
Playing with the BEAST
Efficient Error Control Coding

using the

Cell Broadband Engine Architecture

Daniel Johnsson
Fredrik Bjärkeson

Department of Electrical and Information Technology
Lund Institute of Technology

Advisor: Florian Hug

January 11, 2010

Printed in Sweden
E-huset, Lund, 2010

Abstract

Information coding is used in communication systems to reliably transfer data
from one point to another. The focus of this master thesis is to aid in the search-
ing of new codes used in channel coding. Codes are ranked using property met-
rics and finding new and better codes improves communication as more errors
can be corrected. The new codes are found using algorithms optimized for the
Cell Broadband Engine Architecture, emphasizing the Bidirectional Efficient Al-
gorithm for Searching code Trees (BEAST), and taking full advantage of the par-
allelism facilitated by the architecture.

i

ii

Acknowledgements

We are now done with our thesis and would like to take the opportunity to thank
Florian Hug, our supervisor, for our many discussions, his guidance and help
in writing this thesis. Also, we would like to thank our examiner Martin Hell
for his guidance and support, as well as for his involvement in this thesis. We
would also like to thank Rolf Johannesson for proof-reading and also the staff
and PhD students at the department of Electrical and Information Technology
for providing us with a friendly and stimulating workplace.

Special thanks to everyone who has supported me during my work on this
thesis.

Fredrik

Last but not least, to my dear Caroline, parents and sister, thank you for your
support and encouragement without which I would not be half way of where
I consider myself to be today. Filip Olsson, thank you for our many discus-
sions and for your assistance in conjuring the iterative method described in Sec-
tion 5.3.5.

Daniel

Lund, January 11, 2010

iii

iv

Contents

1 Introduction 1

2 Error Control Coding 3

2.1 Error Probability . 3
2.2 Block Codes . 4
2.3 Convolutional Codes . 6
2.4 The Delay Operator . 6
2.5 Generating the Code Sequence . 8
2.6 Distance Properties of Convolutional Codes 9

3 Exhaustive Code Search 13

3.1 Rejection Rules . 13
3.2 The BEAST . 14

4 The Cell Broadband Engine Architecture 19

4.1 The PowerPC Processor Element . 20
4.2 The Synergistic Processor Element . 20
4.3 The Element Interconnect Bus . 22
4.4 Single Instruction, Multiple Data . 22
4.5 The PlayStation 3 . 23

5 Implementation Details 25

5.1 Parallelism . 25
5.2 Row Distance-Sieve . 25
5.3 The BEAST . 29

6 Results 37

6.1 Row Distance-Sieve . 37
6.2 Running the BEAST . 40
6.3 Exhaustive Code Search . 43
6.4 Time Trade-O�s . 44
6.5 Hot Encoders . 46

7 Conclusions 49

v

Bibliography 51

A Sample Code and Comparisons 53

A.1 Hamming Weight . 53
A.2 Simple Row Distance-Sieve Implementation 54

vi

Chapter1

Introduction

Digital transmission and storage systems demand fast and reliable data transfer
from one point to another. Figure 1.1 illustrates a simple model of a communica-
tion system, with information source and destination.

Figure 1.1: Simple model of a communication system where the
source S transmits information to the destination D. In this
thesis, focus is on the grayed boxes.

In many applications the raw source information is initially compressed (loss-
less) which is illustrated by the source encoding block in Figure 1.1. Thereby, the
initial raw source information is represented by a minimum number of bits, while
still being reconstructable without an loss of information. The source information
is then fed into a channel encoder, which can be expressed as a sequence of in-
formation symbols u. The channel encoder adds redundancy in a controlled way
and outputs a sequence of code symbols v, which for example can be converted to
an electromagnetic wave form and transmitted over a wireless channel. Different
kinds of noise and errors e are introduced by the channel and change the code
symbols before they are received by the channel decoding block. The purpose
of the decoder is to exploit the added redundancy and try to recover the origi-
nal code sequence v from the received sequence r. The channel decoder outputs
an information sequence decision û, which is forwarded to the source decoder.
The source decoder reconstructs the original information (decompressing) and
delivers it to its final destination.

1

2 Introduction

Cell Broadband Engine

The microprocessor industry faces a new era where physical limitations, heat
dissipation and power consumption force manufacturers toward a multi-core de-
sign. In a conventional homogeneous multi-core system all computational units are
identical, while in a less common heterogeneous design the computational units
have different architectural features.

The Cell Broadband Engine (designed by Sony, Toshiba and IBM) is an in-
novative heterogeneous approach to a multi-core system containing 9 compu-
tational units with an impressive floating-point computational power. The Cell
processor was developed with an emphasis on peak performance at the expense
of simple software development, and thus to fully exploit the hardware poten-
tial an expert knowledge is needed in both programming and its architectural
features.

In November 2006 Sony released the PlayStation 3 (PS3) gaming console,
which is equipped with a stripped down Cell processor. Although it was not
meant for scientific computing, it has gained a lot of attention in the high per-
formance computing community since the PS3 console is cost-competitive with
other commodity processors. Considering the large volume of production and
the price of a single gaming console, the PS3 platform makes a good candidate
for building Cell-based clusters.

Reader's Guideline

In Chapter 2 a brief introduction to error control coding is given. We also dis-
cuss important properties and their relation to performance and ability to correct
errors.

In Chapter 3 the BEAST is introduced, which is needed to determine proper-
ties for evaluating codes. To find the best codes, an exhaustive code search must
be performed on a huge set of codes. Important steps involved in an exhaustive
code search are discussed, such as reducing the original set of codes using the
Row Distance-Sieve.

Chapter 4 introduces the Cell Broadband Engine Architecture and gives a brief
description of the hardware.

In Chapter 5 we discuss specific implementation details of the BEAST, and
present two different implementations. We also give a detailed description of the
Row Distance-Sieve, and other important aspects of parallelizing an exhaustive
code search using multiple Cell processors.

Chapter 6 demonstrates the performance of our BEAST implementation, such
as memory usage and comparison between other architectures. We present new
results of encoders with properties better than previously known, obtained by
exploiting discoveries made when visualizing encoders with good properties in
a two-dimensional space. This graphical representation is known as a heat map
and we refer to the encoder clustering pattern as hot encoders. Finally, we also
list preliminary results from the exhaustive code search for memory 26.

Chapter2

Error Control Coding

Channel coding is a way to add redundancy to the information symbols in such
a way that errors can be detected and possibly corrected. The information and
code symbols are taken from a source alphabet, which in most digital systems is
the Galois field GF(2). The code symbols can be grouped into blocks (codewords)
or be treated as a semi-infinite code sequence, where the set of all codewords or
sequences is called the channel code C. In this thesis we only consider symbols
from the Galois field GF(2) that is the information and code symbols are bits.

2.1 Error Probability

A simple model of a communication channel is the binary symmetric channel (BSC)
with binary inputs and outputs. A bit carried over a BSC channel is transmitted
erroneously with the crossover probability ε and correctly with probability 1 − ε
as illustrated by Figure 2.1. The theory behind channel coding is for example
used to determine an upper bound on the error probability when transmitting
information across such a channel.

For decoding, a maximum likelihood (ML) algorithm, the Viterbi algorithm [18],
is used in many applications such as satellite and deep-space communications.
The basic idea for ML-decoding is to output a code sequence v that maximizes
the conditional probability P (r|v) on the received sequence r. When designing an
encoder (choosing a code C) there are two important code properties which have
a big impact on the performance of an encoder1, the free distance (dfree) or the min-
imum distance (dmin) and the distance spectrum (ndfree+i, i = 0, 1, 2, . . .) introduced
in Section 2.6.1 and Section 2.6.5, respectively. Further analysis into the concept
of communications channels and digital modulations is beyond the scope of this
thesis. For our purposes it is sufficient to consider the union-bound on the burst
error probability PB for convolutional codes in ML-decoding on a BSC, given by

PB <
∞

∑
w=dfree

nw

(
2
√

ε (1− ε)
)w

. (2.1)

1It should be emphasized that a property of a code C does not coincide with a property
of an encoder.

3

4 Error Control Coding

1

0

1

0

Figure 2.1: A binary symmetric channel with crossover probability
ε.

To achieve a low burst-error probability one should maximize the free distance
dfree, which is the dominating term, and minimize each spectral component nw.
Note, a similar upper-bound on the burst-error probability for block codes leads
to the same conclusions for the minimum distance dmin and the spectral compo-
nents, respectively.

2.2 Block Codes

In a block code, the sequence of information symbols is structured into inde-
pendent blocks and encoded separately. Each information block u consists of a
k-bit binary tuple u = (u0, u1, . . . , uk−1). There are M = 2k different information
blocks which are mapped one-to-one to individual codewords. Each codeword
is an n-bit binary tuple v = (v0, v1, . . . , vn−1). The difference n− k between the
number of symbols in u and v corresponds to the added redundancy and satis-
fies n − k > 0. The rate of a code is defined as R = k/n and shows how much
redundancy is added to each information symbol (i.e., the relation between the
number of input bits and output bits of the encoder).

If k and n are large (i.e., there are many different codewords) there is a need
to simplify the encoding process. Therefore linear block codes are mostly used
because of their linear encoding property. In an (n, k) linear block code C all
M = 2k codewords form a k-dimensional subspace of the vector space of all n-
tuples over the field GF(2). In other words, every codeword v in C is a linear
combination of k linearly independent basis vectors gi of length n forming a k× n
generator matrix:

G =

g0
g1
...

gk−1

 =

g0,0 g0,1 . . . g0,n−1
g1,0 g1,1 g1,n−1

...
. . .

...
gk−1,0 gk−1,1 . . . gk−1,n−1

 . (2.2)

A linear block code is completely defined by its generator matrix G. Any set
of k linearly independent vectors, out of the set of all codewords, can be used to
form the rows of G, thus, the same block code C can be represented by different
generator matrices.

Given the information sequence u = (u0, u1, . . . , uk−1) its codeword v is de-
termined by the matrix multiplication

Error Control Coding 5

v = uG

= (u0, u1, . . . , uk−1)×

g0
g1
...

gk−1

= u0g0 + u1g1 + . . . + uk−1gk−1.

(2.3)

By (2.3) it follows that the all-zero information sequence u = 0 always maps to
the all-zero codeword v = 0 which is a necessary but not a sufficient condition
for a code to be linear [13].

2.2.1 Block Code Properties

A fundamental parameter of block codes is the so-called minimum distance dmin
which determines the error-detecting and error-correcting capabilities of a code.

The Hamming weight wH is defined as the number of nonzero components in
a sequence of symbols. A codeword v of length n with binary symbols has the
Hamming weight

wH(v) =
n−1

∑
i=0

vi. (2.4)

The closely related Hamming distance dH between two sequences of symbols
is defined as the number of positions they differ. For example, given the two
codewords v = (1000) and w = (1011), the Hamming distance is dH(v, w) = 2,
since the last two bits differ.

Now, the minimum distance of a block code C can be defined as

dmin = dHmin = min
v,w∈C,v 6=w

{dH(v, w)} = {dmin(v + w)} . (2.5)

As previously mentioned, for linear block codes, the all-zero message u = 0 maps
to the all-zero codeword v = 0, and because of this linearity (2.5) can be simplified
to

dmin = min
v∈C,v 6=0

{wH(v)} . (2.6)

In other words, the minimum distance of a linear block code C is the smallest
Hamming weight of all non-zero codewords in C.

When a codeword v of length n is transferred over a noisy communication
channel the received sequence is r = v + e where e = (e0, e1, ... , en−1) denotes the
error pattern induced by the channel. The number of errors in r is the difference
between r and the codeword v, that is,

dH(r, v) = wH(e). (2.7)

Since dmin is the smallest number of positions in which any two codewords differ
in a block code C, every error pattern e with wH(e) ≤ dmin − 1 cannot change the

6 Error Control Coding

received sequence r into another codeword v′∈ C. Thus, up to dmin − 1 of errors
can be detected. Let εt be all error patterns with t or fewer errors, that is,

εt = {e|wH(e) ≤ t} (2.8)

then the block code C can correct all patterns in εt if and only if

dmin > 2t.

This is the so called error-correcting capability [12] of the block code C and often
written as

t ≤
⌊

dmin − 1
2

⌋
. (2.9)

2.3 Convolutional Codes

Convolutional codes, which were introduced by Elias [15] in 1955, is another type
of code used in error-control coding. This alternative to block codes is used in
many applications, such as cellular and satellite transmissions. Convolutional
codes introduce the concept of encoder memory m, and as opposed to block
codes, each code tuple depends not only on the current information tuple but
also on the m previous information tuples. An information sequence for a con-
volutional code with rate R = b/c is ordered into tuples of length b, which are
fed into an encoder. A code sequence is then generated in a continuous fashion,
ordered in tuples of length c, where b and c are typically small integers. In our
thesis we will focus on the most simple and common class of convolutional codes
with rate R = 1/2.

A linear convolutional encoder can be realized with a simple linear sequen-
tial circuit, constructed by basic memory (delay) units and XOR-gates (modulo-
2 adders). For our purposes we only consider time invariant realizations in the
commonly used controller canonical form without feedback, in which the delay el-
ements form a shift register. Figure 2.2 shows such a realization of a rate R = 1/2
convolutional encoder with memory m = 2. At each time instance an informa-
tion bit u together with m previous information bits generate two output bits v(0)

and v(1), which are multiplexed into the code sequence v.

2.4 The Delay Operator

Denote the impulse response of the ith input and jth output of a rate R = b/c
convolutional code C by gij. Then the b× c convolutional generator matrix Gconv
is given by

Gconv =

 g11 · · · g1c
...

. . .
...

gb1 · · · gbc

 . (2.10)

Error Control Coding 7

Figure 2.2: A convolutional encoder with rate R = 1/2 and memory
m = 2.

Using Gconv, the relation between the b input sequences u(i), i = 1, 2, . . . , b, and
the c output sequences v(j), j = 1, 2, . . . , c, can be expressed by as(

v(1), v(2), . . . , v(c)
)

=
(

u(1), u(2), . . . , u(b)
)
× Gconv.

Since a convolutional encoder is a linear system, information and code sequences
can be represented in polynomial form. For a rate R = b/c convolutional code
C with memory m, a generator matrix G can be expressed in terms of the delay
operator D, that is,

G(D) =

g11(D) g12(D) . . . g1c(D)
g21(D) g22(D) . . . g2c(D)

...
...

. . .
...

gb1(D) gb2(D) . . . gbc(D)

with the generator polynomials

gij(D) = g(0)
ij + g(1)

ij D + g(2)
ij D2 + . . . + g(m)

ij Dm

where i = 1, 2, . . . , b and j = 1, 2, . . . , c. Note that the maximum degree of the
generator polynomial is equal to the memory m. Then the relation between the
information sequence and the code sequence, both expressed in terms of the delay
operator D, is given by

v(D) = u(D)G(D)

with

u(D) = u0 + u1D + u2D + . . .
v(D) = v0 + v1D + v2D + . . .

where ui and vi denotes the input b-tuple and output c-tuple at time instance t,
respectively.

Expressing the generator matrix G(D) as

G(D) = G0 + G1D + G2D + . . . + GmDm

8 Error Control Coding

we obtain m + 1 sub-matrices of size b× c, where the sub-matrix Gi is associated
with all impulse responses at time instance t = i. Using these sub-matrices the
semi-infinite generator matrix G is given by

G =

G0 G1 . . . Gm 0 0 . . .
0 G0 G1 . . . Gm 0 . . .
0 0 G0 G1 . . . Gm . . .
...

...
.

. . .

 . (2.11)

Together with the semi-finite information sequence

u = (u0, u1, . . .) =
(

u(1)
0 u(2)

0 . . . u(b)
0 , u(1)

1 u(2)
1 . . . u(b)

1 , . . .
)

and the semi-infinite code sequence

v = (v0, v1, . . .) =
(

v(1)
0 v(2)

0 . . . v(c)
0 , v(1)

1 v(2)
1 . . . v(c)

1 , . . .
)

with the b-tuples ut and the c-tuples vt for the consecutive time instances t =
0, 1, . . ., the input-output relation follows as

v = uG.

Commonly, generator polynomials are described as octal numbers, which we
will use throughout this thesis. In this format, each digit represents three bits,
that is 23 = 8 different values. Any generator polynomial hereinafter is expressed
with its highest degree to the right.

Example
Given a rate R = 1/2 convolutional code with memory m = 3 and generator
matrix G = (g11 g12) = (74 54)8, in a left-aligned octal form, the generator
polynomials follow as

748 = 1111002 ⇒ 11112 = 1 + D + D2 + D3

548 = 1011002 ⇒ 10112 = 1 + D2 + D3.

2.5 Generating the Code Sequence

Consider again the block diagram in Figure 2.2 showing a rate R = 1/2 con-
volutional code with memory m = 2 and generator matrix G = (7 5)8, or in
polynomial form

G(D) =
(

1 + D + D2 1 + D2
)

. (2.12)

When an encoder is realized in controller canonical form, the generator polyno-
mials can be seen directly in the block diagram. The D-terms in a generator poly-
nomial (e.g., D and D2) correspond to a memory unit, starting with the overall
highest degree on the right.

Assuming the memory elements to be initially filled with zeros, the outputs
v(0)

t and v(1)
t are generated at each time instance t as follows:

Error Control Coding 9

(i) With the first polynomial, being g1(D) = 1 + D + D2, the current input ut
as well as the two previous input bits ut−1 and ut−2 are added together by
modulo-2 adders to form the first output bit v(0)

t , as illustrated in Figure 2.2.

(ii) Similarly, the second output v(1)
t is associated with the second polynomial

g2(D) = 1 + D2, that is, the current input bit vt is added together with
the input bit two time instances earlier, ut−2, currently stored in the second
memory element (counted from left to right).

For a rate R = 1/2 convolutional code an input sequence u = (u0, u1, . . .) gener-
ates two output sequences v(0) = (v(0)

0 , v(0)
1 , . . .) and v(1) = (v(1)

0 , v(1)
1 , . . .) which

are the convolution between the input sequence and the impulse responses of the
encoder.

Example
Consider a rate R = 1/2 convolutional code C with memory m = 2 and generator
matrix G =

(
1 + D + D2 1 + D2). Given an information sequence u = (11 01) or

in polynomial form u(D) = 1 + D + D3, the codeword is obtained as

v(D) = u(D)× G(D)
= (1 + D + D3)× (1 + D + D2 1 + D2)

= (1 + D4 + D5 1 + D + D2 + D5).

By multiplexing the outputs, a codeword can be expressed in the following way:

v(D) = v(0)(D2) + Dv(1)(D2)

and in our example we get the codeword

v(D) = 1 + D + D3 + D5 + D8 + D10 + D11.

2.6 Distance Properties of Convolutional Codes

To ensure small error probabilities in the simple model of a communication chan-
nel (from Section (2.1)) the most important properties of a convolutional code C
are the free distance (dfree) and the distance spectrum ndfree

which govern the error
probability in (2.1).

2.6.1 Free Distance

The free distance is similar to the minimum distance (dmin) property for block
codes (introduced in Section 2.2.1). The Hamming weight property introduced in
(2.4) still holds for convolutional codes, but the codeword can now be viewed as
a code sequence, since a convolutional encoder can generate code sequences of
infinite length. Thereby, the distance property dfree now becomes the minimum
Hamming distance between any two code sequences (i.e., the number of positions
in which they differ) of possible infinite length.

10 Error Control Coding

In order to obtain small error probabilities it follows from (2.1) that convolu-
tional codes with large free distances should be used. Therefore, determining the
free distance of a convolutional code is a commonly encountered problem. Since
we only consider linear codes, the free distance of a code C can be determined by
finding the code sequence v of minimum weight

dfree = min
v∈C,v 6=0

{wH(v)} . (2.13)

As with block codes the distance parameter determines the error-correcting and
error-detecting capabilities of a code C. Any error pattern εt as defined in (2.8)
can be detected if t < dfree [9], and is guaranteed to be corrected if and only if

t ≤
⌊

dfree − 1
2

⌋
. (2.14)

Note that it may be possible to correct some errors of larger weight, while this is
not guaranteed in general. Moreover, for rate R = b/c convolutional codes with
same memory m only a small fraction of all generator matrices G have the largest
free distance.

2.6.2 Catastrophic Generator Matrices

A generator matrix can cause catastrophic error propagation. Catastrophic error
propagation occurs if an information sequence of an infinite number of non-zero
bits at the input wH(u) = ∞ generates a sequence of a finite number of non-zero
bits at the output wH(v) < ∞. In practical terms this means that a finite num-
ber of errors (e.g., induced by channel noise) are sufficient in order for a received
sequence r to obtain an unlimited number of decoding errors. Catastrophic be-
havior is a generator matrix property and discarding such matrices is of great im-
portance when designing an encoder. A necessary and sufficient condition have
been provided by Massey and Sain [14] to ensure non-catastrophic behavior. For
a rate R = 1/2 convolutional generator matrix

G(D) = (g1(D) g2(D))

G(D) is non-catastrophic if and only if

gcd (g1(D), g2(D)) = Dl (2.15)

for some non-negative integer l (gcd denotes the greatest common divisor). In
our thesis we assume that at least one generator polynomial is delay free, that is,
g1(0) 6= 0 or g2(0) 6= 0, and thereby simplifying the condition to

gcd (g1(D), g2(D)) = 1. (2.16)

2.6.3 Column Distance

Another common distance measure of a convolutional code is its jth order column
distance dc

j , which is defined as

dc
j = min

u, u0 6=0

{
wH(v[0, j])

}
(2.17)

Error Control Coding 11

where v[0, j] denotes a truncated code sequence resulting from the information
sequences u[0, j] = (u0, u1, . . . , uj) with a non-zero u0. The column distance dc

j is
a non-decreasing function and converges to the free distance

dc
j ≤ dc

j+1, j = 0, 1, 2 . . .

lim
j→∞

dc
j = dc

∞ = dfree.

It has been observed that good computational performance for so-called sequen-
tial decoding is achieved if the column distance function grows as rapidly as pos-
sible [9]. A distance profile for a generator matrix G with memory m is given by
the m + 1 column distance tuple

dp = (dc
0, dc

1, dc
2, . . . , dc

m).

A distance profile dp is equal or superior to another distance profile dp′ if there is
a j0 such that

dc
j

{
= dc′

j , j = 0, 1, . . . , j0 − 1

> dc′
j , j = j0, j 5 m

that is, if dp > dp′ the column distance function grows faster with j for dp than
for dp′. If the distance profile of a generator matrix G is superior to any other
generator matrix of same rate and memory m, it is denoted an optimum distance
profile (ODP) generator matrix [9].

2.6.4 Row Distance

If an information sequence is truncated at depth j, u[0, j] = (u0, u1, . . . , uj), the
memory units of the encoder are still filled with m previous information bits. By
forcing the encoder back to the all-zero state (i.e., input m zeros) we terminate it
with a so called zero-tail (ZT) termination. Using a ZT terminated information se-
quence uZT

[0, j+m] = (u0, u1, . . . , uj+m) with u[j+1, m] = 0 , the jth order row distance
is defined as

dr
j = min

u[0, j] 6=0

{
wH

(
uZT

[0, j+m]G
) }

= min
u[0, j] 6=0

{
wH(v[0,j+m])

}
(2.18)

where v[0,j+m] is the code sequence resulting from the ZT information sequence
uZT

[0, j+m].
The row distance dr

j is a non-increasing function and converges to the free
distance for non-catastrophic generator matrices

dr
j ≥ dr

j+1, j = 0, 1, 2, . . .

lim
j→∞

dr
j

{
= dfree, non− catastrophic
≥ dfree, catastrophic.

12 Error Control Coding

Under the assumption that we have non-catastrophic generator matrices we ob-
tain the following lower and upper bounds on the free distance

dc
0 ≤ dc

1 ≤ dc
2 ≤ . . . ≤ dc

∞ = dfree = dr
∞ ≤ . . . ≤ dr

2 ≤ dr
1 ≤ dr

0 (2.19)

which will be exploited when performing an exhaustive code search later on.

2.6.5 Distance Spectrum

The number of codewords of a specific Hamming weight is the secondary most
important property (2.1). The distance spectrum for a generator matrix G is given
by

ndfree+i, i = 0, 1 , 2, . . . (2.20)

where ndfree+i is the enumeration of all code sequences of weight dfree + i. Each
ndfree+i, also denoted the (i + 1)th, spectral component diverge from the all zero
sequence at time instance zero and after they re-merge with the all-zero sequence,
they will not diverge again. It is interesting that the distance spectrum is an en-
coder property while the free distance as well as the burst error probability are
code properties . [4].

Chapter3
Exhaustive Code Search

The aim of this thesis is to perform an exhaustive code search for rate R = 1/2
generator matrices with memory m = 26. As described in Section 2.1 the free dis-
tance dfree is the most important criteria for evaluating the performance of convo-
lutional codes. Finding convolutional codes with the maximum free distance, also
denoted dmax

free , for a given memory m is performed by an exhaustive code search.
In order to reduce the number of encoder matrices we exploit their symmetri-
cal properties and apply different rejection rules. Afterwards we use the BEAST
(see Section 3.2) - Bidirectional Efficient Algorithm for Searching code Trees - to
determine the free distance and spectral components of the remaining generator
matrices.

3.1 Rejection Rules

For rate R = 1/2 convolutional codes with memory m there exist 22m possible
generator matrices G = (g1(D) g2(D)). Because of the huge number of possible
matrices, the complete ensemble needs to be greatly reduced before applying the
BEAST. A couple of limitations on the original number of generator matrices can
be made:

• Clearly G = (g1(D) g2(D)) and G′ = (g2(D) g1(D)) are symmetrical and
obviously have the same properties. Consequently the total number of ma-
trices can be reduced by 50%.

• As we search for generator matrices of memory m, we consider only gener-
ator matrices G = (g1(D) g2(D)) where at least one of the polynomials has
a Dm-term, i.e., g1(D) or g2(D) is odd in a numerical notation. This will
discard another 25%.

After these limitations, the original ensemble of 22m encoder matrices is now re-
duced to 3 · 22m−3− 2m−2 [9]. However, this number is still too large and approxi-
mately grows with a factor 4 for each m. Table 3.1 shows the number of generator
matrices that need to be checked for memory m, after applying the initial limita-
tions.

However, the free distance is upper-bounded by the row distance dr
j as shown

by (2.19). Therefore, it is possible to use the row distances as a fast rejection rule.

13

14 Exhaustive Code Search

m # generator matrices
2 5
3 22
4 92
5 376
6 1520
7 6112

m # generator matrices
23 26388276969472
24 105553112072192
25 422212456677376
26 1688849843486720
27 6755399407501312
28 27021597697114112

Table 3.1: The total number of R = 1/2 generator matrices that
must be checked for some values of m, after applying initial
limitations.

However, we identify a certain target free distance (dt
free), i.e., we are limiting our

search to generator matrices with dfree ≥ dt
free. Then we can use the jth order row

distance dr
j as an upper bound on the free distance dfree and reject all generator

matrices if dr
j < dt

free for any j = 0, 1, 2, All generator matrices that survived
the row distance rejection rules, or row distance-sieve, will be checked for catas-
trophic behavior by verifying that (2.16) is satisfied. Note that approximately
10% of all surviving generator matrices will be discarded by (2.16).

3.2 The BEAST

The Bidirectional Efficient Algorithm for Searching code Trees (BEAST), intro-
duced in [2, 3] is, in its simplest and original version, a method for finding the
code distance spectrum. Every convolutional code C of rate R = b/c can be rep-
resented by a graph, constructed from nodes and edges. The BEAST is used to
greatly reduce the amount of nodes needed visiting [13].

The state σ of an encoder of a rate R = 1/2 convolutional code C at time t,
specifies the previous m input bits, and is together with the current input bit ut
sufficient to determine the next state, as well as the output-sequence associated
with this state transition.

3.2.1 State-Transition Diagram

The state-transition diagram of a rate R = 1/2 convolutional encoder with mem-
ory m = 2 and generator matrix G = (1 + D + D2 1 + D2) in Figure 2.2 is illus-
trated in Figure 3.1, containing 2m = 4 encoder states. Every node ξ is labeled
by one of the 2m = 4 encoder states with edges between them. The edges cor-
respond to state-transitions and are labeled by the corresponding input bit and
output 2-tuple u/v.

For example, starting at the all-zero state σ = (00) , at time t = 0, and using
the input-sequence of u = (1 0 1 0 0 . . .) will result in visiting the states σ =
(00 10 01 10 01 00 . . .) and yield the code sequence v = (11 10 00 10 11 . . .).

Exhaustive Code Search 15

1100

10

01

1/11

0/11

0/00 1/10

1/01

0/01

1/00 0/10

Figure 3.1: State-transition diagram of rate R = 1/2 convolutional
encoder with G = (7 5)8 and memory m = 2.

3.2.2 Code Tree

Every convolutional code C can also be represented by either a forward or a back-
ward tree as illustrated in Figure 5.6. Every node ξ in the tree is characterized by
three parameters: the state σ(ξ), the tree depth `(ξ), and the weight w(ξ). Clearly,
every node ξ has a single parent node ξP and 2b child nodes ξC.

The forward tree stems from the root node ξroot at depth 0 and is indicated by
the subscript f . The node weight w f (ξ) is the accumulated Hamming weight of
the path from the root node ξroot to the current node ξ

w f (ξ) =
` f (ξ)

∑
t=1

wH(vt) (3.1)

where ` f (ξroot) = 0, w f (ξroot) = 0, and σ(ξroot) = 0, and where vt denotes
the output c-tuple for the state-transition at depth t counting from the root, and
leading to the current node ξ.

The backward tree stems from toor node ξtoor
1 and is indicated by the sub-

script b. Similar to a node in the forward tree, a node in the backward tree has
weight wb(ξ), that is the accumulated Hamming weight of the path from the toor
node ξtoor to the node ξ

wb(ξ) =
`b(ξ)

∑
t=1

wH(vt) (3.2)

where `b(ξtoor) = 0, wb(ξtoor) = 0 and σ(ξtoor) = 0, and vt denotes the output
c-tuple for the state transition at depth t (counting from the toor) and leading to
the current node ξ.

3.2.3 Finding the Code Spectrum

All codewords of a non-catastrophic generator matrix of a rate R = b/c con-
volutional code with memory m can be represented by a path through the code

1The toor node is the root of the backward tree.

16 Exhaustive Code Search

Figure 3.2: Illustration of a unidirectional and a bidirectional code
tree search. The gray nodes represent the shortest path found
between ξroot and ξtoor, yielding the dfree. The two nodes in the
rectangle, in the bidirectional search, are actually the same node
found in both the forward and the backward tree, indicating a
match.

tree. Such a path leaves the all-zero state from the root node ξroot at time instance
t = 0, and after it re-merges with the all-zero state at the toor node ξtoor, it does
not diverge again.

This implies that for every path ξroot → ξtoor of weight w, there exist an inter-
mediate node ξ such that w f (ξ) = fw + j and wb(ξ) = bw − j, j = 0, 1, . . . , c− 1,
fulfilling

fw + bw = w (3.3)

where w f (ξ) and wb(ξ) are the accumulated Hamming weights of the code se-
quence segments ξroot → ξ and ξ → ξtoor, respectively.

In order to find the number of codewords of weight w, the BEAST performs
an independent forward and backward search obtaining the forward and back-
ward sets F+j and B−j

F+j =
{

ξ|w f (ξ) = fw + j, w f (ξP) < fw, σ(ξ) 6= 0
}

(3.4)

B−j =
{

ξ|wb(ξ) = bw − j, wb(ξC) > bw, σ(ξ) 6= 0
}

. (3.5)

Although fw and bw may be selected freely as detailed in (3.3), an unbalanced
distribution would result in one set containing more nodes than the other one,
decreasing the efficiency of the BEAST.

Figure 3.2 illustrates the amount of nodes to be visited in order to find the
shortest path through the code tree for a unidirectional and a bidirectional tree
search.

Exhaustive Code Search 17

Finally, the spectral component corresponding to weight w is defined as the
number of codewords of weight w and is given by

nw =
c−1

∑
j=0

∑
(ξ f ,ξb)∈F+j×B−j

χ(ξ f , ξb) (3.6)

where ξ f is a node from the forward set, ξb a node from the backward set, and χ
is the function for indicating a match, defined as

χ(ξ f , ξb) =

{
1, if σ(ξ f) = σ(ξb)
0, otherwise.

(3.7)

18 Exhaustive Code Search

Chapter4

The Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture was developed by an alliance known as
STI (Sony, Toshiba and IBM) to meet requests by Sony and Toshiba. The requests
called for a high-performing chip with a high performance-to-power ratio, ini-
tially targeting gaming consoles.

The Cell architecture consists of one 64-bit IBM PowerPC called the Power
Processor Element (PPE) which is used for running an operating system and
managing system resources. It also includes eight co-processors called Syner-
gistic Processor Elements (SPE)1, which are connected to each other and to the
PowerPC Processor Element through the high bandwidth Element Interconnect
Bus (EIB). Figure 4.1 illustrates how the processors, memory and I/O controllers
are connected using the EIB.

Figure 4.1: A schematic overview of the processor layout.

1Current processors contain 7 SPEs in order to increase production yield.

19

20 The Cell Broadband Engine Architecture

4.1 The PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose processor and con-
forms to the PowerPC Architecture, introduced by IBM in the late 1970s. This
allows applications written for the 970-family (e.g., Power Mac G5) to run on
the processor without modification. The main processing unit in the PPE is the
PowerPC Processor Unit (PPU), which is a 64-bit, dual-threaded Reduced Instruc-
tion Set Computing (RISC) processor supporting both the PowerPC and the Vec-
tor/SIMD2 Multimedia Extension (VMX) Instruction Set Architectures (ISA) . It
can operate in either 32- or 64-bit mode and it has 32 64-bit general purpose reg-
isters, 32 64-bit floating-point registers and 32 128-bit vector registers.

Included in the processor is the Power Processor Storage Subsystem (PPSS)
which handles memory requests to and from the PPE. The PPSS contains a uni-
fied3 512 KB level 2 cache, various queues and a bus interface unit that handles
communication with the EIB.

4.1.1 The Cache, Pipeline and Branch Prediction

The PPE has a 32 KB level 1 (L1) instruction cache and a 32 KB L1 data cache; both
of which are shared between two threads and allow a block to be loaded by one
thread and used by the other. It can execute up to two instructions per cycle, and
pre-fetch up to four. Additional processor components include an Instruction-
control Unit (IU)4 which interprets the instructions and directs them to correct
operational units and a Load- and Store Unit (LSU) coordinating memory access.
Additionally, the PPU also contains a Fixed-Point Unit (FXU) and a Vector/Scalar
Unit (VSU)5. As the PPE has only one set of functional units, only one thread may
use one unit at a time. Table 4.1 shows the permitted functional unit combinations
for two threads. Dual-issue occurs when both threads use separate functional
units, allowing two instructions to complete for every one cycle. Stalls occur
when one thread has to wait for the other to complete its use of a functional unit.

Branch misses can be prevented by hinting likely/unlikely6 outcomes, but a
missed branch comes with a 23-cycle penalty so it is often better to allow the PPU
to use its own branch prediction.

4.2 The Synergistic Processor Element

The Synergistic Processor Element (SPE) consists of a Synergistic Processor Unit
(SPU) and a 256 KB Local Store (LS) as well as a Memory Flow Controller (MFC)
for moving data in and out of the LS. It is a SIMD RISC processor with 32-bit fixed
length instructions, operating on 128-bit data. The processor has 128 general-
purpose registers that are used by both floating-point and integer instructions. It

2Single-Instruction, Multiple-Data (see Section 4.4).
3Both instruction and data share the same cache.
4The IU contains the Branch Unit (BRU) handling branch statements.
5Containing Floating-Point Unit (FPU).
6By the use of the compiler directive __builtin_expect.

The Cell Broadband Engine Architecture 21

FXU LSU BRU VSU 1 VSU 2
FXU

√ √ √ √

LSU
√ √

BRU
√ √ √ √

VSU 1
√ √ √ √

VSU 2
√ √ √ √

Table 4.1: Combinations of functional units allowing dual-issue. The
VSU 2 refer the instructions using the VSU for loading, storing
and permuting data. VSU 1 refer to the remaining instructions,
not handled by VSU 2 [17].

does not handle dynamic branching but instead relies on the compiler’s branch-
ing instructions as detailed by [8].

The Local Store is a SPU-private memory, containing the SPU-application,
static memory and stack. It is an SRAM-array which is byte-addressed, but only
permits 16-byte aligned data to be loaded and stored. The LS completes a read
instruction in six cycles and a write instruction in four. Operations have different
priorities and are, in descending priority: DMA7 read/writes, load/stores and
instruction pre-fetching.

4.2.1 Pipeline and Branching

The SPU has two pipelines called the even and the odd pipeline. Each pipeline
handle different types of instructions, allowing two instructions to complete per
cycle (one in each pipeline). Provided there are no dependencies between the two
instructions, dual issue can occur, which can be utilized to increase performance.

As previously mentioned, the SPU does not (like a general-purpose processor
such as the PPU) have a branch-prediction cache. Branches are assumed not to
be taken, and when a branch is taken, the processor stalls which has a negative
impact on performance. Note that stalls due to branches can be avoided using
the previously mentioned hinting compiler directive __builtin_expect.

4.2.2 Synergistic Memory Flow Control

The SPU stores and retrieves data between main memory and the LS by issuing
requests to the Memory Flow Controller (MFC). This is achieved by giving the
MFC one location in main memory and one in the LS along with an amount of
data to be copied. The data transfers are asynchronous, which allows the SPU to
continue working while memory is being copied. One request can issue a copy
of up to 16 KB of data, identified using group identification number with data
transferred at a rate of 16 byte per cycle. The group identification numbers are
used to identify data transfers and are used by the SPU to check for completeness

7Direct Memory Access is a feature that allow the SPUs memory access independently
of the PPU.

22 The Cell Broadband Engine Architecture

1 2 3 4

1 2 3 4

+ + + +

2 4 6 8

a

b

c

Figure 4.2: Adding two vectors a and b using the intrinsic vec_add.

of the same. Requests may complete in a different order than in which they were
issued, and to enforce control, fence and barrier instructions exist if needed.

4.3 The Element Interconnect Bus

The Element Interconnect Bus (EIB) handles all command and data communi-
cations between the processor elements and the controllers for memory and in-
put/output operations. The EIB consists of four data rings, each 16 byte wide
and able to carry 128 bytes at a time. Each connected element has a unit identifi-
cation number (see Figure 4.1) which enables a programmer to minimize latency
by addressing specific elements. The EIB has a maximum internal bandwidth of
96 bytes per cycle and each ring can have multiple outstanding DMA requests
between a SPE local store and the main memory.

4.4 Single Instruction, Multiple Data

Single Instruction Multiple Data (SIMD) is a technique to enable data parallelism.
SIMD-enabled processing units have been designed to handle data in vectors,
which in the case of current Cell processors are 128-bit vector types. This means
that as opposed to a scalar 32-bit data type (e.g., float), four 32-bit operations can
be carried out in parallel by using a vector float. An example of a vector intrin-
sic (from the VMX instruction set) is vec_add, which is used to add together two
vector types (all element-wise), illustrated in Figure 4.2. All these instructions are
made accessible through C and C++ language extensions and intrinsics8.

As the PPU and SPU are of different architectures, they also differ in their
supported instruction sets. Two important differences (detailed in [17]) between
the two processors are:

• The SPU support 64-bit vector types (i.e., vector double and vector long

long) and the PPU does not.

• The PPU support the vector pixel data type, which is used to represent
pixel information, and the SPU does not.

8An intrinsic is an abstraction of machine level instructions.

The Cell Broadband Engine Architecture 23

Unlike the PPU Floating-Point Unit (FPU), the PPU SIMD Execution Unit (VXU9)
sacrifices precision for speed (graphics rounding mode); resulting in a number of
behavioral differences from IEEE 754, namely:

• Subnormal10 and underflow numbers are automatically rounded to zero.

• Infinity and NaN11 are processed as if normal.

• The positive overflow value is set to 0x7FFFFFFF.

• The negative overflow value is set to 0xFFFFFFFF.

4.5 The PlayStation 3

The PlayStation 3 contains 256 MB of Extreme Data Rate Dynamic Random Ac-
cess Memory (XDR DRAM). When running a guest operating system on the
PlayStation 3, it is run in an Hypervisor environment supervised by Sony’s oper-
ating system GameOS. The GameOS reserves the use of one SPU, making in total
six SPUs available to a guest operating system. Similarly, not all 256 MB of XDR
DRAM is available to the guest operating system.

The PlayStation 3 is also fitted with a Reality Synthesizer (RSX) Graphics Pro-
cessor Unit (GPU) from nVidia, with 256 MB of GDDR3 RAM. However, no ac-
cess to the accelerated GPU functions is given when running in the Hypervisor
environment.

Finally, the PlayStation 3 offers a disc drive capable of reading Blu-ray discs,
DVDs and CDs.

4.5.1 Limitations of the PlayStation 3 Gaming Console

The PlayStation 3 consoles provide an affordable solution to achieving high per-
formance. However, there are a number of limitations imposed by using the PS3
for high performance computing. The main memory, where approximately 200
MB is available for Linux OS and user applications, can in some applications
impose a limitation on the performance. The SPU only has 256 KB of memory,
which often result in memory being copied back and forth from main memory,
adversely affecting performance. Furthermore, the application binary which is
executed by the SPU must also fit in the LS, therefore additional programming
aspects such as code optimizations and code size also must be addressed.

A key factor when developing applications for the Cell processor is that all
hardware functionality is available to the programmer. This makes it possible
to achieve peak performance in a predictable way, as opposed to a conventional
processor where cache memories can not be controlled directly. Note, that writing
fast code that achieves near peak performance is not a trivial task and requires a
deep knowledge of the architecture and low level programming [1].

9Vector Multimedia eXtension instruction set (also known as AltiVec).
10A number that is closer to zero than the smallest possible float value, emulated in

software.
11Not a Number which signals a result of an operation with invalid input.

24 The Cell Broadband Engine Architecture

Chapter5
Implementation Details

To perform an exhaustive code search, both the row distance-sieve algorithm and
the BEAST have been implemented for the Cell Broadband Engine Architecture,
using the architecture’s inherent parallelism.

5.1 Parallelism

It is possible for us to split the full ensemble of encoders in arbitrary sized stand-
alone sub sets, because each encoder is independent of another. In order to fully
utilize the parallelism offered by the multiple Cell processors in our setup, our
implementation utilizes the following:

Five Cell processors are available in our setup of PlayStation 3 consoles, effec-
tively reducing the total time needed for our calculations by a factor of five.
This is possible due the lack of data dependency between encoders.

SIMD instructions allow us to process multiple data where we would otherwise
only be able to process single data.

Dual PPU threads facilitate dual issue on the PPU.

Six SPUs increase the throughput of encoders by a factor of almost six (see Sec-
tion 6.2.3), again related to independent nature of each encoder.

Dual SPU pipeline facilitate dual issue on the SPU.

Asynchronous DMA avoids halting the SPU when moving data in and out of
the SPU local store.

5.2 Row Distance-Sieve

Assume a time-invariant generator matrix and consider the row distance defini-
tion in (2.18). Let Sj denote all information sequences u = (u0, u1, . . . , uj) where
u0 = 1 and uj = 1, at row distance depth j. The cardinality

∣∣Sj
∣∣ of Sj is then

∣∣Sj
∣∣ =

{
2j−1, j > 1
1, 0 ≤ j ≤ 1.

(5.1)

25

26 Implementation Details

1

0

1

1

1

1

1

0

0

0

0
1

0
1

0

Figure 5.1: A code tree illustrating the row distance calculation.

Denote vi the code sequence resulting from ui, then for a rate R = 1/2 convolu-
tional code with time invariant generator matrix G = (g1 g2), the row distances
dr

j , j = 0, 1, . . ., are calculated as follows:

1. Set j = 1, generate the set Sj and convolve each ui ∈ Sj, i = 1, 2, . . . ,
∣∣Sj
∣∣

with the two generator polynomials resulting in two sequences v(0)
i and

v(1)
i , that is,

v(0)
i = ui ∗ g1

v(1)
i = ui ∗ g2.

(5.2)

Compute the Hamming weight of the resulting code sequence
wi = wH(v(0)

i) + wH(v(1)
i), i = 1, 2, . . . ,

∣∣Sj
∣∣.

2. Set the jth order row distance dr
j = min(wi), i = 1, 2, . . . ,

∣∣Sj
∣∣. Afterward

set j = j + 1 and repeat algorithm starting with step 2.

For performance, our implementation is limited to 32-bit data types which
imposes a limit on the generator matrices, where the generator polynomials in
G = (g11 g12) can consume at most 32 bits. In other words, only generator matri-
ces with memory m < 32 is supported since the generator polynomials must be
represented by a 32-bit data type.

Since all encoding operations are over the Galois field GF(2) the convolution
given in (5.2) is a discrete convolution, which can be calculated with a few XOR-
and shift-operations. The resulting sequence vi spans over j + m bits. Therefore,
all cases where m + j > 32 can be handled properly by simply counting the trun-
cated bits. Furthermore, the SPU instruction set provides a special instruction
for counting bits which is used extensively1, for example when computing the
Hamming weight of each convolved sequence vi.

1The spu_cntb-instruction counts the number of ones on an 8-bit boundary.

Implementation Details 27

Figure 5.2: A triangular iteration space.

The row distance-sieve is trivial and is a breadth-first traversal of a code tree
(see Section 3.2.2). When traversing the tree, the number of nodes that need to
be processed at each jth order row distance is given by (5.1). From the traversal,
the sequences u ∈ Sj can be processed sequentially (i.e., ui, ui+1, ui+2, . . .) and in-
dependently which is a desired behavior for SIMD-instructions. Furthermore, if
j ≥ 3 then

∣∣Sj
∣∣ ≥ 4 (5.1) and four sequences (ui, ui+1, ui+2, ui+3) can be processed

simultaneously (SIMD).
Figure 5.1 illustrates the calculation of the row distances dr

j , j = 0, 1, 2, 3 in
an example code tree for a rate R = 1/2 encoder with memory m = 3. Several
nodes are marked with an information sequence uj

i where j is the row distance
order. These are the actual nodes that will be processed by the row distance-
sieve. The dark-shaded nodes correspond to dr

3 where SIMD-instructions can be
utilized fully.

5.2.1 Parallel Work Distribution

The problem of generating all generator matrices fits very well for parallel com-
puting and multi-core systems. Since there is no dependency between the gener-
ator matrices, their generation can be implemented within a series of nested loops
using a data parallelism programming model where each processor performs iden-
tical operations on distinct data simultaneously[16]. This is a simple and common
way to decompose a problem and is often encountered in scientific applications.

The nested loops create a triangular iteration space that consists of an outer
and inner loop. The inner loop can be executed independently of all others but
depends on the index of the outer loop. Figure 5.2 shows the iteration space
where each dot corresponds to an iteration in the inner loop. Clearly, a simple
partitioning scheme where each vertical vector of dots is assigned to a processor
p would yield an uneven workload.

In order to achieve an optimal work distribution, an approximation-based near
optimal partitioning approach from [10] is chosen, that works well for work dis-
tribution in homogeneous systems (i.e., identical types of computational units).
Even though CBEA is a heterogeneous platform, this scheme is applicable since
the partitions will be executed exclusively on the SPUs and hence on the same
instruction set architecture. Using the concept with dots from Figure 5.2 this
scheme would decompose the outer loop into partitions containing an approx-

28 Implementation Details

10
0

10
1

10
2

10
3

10
4

10
5

10
6

np

75

80

85

90

95

100

105

110

115

T
im

e/
s

Execution time of the row distance−sieve

m=17
m=18

Figure 5.3: Execution time of the row distance-sieve with iteration
space decomposed into di�erent number of partitions np.

imately equal number of dots (i.e., iterations in the inner loop). Let ik be the outer
loop index for partition k (denoted pk), imax the upper limit of the outer loop, and
np the number of partitions. Then the loop bounds for partition pk are given by
(ik, ik+1) where ik follows as

ik = round
(

imax

(
1−

√
pk
np

))
. (5.3)

This partitioning scheme is used to distribute work among the SPUs on a single
Cell processor, where we typically used np = 512 partitions.

Furthermore, each partition can be decomposed into j sub-partitions, denoted
qj. The loop bounds (ij, ij+1) for each sub-partition qj, with nq being the number
of sub-partitions, are given by

ij =
⌊

(ik+1 − ik)
nq

⌋
. (5.4)

By decomposing the complete iteration space into disjoint partitions and sub-
partitions, computations can be distributed among an arbitrary number of Cell
processors, where each Cell would be statically assigned a distinct sub-partition.
Although the actual computational time for each partition (and sub-partition) is
non-deterministic, it is in fact quite easy to achieve a near optimal time with re-
gard to the number of partitions. This is illustrated in Figure 5.3 where the com-
plete ensemble of generator matrices with memory 17 and 18 has been decom-
posed into different number of partitions, ranging from np = 8 to np = 524288
and then processed with the row distance-sieve. Obviously, a near optimal num-
ber of partitions is 128 . np . 1024.

Implementation Details 29

5.3 The BEAST

In order to perform an exhaustive code search for generator matrices with mem-
ory 26, a lot of calculations (see Table 3.1) have to be performed. The row distance
algorithm in Section 5.2 greatly reduces the amount of generator matrices but in
order to finally determine the actual free distance, an algorithm like the BEAST
is needed. The BEAST can also be used to obtain the code spectrum which is
needed to rank the generator matrix and finally obtain the optimum free distance
(OFD) generator matrix.

5.3.1 Problem Partitioning

The problem of determining the free distance can be broken down into three main
parts: generating a result set, sorting it and matching it to another set. Generating
the result sets is a task well suited for the SPU, as it requires very little input-
data, a fair amount of calculations, and has a relatively low output rate. The
result sets often requires more memory than available in the LS, which means
that the generated data needs to be offloaded into main memory, while the LS is
reused to allow the SPU to complete calculating the result set.

Additionally the SPU is assigned the task of sorting the result sets. This is
possible without the full sets by splitting the result sets into partitions of a suitable
size, known by both the SPU and the PPU.

The matching of different result sets is an operation well suited for the PPU
as it has access to the full, partitioned, sets and it is possible to utilize its L1 data
cache effectively.

In a naive parallelization, the forward and the backward result sets are ob-
tained by simultaneous calculations on two individual processing units. Assum-
ing that both, forward and backward sets, take the same amount of time to be
calculated, the amount of time needed has effectively been halved. In reality
however, the sets are rarely balanced, resulting in one processing unit stalling
while the other completes its computations. This is a parallelization strategy that
may only be suitable for quickly processing one encoder. However, in processing
many encoders, stalling needs to be kept to a minimum which is made possible
by calculating both the forward and the backward set on one processing unit,
reducing the overall execution time.

5.3.2 Critical Path

The critical path represent the events that have to be performed in a specific
sequence. It solely dictates how a given implementation performs, meaning a
shorter critical path would shorten the overall time needed. A prerequisite for
shortening a critical path, given a number of operations to be carried out, is that
multiple operations can be carried out in simultaneously.

Figure 5.4 illustrates the critical path for calculating a target w. The figure
illustrates how data needs to be prepared by the PPU before the SPU starts its
processing of the tree. Once the SPU has started traversing the code tree, only
the event of having generated 16 KB of result set data will interrupt its execution.

30 Implementation Details

SPUPrepare Generate SortPPU Match

B

C

A

D

PPU SPU

Figure 5.4: Sequence diagram of the execution when calculating a
result set. In A the root node ξroot is expanded into a vector

type containing four nodes. B includes signaling and a DMA
operation. C represents the possibly repeated generating and
sorting of the result set in 16 KB chunks. At D the complete
result set has been generated and is matched.

When the interrupt occurs, the result set is sorted and a DMA operation is issued
to have it asynchronously copied into main memory. In other words, the copying
of data occurs while the SPU continues to traverse the code tree. Once the entire
code tree has been processed, control is handed over to the PPU for matching of
the newly generated result set to previously generated result sets.

5.3.3 Traversing Code Trees

The state σ as introduced in Section 3.2.2 is expressed as a vector of delay ele-
ments (d(1), d(2), . . . , d(m)). For a rate R = b/c encoder and memory m, the input
u as well as every delay element d(i) are comprised of b bits. We define a function
σf`+1

for moving in a forward direction in the forward tree and also a function
σf`−1

for moving in a backward direction in the forward tree by

σf`+1
= (u, d(1), d(2), . . . , d(m−1)) (5.5)

σf`−1
= (d(2), d(3), . . . , d(m), u′) (5.6)

where u and u′ are the inputs for moving forward and backward respectively.
Corresponding functions for moving in the backward tree are defined by σb`+1

=
σf`−1

and σb`−1
= σf`+1

.
An example of a rate R = 1/2 encoder with memory m = 2 is illustrated in

the state transition diagram in Figure 5.5 which shows the four possible states
and the possible transitions between the states.

Implementation Details 31

(a) σf`+1
(b) σf`−1

Figure 5.5: State transition diagrams illustrating σf`+1
and σf`−1

for
a rate R = 1/2 convolutional encoder with memory m = 2.

Figure 5.6 shows the same encoder, as presented in Figure 5.5, in a code tree
where the functions σf`+1

and σf`−1
are applied to traverse the tree in a forward

direction starting from the ξroot and in a backward direction starting from the
ξtoor. The edge labels represent the input u and u′ respectively.

1

0

1

1

1

1

1

0

0

0

0
1

0
1

0

1

1

1

1

1

0

0

0

0
1

0
1

0

0

1

Figure 5.6: Example showing a forward and backward code tree.

5.3.4 Recursion vs. Iteration

Writing a recursive function is often a very expressive way of solving a particular
problem. This is true for many computational problems and particularly true for
processing tree structures. Since the BEAST uses two trees, recursion seems like

32 Implementation Details

the natural pattern and a recursive implementation of the BEAST is possible to
write with a moderate amount of code. However, recursions often come at a price
of a larger amount of memory needed for every successive call to the function.
Additionally there is no way of predicting the size of the result set and in turn no
way of predicting how deep a code tree has to be processed.

As memory is a critical resource on the PlayStation 3, and in particular on the
SPU, processing deep trees using recursion is a highly undesirable method. In
Section 5.3.5 an iterative method is described which inhibits stack-consumption.
It also provides a platform for easily monitoring the required amount of mem-
ory (which greatly differs between different generator matrices) but comes at the
expense of doing extra calculations.

5.3.5 Iterative Depth-First Search of Code Trees

A standard approach to traversing trees in a depth-first manner, also known as
Depth-First Search (DFS), is as mentioned recursive. However, it is possible to
avoid recursions by performing calculations which would be otherwise implicitly
handled by the call stack. This method involves maintaining a stack data struc-
ture2 of nodes yet to be visited. Figure 5.7 shows a simple example performing a
DFS in a code tree with seven nodes by using a stack. Using a stack data struc-
ture for storing states will result in less memory being consumed as there is no
function call taking place. It will, however, still consume plenty of memory when
processing deep trees as most of the memory is consumed by keeping track of the
current state and not by the function call itself.

A characteristic of traversing a code tree instead of a general tree structure
(with arbitrary nodes and edges) is that the code tree is processed in a determin-
istic manner. As it is evident from the example in Figure 5.5a, being at state S01
and going backwards, there are two possible parent nodes. Since there is only
one actual parent node, a method like the Iterative Depth-first search of Code
Trees (IDCT) is required for mapping the path needed for backtracking.

Using the fact that it is possible to backtrack in the tree as long as we know
the path of how we got to a particular state, combined with the methodology of
the iterative DFS we are able to construct the IDCT and effectively reduce the
information needed to be saved for every depth of the tree from tens of bytes to
single bits. The program listing presented in Algorithm 1 uses a bit-stack, which
is a stack data structure able to store individual bits in a highly compact format3.

Clearly we are interested in storing the bits shifted out when calculating the
following state. These bits represent the path needed to backtrack the code tree,
and are thus used as input when moving backward using σf`−1

.
For every visited node, the weight is accumulated which also constitutes part

of the program-state that consumes memory. It is possible to trade in this mem-
ory usage at the cost of doing extra calculations in the form of calculating the
transitional weight a second time when moving in the reverse direction, and sub-
tracting it from the accumulated weight.

2Replacing the need for a call stack.
3As opposed to storing all 32 or 64 bits which the data type may actually hold.

Implementation Details 33

0

0

1 4

2 3 65

0

1 4

2 3 65

0

0

1 14

2 3 65

0

0

1 14

3 65

0

0

1 14

65

0

0

4

65

0

0

4 4

65

0

0

4 4

6

0

0

4 4

0

0

Figure 5.7: DFS using a stack. The grayed nodes are stored on the
stack (on the right) and the black nodes represent processed
nodes.

Algorithm 1 C-inspired program listing realizing σ`+1 and σ`−1 using
IDCT. The operations <�<, >�>, | and & are the bit-wise operations SHIFT

LEFT, SHIFT RIGHT, OR and AND respectively.

s t a t e _ n e x t (s t a t e , u , nbr_ input_bi ts , delay_elements)
{

i = (u << delay_elements) | s t a t e ;
m = (1 << nbr_ input_b i t s) − 1 ;

b i t s tack_push (i & m) ;

re turn (i >> nbr_ input_b i t s) ;
}

s t a t e _ p r e v (s t a t e , nbr_ input_bi ts , delay_elements)
{

t = bi ts tack_pop () ;
i = (s t a t e << nbr_ input_b i t s) | t ;

m = (2 << delay_elements) − 1 ;

re turn (i & m) ;
}

34 Implementation Details

root

1

2

3

4

5

6

Figure 5.8: Processing a code tree using Singe Instruction, Multiple
Data.

Additional features of the IDCT are that it is suitable for work-sharing where
one processor interrupts another one to assist in computing the same problem. It
also enables storing and restoring execution-state quickly using very little mem-
ory4, should an execution need to be interrupted and resumed.

5.3.6 The Result Set

Using a straight-forward SIMD-based implementation, one might imagine a four
fold5 decrease in the time needed for obtaining the corresponding sets. In real-
ity however, branches terminate at different depths while processing is contin-
ued until the last of the four simultaneously processed branches is terminated as
shown in Figure 5.8.

This is not an issue in the scalar implementation of the BEAST, as all states
in the resulting sets are obtained in serial. For a SIMD implementation however,
four states are processed at a time. Simply storing the vectors would result in
”false” states being stored. Therefore these states are filtered out by setting them
to zero before storing, which signals that the states actually do not belong to the
result set6.

However as the extra zero-states still consume memory, the implementation
suitably removes them as early as possible. Filtering out the extra zero-states
greatly improves performance by reducing the size of the result set and in turn,
reducing the amount of information needed to be sorted, copied and matched.

4E.g., by flushing the bit-stack, the current state σ(ξ) and the accumulated weight w(ξ)
to a storage medium.

5Using 32-bit data types.
6By definition in (3.4) and (3.5).

Implementation Details 35

Packing

7 elements

20 elements

Figure 5.9: The di�erence in memory requirements between un-
packed and packed data. The empty positions are introduced
by processing the code tree in SIMD.

Subsets are generated by the BEAST algorithm in sets of j = 0, . . . , c− 1. Merg-
ing j and the state σ before storing the information in the result set allows
us to handle several smaller subsets as one big set. The program listing
in Algorithm 2 details how merging and subset extraction is carried out to
and from an element in the result set. See Section 5.3.7 below for details on
selecting the data type with sufficient bit positions.

Sorting is performed on the SPU using the quick-sort algorithm introduced by
C.A.R Hoare [6]. A preferable replacement for the default quick-sort al-
gorithm, available through glibc7, may be given by the Bitonic sorting al-
gorithm [5], reducing the number of branching instructions and hence in-
crease speed.

Matching is done on the PPU on subsets split into 16 KB sized partitions. The
reason for this is given by the fact that the MFC transfers at most 16 KB per
operation, making this a natural boundary for partitioning the result set.
Additionally, this enables the SPU to sort each partition prior to issuing the
DMA command.

5.3.7 Data Types

Selecting an appropriate data type size for the state representation is crucial. Us-
ing more bits than required consumes unnecessary amounts of memory and may
adversely affect the performance of the implementation8. As mentioned in Sec-
tion 5.3.6, the information regarding which set a state belongs to is encoded into

7The GNU C Library.
8For example by doing 64-bit calculations on a 32-bit system.

36 Implementation Details

Algorithm 2 The function encode_subset creates an element by merging
the state and the subset information (j). The function decode_subset ex-
tracts the subset information from a previously merged element. The oper-
ations <�<, >�> and | are the bit-wise operations SHIFT LEFT, SHIFT RIGHT

and OR respectively.

encode_subset (s t a t e , j , delay_elements)
{

re turn ((j << delay_elements) | s t a t e) ;
}

decode_subset (element , delay_elements)
{

re turn (element >> delay_elements) ;
}

the state itself to allow unique identification of each state in the different j sets (a
state may appear multiple times in one or both F+j and B−j sets). To represent
a state in a code tree, generated by an encoder of rate R = 1/2 and memory m,
m + 1 bits are needed. Moreover, additional b bits have to be stored temporarily
during a transition, as well as the set-information of dlog2(c)e bits during storage,
leading to an upper bound of

Tnbits ≤ m + 1 + max {dlog2(c)e , b} (5.7)

where Tnbits is the amount of bits for every member data type in the result set.

Example
A rate R = 1/2 convolutional code for memory m = 26, which is the topic of
this thesis, yields Tnbits = 26 + 1 + max {1, 1} = 28. The required amount of bits
exceed that which is available in a 16-bit short, but needs less than a 32-bit int;
hence an unsigned 32-bit int is used.

Chapter6
Results

As generating all matrices for a given memory m is closely coupled with the
BEAST, it is of great importance to aim for an optimal computation time, both
with regard to BEAST and the rejection rules.

Three versions of the GNU Compiler Collection (gcc) were used in compiling
the C source code:

• Synergistic Processor Unit: spu-gcc (GCC) 4.1.1

• PowerPC Processor Unit: ppu-gcc (GCC) 4.1.1

• Generic platform: gcc 4.3.0

6.1 Row Distance-Sieve

Figure 6.1 and 6.2 illustrates the efficiency of the row distance-sieve on the total
ensemble of rate R = 1/2 generator matrices for some memory m. In Figure 6.1
all memory 16 generator matrices, with the maximum free distance dmax

free = 20,
have been generated for three target distances dt

free = {19, 20, 21}. Note, that
the maximum free distance dmax

free is only available after performing an exhaustive
code search. In Figure 6.2 all generator matrices have been generated with a target
distance equal to the maximum free distance, i.e., dt

free = dmax
free . In both figures the

distance-sieve has been applied for order j = 0, 1, 2, . . . , 15 and j = 0, 1, 2, . . . , 20
after the initial limitations (c.f., Section 3.1).

Let ndr
j

denote the number of generator matrices surviving the row distance-
sieve at order j, and ndt

free
denote the number of generator matrices with the target

free distance dt
free. As illustrated in Figure 6.1, ndr

j
decreases rapidly for a low

order and converges to the total number of generator matrices with free distances
ranging from dt

freeto dmax
free , that is,

lim
j→∞

ndr
j
=

{
0, dt

free >dmax
free

ndt
free

+ ndt+1
free

+ . . . + ndmax
free

, dt
free ≤ dmax

free
. (6.1)

Clearly, as seen in Figure 6.1, dt
free has a big impact on the number of surviving

matrices at each jth order. Choosing a too optimistic target distance dt
free, will

37

38 Results

0 2 4 6 8 10 12 14 16
Row Distance order (j)

100

101

102

103

104

105

106

107

108

109

N
o
.
m

a
tr

ic
es

Surviving matrices for rate R=1/2 and memory m=16

d tfree =19

d tfree =20

d tfree =21

Figure 6.1: The number of surviving generator matrices for three
free distance estimates, where dmax

free = 20.

0 5 10 15 20
Row distance order (j)

101

102

103

104

105

106

107

108

109

1010

1011

1012

N
o.

m
at

ri
ce

s

Surviving generator matrices

m=17
m=18
m=19
m=20
m=21

Figure 6.2: The number of surviving generator matrices for some
memory m.

Results 39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Row Distance order (j)

0

50

100

150

200

250

300

T
im

e/
s

Execution time of the Row distance−Sieve

d
t
free =19

d
t
free =20

d
t
free =21

Figure 6.3: Execution time of the row distance-sieve for three esti-
mates on dfree, where dmax

free = 20.

result in no surviving matrices, i.e., ndr
j
= 0 (c.f. dt

free = 21 in Figure 6.1). Note, we
have used previously published results to measure and illustrate the performance
of the implemented rejection rules.

6.1.1 Execution Time

Intuitively one might suspect that the execution time, for an increasing jth order
of the row distance, would increase rapidly since the number of input doubles
at each order (i.e., extending the code tree one more level). Figure 6.3 illustrates
the execution time needed to generate ndr

j
with j = 0, 1, . . . , 15, for the rate R =

1/2 and m = 16 encoder ensemble using dt
free = {19, 20, 21}. However, for a

sufficiently small order, i.e., j . 16 the execution time is governed by ndr
j

and
not the order j (c.f. Figure 6.2). Consequently, it is only when ndr

j
approaches(

ndt
free

+ ndt+1
free

+ . . . + ndmax
free

)
, that the execution time will increase at each larger

jth order.
Consider for example dr

j = 0 in Figure 6.1, where the amount of surviving

generator matrices is approximately ndr
0

= 109. A generator matrix G = (g11 g12)
for a rate R = 1/2 convolutional code with memory m < 32 can be represented
with two 32-bit data types, that is, 8 bytes. 109 generator matrices would need
109 · 8 = 8 GB of data to be stored for later processing. Therefore, the extra
time penalty during execution for dr

j = {0, 1, 2} in Figure 6.3 is due to the extra
overhead (i.e., file I/O) needed when storing each generator matrix on disk.

For comparison and to illustrate how the SPU instruction set can be utilized
in computations, a simple implementation of the row distance-sieve was done

40 Results

13 14 15 16 17 18 19 20
Memory (m)

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
/s

Execution time of the Row Distance−Sieve

AMD Athlon X2 5200+ (Single thread)
1 SPU (SIMD)

Figure 6.4: Comparison between one SPU core and one AMD Athlon
64 X2 Dual Core 5200+.

for the SPU and x86 architecture. Sample code for the SPU implementation1 is
included in A.2. Figure 6.4 illustrates execution times for the two different ar-
chitectures, where both implementations was run on a single core. The complete
ensemble of generator matrices was filtered with the row distance-sieve at depth
j = 10 (dr

10) for m = 13, . . . 20, and the target distances was selected as the known
maximum free distance, dt

free = dmax
free . It is clear that for memories with a large

amount of surviving matrices (e.g., m = 17 or m = 19) the SPU implementation
gains a lot of performance by using SIMD instructions.

6.2 Running the BEAST

In the following sections, two sample sets are used for illustrating BEAST-impl-
ementation specific properties. Both sample sets, let us call them RA and RB,
are made up of 5,000 and 500,000 respectively, randomly selected memory 26
encoders. The encoders are selected uniformly from the entire ensemble using the
R250 random number generator introduced by Kirkpatrick and Stoll [11], which
has a period of almost 2250. The results below are presented using a 32-bit data
type, meaning four simultaneously handled code tree branches when using a 128-
bit vector type.

Results 41

Figure 6.5: Required processing time for the random set of 5,000
encoders in RA. The data marked with an asterisk (*) shows
the accumulated time of all 6 SPUs.

6.2.1 Algorithmic Components

Illustrated in Figure 6.5 is the work-load distribution of the three major algorith-
mic components, namely generating, sorting and matching. The time spent outside
of those areas are summarized in other. The figure reveals that the PPU SIMD
implementation requires much more time in generating the result set than all the
other implementations. As is detailed in Appendix A.1, there is no single SIMD
instruction for counting bits on the PPU2 and hence no cheap3 way of calculat-
ing the Hamming weight of elements of a vector type. This means that every
time the Hamming weight of a vector type is calculated, the scalar method for
calculating the weight is applied, four times. Combined with having to calculate
weights that are immediately discarded (as detailed in Section 5.3.6) this yields a
heavy penalty.

Evident from Figure 6.5 and the SPU implementation, is that a significant
amount of time (approximately 25%) makes up other; which includes tasks such
as inter-processor communication and synchronization.

The input data is exactly the same (RA) on all platforms, yielding exactly the
same result sets regardless implementation. As expected, the result sets require
the same amount of time to be sorted on a core, regardless of how they were
generated. It can be noted that the SPU qsort implementation has matching
performance to the PPU implementation.

The binary running on the ”Athlon 5200+” core is compiled from identical
source code used in creating the ”PPU Scalar” binary. Although different ver-
sions of GCC were used in compiling code for the PPU and the Athlon, the per-
formance on the Athlon is attributed to it being of a different and more recent
design than the Cell processor.

1The x86 implementation using scalar instructions is conceptually identical.
2As is the case with the SPU.
3Cheap in terms of a single or very few instructions.

42 Results

6.2.2 Performance and Memory Footprint

Figure 6.6 presents a comparison between the total time needed for processing
the 5,000 encoders in RA using a recursive and an iterative implementation. Al-
though the recursive method outperforms the iterative in all implementations,
the iterative method is a much more suitable basis for an implementation calcu-
lating higher memories, particularly in memory-starved environments such as on
the SPU.

Figure 6.6: Plot of execution time using di�erent implementations
for calculating the free distance.

Our implementation of the recursive method uses 160 bytes for every depth
(`) in the code tree, when handling four simultaneous branches. The iterative
method uses considerably less stack memory with a footprint of 10 bits of mem-
ory for every depth in the code tree (a factor 128 less than the recursive). The
mean stack memory usage when processing the 500,000 encoders in RB, using
the recursive and the iterative method, is illustrated in Figure 6.7. The figure also
shows the distribution of stack usage for the recursive method, with an upper
limit of roughly 16 KB. Note that the maximum free distance in RB is 26, and is
therefore likely not to include the worst case scenario with the maximum stack
usage needed in performing the exhaustive code search for memory m = 26.

In order to utilize the local store effectively, a buffered DMA strategy is used,
which triggers a MFC-put operation every time a 16 KB chunk has been gener-
ated4. Using 6 buffers of 16 KB each, a total of 96 KB is needed, leaving room
for a recursive method and its use of a call-stack. Note that even though the size
of the local store suffices for the recursive method with memory m = 26 for the
rate R = 1/2 encoders, it may quickly present a problem for higher memories as
there is no way of predicting how deep a tree needs to be processed.

416 KB is the maximum amount of data a single DMA operation can issue a transfer of.

Results 43

Figure 6.7: The stack usage of the 500,000 random encoders (RA)
when �nding the best generator matrix using the spectral com-
ponents.

6.2.3 Scaling

Figure 6.8 illustrates is the BEAST implementation, running on a varied amount
of SPUs. The figure shows that for every doubling of the amount of processor
elements, the time needed for calculations is nearly halved.

6.3 Exhaustive Code Search

As described in Section 6.1, choosing the right parameters for the row distance-
sieve has a great impact on the computational time and surviving generator ma-
trices. Table 6.1 lists generator matrices for memory 16 to 29, where some results
were verified by us, and memory m = 23 to m = 25 are OFD generator matrices
from previously published results [7]. By considering for example m = 24 or
m = 25 in Table 6.1, a naive estimate of the free distance for memory m = 26
could be dt

free = 29. However, running the row distance-sieve with such a tar-
get distance resulted in no surviving matrices5. We thereby can conclude that
the rate R = 1/2 OFD generator matrix of memory m = 26 has a free distance
of dfree = 28 while its generator polynomials are still unknown. Meanwhile an
exhaustive code search with target free distance dt

free = 28 for memory m = 26
was started, leading to the preliminary results marked ”∗” in Table 6.1, where a
generator matrix with better distance spectrum was found.

Furthermore, by selecting a subset within one of the ”hot” areas (c.f., Sec-
tion 6.5) for memories 27, 28 and 29. Then performing a search within each sub-

5Using five PS3 consoles the exhaustive code search completed in approximately 12
days.

44 Results

Figure 6.8: Plot of time needed for �nding the best generator ma-
trix in RA by calculating spectral components, using a varied
amount of SPUs.

set containing only 1/
(
2 · 164) of the original ensemble. We were able to obtain

generator matrices that are better than the previously known optimum distance
(ODP) generator matrices (e.g., in [7]), these new results are marked by ”◦” in
Table 6.1. Note, their OFD property has not been determined yet.

6.4 Time Trade-O�s

Consider the generator matrices with memory m = 17, 19, 21 in Table 6.1 which
have the same free distance dfree as memory m = 16, 18, 20 respectively. In such
cases a large amount of generator matrices survives the row distance rejection
rules, leading to a greatly increased run-time. On the other hand, if the free dis-
tance dfree increases with increasing memory, only a few generator matrices pass
the rejection rules, leading to a shorter running time.

However, choosing the target free distance too optimistic results in no surviv-
ing generator matrices, as for example illustrated in Figure 6.1 with dt

free = 21.
Note, the row distance-sieve is just the first step in an exhaustive code search

and all surviving encoder matrices need to be checked with the BEAST in order
to determine their actual dfree (and spectral components). Therefore one should
switch from the row distance-sieve to BEAST at the right point, to achieve an opti-
mal overall running time on the exhaustive search. Figure 6.9 shows the ”golden
cross”, by using a small subset (e.g., the first sub-partition q1 with nq = 131072)
for memory m = 26, where the computational time for the row-distance sieve
will exceed the computational time for the BEAST.

Results 45

m g1(D) g2(D) dfree i = 0 1 2 Remarks
16 626656 463642 20 43 0 265 OFD
17 611675 550363 20 4 24 76 OFD
18 4551474 6354344 22 65 0 349 OFD
19 7504432 4625676 22 5 52 116 OFD
20 6717423 5056615 24 145 0 225 OFD
21 63646524 57112134 24 17 95 136 OFD
22 64353362 41471446 25 47 88 137 OFD
23 75420671 45452137 26 45 0 365 OFD [7]
24 766446634 540125704 27 50 135 118 OFD [7]
25 662537146 505722162 28 71 196 112 OFD [7]
26 727322321 424667027 28 11 60 150 ∗
27 6276631214 5475602164 29 19 63 185 ◦
28 5762423076 6005305632 30 53 0 341 ◦
29 5713575517 6026566375 31 64 164 68 ◦

Table 6.1: The currently best known rate R = 1/2 generator ma-
trices and spectral components ndfree+i.

12 13 14 15 16 17 18 19 20
Row distance order (j)

0

500

1000

1500

2000

T
im

e/
s

Row Distance−Sieve vs. BEAST for memory m=26

BEAST (with 6 SPUs)

Row Distance−Sieve

Figure 6.9: The golden cross between the BEAST and row distance-
sieve.

46 Results

m ndmax
free

16 200
18 8
19 104295
20 12
22 2
23 28692
24 22

Table 6.2: Generator matrices with the maximum free distance.

6.5 Hot Encoders

An exhaustive code search for a rate R = 1/2 convolutional codes with memory
m will result in a number of generator matrices with the maximum free distance,
ndmax

free
. Table 6.2 lists these numbers for some values of m, as a result of an exhaus-

tive code search.
Using their polynomial representation (c.f. Section 2.4), each generator se-

quence in G = (g11 g12) for a rate R = 1/2 convolutional code with memory m
will in binary notation satisfy

2m ≤ g1j < 2m+1, j = 1, 2. (6.2)

Example
A rate R = 1/2 generator matrix G = (74 54)8 with memory m = 3, can be
represented with decimal numbers as

G = (111100 101100)2 = (1111 1011)2 = (15 11)10

and thus, with g11 = 15 and g12 = 11, (6.2) is satisfied.

Pixel Representation
A function κ is used to transform a polynomial g of memory m into a pixel coor-
dinate

κ =
⌊(g

2m − 1
)
· p
⌋

(6.3)

in the pixel space p× p.

6.5.1 Heat Maps

A heat map is a graphical visualization of two-dimensional data. Areas of the
map will be colored more intensely if there is more data in that particular re-
gion. If the complete ensemble of generator matrices for a memory m is raster-
ized with an arbitrary raster size (e.g., 256) and each generator G = (g11 g12)
with dmax

free is mapped onto the rasterized data matrix, a pattern occurs if ndmax
free

Results 47

Memory m=19 maximum free distance generator matrices

40

30

20

10

0

60

Figure 6.10: Visualizing maximum free distance generator matrices
for memory m = 19.

is large enough (i.e., ndmax
free

& 1000). Figure 6.10 shows a heat map where all
rate R = 1/2 generator matrices for memory m = 19 with the maximum free
distance are visualized, with each pixel representing an equal portion of the com-
plete encoder ensemble. A triangular shape appears because of the symmetry
between G(D) = (g1(D) g2(D)) and G′(D) = (g2(D) g1(D)) which have equiv-
alent properties, and hence only G(D) is considered. The dark areas indicate
dense clusters of generator matrices generating codes with the maximum free
distance dmax

free . A rate R = 1/2 generator matrix G = (g11 g12) with memory m
that satisfy the following numerical relations

2m + 2m−1 < g11 < 2m+1

2m < g12 < 2m + 2m−2
(6.4)

will be located within a more dense clustered area, as observed in Figure 6.10.
By graphically representing matrices with the maximum free distance for other
memories the same patterns appear of different intensity, depending on ndmax

free
.

With memory m = 16 for instance, with only ndmax
free

= 200, the pattern is not as
apparent as for m = 19, but most matrices with the maximum free distance are
still clustered within in the same area (i.e., satisfy (6.4)) as illustrated in Figure
6.11. This also leads to the suggestion on focusing in this area when performing
a random code search.

Another promising result is that a pattern appears to repeat itself when the
resolution is increased, as illustrated in Figure 6.12. In this example a square is
”zoomed” in, illustrating a similar pattern as the original, but now only cover-
ing a small subset of the original encoder ensemble. Furthermore, by repeating
this process several iterations, it is possible to greatly reduce original number of
generator matrices and conduct a heuristic code search.

48 Results

Memory m=16 maximum free distance generator matrices
4

3

2

1

0

Figure 6.11: Visualizing maximum free distance generator matrices
for memory m = 16.

Figure 6.12: Illustration of the hot encoder pattern observed for
memory m = 19, including the pattern appearing when the
resolution is increased. In polynomial space, a = 2m and b =
2m+1 − 1. In the p× p pixel space, a and b represent 0 and
p− 1, respectively.

Chapter7
Conclusions

The Cell Broadband Engine Architecture was utilized in exhaustive code search
for a rate R = 1/2 convolutional code with the best possible free distance and
spectra. Because of the huge size of the full memory 26 ensemble, their proper-
ties were used to reduce the size of the set; therein an algorithm exploiting the
row distance property. The BEAST - Bidirectional Efficient Algorithm for Search-
ing code Trees - was applied to the greatly reduced ensemble in order to finally
determine the free distance and spectra was presented. Preliminary results in the
exhaustive memory 26 code search include an encoder with the currently best
known free distance and spectra.

Additionally, a pattern in the distribution of encoders with preferable prop-
erties was discovered and used to find encoders with better properties than pre-
viously known for memories 27, 28 and 29.

The Cell architecture is very complex and is only suitable for certain types of
problems. We have shown that the problem of exhaustively searching for convo-
lutional codes is a task well suited for the architecture due to its highly paralleliz-
able nature.

An iterative method for overcoming the immediate memory restriction on the
Synergistic Processor Units has been presented, especially useful when process-
ing larger memories.

49

50 Conclusions

Outlooks

We have shown that the algorithms used in an exhaustive code search can be
successfully implemented effectively on the Cell Broadband Engine Architecture.
In order to be able to perform an exhaustive code search using encoders with
properties not bounded by the data type in (5.7), a 64-bit data type would need
to be used.

The evidence in Section 6.2.1 exposes the need for further optimizations, such
as using a different scheduling. If possible, moving the matching out of the SPU’s
critical path should provide ample speed-up. Further optimization can be carried
out by exchanging the quick-sort sorting method with a Bitonic sorting method,
reducing the amount of branching on the SPU and increasing speed.

Finally, the pattern of ”hot encoders” warrants an in-depth investigation,
as the evidence in this thesis hints at properties that might be used in order to
quickly find codes of larger memories with desirable properties.

Bibliography

[1] Jack Dongarna Alfredo Buttari and Jakub Kurzak. Limitations of the playsta-
tion 3 for high performance cluster computing. Technical report, Tech. rep.,
University of Tennessee Computer Science, 2007.

[2] Irina E. Bocharova, Marc Handlery, Rolf Johannesson, and Boris D.
Kudryashov. A BEAST for prowling in trees. In Proc. 39th Annual Allerton
Conf. Commun., Control, and Computing, 2001.

[3] Irina E. Bocharova, Marc Handlery, Rolf Johannesson, and Boris D.
Kudryashov. A BEAST for prowling in trees. IEEE Transactions on Infor-
mation Theory, 50(6):1295–1302, 2004.

[4] Irina E. Bocharova, Florian Hug, Rolf Johannesson, and Boris D.
Kudryashov. A note on convolutional codes: Equivalences, macwilliams
identity, and more. submitted to IEEE Trans. on Inf. Theory.

[5] Buǧra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. Cellsort: high per-
formance sorting on the cell processor. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases, pages 1286–1297. VLDB En-
dowment, 2007.

[6] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–15, 1962.

[7] Florian Hug. On Graph-Based Convolutional Codes. Master’s thesis, Lund
University, Lund, Sweden, 2008.

[8] IBM. The cell architecture, innovation matters. Webpage, June 2009.
http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.in- no-
vation.html.

[9] Rolf Johannesson and K. S. Zigangirov. Fundamentals of Convolutional Coding.
Wiley-IEEE Press, 1999.

[10] Nedal Kafri and Jawad Abu Sbeih. Simple near optimal parti-
tioning approach to perfect triangular iteration space. In HPCS,
2008. http://cisedu.us/storage/hpcs/2008/nkafri_at_science.alquds.edu-
2008.04.16-06.04.27-hpcs08ahg_Kafri_Jawad_April_16.pdf.

51

52 BIBLIOGRAPHY

[11] Scott Kirkpatrick and Erich P. Stoll. A very fast shift-register sequence ran-
dom number generator. Journal of Computational Physics, 40(2):517–526, April
1981.

[12] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[13] Maja Lončar. Taming of the BEAST. PhD Thesis, Lund University, 2007. ISBN
9171670459.

[14] J.L. Massey and M.K. Sain. Inverses of linear sequential circuits. IEEE Trans-
actions on Computers, 17(4):330–337, 1968.

[15] P.Elias. Coding for noisy channels. In IRE Conv. Record, volume 4, pages
37–47, 1955.

[16] IBM Redbooks. Programming the Cell Broadband Engine Architecture: Examples
and Best Practices. Vervante, 2008.

[17] Matthew Scarpino. Programming the Cell Processor: For Games, Graphics, and
Computation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.

[18] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Transactions on Information Theory, 13:260–
269, 1967.

AppendixA

Sample Code and Comparisons

A.1 Hamming Weight

The Hamming weight function is used extensively when running the BEAST. The
following sample code and comparisons aims to illustrate the importance of effec-
tively determining the hamming weight during calculations, which is illustrated
in Figure A.1 for different platforms.

Normally, one of the most effective ways to determine the hamming weight
is to use a lookup-table. This was used in the experimental test runs in Figure
A.1, except for the SPU which provides an internal instruction for counting bits.

SPU SIMD

def ine spu_hamweight (va) ((vec_uint4)\
(spu_sumb (spu_cntb ((vec_uchar16) (va)) , \

spu_spla ts ((u int8) 0))))

Scalar

s t a t i c i n l i n e u i n t 8 _ t hamweight (u i n t 3 2 _ t a)
{

u i n t 8 _ t c = 0 ;

f o r (c =0; a ; c ++)
a &= (a − 1) ;

re turn c ;
}

def ine hamweight (a) (__hw_lookup_table [(a) > >16] +\
__hw_lookup_table [(a)&0 x f f f f])

def ine hamweight (a) __bui l t in_popcount ((a))

53

54 Sample Code and Comparisons

Figure A.1: Time needed to determine Hamming weight (using a
16-bit lookup-table on all platforms but the SPU).

A.2 Simple Row Distance-Sieve Implementation

SPU Code

i n l i n e u i n t 3 2 _ t spu_row_re ject ion (u i n t 3 2 _ t t a r g e t ,
u i n t 3 2 _ t sequences ,
vec_uint4 g1 ,
vec_uint4 g2)

{

u i n t 3 2 _ t i , j , len ;
vec_uint4 zeros = spu_spla ts ((u i n t 3 2 _ t) 0) ;

f o r (i = 1 ; i < sequences ; i += 8) {

vec_uint4 t = { i , i +2 , i +4 , i + 6 } ;
vec_uint4 v0 = zeros ;
vec_uint4 v1 = zeros ;
len = 32− l z (i + 6) ;

f o r (j = 0 ; j < len ; j ++) {
v0 = spu_sl (v0 , 1) ;
v1 = spu_sl (v1 , 1) ;

vec_uint4 bitmask = spu_and (t , spu_spla ts ((u i n t 3 2 _ t)1<< j)) ;
vec_uint4 xormask = spu_cmpgt (bitmask , zeros) ;

v0 = spu_xor (v0 , spu_sel (zeros , g1 , xormask)) ;
v1 = spu_xor (v1 , spu_sel (zeros , g2 , xormask)) ;

}

Sample Code and Comparisons 55

vec_uint4 weights = spu_add (spu_hamweight (v0) ,
spu_hamweight (v1)) ;

i f (_ _ b u i l t i n _ e x p e c t (! s p u _ a l l g t (weights , t a r g e t −1)) , 1)
re turn 0 ;

}

re turn 1 ;
}

