
Inter-Process Communication Mechanism in
Monolithic Kernel and Microkernel

Rafika Ida Mutia

Department of Electrical and Information Technology
Lund University

Sweden

Abstract—The evolution from monolithic kernel to a
smaller size of kernel, microkernel, has theoretically proved
an increase in the reliability and security of the system. A
smaller size of kernel minimized the probability of error
in the code and minimized the bugs impact to the system
as well as makes the bugs fixing easier. However, reducing
the size of kernel means to move some of basic services
that used to reside in kernel space under privileged mode
to the user space under deprivileged mode. The mechanism
for communication between process is no longer the same
as in monolithic kernel, when all the process are reside
in kernel space. This report aims to describe the details
of Inter-Process Communication (IPC) mechanisms in both
monolithic kernel and microkernel, with main focus of
operating system used in mobile phone.

Index Terms—IPC, monolithic kernel, microkernel, an-
droid, OKL4

I. INTRODUCTION

Kernel is the most important part of an operating
system which consists of two parts, kernel space (priv-
ileged mode) and user space (unprivileged mode). The
early concept of kernel, monolithic kernel, dedicates all
the basic system services like memory management, file
system, interrupt handling and I/O communication in
the privileged mode. Constructed in layered fashion,
they build up from fundamental process management
up to the interfaces to the rest of the operating system.

Running all the basic services in kernel space has
several drawbacks that are considered to be serious, i.e.,
large kernel size, lack of extensibility and bad maintain-
ability. Large kernel size with large Lines od Code (LoC)
make the system to be unreliable. Recompilation of the
whole kernel is needed during bug fixing or addition of
new features in the system which is time and rsource
consuming.

Evolving to a smaller size kernel aims to increase reli-
bility by provide only basic process communication and
I/O control while move the other system services in the
user space in form of normal processes or called servers,
as can be seen in Figure 1. Since these basic servers are
no longer reside in the kernel space, context switches
is used to allow user processes to enter privileged mode
and to exit from privileged mode back to the user mode.

Hence, microkernel is not a block of system services
anymore, instead it represents just several basic ab-
straction and primitives to control the communication
between processes and between a process with the un-
derlying hardware. Since the communication between
processes is not done in direct way anymore, a message
system is introduced. The message system allows inde-
pendent communication and favour extensibility.

Fig. 1. Transform of Monolithic Kernel to Microkernel

Practical details of monolithic kernel IPC mechanism
in mobile phone is described in this report. An increasing
hot topic of mobile phone platform, Android, is taken as
example of monolithic kernel since it implements Linux
kernel in the underlying system. Then the details of
IPC mechanism in microkernel, particularly in OKL4, is
also described. The report is organized such as followed.
The details on IPC mechanism of monolithic kernel is
explained in Section II, including the IPC mechanisms
implemented in Android. Then the deeper description
of IPC in microkernel is elaborated in Section III which
basically dig into IPC implementation in OKL4 micro-
kernel. And hence, conclusion of the whole paper can
be found in IV.

II. IPC IN MONOLITHIC LINUX KERNEL

In computing, a process means the representation of
a program in memory. The smaller part of process that
allow virtually parallel execution of different sections of
a program is called a thread. A thread is the smallest unit
of executable code and a process can consists of several
threads.

Android uses Linux 2.6 in its underlying kernel for
the mobile phone it has produced. There are several
methods of IPC mechanisms between thread used in
Linux 2.6 version, such as signals, pipes, FIFO, system V
IPC, sockets and system V IPC which includes message
queues, semaphores and shared memory. [1]

A. Signals

Signal is the earliest concept of IPC which has prede-
fined number of constants. A signal could be generated
by a keyboard interrupt or an error condition. It has
quick execution but its predefined number representa-
tion makes it hardly be changed since it will react in
different way than expected. Hence adding a new signal
will be tedious since it has to be standardized.

Table in Figure 2 contains of signal name and their
descriptions [2].

Fig. 2. Signal Name and Numbering [3]

Processes can determine on how to handle various
signals, e.g., ignore, block or catch the signals except for
SIGSTOP, which causes a process to halt its execution
and SIGKILL signal which causes a process to exit.
When a process catches a signal, it means that it includes
code that will take appropriate action when the signal is

received. If the process does not catch the signal, the
kernel will take default action for the signal.

Signals have no inherent relative priorities, if two sig-
nals are generated at the same time for a particular same
process, they can be handled in any order. Furthermore,
there is also no mechanism for handling multiple signals
of the same kind.

Privilege of sending signals is not owned by every
process. Normal processes can only send signals to pro-
cesses with the same uid (User Identifier) or gid (Group
Identifier). Signals are generated by setting appropriate
bit in the task_struct signal field. However, signals
are not presented to the process immediately after being
generated, they must wait until the process is running
again instead.

B. Pipes
Pipe is a method of one-way communications between

processes where it connects standard output of one
process to the standard input of another. The communi-
cations have been designed explicitly to work together.

Example of pipes:

$ ls | pr | lpr

This command pipes the output from ls command
listing the directory’s files into standard input of pr
command which paginates them. Then the standard
output from the pr command is piped into standard
input of lpr command which prints the end results.

In monolithic Linux, a pipe is implemented by using
two files data structures which both point at the same
temporary VFS inode which itself points at a physical
page within memory [2]. Each file data structure contains
pointers to different file operation routine vectors, one
for writing to the pipe and the other for reading from
the pipe.

In writing process, bytes are copied into shared data
page and in reading process, bytes are copied from
shared data page. Linux controls the synchronization
process and assure that the reader and the writer of the
pipe are in step by using locks, wait queues and signals.

If there is enough room to write all of the bytes into
the pipe and if the pipe is not locked by its reader, Linux
locks it for writer and copies the bytes to be written from
the process address space into shared data page. On the
other hand, if reader locks the pipe or if there is no more
room for the data, then the current process is made to
sleep on the pipe inode’s wait queue and the scheduler
is called so that another process can run. However, it can
be woken by the reader when there is enough room for
the write data or when the pipe is unlocked.

In reading data, processes are allowed to do non-
blocking reads and if there is no data to be read or if
pipe is locked, an error will be returned. The process
can continue to run and the alternative is to wait on the

pipe inode’s wait queue until the process has finished.
When both processes have finished with the pipe, inode
is discarded along with the shared data page.

C. FIFOS

FIFO, or called as ”named pipes” operate based on
a First In, First Out principles. It means the first data
written into the pipe is the first data read from the pipe.
The common pipe method is a temporary object, but
FIFOs are entities in the file system as a device special
file and can be created using the mkfifo command.

If a process has appropriate access rights to FIFO, it
could use it freely. A pipe (its two file data structures,
its VFS inode and the shared data page) is created in
one go whereas a FIFO already exist and is opened and
closed by its users. Linux must handle readers opening
the FIFO before writers open it as well as readers reading
before any writers have written to it. When all I/O is
done by sharing the process, the named pipe remains in
the file system for later use.

D. Sockets

The IPC socket, or also called UNIX domain socket,
is a data communications endpoint for exchanging data
between processes executing within the same host OS.
Sockets can send/receive data through streams, using
datagrams, raw packets and sequenced packet. In FIFO
method, the data are created as byte streams only while
IPC sockets may be created as byte streams or as data-
gram sequences.

UNIX domain sockets use the file system as address
name space. They are referenced by processes as inodes
in the file system. This allows two processes to open
the same socket in order to communicate. However,
communication occurs entirely within the OS kernel.
Specific use of socket is such as to access the network
stack. [4]

E. System V IPC

In UNIX System V, there are three types of IPC mech-
anisms that is being supported by Linux, i.e., message
queues, semaphores and shared memory. These Sys-
tem V IPC mechanisms share common authentication
methods. Processes may access these resources only by
passing a unique reference identifier to the kernel via
system calls.

Access to the System V IPC object is checked using
access permissions. The access rights to the System V
IPC object is set by creator of the object via system calls.
The object’s reference identifier is then used by each
mechanism as an index into a table of resources.

Message Queues
A message queue is the method of IPC which acts as

an internal linked list within the kernel addressing space.
Messages can be sent to queue in order and retrieved

from the queue in several different ways. Each message
queue is uniquely identified by an IPC identifier.

Linux maintains a list of message queues, the msgque
vector; each element of which points to an msqid_ds
data structure that fully describes the message queue.
When message queues are created, a new msqid_ds
structure is allocated from system memory and inserted
into the vector.

Each msqid_ds data structure contains an ipc_perm
data structure and pointers to the messages entered onto
this queue. Linux keeps queue modification times such
as the last time that this queue was written to and so
on. The msqid_ds also contains two wait queues; one
for the writers to the queue and one for the readers of
the message queue.

Linux restricts the number and length of messages that
can be written. Hence the process will be added to this
message queue’s write wait queue and the scheduler will
be called to select a new process to run. The process will
be woken up when one or more messages have been read
from this message queue.

Reading from a queue has a similar process with
writing from the queue. The processes access rights to
the write queue are checked and reading process can
choose to either get first message in the queue or select
messages with particular types. If there is no match,
the reading process will be added to message queue’s
read wait queue and the scheduler run. When a new
message is written to the queue, this process will be
woken up and run again.

Semaphores
Semaphores is a location in memory whose value can

be tested and set by more than one process. The test and
set operation is uninterruptible. The result of the test
and set operation is the addition of the current value of
semaphore and the set value. One process may have to
sleep until the semaphore’s value is changed by another
process.

Each system V IPC semaphore objects describes a
semaphore array and Linux uses the semid_ds data
structure to represent this. The semary is a vector
pointer which points all of the semid_ds data struc-
tures in the system. In each semaphore array, there
are sem_nems and each one described by a sem data
structure pointed by sem_base.

In the beginning of process, Linux tests whether all
of the operations would succeed. A sucessfull operation
is when the operation value added to the semaphore’s
current value would be greater than zero or if both
operation value and semaphore value are zero. If any
operations failed, Linux suspend the process but only
if the operation flags have not requested non-blocking
system call. The process then being saved and put in
a wait queue by Linux by building a sem_queue data
structure on the stack and filling it out.

If all of the semaphore operations would have
succeeded and the current process does not need to
suspend, Linux proceed to apply the operations to the
appropriate members of the semaphore array. Linux will
looks at each member of the operations pending queue
(sem_pending) in turn, testing to see if the semaphore
operations will succeed. If so, then it removes the
sem_queue data structure from operations and
pending list and thenapply the semaphore operations
to the semaphore array.

Shared Memory
Shared memory is defined as mapping of a segment of

memory that will be mapped and shared by more than
one process without any intermediation. Information is
mapped directly from a memory segment and into the
addressing space of the calling process. A segment can
be created by one process and subsequently written to
and read from by any number of processes.

Shared memory allows one or more processes to com-
municate via memory that appears in all of their virtual
address spaces. The page of virtual memory is referenced
by page table entries in each of the sharing processes
page tables. It does not have to be at the same address
in all of the processes’ virtual memory.

Access to shared memory areas is controlled via keys
and access rights checking. Once the memory is being
shared, there are no checks on how the processes are
using it. They must rely on other mechanism to syn-
chronize access to the memory.

F. Role of IPC in Android
Android uses different IPC mechanism for different

process, depends on which features that process need to
interact with and how portable want it to be not only
via JNI/Java APIs.

• For native code, mostly using IPC mechanism pro-
vided by Linux 2.6

• For code written in Java, typical socket is used
• Binder calls

The architecture of Android is shown in Figure 3.
All services that run in the System Server, e.g. Activity
Manager, Package Manager, Window Manager,etc., are
accessed through the use of IPC. When a new application
is launched, Binder is used to request this operation of
the Activity Manager. Requesting that the screen be kept
on requires an IPC to the Power Manager. Flushing the
contents of a window to the screen requires IPC to notify
Surface Flinger.

Each of these managers provides a service by register-
ing with a system component called the Service Manager.
The Service Manager responsible to keep track of differ-
ent services in the system and provides dynamic service
discovery to user applications. Services are requested by
name and Service Manager has a unique identifier, the

Fig. 3. Android Architecture

integer zero. Hence, user applications do not need to
request special access to the Service Manager. [4]

G. Android Binder IPC

The System Server delivers events to applications to
notify them of user input. The process is written in
Java and runs on Dalvik VM instance. User applications
perform IPC to the System Server to gain access to the
provided services and sometimes user application itself
can provide services to other user application by using
Binder IPC driver in addition to the Linux kernel by
Google. [4]

However, the Binder implemented in Android is dif-
ferent from OpenBinder. OpenBinder is a system-level
component architecture which aim to be a complete
distributed object environment with abstractions for pro-
cesses and its own shell to access the Binder envi-
ronment. Meanwhile, Binder in Android is a reduced
custom implementation of OpenBinder and it allows
processes to securely communicate and perform opera-
tions such as remote method invocation (RMI), whereby
remote method calls on remote objects look identical to
local calls on local objects.

Binder can also be used to facilitate shared memory
between processes. One of the additions to the Linux
kernel was an ashmem device driver. The key feature of
ashmem is the ability of kernel to reclaim the memory
region at any time. By using ashmem, it is possible
to allocate a region of memory, represented by a file
descriptor, which can be passed through Binder to other
processes. The receiver can pass the ashmem file descrip-
tor to the mmap system call to gain access to the shared
memory region.

Binder implements security by delivering the caller’s
process ID and user ID to the callee. The callee then
is able to validate the sender’s credentials. In Binder,
remote objects are referred to by Binder references. A
reference is a token, or capability, that grants access to a
remote object. By having access to a remote object, user
is able to perform RMI on the object. One process can
pass a reference through Binder to give another process
access rights to a remote object. The Binder driver takes
care of this, and blocks a process from accessing a remote
object if it does not have the correct permissions.

Since each application runs in its own process and
software developer can write a service that runs in a
different process from application’s UI, there is also a
need of cross communication between processes. On the
Android platform, one process can not normally access
the memory of another process. They need to decompose
their objects into primitives that the OS can understand
and marshal the object across boundary. The code to
do the marshalling is tedious to write; hence Android
provides an implementation of IPC by using a tool called
Android Interface Definition Language (AIDL).

AIDL is lightweight implementation of IPC using a
syntax that is very familiar to Java developers, and a
tool that automates the stub creation. AIDL is used to
generate code that enables two processes on an Android-
power device to talk using IPC. If the code in one
process (e.g. Activity), needs to call methods on an object
in another process (e.g. Service), AIDL can be used to
generate code to marshal the parameters.

The necessary code to perform marshalling is auto-
matically generated for both the server and the client to
enable seamless remote function calls. Each registered
service runs a thread pool to handle incoming requests.
If there is no thread available, the Binder driver requests
the service to spawn a new thread and it is the solution
for multiple requests to a single service to avoid denial
of service (DOS).

III. IPC IN OKL4 MICROKERNEL

The IPC mechanism between L4 threads is done via
messages. Since microkernel has less kernel/supervisory
code, some of the basic services are moved into the user
space under deprivileged mode. It means the microker-
nel has to pass more messages around and IPC per-
formance has a very significant role. While monolithic
kernel can merely toss pointers around in kernel space
since no address space boundaries have to be crossed,
microkernel use the message queue and several other
technique explained such as following. [?]

OKL4 facilitates communication between threads re-
siding in different address spaces as well as communica-
tion of threads within the same address space. IPC con-
sists of exchange of short messages between two threads
in the system. Each message consists of a message tag
and an optional list of message data. The messages are

exchanged directly through the MessageData registers.
The exchange is unbuffered since the microkernel copies
the content of MessageData registers of the sender di-
rectly to the corresponding register of the receiver.

Furthermore, OKL4 ensure that the integrity of the
receiving thread is not compromised, hence the messages
are exchanged synchronously, i.e., microkernel does not
deliver the message until the recipient is ready to receive
the supplied data, by suspending execution of the sender
until the message is transmitted. These two points are
the key of high performance of the OKL4 microkernel.

There are two fundamental IPC operations in OKL4;
send and receive. The send operation delivers messages
from the calling thread to a destination thread, while
the receive operation requests a message from another
thread. Both of these operations will be explained in later
subsection.

Moreover, these two operations are associated with
user requested policy or operations variants, blocking or
non-blocking. If an IPC operation is blocking, IPC and
also thread are blocked until a corresponding IPC oper-
ation has been performed by the target thread. On the
other hand, a non-blocking operation fails immediately
if the target thread is currently not ready to participate
in the message exchange. In addition, a special encoding
of the send operation known as notify operation may be
used to send asynchronous notification events. [5]

A single invocation of IPC system call may be used to
perform a combination of IPC operation but they will
be executed separately. However, the invoking thread
remains blocked until all operations requested by the
system call are completed or aborted.

Furthermore, a single invocation of the IPC system call
may be used to perform either a single IPC operation
or a pair of IPC operations, which in the pair of IPC
operations, send must be the first operation and the
second one is receive operation. In recipient side, it will
be supplied with a reply cap to the thread that has issued
the send or reply operation. Hence, recipient could reply
to message as long as the sender has also specified a
receive operation to the same recipient thread in the IPC
operation.

A. Message Tags

Each IPC message begins with a message tag which
stored in the MessageData0 register. As can be seen in
Figure 4, each message tag consists of a message label,
an Untyped field specifying the number of data words
in the corresponding message and a set of four message
flags, S, R, N and M. These flags are used to identify
the requested IPC operations but will not be delivered
to the target thread. Upon the delivery of the message,
microkernel replaces these flags by an error indicator and
a performance-related remote IPC flag. All other fields
in the message tag are always delivered unchanged to
the recipient of the message. [5]

Fig. 4. Message Tag MR0

u: number of words in message (excluding MR0)
m: specifies memory copy operation (later)
n: specifies asynchronous notification operation (later)
r: blocking receive, if unset, fail immediately if no

pending message
s: blocking send, if unset, fail immediately if receiver

not waiting
label: user-defined (e.g., opcode), kernel protocols de-

fine this for some messages

B. Message Data

Each message contains at least 16 bits (or 48 bits on
64-bit architectures) of user-interpreted data and repre-
sented by the message label stored in the Label field
of its message tag. Microkernel does not interpret or
modify the message label; instead it delivers the message
directly to the recipient. This field can be freely used, but
typically it is used for specifying the message type.

The OKL4 allows the user to attach up to 63 user-
interpreted words of information to a single IPC mes-
sage. Individual OKL4 implementations may reduce the
maximum size by setting the MaxMessageData system
parameter to a value less than 63. Similar to message
label, the microkernel does not interpret or modify the
data words. The sender or a message supplies the values
of any required data words in its MessageData1 to
MessageDatak, where k is the value of the Untyped
field in the corresponding message tag. Upon successful
delivery of a message, these registers are copied to the
corresponding registers of the target thread.

C. Message Registers

Data is transferred from one thread to another using
message registers. The message registers consist of sev-
eral CPU general-purpose registers and the rest can be
located in the thread’s User-level Thread Control Block
(UTCB) in main memory. The pre-determined location
of the message registers by the kernel allows a faster
transfer as it already know where the data is. The use of
shared memory is also encouraged for larger transfers
that do not fit in the message registers.

D. Sending IPC Messages

When a thread requests an IPC operation, the mi-
crokernel is responsible for checking the sender cor-
responding capability in the sender’s capability space.
If capability is not found, the microkernel will send
appropriate message error and operation is immediately
aborted.

But if the capability is found, the action will depends
on the state of the target thread. There are two possible
state of target thread:

• If the target thread is waiting to receive a message
from the sender, the message is delivered immedi-
ately to the recipient and the microkernel proceeds
with any IPC receiver operations requested by the
sender.

• Otherwise, microkernel checks whether the re-
quested send operation was requested as blocking
or non-blocking.

– If blocking send operation is requested, the
microkernel marks the sender as polling and
put it in the IPC queue of the recipient. The
sender will remain be blocked until recipient
issues an appropriate receive operation or un-
til the IPC operation is cancelled using the
ExchangeRegisters system call.

– If non-blocking send operation (reply) is re-
quested, the operation will immediately be
aborted with an appropriate message without
performing any IPC receiver operations as re-
quested by the sender.

E. Sending Asynchronous Notification Message
Although all communication is synchronous in OKL4,

it still supports the asynchronous delivery of a restricted
form of message from a set of FLAG objects. The IPC
notify operation provides a restricted form of asyn-
chronous communication between thread. It consists of
the delivery from a set of notify flags to the recipient
but recipient does not need to invoke an explicit IPC
receive. The notify operation is always non-blocking
send operation and it delivers only a single word of
data representing the desired notify flags to the recipient,
irrespective of the number of data words specify by the
sender in the corresponding message tag.

Similar to synchronous sending operation, when a
thread requests an IPC notify operation, the microkernel
looks up the destination thread to perceive the capability
in sender’s space. If the capability is not found, the
operation is immediately aborted with an appropriate
error message.

If the Notify flag is cleared in the Acceptor register of
the recipient, the operation will be aborted. Otherwise,
the Notify flags is updated and message is immediately
delivered to the recipient. Notify flags can only set
flags in the destination; a cleared flag in the message
has no impact to the current corresponding flag in the
NotifyFlags register of the recipient.

On the other hand, if capability is found, microker-
nel checks if recipient is waiting for an IPC from the
sender, it compares the updated value of the recipient’s
NotifyFlags with the value of its NotifyMask regis-
ter. If the intersection of these two registers is non-empty,
the microkernel delivers an asynchronous notification

message to the recipient. If the notification message
is delivered, microkernel delivers a set of flags from
the intersection of the recipient’s NotifyFlags and
NotifyMask registers in the message. It subsequently
clears these bits from recipient’s NotifyFlags register.

F. Receiving IPC Messages

The IPC receive operation is used to request a message
from a thread to another thread in the system. Be-
side blocking and non-blocking, the OKL4 microkernel
defines another two receive operation’s variants, two
variants of the receive operation, closed and open.

In a closed receive operation, a thread (recipient)
requests a message from a specific OKL4 thread and
the caller must have a capability to the recipient in its
capability space. On the other hand, the recipient is able
to requests a message from any member of a particular
class of threads in an open receive operation.

Respond of the microkernel upon reception of the
IPC receive operation depends on the content of its IPC
queue, such as following.

• If the IPC queue contains a specific thread or a
general thread specified by the recipient, the first
such thread is removed from the queue and the
message is delivered immediately to the recipient.
The sender is added back to the system schedul-
ing queue. When the microkernel is allocated with
processing time by the thread selection algorithm,
it will complete any pending receive operations
requested by the sender.

• If no specific thread contained, the microkernel
checks whether the operation requested was block-
ing or non-blocking.

– If blocking receive operation was requested,
the microkernel marks it as waiting to receive
and will remain blocked until the sender is-
sues an appropriate IPC send operation, or
until the IPC operation is cancelled using the
ExchangeRegisters system call

– If non-blocking receive operation was re-
quested, the receive operation is aborted imme-
diately with an appropriate error message

On successful reception of a message the microkernel
provides the recipient with a reply cap to the sender. If
the sender specified a receive operation for the specify-
ing the recipient, the recipient may use this capability to
reply the thread.

G. IPC Possible Error

Error in IPC can be on sender side or receiver side.
The error message is stored in UTCB and be retrieved
by L4_ErrorCode(). Several causes for IPC errors are
such following. [6]

• NoPartner : A reply operation was issued to a
target thread that is not waiting to receive or a

receive operation was issued to a target thread that
is ready to send.

• InvalidPartner : The sender does not have per-
mission to communicate with the specified recipient
due to ipc-control restrictions or an invalid thread
ID was specified for the target thread.

• MessageOverflow : Untyped field of the message
tag soecifies a value greater that the MaxMessage-
Data system parameter. The error is delivered to
both the sender and the recipient.

• IPCRejected : A notify operation was issued to
a thread that has cleared the Notify flag in its
Acceptor register. The recipient of the message is
not notified.

• IPCCancelled : The IPC operation was cancelled
by another thread using the ExchangeRegisters sys-
tem call prior to commencing data transfer between
the threads.

• NOPARTNER : The IPC operation has been aborted
by another thread using the ExchangeRegisters sys-
tem call after data transfer has commenced between
the threads.

IV. CONCLUSION

Android uses 3 different IPC mechanism depending
on the process its carry on. For native code, Linux 2.6
IPC mechanism is used, for code written in Java, typical
socket method is used and to perform remote operation,
Binder is used.

For microkernel, on the other hand, the smooth IPC
between basic services in user space with the server in
kernel space is crucial. Message passing is used as the
mean of communication between threads. To increase
the performance of IPC, OKL4 implements synchronous
IPC mechanism and unbufferred IPC. In addition, sepa-
ration amongst the basic services in microkernel means
that failure of one server will not impact the work of
another server which considered to be extra point for
microkernel.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Martin Hell for
his guidance, support, suggestions and for overseeing
my work.

REFERENCES

[1] J. Soltys, “Linux kernel 2.6 documentation,” Master’s thesis, Come-
nius University, Bratislava, 2006.

[2] “Inter process communication mechanism,” Website: The Linux
Kernel, http://tldp.org/LDP/tlk/ipc/ipc.html.

[3] “Linux signals,” Website: Computer Technology Documenta-
tion Project, July 2000, http://www.comptechdoc.org/os/linux/
programming/linux pgsignals.html.

[4] M. Hills, “Native okl4 android stack,” Master’s thesis, University
of New South Wales, 2009.

[5] O. K. Labs, “Okl4 microkernel reference manual: Api version 03,”
2008.

[6] P. Gernot Heiser, “Okl4 programming overview of the okl4 3.0
api,” 2008.

