason that
these modifications are mandatory is that the hypervisor needs to have a higher
priority than the operating system, in order to prevent different operating sys-
tems from using the other systems’ resources.

To increase the system performance even more, the guest operating system
is also modified to use virtual hardware, instead of the physical hardware. Via
dom0, Xen shares for instance virtual network interfaces and block devices to
the other domains. This means that it does not matter if the computer is using a
wired or a wireless network card, since the guest operating system only uses the
virtual interface and doesn’t need to know what the real interface is. This also
removes the need for a specific network driver in every domain.

5.2.4 System interrupts

In addition to modifying the guest operating system in order to address the pri-
ority issue described above the source code also needs to be changed because of
the use of interrupts that can occur. These must be dealt with. As for software
interrupts, it is the hypervisor that will have enough privileges to handle inter-
rupts, but depending on which interrupt that is invoked, and also which one of



the different domains is currently active, the guest operating system also has to
be involved in the process of handling the interrupt. For this reason, a virtual in-
terrupt table is added to the guest operating system, and these virtual interrupts
will be delivered from the hypervisor to the specific guest operating system[37].
The typical course of events is described below.

1. An interrupt is issued by an application.

2. The interrupt is caught by Xen (since only the hypervisor has privileges to
handle interrupts).

3. Xen saves the context and sends a corresponding, virtual interrupt to the
0s.

4. The OS receives the interrupt and act depending on the interrupt.

5. The OS sends a hypercall® to Xen, because the OS can’t change the context
by itself.

6. Xen restores the context.

7. Xen lets the application resume its action.

This is graphically illustrated in picture 5.3.
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Figure 5.3: An interrupt is received by the hypervisor and redi-
rected to the guest operating system

The handling of hardware interrupts differs from this manner, since a hard-
ware interrupt is a matter of the whole system and not a certain application. Each
guest operating system holds an array of all the possible interrupts. During the
boot process, every interrupt is set to disabled, and then it’s up to the physical

?A hypercall is the guest operating system’s communication link to the hypervisor[38].



drivers to request for a specific interrupt to be enabled. This will result in the
guest operating system sending a hypercall to the hypervisor, which will enable
the interrupt for the guest operating system. Everytime a hardware interrupt oc-
curs, the hypervisor recieves it and alerts every domain that is registered for that
interrupt[39].

It is important to note that the required modifications only applies to the op-
erating systems, and not user applications (since they are already run with the
lowest priority and are not concerned with the priority of the hypervisor or the
guest operating system). This was one of the main design principles when de-
veloping Xen, to lessen the burden of adapting to Xen as a hypervisor[21]. It is
also worth to note that if there is hardware support for virtualization in the CPU,
such as the Intel VT or AMD-V, there is no need to modify the operating system
at all, the hardware is constructed to allow the OS to run with full permission, but
the hypervisor is allowed to interfere whenever needed[40]. This is supported by
later versions of Xen.

5.2.5 Memory management

In order to allow the kernel and user processes to use more memory than physi-
cally exists in the computer, the Linux kernel lets different processes use the same
physical memory as they need it. This is done by letting each process have its
own virtual address space. This makes the process see the memory as a group
of consecutive addresses, while they in fact can be fragmented to different areas
of the physical memory, or even on the hard disk. The virtual addresses are di-
vided into pages, which basically are blocks of memory where both the virtual
and the physical addresses are contiguous (although not necessarily the same).
The pages have the same size throughout the system and this also applies to the
physical counterpart, which usually is referred to as a page frame[41].

The translation between virtual and physical pages are done by the use of
page tables, which consists of a mapping between the virtual page and the ad-
dress in the real memory where the page is stored, or an indicator that the page is
stored on the hard disk. To save space the page tables are divided into multiple
levels. The Page Global Directory or PGD is the top level table and is used as an
index in an array that each process only have exactly one of. The entries in the
PGD points to the start of Page Middle Directories or PMD. These are used to point
to the Page Table Entry, PTE, which in turn points to a certain page frame, i.e. a
block of real memory. This is achieved by splitting the virtual address in 4 parts.
The first part will point to a specific entry in the PGD, the second part will point
at the desired entry in the PMD, the third part of the virtual address indicates the
certain PTE entry and the last part is an offset to specify a byte position within
the page frame. The method is visualized in Figure 5.4. This saves memory, but
comes with the cost of running through the whole chain each time a certain ad-
dress must be obtained. To speed this up, the CPU has a special part, Memory
Management Unit or MMU, that is optimized for these kind of operations. The
CPU also saves the most frequently used addresses in a CPU cache, the Trans-
lation Lookaside Buffer or TBU, to instantly translate the address instead of going
through the page tables[41].
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Figure 5.4: How a virtual address is split to point at differents
levels of page tables

This method of allowing processes to see more memory than physically is
available is adapted in Xen. The operating systems no longer have permissions
to communicate with the MMU or the TLB though, so they need to go through
Xen to update these parts of the CPU. Xen takes this method one step further and
also divides the memory into virtual pages that the guest operating systems will
see as "their" memory. This is referred to as machine memory. Xen works similar to
an operating system in that it shares page tables for different guests and updates
these pages whenever a guest needs more memory, or when there is free memory
that a guest no longer needs.

Xen also provides functionality for mapping between machine memory, be-
longing to a certain guest, and physical memory. It is also responsible for updat-
ing every guest’s page tables when necessary, e.g., when code is in the physical
memory, but not mapped to a certain application that wants access to the code.
This will cause a page fault that triggers Xen* to let the operating system know
that it must lookup the physical address to map into the specific application. The
OS retrieve the machine to physical mapping and then request a new memory
page in its machine memory, maps it to the application then reports back to Xen
to update the MMU and pin the page as an entry in the page table[42].

5.2.6 Periorities

The priorities of the applications, operating systems and the hypervisor are issues
that needs to be handled when using the Xen hypervisor. How this is handled
is dependent on the hardware Xen is installed on. First the priority on the x86
will be discussed. This mainly because the Xen is originally made for the x86
architecture. After that the priority on the ARM-architecture will be discussed.

*Xen triggers on faults by a mechanism called traps, which basically lets Xen trigger on
generated faults, and calling a function that will handle the specified fault.



x86

In the x86 architecture there are four different levels of priority. These levels de-
cide what memory that is allowed to be accessed and what hardware the current
process has permission to use. The rings in the x86 architecture are numbered
from 0 to 3, where ring 0 is the one with highest priority. The operating system
runs in ring 0, thus having full access to the memory. Applications are executed
in ring 3, which has the least priority. This prevents the application to access the
memory that belongs to the operating system. Ring 1 and 2 are by default not
used.

When using full virtualization the hypervisor handles the communication
with the physical memory instead of letting the operating system take care of it.
This is done by translating the memory addresses used by the operating system
according to a translating table. Para-virtualization differs from this technique
in the sense that the guest operating system is given direct access to the physical
memory. This means that the hypervisor needs to have a higher priority than
the guest operating system in order to prevent the guest operating system from
accessing memory belonging to the hypervisor, making it more difficult for haz-
ardous code to harm the hypervisor. In the same manner the guest operating
system must have a higher priority than the applications that runs inside it. The
problem is that when the guest operating system tries to access memory that it no
longer is permitted to use, the CPU will cause a general-protection exception, which
must be handled. The guest operating system must therefore be modified to, in-
stead of executing the privileged operation, invoke a hypercall, which will make
the hypervisor itself execute the specific task[38][43]. In Xen the guest operating
system therefore can’t be running in ring 0 anymore. Xen runs in ring 0, the guest
operating system in ring 1 and the applications run in ring 3.

Since user applications already are written to call the operating system to
perform a task that requires higher priority, they will work in the exact same
manner if a hypervisor or an operating system is in ring 0, hence they do not
require any modifications[21].

ARM

In this project the ARM architecture is used. The ARM differs from x86 in that it
does not use four priority rings, but two different priorities; privileged and un-
privileged. There are six modes that are privileged and one that is unprivileged.
The privileged modes have permission to communicate with the hardware and
can be seen as different states that the CPU is in. For example the unprivileged
mode is called user mode and is the one all user applications are run within. These
different modes resembles the ring structure from x86 in that the six privileged
once are similar to ring 0 and the unprivileged mode can be compared with ring 3.
In the x86 architecture Xen is located in ring 0, the guest operating system in ring
1 and the applications in ring 3. In order to achieve this priority in Xen-ARM both
the guest operating system and the application is run in user mode and Xen-ARM
is allowed to run in the privileged modes. To isolate the memory of the guest op-
erating system from applications, Xen-ARM adds an extra abstraction of modes.
This means Xen-ARM is responsible for knowing whether it is an application or



the guest operating system that wants to access the memory, and makes sure that
the correct access is given. To accomplish this abstracted model the hypervisor
switches between three different states; VMM mode, Kernel mode and User mode,
where VMM mode is run with privileges. User mode and kernel mode is run
within the unprivileged "ring". Depending on what state Xen-ARM is in when a
memory access request is issued, the process is given access to different areas of
the memory[44].

The concept of hypercalls is adapted in Xen-ARM, all privileged operations
in the guest operating system must be replaced by a corresponding hypercall.
But Xen-ARM also extends this concept by allowing the guest operating system
to make a hypercall that switches between the different states. Hypercalls will be
further discussed in Chapter 7.

5.3 Xen based hypervisors for the ARM architec-
ture

There are several projects around the globe trying to make Xen work with the
ARM architecture. Here we will discuss two of these and mention some of the
differences they have. The two implementations that will be discussed are Xen-
ARM]28] and Embedded Xen[29]. They have a lot in common, in fact, the em-
bedded Xen project is based on the Xen-ARM project.

5.3.1 Xen-ARM

The Xen-ARM project is led by Samsung[45]. Therefore the insight in the project
is somewhat limited. When something is implemented it is released as open
source, but the development itself is not public. Because of this the information
comes in pieces.

The Xen-ARM project is based on the x86-port of the Xen hypervisor. This
means that the data structure and functions are designed for the x86-architecture
at first and then changed to fit the ARM platform. This means that there are some
data structures and functions that might be missing and some that are superflu-
ous at the time of writing.

The Xen-ARM is a Xen version made for the ARM platform. It is not made
for any specific operating system. This means that there is no operating system
included when the source code is being downloaded. There is however a patch
made for the Linux kernel version 2.6.21.1. The patch replaces some of the files
in the original kernel. This is reported to work on the Freescale M9328MX21ADS
board[28].

5.3.2 Embedded Xen

Embedded Xen is a project based on the Xen-ARM project. Its aim is to make
a multi-kernel hypervisor for the ARM architecture. It is an academical and ex-
perimental project that aims at examine the performance of virtualization in an



embedded environment. As of to this day it supports virtualization of two differ-
ent operating systems. The kernels that is included when being downloaded is
Linux 2.6 and a miniOS.

Embedded Xen looks more like the Linux kernel when looking at the source
code. This is because the Embedded Xen is more like Xen with ARM support
being included in a Linux kernel, compared to Xen-ARM which is more like a
stand-alone Xen with ARM support. This means that the source code for Embed-
ded Xen is much larger than the source code for Xen-ARM.

5.4 Xen-ARM vs. Embedded Xen

As mentioned before Embedded Xen is based on Xen-ARM and they are there-
fore a lot like each other. There are however some important differences in the
implementations. One difference is how the page tables are allocated when the
mini-OS is booted. In Xen-ARM the page tables are allocated when the OS is be-
ing created, while the page tables are allocated during the bootstrap in Embedded
Xen.

For this project the Xen-ARM hypervisor will be used. Since Embedded Xen
is including the Linux kernel this means that it could be a good choice. This can
however be a constraint if one would want to use another operating systems.
Xen-ARM is not made for any special operating systems. It is made to be in-
dependent of what operating system that is being used. There exists a patch to
make a Linux kernel work with Xen-ARM, but any other operating system could
be used instead. This is good for this project since there exists a solution for a
operating system, but it can be used for any operating system if desired. The Em-
bedded Xen project has this as a future goal as well, but at the time of writing it
is more aimed towards making it work with the Linux kernel.

Since this project is focusing on the virtualization of operating systems on a
mobile platform it can be a good idea for it to be open for other operating systems
than Linux. It is also desirable if it is not dependent on what version of operating
system that is being used. Embedded Xen is not only tied closely to the Linux
operating system, it is also tied to s specific version of the operating system. Xen-
ARM is not tied to either the type of operating system or the version. This makes
Xen-ARM the most interesting choice of the two hypervisors.

After this section the knowledge about how Xen would work on the ARM
architecture is sufficient enough to say that the sub-goal three in Section 1.2 that
is connected to Figure 1.5is fulfilled.



Chapter 6

Linux On ARM

The Android operating system[4] is an operating system made for mobile phones.
This project will use the Linux kernel as an example since Android is built from
the Linux kernel. Many changes that needs to be made to the Android kernel in
order to make it run with Xen-ARM also needs to be made to the Linux kernel. In
fact, many of the projects that are trying to port Android to Xen-ARM first port
the Linux kernel and then later apply it to Android.

From the beginning the Linux kernel was not made for the ARM architec-
ture, but nowadays it supports ARM and many other architectures as well. The
following sections will describe how this was made since this project will use a
Linux kernel that has been ported to the ARM architecture. This chapter will give
the information needed to understand Figure 1.6.

6.1 ARM Linux

ARM Linux is Linux built for the ARM architecture. Nowadays, the Linux kernel
includes support for ARM when downloading the source code. When building
the operating system image one can build it for ARM or any other of the archi-
tectures the kernel has support for. There are several guides for how to build the
kernel to work with different ARM architectures online[46].

6.1.1 History

The Linux kernel was originally developed for the 386 as a project by Linus Tor-
valds in order to get a wider knowledge about the 386-architecture[47]. At first,
Linux only supported 386, but the structure of the operating system was soon
adopted to other architectures. Today, Linux supports a multitude of computer
architectures. The project of making Linux available for ARM processors started
in 1994[46] when Russell King began to port the 1.0.x Linux kernel to the Acorn
A5000[48] and it was given the name "ARM Linux".
When porting the Linux kernel, Russell followed a rather simple process.

e Adopt the file naming and the file structure for the kernel. This was nec-
essary because the Acorn A5000 did not use the same name convention as
the 386, and did not support the same number of files in a directory.
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o Compile the kernel. Each part of the kernel was compiled separately. The
memory management was rewritten since it worked in different ways on
different architectures. The drivers were apparently fairly easy to write,
since they were written to be very simple. For instance the keyboard drivers
that were written were as simple as possible.

o Link the different compiled parts together. This work took a couple of
months and as a result Russell finally managed to boot Linux.

e Implement a shell. A very simple shell was created and placed in the ker-
nel.

The steps described above where the things that needed to be done in order to
make Linux work on the Acorn A5000. It did not have much functionality by this
time, but could run and execute some simple commands. This is considered to be
the first working version of Linux to run on ARM. Many new versions has seen
the light since 1994, and the porting process has changed a lot.

6.1.2 Porting Linux to ARM

In order for the built Linux to work on the intended hardware there are some
things that might need to be changed. The things depending on the platform that
need to be modified are the device drivers, support for the processor and code
dependent on the circuit board such as where devices are mapped[49]. When
downloading the Linux kernel there are two parts of the source code that might
need to be modified. One is in the arch/arm folder which contains the code that
is specific for the platform. These header files are placed in include/asm-arm The
drivers are placed in the drivers/net folder. The platform specific code will be
handled first.

The board specific instructions are, as mentioned above, located in arch/arm
in the source code of the kernel. Inside the folder there are some folders for dif-
ferent ARM architectures to choose. There are also some folders that are common
for all the ARM architectures. Some of these are: Kernel that contains the core
kernel code, mm contains the memory management code, [ib contains the ARM
specific internal library functions, boot is where the final compiled kernel will be,
tools that contains scripts for generating files and def-config that contains default
configuration files.

The boot loader

There are some instructions that are run before the operating system is started
on ARM. These instructions are executed by a program called the boot loader.
The instructions that the boot loader executes are hardware dependent and may
have to be changed when porting it to another ARM architecture. The boot loader
should at least do the following things[46][50]:

Setup the RAM and initialize it - This means that it needs to find and ini-
tialize the RAM that the kernel will use to store volatile data. It can either use
some algorithm to find the RAM or it can have knowledge of the hardware and
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therefore know where it is from the start.

Initialize at least one serial port -This is done so the kernel serial driver can
detect which serial port to use for the kernel console. It can be used in a debug-
ging purpose and communication

Detect the machine type - The boot loader has to pass information about the
hardware to the kernel.

Setup the kernel tagged list - This is basically a list consisting of parameters
that the kernel needs in order to work. The list starts with a ATAG_CORE and
ends with a ATAG_NONE. Between them there is a number of tags one can use.
The number of tags is not fixed, but there is however one tag that needs to be
included. This is the ATAG_MEM which is a tag that passes information about
the size and location of the system memory. This makes the shortest tagged list
to be ATAG_CORE, ATAG_MEM and ATAG_NONE. A tag consist of a header
and a body. The head has an ID and a tag size that gives the size of the tag it-
self, including both the head and the body. The body’s content is dependent on
what kind of tag it is. Figure 6.1 shows how this would look. The figure shows
the shortest possible tagged list that is needed. There are however more possible
tags that also can be included between ATAG_CORE and ATAG_NONE[51].

ATAG CORF Base Tag

ATAG MEM

ATAG NONE Last Tag

Figure 6.1: The smallest tagged list possible

Calling the kernel image - The boot loader calls the kernel so it can start.
This can be done in two different ways. Either the image is located on a flash or
the RAM.

There are many different kinds of boot loaders to use. The different boot
loaders will have different pros and cons depending on what architecture you
want to build. Some can just be used in an x86 environment and some in multiple
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environments. In[51] Section 2 there is a list of common boot loaders for the ARM
architecture.

Information about the boot loader can also be found in the Documentation/ar-
m/Booting.txt file in the source code of the Linux Kernel.

Drivers

The drivers are very dependent on the underlying hardware. Since the ARM ar-
chitecture is being used in many different kinds of systems there are also a lot of
different kinds of setups of hardware[52]. This makes the drivers for the hard-
ware very important for the system. There are a lot of different configurations
registered where one can see if the hardware in use already has been used before.
In that case there is no need to rewrite the support for that specific system!. If the
desired hardware isn’t registered here it is possible to get an account there, log in,
fill in a form and send a request. If it is approved, a unique id for the system (here
called machine) will be given. When the drivers are written and submitted the id
will appear on the homepage. Often there at least exists drivers for some of the
hardware, so a lot can be reused. The finished drivers will then, if approved, be
included in the Linux kernel source code, and thats when the id comes in handy.
If there already exists drivers that can be used it is possible to use the id of that
driver when compiling the kernel. In this way the right drivers will be used.

At the moment of writing this there are 2569 machines registered (December
8, 2009) and the number is increasing. There are many drivers existing, so it is a
good idea to check the list if the desired setup of hardware already has been used
before.

Memory management

The kernel handles the memory by virtualizing the memory it wants to use. This
means that there has to be some kind of translation in order to map the vir-
tual memory to the real physical memory. The formula for this is placed in the
include/asm-arm/arch-xxx/memory.h folder. Most often the formula for this is:

PHYS = VIRT - PAGE_OFFSET + PHYS_OFFSET

PAGE_OFFSET is where the kernel memory begins. PHYS_OFFSET is where
the first physical memory bank of the RAM is located. VIRT is the virtual address
and PHYS is the physical address that the formula returns.

More about the memory management can be read in Section 5.2.5, where the
focus is on how Xen handles the memory management

There are also some symbols that help to define things about the memory
management such as where the RAM begins, and so on. These symbols needs to

The page where to register new hardware configuration or find existing configuration
can be found at http://www.arm.linux.org.uk/developer/machines
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be configured so it will work on the hardware[53]. These are:
Decompressor symbols

The kernel image is somewhat compressed and the decompressor is used in
order to run the image. There are some symbols that the decompressor needs
in order to know what to do depending on the environment and the implemen-
tation of the kernel. These symbols can differ depending on the hardware and
configuration. The symbols are listed below.

ZTEXTADDR - This is the start address for the decompressor. This is being
used before the MMU has started, so this is the physical address to it. Is normally
used to call the kernel when it needs to boot. The address does not to need be on
any specific medium. It can for example be on a flash memory.

ZBSSADDR - The address on the RAM that will be the zero-initialised work
area for the decompressor. Also a physical address since the MMU still has not
started.

ZRELADDR - This is the address where the decompressed kernel will be
written to and started from. It needs to follow,

__virt_to_phys (TEXTADDR) == ZRELADDR

in order for it to work.

INITRD_PHYS - The physical address where the initial RAM disk is placed.
Only used when bootplmag stuff is used and when using the older struct param_struct
to send information to the kernel.

INITRD_VIRTThe virtual address to the initial RAM disk. Here,
__virt_to_phys (TEXTADDR) == INITRD_PHYS
must apply if it should work
PARAMS_PHYS - The physical address for the struct param_struct or the tag

list. It provides the kernel with parameters about the environment it is executed
in.

Kernel symbols
The kernel symbols are symbols that the kernel uses for different purposes. It
can be used in signal handling and to keep track of the recourses that the loaded

modules are using during boot time.

PHYS_OFFSET - The physical start address to the first memory bank of the
RAM.
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PAGE_OFFSET -The virtual start address to the first memory bank of the
RAM. This will be mapped to PHYS_OFFSET during the boot process.

TASK_SIZE - The biggest size in bytes that a user process can be. The user
space starts at zero, so this is the biggest address a user process can access.

TEXTADDR - This is the virtual start address for the kernel. It is normally
PAGE_OFFSET + 0x8000. This is where the kernel ends up. Newer kernels needs
to be placed this far into a 128MB region. Older could be placed anywhere in the
first 256MB region.

DATAADDR - This is a virtual address for the kernel data segment. This may
however not be defined when the decompressor is being used.

VMALLOC_START, VMALLOC_END - Tells where the virtual start and
stop address for vmalloc is. There can not be any static mappings since vmal-
loc will overwrite them.

VMALLOC_OFFSET - Is used together with VMALLOC_START in order to
create a space between the virtual memory and the area that vmalloc is using.
This so things can be caught that has been written outside the memory. Normally
set to SMB.

Architecture specific macros There are 5 macros which are interesting that
might need to be changed in order to work on different architectures.

BOOT_MEM(pram, pio, vio)
pram - Specifies the physical start address for the RAM. This must always exist
and shall be the same as PHYS_OFFSET.
pio - The physical address for the 8MB region with IO that is used with the debug
macro in the arch/arm/kernel/debugg-armv.S.
vio - The virtual address for the 8MB region.

BOOT_PARAMSs The same as PARAMS_PHYS

FIXUP(func) Own machine specific code to fix some specific things. This is
used before the memory system have been initialized.

MAPIO(func) Own machine specific code to map the IO areas that exists.
This includes the debug region that is specified in BOOT_MEM.

INITQ(func) Machine specific code for initialising the interrupts.

There are more things that needs to be changed before the porting is done
such as fixing the Makefile and where to define the above symbols[53]. The things
that have been taken into consideration in this chapter is however in some sense
important in order to understand the differences the Linux kernel have depend-
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ing on what architecture are being used. As the kernel evolves, so does the sup-
port for other architectures. The information above applies mainly when porting
a Linux kernel of version 2.4.22 or earlier.



Part 11

Real life example
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Chapter 7

Linux Kernel running on Xen-ARM

As stated earlier in the report, when using the para-virtualization method, the
operating systems needs to be modified to be able to run in domains of Xen-
ARM. These modifications will differ depending on how the operating system is
written, and also how the hypervisor is implemented. This chapter will on an
overhead level describe the patches made to an existing Linux kernel to enhance
it with support for the aforementioned Xen-ARM hypervisor. It will also try to
provide enough information to understand Figure 1.2.

Throughout this chapter, it is assumed that the source code for the patched
Linux kernel is placed in $H_KERNEL (for instance /home/user/xen-unstable.hg/
linux-sparse/).

7.1 Hypercalls

One of the main things that were looked into when examining the patch to the
Linux kernel was how the hypercalls, described in Section 5.2.4 are implemented.
A hypercall is the operating system’s counterpart to the system call which is used
in applications. It is invoked whenever the OS needs resources that only the
hypervisor has access to (such as writing output to the console and retrieving the
system time). A list of all hypercalls currently implemented in Xen-ARM can be
viewed in Appendix B.

When the guest operating system executes a hypercall, it puts datastructures,
operators and other important arguments to the specific hypercall in the ARM
registers r0 to 3. Xen is set up to allow the guest operating system to invoke
software interrupt 0x82, which will allow Xen to know that a hypercall has been
issued and then takes control from this point. The guest operating system speci-
fies which hypercall it is trying to call by setting register r7 to a certain number.
These numbers are provided by Xen and are mapped to a specific function inside
the hypervisor that will validate the arguments passed in r0 to 13, and then exe-
cutes the required action if it means that no security policy is violated (i.e., if the
guest operating system is trying to access memory that belongs to another guest
domain)[54]. Xen puts the result of the hypercall in register r0 and passes control
back to the guest OS which will carry on with whatever it was up to when the hy-
percall was invoked. An example of a hypercall is when the OS in dom0 is used to
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create another domain; a hypercall that handles dom0 operations is invoked with
different arguments. Listing 7.1 will list the chain of commands associated with
creating a domain. The listing will be in pseudo-code for a better understanding.

arg_op = DOMO_CREATEDOMAIN
HYPERVISOR_dom(_op (arg_op)

/%

In this case, the requested operation is DOMO_CREATEDOMAIN, which
will allocate memory for the new domain and provide it with a
domain id. If the returned value is 0, it means that the

DOMO_CREATEDOMAIN operation was succesful and memory has been
allocated for the new domain.

*/

arg_op = DOMO_GUEST_IMAGE_CTL
HYPERVISOR_dom0_op (arg_op)

/%

This time the do_domO_op() function in Xen will call another,
architecture dependent function , arch_do_dom0O_op () since the
operation is DOMO_GUEST IMAGE_CTL. This will load a domain
image into the mnewly created domain and set it into a paused
state. If the returned value is something else than 0, the
operation was not succesful , and the domain image have not
been loaded correctly.

*/

arg_op = DOMO_UNPAUSEDOMAIN
HYPERVISOR_dom0_op (arg_op)

/%

At this point, the guest domain has been created and an image has
been loaded into it. The only work left for the hypervisor is
to unpause the domain.

*/

Listing 7.1: Chain of commands when creating a domU.
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The hypercall itself is implemented in the following way.

/+* HYPERVISOR_domO_op () is implemented to do the following steps
*/

Set register r0 = arg_op

Set register r7 = _ HYPERVISOR domO_op //__HYPERVISOR_domO_op is
mapped to the function do_domO_op () in Xen which will check
arg_op and take the corresponding action.

invoke swi 0x82 //This will let Xen know that it should take
control over the execution

return r0

Listing 7.2: The hypercall used when making domO0 operations,
such as creating or erasing other domains.

7.2 Adapting the Linux kernel to Xen-ARM hyper-
visor

7.2.1 Interrupt handling

The ARM-Linux kernel is normally set to handle different interrupts that occur
in the system. When Xen-ARM is controlling the different operating systems, the
responsibility for handling interrupts is passed onto the hypervisor. Xen-ARM
will only handle time and serial interrupts, other interrupts will be passed back
to the guest operating system by an event channel, which can be seen as a buffer
of events that the operating system will receive and handle accordingly. The use
of a buffer for these events provides a suitable way to enhance the performance
of the system. Instead of having Xen-ARM switch between the different domains
whenever an interrupt occurs, the hypervisor can save a number of events, and
when it is scheduled to switch context to another operating system, all of its ac-
cumulated events will be handled.

This means that the operating system code where interrupt handling is setup
and configured must be modified to enable support for the aforementioned event
channels instead. This leads to necessary modifications that can be viewed in the
files entry-armv-xen.S, entry-header-xen.S and entry-header-xen.S in the direc-
tory $HH_KERNEL/arch/arm/kernel/. Occasionally, the OS needs to disable or
enable interrupts, for instance when stopping the CPU or setting it in an idle state.
The functions that are used for this are replaced with functions that will enable
and disable the event channels instead of interrupts. These replacements can be
found in the file irgflags.h in $H_KERNEL/include/asm-arm/. Since interrupts
will be caught by the hypervisor, the interrupt safe locking code in $H_KERNEL/
include/asm-arm/locks.h is completely removed.
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7.2.2 Kernel setup

In the file setup-xen.c in $H_KERNEL/arch/arm/kernel/resides code that give
the kernel information about the machine itself. The code sets parameters such as
memory offsets, cache information and general description of the machine. This
is normally done directly by the kernel, since it has enough privileges to retrieve
this information, but in the para-virtualized environment, Xen-ARM is the only
instance with enough privileges to get this information, therefore the hypervisor
will provide this information to the guests. Xen-ARM also provides each guest
domain with a virtual CPU, each with a unique ID, and information about the
guest’s page frames (described in Section 5.2.5). To accomodate this functionality,
the source code needs to be modified to let the kernel get the information from
Xen-ARM instead of the machine itself. Examples of these modifications is listed
in Listing 7.3. The file setup-xen.c also provides the function xen_guest_setup()
that is used to setup memory and machine parameters at the start of the kernel.

The code
unsigned int cache_info = read_cpuid (CPUID_CACHETYPE) ;

from the original kernel is replaced by
unsigned int cache_info = XEN_CACHE DETAILS;
HEHHHHHHH AR R R R R R

phys_initrd_start = __virt_to_phys(tag—>u.initrd.start);
phys_initrd_size = tag—>u.initrd.size;

is replaced with
phys_initrd_start =
__virt_to_phys(xen_start_info—>mod_start) ;
phys_initrd_size = xen_start_info —>mod_len;

#HHRHHH AR R R R R R

unsigned int info

read_cpuid (CPUID_CACHETYPE) ;
is replaced with

unsigned int info = XEN_CACHE DETAILS;

Listing 7.3: Examples of modifications to $H_KERNEL/arch/
arm/kernel/setup.c

The kernel startup code is also loaded, since the hypervisor already has all
information needed for the kernel, there is no longer any need to, for instance,
enabling the memory management unit and setting up the page tables. To start
the kernel, the "only" thing that needs to be done is to load start info from Xen-
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ARM and jump to the function start_kernel. These modifications can be viewed
in the file $H_KERNEL/arch/arm/kernel /head-xen.S.

7.2.3 Memory management

As stated in Section 5.2.5, the communication with the physical memory is done
by the guest operating systems, but Xen-ARM handles the memory management
by handing out small portions of the memory by using virtual page tables and
page frames, called machine memory. To support this, the source code in the
directory $H_KERNEL/arch/arm/mm/has been modified to replace the ordi-
nary page functions with hypercalls and functions that translates between the
machine memory and physical memory. Examples of these modifications is pre-
sented in Listing 7.4. The file ioremap-xen.c in this directory has two interesting
functions added; the first being lookup_pte_fn() which will map a physical page
frame number to a machine frame number and is used by the second function,
create_lookup_pte_addr(), running through the chain of page tables to retrieve a
certain PTE.

mmu—xen . ¢
unsigned int cr = get_cr();
is replaced with

unsigned int cr = XEN_CR;

init—xen.c

start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;

is replaced with

start_pfn = V_PFN_UP(xen_start_info—>pt_base) +
xen_start_info —>nr_pt_frames + 5;

fault —xen.c

pgd = cpu_get_pgd () + index;

replaced with

pgd = (pgd_t *)xen_get_pgd() + index;

Listing 7.4: Examples of modifications to $H_KERNEL/arch/
arm/mm/

The modifications to the memory management also includes giving Xen-ARM,
instead of the OS, the responsibility of flushing the TLB as described in Sec-
tion 5.2.5. This can be viewed in the file tlbflush.h in the directory $H_KERNEL/
include/asm-arm/. Since the hypervisor provides the page table structure for
each operating system, the operating systems must have a way to update their
assigned page tables, which is done in the files pgalloc.h and pgtable.h in the di-
rectory $H_KERNEL /include/asm-arm/, and the file $H_KERNEL/arch/arm/
mm/pgtbl-xen.c.

Finally, in the /mm/memory.c file, functions to dig through the page ta-
ble structure are added, e.g. apply_to_page_range() and apply_to_pmd_range().
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These functions are actually common with Xen for x86 and has been added to
later versions of the Linux kernel.

7.2.4 Other interesting modifications

ARM architectures usually contains a coprocessor, CP15, used for control pur-
poses. Xen-ARM currently has no support for this coprocessor, and all CP15-
specific code is disabled from the file $H_KERNEL/arch/arm/kernel /process.c.

Timer and generic code for the IMX machine is modified to let the kernel
have the knowledge that it is para-virtualized. Code is also added to handle the
different system clocks provided by Xen-ARM. This is done in the files generic.c,
generic.h, irg-xen.c and time-xen.c in the directory $H_KERNEL/arch/arm /mach-
imx/. This directory also contains a file mx2ads-xen.c, which contains code spe-
cific for the Freescale development board, mentioned in Section 5.3.1.

In the file $H_KERNEL/drivers/char/tty_io.c, it is specified that only oper-
ating systems in dom( may access the virtual console.

The directory $H_KERNEL/drivers/xen/contains console drivers, event chan-
nel drivers and other drivers for the different domains, as well as an interface to
privileged commands for dom0 and a Xenbus driver. These drivers resembles
ordinary Linux drivers but are fitted to the Xen environment.

There are commands that normally communicates directly with the CPU.
They might be a result of a system call or just something that the operating sys-
tem have issued. Due to the priority issue disscused in Section 5.2.6 the operating
system can not run these commands itself. Therefore, these commands are re-
placed with functions that resides in the hypervisor, which executes the specific
command. An example of this can be viewed in Listing 7.5.

($H_KERNEL/ include /asm—arm/cpu—single .h)

#define cpu_dcache_clean_area \

__cpu_fn (CPUNAME, _dcache_clean_area)
#define cpu_do_switch_mm __cpu_fn (CPUNAME, switch_mm)
#define cpu_dcache_clean_area xen_dcache_clean_area
#define cpu_do_switch_ mm xen_switch_mm

Listing 7.5: The two first defines are replaced with calls to the
hypervisor.

Antoher example is shown in Listing 7.6. This is code to flush the system’s
different cache spaces, and is altered to let Xen-ARM handle the flushes instead.

Xen-ARM makes use of three different virtual states depending on whether
Xen-ARM itself, a guest operating system or a user process is running[28]. This
requires a modification to the source code which handles the different ARM do-
mains (ARM domains is used to set different access levels to different systems,
not to be confused with Xen guest domains). For instance, where the kernel usu-
ally is described as domain 0, Xen-ARM will take its place and push the kernel
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($H_KERNEL/include /asm—arm/cacheflush .h)

#define __cpuc_flush_kern_all \
__glue (_CACHE, _flush_kern_cache_all)
#define __cpuc_flush_user_all \

__glue (_CACHE, _flush_user_cache_all)

#define __cpuc_flush_kern_all xen_flush_kern_cache_all
#define cpuc_flush_user_all xen_flush_user_cache_all

Listing 7.6: Once again, the defines are modified to trigger
hypervisor functions.

down to domain 1. This will in turn result in pushing the user domain down
to 3, instead of domain 1. The code to set the current domain is replaced with a
hypercall and is done in the file $H_KERNEL /include/asm-arm/domain.h.

To gain access to the Xen-ARM specific code, the kernel includes the different
header files placed in $H_KERNEL/include/xen/. These files contains macro
definitions and function prototypes that will perform Xen specific operations,
such as all hypercalls mentioned earlier and event channel functions. Examples
of functions that reside in this directory is listed in Listing 7.7.

HYPERVISOR_set_trap_table ()
HYPERVISOR_mmu_update ()
HYPERVISOR_do_set_foreground_domain ()
HYPERVISOR_xen_version ()
xen_flusch_cache ()

Listing 7.7: Example of communication links between the kernel
and Xen-ARM. They reside in $H_Kernel/include/xen

One of the first files that is built when compiling the Linux kernel is $H_KERNEL/

init/main.c. In this file, the initializing and booting procedures for the kernel
are written, and has been modified to run the previously described function
xen_guest_setup() as the first thing when booting the kernel. Originally, the
kernel initializes the system time before enabling interrupts and initializing the
memory. The patched kernel is modified to wait with time initializing until the in-
terrupts and memory functions are enabled. This is in some architectures referred
to as late_time_init() and will let the system time functions have access to e.g.
kmalloc() which will allocate memory. The kernel will also call the gnttbl_init()
function which will make Xen-ARM setup a memory table for the domain. As a
last notice, the call to free_initmem() is removed.

The IRQ handling in $H_KERNEL/kernel/irq/chip-xen.c is completely re-
moved and the important parts (such as initialization and cleaning) is done in
other parts of the code, described above.

In the file $H_KERNEL/lib/vsprintf-xen.c, a function xen_printf() is imple-
mented, which will make the hypercall HYPERVISOR_console_io(), which makes
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Xen-ARM print the specified string in the console.

A few other things not mentioned in this chapter are actually modifed, but it
is mainly trivialities such as a few macro definitions and removal of some func-
tion calls as well as much of the code in the directory $H_KERNEL/drivers/
which is drivers specific for the Freescale board used by the creators of the patch.
The interested are recommended to study the patch itself by downloading the
source code from the Xen-wiki and diff the code tree to the standard Linux kernel
(version 2.6.21.1) to see every specific modification.
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Chapter 8

Results

This project is a pretty theoretical project where the main reason is to get the
knowledge of how to achieve the goal presented in Section 1.2. For that reason,
one of the main results of the project is the report itself. It gives an introduction
to virtualization and which method that seems most proper to use, as well as an
understanding of the difficulties of the para-virtualization technique.

Two operating systems were actually able to run on Xen-ARM, Mini-OS and
uC/OS II. Mini-OS is a micro kernel that is included in the Xen hypervisor[55].
The main purpose of Mini-OS is to test if Xen and the virtualized system are
working properly. It is originally made for the x86 architecture, but has been
modified by the Xen-ARM team in order to run on the ARM architecture as well.
The uC/OS 1I is another micro kernel, but more of a real time operating system
than a regular operating system[56]. The version that was used was made to
work with Xen-ARM and does not include much functionality at all.

Both of these operating system was run on the Xen-ARM hypervisor on the
Goldfish emulator. However, they are very simple and the only thing they could
do was to write what instance of operating system that was running and that a
thread was running. They even lacked some basic functionality at the point of
the project, such as clock functions and a shell. Source code for this functionality
was completely removed.

In Figure 8.1 the output from booting two Mini-OS kernels is presented and
the output from the two systems when they were running is presented in the
lower half of the left figure. Some print commands were added to the kernel
source in order to see when, during the boot process, they would execute. This
was also done in order to follow a hypercall, to get a deeper knowledge about
how they work. In the figures there are lines which says time of day = 0. This
was a way to examine if the clock would work, and obviously it did not since the
kernel always printed the time as 0.

In Appendix C is a manual with the commands that were used in order to
boot and run Mini-OS in Xen-ARM.
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Chapter 9

Conclusions

The chapters of this report makes it possible to draw a couple of conclusions
about using virtualization on a mobile phone.

Firstly, para-virtualization is the best suited method because it is less recourse
demanding than most of the other methods. Mobile phones have a very limited
amount of resources. The memory for example can many times be a constraint
of what kind of applications that can be run. The CPU is another example of a
bottleneck in terms of performance. Para-virtualization can help keeping the per-
formance high when other methods will bring too much overhead performance
loss for the system. As for security, para-virtualization is also a good choice be-
cause of the possibility to isolate the domains, still providing a communication
link between them.

As a second conclusion, Xen is one of the best choices of hypervisor based
on the fact that it is free, open source and has a lot of documentation about it.
This will help in the process of understanding the para-virtualization technique
and how the hypervisor is created. Other things making Xen a viable choice is
that there already exist ports for the ARM platform, removing the need to imple-
ment the hypervisor. This makes it possible to focus more on how to modify the
operating system.

Another thing that was realized was that there is a lot of work in order to
make an operating system work on Xen-ARM. Adopting the system requires
knowledge about ARM and how the source code of the operating system is built.
It is necessary to know both what parts of the operating system that needs to
be changed, as well as where the source code of these parts is found. It is also
important how Xen-ARM works, what interface it provides to the OS and what
information it requires to work correctly.

The hard work might well be worth its time though, because of the benefits
that para-virtualization brings to security, while still providing high performance
for the system.
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Chapter 1 O

Discussion

The goal of the project has changed during the course of time. From being a
more practical work, where the objective was to present a working solution to the
security issue described in Section 1.1, it ended up being a lot more theoretical.
These changes were made due to some problem that was encountered during the
project. This chapter will discuss what these changes were and why we needed
to do them. It will also give some examples of future work that can be made after
this project.

10.1  Workflow

The first thing we started to do was to gather information about hypervisors. We
read about different kind of virtualization, different hypervisors and how they
worked. We spent a lot of time gathering this information since we lacked this
knowledge and we thought that we needed to have a solid base of knowledge
to stand on before we moved on. After a few weeks we decided to use the Xen
hypervisor[3], or more specifically Xen-ARM[28].

The second thing we needed to research was how to emulate the system that
the hypervisor would be used in, since we did not have any physical hardware
to work with. We knew that the Android operating system could be run on the
Goldfish emulator and even read that it would work with Xen-ARM. After that
we started to read about how make it all run. There was a manual on the home-
page of the Xen-ARM project that described how to compile and run the different
software. After some minor changes in how to do that we managed to make two
stripped down kernels run in this environment. But these were very simple ker-
nels that did not even have a clock implemented in them. When we tried to make
it work with Android or a Linux kernel the result was that it never even started to
run. We managed to compile the kernels, but the Goldfish emulator did not suc-
ceed in starting them together with Xen-ARM. The head of the Xen-ARM project
has managed to make two instances of Linux run on a certain development board,
but not in an emulated environment.

Using the Xen-ARM mailing list we discovered that there are a lot of people
experimenting on making Linux run with Xen-ARM on the Goldfish emulator,
but none have gotten it to work properly. One thing that makes this harder to
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achieve is that the head of the Xen-ARM project works at Samsung[45] and is
not allowed to release his implementation whenever he wants. This makes new
features and implementations come in large chunks with very irregular releases.
However, he would hopefully be able to share a new release during Q1 2010.
This release could possibly make Xen-ARM with Linux usable in the Goldfish
emulator.

Since Xen-ARM so far was not complete, and lacked a lot of basic function-
ality, it was not realistic to present a working solution that was based upon the
hypervisor. Section 1.2 describes the new orientation of the project, a goal much
more realistic to reach. The work that had been done so far was however not in
vain since the gathered information proved to be very helpful even with this new
focus.

In order to reach the new goal we needed to understand how the hypervisor
and the operating system worked together. On the Xen-ARM homepage[28] we
downloaded the source code for the hypervisor and a Linux kernel patch that
implements support for Xen-ARM. We examined the hypervisor source to see if
we could find any differences to Xen for x86. There were a lot of differences,
but most of them did concern things we already knew would differ, such as the
different kind of modes that the operating system and applications have. The
changes that were made to port it to ARM were however not as well documented
as we would have hoped them to be. Instead, we read through the source code
of the Linux patch and compared them with the original files. This finally gave
us the understanding of the modifications of Linux that are required to support
Xen-ARM.

10.2 Future work

As stated in Chapter 1, this report is only supposed to be one step in reaching the
long term goal, virtualizing Android on a mobile phone. The next step could be
to apply the patch to the Android version of the Linux kernel, and to make sure
it works correctly on the Goldfish emulator.

The next step involves defining the term security, what information must be
protected in the mobile phone, what information may the user see and things
like that. When this is done, it is necessary to develop and implement a secure
communication protocol between the Android guest and another guest (which in
fact could possibly, but not necessarily, also be running Android). Xen already
supports communication between guests, so this step includes investigating how
this support can be used for making the communication secured.

To achieve a fully secured environment with virtualization, it is also required
to develop the secure system that is going to handle critical tasks that must not
be compromised by users. This system can be very small and contain only the
most necessary functions for DRM, payment applications etc, but it must include
support for the Xen-ARM hypervisor.
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Appendix / \

Used tools

During this project we used a couple of software products in order to test our
system and to write this report. The main part of these tools are listed below.

e Operating system: Ubuntu 9.10

e Compiler: gcc 3.4

e Version handling: google docs http://docs.google.com
o Typesetting system: pdf-I<IEX. 3.141592-1.40.3

o Image software: Microsoft paint

e Bmp to pdf converter: ImageMagick 6.5.1-0
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Appendix B

Hypercalls

This is a list of the hypercalls in Xen-ARM that the patched Linux kernel supports.
The letter X in the file column means that the hypercall function is currently not
implemented but may be included in a future release of Xen-ARM.

] Hypercall | Mapped function | File \
HYPERVISOR_set_ xen/arch/arm/xen/
do_set_trap_table()
trap_table traps.c
HYPERVISOR_mmu_ xen/arch/arm/xen/
do_mmu_update()
update mm.c
HYPERVISOR_ do_mmuext_op() xen/arch/arm/xen/
mmuext_op mm.c
HYPERVIS.'OR_StaCk— do_stack_switch() X
switch
HYPERVISOR_set_ do__set_callbacks() xen/arch/arm/xen/
callbacks mm.c
HYPERVISOR_do_ . .
print_profile do_print_profile() X
HYPERVISOR do_ do_set_foreground_ xen/arch/arm/xen/
set_foreground_ ! :
. domain() irq.c
domain
HYPERVISOR_do_ ) xen/arch/arm/xen/
set_HID_irq do_set_HID_irq() irq.c
HYPERVISOR_fpu_ .
taskswitch do_fpu_taskswitch() X
HYPERVISOR_sched_ do_sched_op() xen,/common/
op schedule.c
HYPERVISOR_do_ do_dummy() X
dummy
HYPERVISOR_set_ d t timer_op() xen,/common/
timer_op B schedule.c
HYPERVISOR _get_ .
system,_time do_get_system_time() X
HYPERVISOR_dom0_ do_dom0_op() xen/common/dom0_
op ops.c
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Hypercalls

HYPERVISOR_acm_ do_acm_op() xen,/common/acm_
op - -OP ops.c
HYPERVISOR _sra_op do_sra_op() xen/ Co(r)r};?gn/ Sra-
HYPERVISOR_ xen/common/
do_memory_op()
memory_op memory.c
HYPERVISOR_ d Iticall() xen/common/
multicall o_muttica multicall.c
HYPERVISOR _ do_update_va_ xen/arch/arm/xen/
update_va_mapping mapping|() mm.c
HYPERVISOR_event_ do_event_channel xen,/common/event_
channel_op op() channel.c
HYPERVISOR_xen_ . xen/common/
. do_xen_version()
version kernel.c
HYPERVISOR_ do._console_io() xen/drivers/char/
console_io - - console.c
HYPERVISOR_ xen/arch/arm/xen/
physdev_op do_physdev_op() physdev.c
HYPERVISOR_grant_
table_op do_grant_table_op() X
HYPERVISOR _
update_va_mapping_ do_vcpu_op() X
otherdomain
HYPERVISOR_vm_ . xen,/common/
. do_vm_assist()
assist kernel.c
HYPERVISOR_vcpu_ do._vepu_op() xen/common/
op -Vepu-op domain.c
HYPERVISOR_ currently not mapped X
suspend to a function
HYPERVISOR._SGL do_set_domain() X
cpu_domain
. . xen/common/
HYPERVISOR _yield do_yield() schedule.c
HYPERVISOR_block do_block() xen/common/
schedule.c
HYPERVISOR_ xen/common/
shutdown do_sched_op() schedule.c
xen/common/
HYPERVISOR_poll do_poll() schedule.c
HYPERVISOR_gcov_ do_gcov_op() X

op




Appendix C

Running Xen ARM on the Goldfish
emulator

There are a couple steps to do before it is possible to run two operating systems
in parallel on Xen-ARM. This is a maual for making this work. The operating
system used for this is Ubuntu.

First a couple of constants are declared. These may differ depending on
where the user wants to put the emulator and Xen-ARM.

S (ANDROID_EMUL) = The folder where the android emulator is
unpacked.
$ (XEN_ROOT) = The folder where Xen is unpacked.

First it it is time to download and compile the emulator. The emulator that is
used is the Goldfish emulator. How this is done is shown in Listing C.1.
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— Install the right compiler.
sudo apt—get install gcc—3.4
sudo rm /usr/bin/gcc (pekar pa gcc—4.3)

— New symlink to the right compiler.
sudo In —s gcc—3.4 /usr/bin/gcc
sudo apt—get install libsdll.2—dev

— Download gemu xen_arm patch to home directory.
wget "http://wiki.xensource.com/xenwiki/XenARM? action=
AttachFile&do=get&target=gemu—xen_arm —081120. tar .bz2"
—O ~/gqemu—xen_arm —081120. tar . bz2

— Go to the home directory.
cd ~

— Extract the android emulator.
tar xvjf gemu—xen_arm —081120.tar .bz2

cd $(ANDROID_EMUL)

— Compile the emulator.
./ build —emulator . sh

Listing C.1: Instructions for downloading and compiling the
Adroid emulator(Goldfish)

Then it is time to download and compile Xen-ARM. How this is made is

shown in Listing C.2.
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— Download xen—arm to home directory .
wget "http://wiki.xensource.com/xenwiki/XenARM? action=
AttachFile&do=get&target=xen—unstable —081210. tar .bz2"
—O ~/xen—unstable —081210. tar . bz2

— Go to home directory.
cd ~

— Extract Xen ARM.
tar xvjf xen—unstable —081210.tar .bz2

cd $(XEN_ROOT)
make menuconfig

— Configure the system type to the Android emulator board
(Goldfish) edit Config.mk to:
XEN_TARGET _SUBARCH ?= goldfish

— Download arm—linux to system root.
sudo wget "http://www. ertos.nicta.com.au/downloads/tools
/arm—linux —3.4.4.tar .bz2" —O /arm—linux —3.4.4. tar .bz2

— Go to system root.
cd /

— Extract the cross—compiler for arm—linux to the right
catalogue.

sudo tar xvfj arm—linux —3.4.4.tar.bz2

cd $ (XEN_ROOT)

— Compile Xen.
make xen

Listing C.2: Instructions on how to download and compile Xen-

ARM

Finally it is time to start the emulator and to run two operaing systems on
Xen-ARM. The operating systems that are used is mini-OS, for both domains.
This is a minimal operating system that does not do much, but is good for debug-

ging. How they are started is shown in Listing C.3.
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cp xen/xen—bin $(ANDROID_EMUL) /images/kernel —gemu
cd $(XEN_ROOT) /extras/mini—os—arm

make
cp mini—os. elf $(ANDROID_EMUL)

— Copy the xen binary to android emulator
cp $(XEN_ROOT) /xen/xen—bin $(ANDROID_EMUL)

cd $(ANDROID_EMUL)

— Start the emulation
./run.sh

Listing C.3: How to start the emulator, the hypervisor and the
operating systems




