OKL4 API System Calls

Nayeema Sadeque and Rafika Ida Mutia

Department of Electrical and Information Technology
Lund University
Sweden

Abstract—Microkernels evolved gradually from large
monolithic kernels. There is also crucial evolution in number
of system calls from early microkernels, Mach, to the later mi-
crokernels. System calls in second generation of microkernel,
L4, has significantly reduces the size of code and the number
of API system calls. In this paper, we will introduce the
system calls provided by the third generation of microkernel,
OKL4. The details on each function in system calls will also
be elaborated.

Index Terms—microkernel, system calls

I. INTRODUCTION

Most operations in computing require permissions
that are not available to user level processes. They need
a special request to operating system'’s kernel in order
to run a program, which is called system call. System
calls provide interface between a process and operating
system. Operating system executes at highest level of
privilege. And it allows applications to request services
via system calls which are often implemented through
interrupts.

When the system get permission from operating sys-
tem, the system enters higher privilege level and set of
instructions are executed over which interrupting pro-
gram has no direct control, return to calling application’s
privilege level and then return control to the calling
application.

There is significant reduced number of system calls
in microkernel to monolithic kernel in general, and in
each generation of microkernel, in specific. The third
generation of microkernel, OKL4, uses the L4 API system
calls. The early microkernel, Mach has size of 300 Kbytes
of code and its API approximately 140 system calls. In L4
microkernel, the number of API system calls is reduced
to 7 system calls with code size of 12 Kbytes.

In [1], the authors test when running on L4 micro-
kernel, the message passing IPC with message size of
8 bytes, takes 5 microseconds on processor 486-DX 50,
and takes 18 microseconds with size of 512 bytes. In
comparison, numbers for Mach IPC on the same machine
are 115 microseconds and 172 microseconds.

The OKL4 groups system calls into 2, i.e., resource-
control system calls and other type of system calls
[2]. Resource-control system calls have duty of sys-
tem resources management. The resource-control has 8
system calls, consists of ThreadControl, SpaceControl,

MapControl, CapControl, MutexControl, InterruptCon-
trol, CacheControl and PlatformControl.

On the other hand, the other system calls aimed to
provide API to applications, which consist of Exchang-
eRegisters, IPC, Schedule, ThreadSwitch, Mutex, Memo-
ryCopy and SpaceSwitch.

In this report, we would like to focus more on the
7 system calls which provide the API to applications
[2]. And each of these system calls will be explained in
details in the following sections.

II. OKL4 API SYSTEM CALLS
A. ExchangeRegisters

ExchangeRegisters has several purposes; activate new
threads by giving them a valid IP and SP, and hence de-
activate threads, multiplex kernel thread between several
logical threads by still maintain a thread pool, save and
restore thread state.

Exchange-registers system call can be used for block-
ing and waking up threads since the sender of the wake-
up signal can detect if the targeted thread is already in
a blocking state. If not, it helps the thread to enter the
blocking state by a thread-switch and then repeats the
wake-up.

The execution of ExchangeRegisters can be done in
several ways

By a thread in the same address space,
o By the thread’s pager
o By the root task

B. IPC

The communication in L4 is by using synchronous
message-passing IPC, i.e. both sender and receiver are
ready before the message is transferred. It leads to no
buffered data in the kernel and the data only copied at
most once.

Single IPC syscall incorporates a send and a receive
phase with a small data. Either send or receive phase
can be omitted but failure in send will abort the receive
operation. Send operation must specify a specific thread
to send to while receive operation can either specify a
specific thread from which to receive (“closed receive”)
or specify willingness to receive from any thread (“open
wait”). Each of these operations can be blocked until the

Thread, Thread,
Running. Blocked Blocked El:'t'unning
é msg .receive(threadl,..)
transfer I

call(threadz,l)—

send(threadl,...)

? msg
transfer
Fig. 1. Synchronization Process in IPC

partner is ready or can be polled if the partner is not
ready which means fail IPC synchronization.

The IPC typically use client-server scenario, where it
combines send and receive in single system call. Typical
client-server scenario is the clients are given rights (i.e.,
caps) for invoking server but server unnecessarily know
which clients it has or who has caps to it and server does
not need o keep track of past client invocations, unless
required by nature of server. Moreover, server should not
be able to interfere with client except on client’s request.

There are five different logical operations in IPC:

e Send() : send message to specified thread (block-

ing)

e Receive () :receive message form specified thread
(blocking)

e Wait () : receive message from any thread (block-
ing)

e Call() :send message to specified thread and wait

for reply from same thread. It delivers reply cap
to receiver and this is typical client operation with
blocking send and blocking receive.

e Reply and Wait () : send message to specified
thread, wait for message from any. This is typical
server operation with non-blocking send and block-
ing receive.

IPC message register is virtual register which is part
of thread state, but unnecessarily hardware registers.
The message contains message tag, which defines the
message size and its attribute, the rest un-typed word
and semantics that is defined by kernel protocols.

Role of IPC is just to copy the data from message
register of sender to message receiver of receiver, which
highly optimized in the kernel. If there is any error
happened, it will be stored in UTCB (User Thread Con-
trol Block) and retrieved by L4_ErrorCode () later on.
Where the error takes place, either sender or receiver,
could be retrieved by observing the lower bit.

The following are some of possible cause of IPC errors.

o NoPartner :issued when a non-blocking operation
was requested and the partner was not ready

e InvalidPartner : destination does not exist or do
not have rights to IPC to it

e MessageOverflow : exceeded the message size
system limit

e IpcRejected :
chronous message

o IpcCancelled:cancelled by another thread before
transfer started

e IpcAborted : cancelled by another thread after
transfer started, which is a consequence of Exchan-
geRegisters

receiver does not accept asyn-

C. Schedule

There are 256 hard priorities (0-255) and the highest-
priority runnable thread will always be schedule by
using round-robin scheduling. The aim is to provide real-
time scheduling instead of fairness. The reason is kernel
on its own will never change the priority of a thread.
The fairness is achieved in the user-level servers, not in
microkernel. Furthermore, the Schedule () syscall does
not invoke a scheduler and neither it does schedule to
any threads.

The conditions where scheduler is invoked are such
as following. But in every case, the scheduler will only
schedule thread of same priority.

o The current thread’s time slice expires

o The current thread yields

o An IPC operation blocks the caller or unblocks
another thread

And the conditions where scheduler is not invoked are
such as following.

o Interrupt occurs. It makes interrupt handler thread
runnable. The thread to run is determined by prior-
ities of current and interrupts thread

o The highest-priority thread can be determined with-
out the scheduler, e.g., send unblocks other thread
and run sender or receiver based on priority. A
switch without scheduler invocation is called direct
process switch

To set the priority in scheduling:
int status;
status = L4_Set_Priority
printf (%Id, status);

(thread, prio);

D. ThreadSwitch

The ThreadSwitch forfeits the caller’s remaining time
slice and can donate it to a specified thread. That thread
will execute to the end of the remaining time slice
on the donor’s priority. If no recipient is specified (an
undirected switch) then a normal yield operation is
sufficient. The kernel invokes the scheduler and the
call might receive a new time slice immediately. The
directed donation may be used for explicit schedul-
ing of threads. The directed switch is implemented
as L4_ThreadSwitch (thread); and the undirected
thread is implemented as L4_Yield();

E. Mutex

This is kernel supported mutual-exclusion mechanism.
Mutex is a program object that is created so that multiple
programs threads can share the same resource. When
a program is started, a mutex is created for a given
resource by requesting it from the system and a unique
name or ID is given for it in return. After this, any
thread that needs the same resouce must use the mutex
lock the resouce while it is using it. If the resouce is
already locked a thread requesting it is queued by the
system and then given control of it when the mutex
becomes unlocked [3]. There are two kinds of mutex that
are supported; the kernel mutex and the hybrid mutex.
For the kernel mutex, the lock/unlock are system calls.
The lock/unlock are system calls and the system call
overhead is too high for uncontented locks. The hybrid
mutex is a combination of library and syscall and is
new in the OKL 2.1. The lock/unlock is implemented
in user level if it is uncontented. If contented, syscall is
implemented.

Furthermore, threads waiting on lock are put to sleep
since it follows schedule inheritance ensuring fairness.
There are three operation involved in Mutex; the lock
to acquire blocking, the trylock to acquire non-blocking
and the unlock for release.

The MutexControl() convenience function are as
follows:
okl4d_mutex_t mutex;
ok = okl4d_mutex_init (mutex);
ok = okl4d_mutex_free(mutex);

The second allocates kernel mutex and initializes
it and the third frees kernel mutex. The three Mutex
operations are as follows:

ok = okld_mutex_lock (mutex);
ok = okl4_mutex_trylock(mutex),
ok = okl4d_mutex_unlock (mutex);

The hybrid mutex variable contains user-level state
and reference to kernel mutex. If the lock operation
finds mutex locked, it performs Mutex() syscall to sleep.
If the unlock operation finds mutex lock contended, it
performs Mutex call to unlock.

E. MemoryCopy

The User-toUser MemoryCopy operation supports
bulk data transfer without the limitations of alternatives.
The copy server requires a trusted third party and incurs
a higher synchronization overhead. The shared memory
buffer requires page alignment and the space overhead
of atleast one page per pair of address spaces. The
"long IPC” has been replaced and is a feature of the
L4 V2 and V4 and is new in the OKL4 2.1. It avoids
the drawbacks of the long IPC, some of which includes
page faults during syscalls and recursive syscalls and
high complexity in implementation.

The characteristics of the MemoryCopy operation is as
follows. The copy between the address spaces is semi-
synchronous and has a similar style to asynchronous no-
tification; one thread sets up the action, the other thread
invokes the transfer. The communication is synchronous
to the invoker and asynchronous to the initiator. The
copy direction is independent of the IPC direction. An
illustration of the MemoryCopy operation is given in
Figure 2.

Transferer
Blocked

Initiator

Running. Blocked Running

[receive (Enitiator, .y

msg tremsferI

call (transferer,..)

data copy ? _
ey cOpy (initiator, buf,..)

msg transfer
send(initiator,..)

Fig. 2. MemoryCopy Operation

The initiator function for the MemoryCopy use are as
follows:
L4_MsgClear (&msg);
L4_Set_MemoryCopy (&msg),;
This sets the m bit tag word.

L4_MsgAppendWord (&msg, &buf);

This includes the buffer address.
L4_MsgAppendWord (&msg, n);

This includes the buffer size in bytes.
L4_MsgAppendWord (&msg, L4_MemoryCopyBoth
<<30);

This is the send/recv function.
tag = L4_Send(transferer);

The MemoryCopy descriptor is in the message reg-
ister and it specifies address and the size of the buffer,
including the permitted copy direction (from, to or both).

The transferer functions are as follows:

L4_MemoryCopy (initiator, &rec_buf, n_rec,
L4_MemoryCopyFrom);
L4_MemoryCopy (initiator, &snd_buf, n_snd,

L4_MemoryCopyTo);

G. SpaceSwitch

SpaceSwitch defines as migrate a thread between ad-
dress spaces. It is needed for caller, source and desti-
nation. To do SpaceSwitch, it requires special privilege
associated with address spaces will be involved and it
is allocated at system-configuration time.

III. CONCLUSION

In third generation of microkernel, there are only
7 system calls to provide APIL This great reduced of
number has also significantly reduced the size code. It
makes the OKL4 microkernel becomes more reliable and
more secure solution in computing technology.

ACKNOWLEDGEMENTS

We would like to thank our supervisor Martin Hell
for his guidance, support and suggestions and also to
Christopher Jamthagen for overseeing our work.

REFERENCES

[1] T. Scheuermann, “Evolution in microkernel design,” COMP 242,
2002.

[2] P. Gernot Heiser, OKL4 OKL4 Programming Overview of the OKL4
3.0 API, 2008.

[3] Website, http://searchnetworking.techtarget.com/sDefinition/0,
,51d7_gci214353,00.html.

