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Abstract  
Many consumer products, such as within the computer areas, computer 
graphics, digital signal processing, communication systems, robotics, 
navigation, astrophysics, fluid physics, etc. are searching for high 
computational performance as a consequence of increasingly more 
advanced algorithms in these applications. Until recently the down scaling 
of the hardware technology has been able to fulfill these higher demands 
from the more advanced algorithms with higher clock rates on the chips. 
This that the development of hardware technology performance has 
stagnated has moved the interest more over to implementation of 
algorithms in hardware. Especially within wireless communication the 
desire for higher transmission rates has increased the interest for algorithm 
implementation methodologies. 
The scope of this thesis is mainly on the developed methodology of 
parabolic synthesis. The parabolic synthesis methodology is a methodology 
for implementing approximations of unary functions in hardware. The 
methodology is described with the criteria’s that have to be fulfilled to 
perform an approximation on a unary function. The hardware architecture 
of the methodology is described and to this a special hardware that 
performs the squaring operation. 
 
The outcome of the presented research is a novel methodology for 
implementing approximations of unary functions such as trigonometric 
functions, logarithmic functions, as well as square root and division 
functions etc. The architecture of the processing part automatically gives a 
high degree of parallelism. The methodology is founded on operations that 
are simple to implement in hardware such as addition, shifts, multiplication, 
contributes to that the implementation in hardware is simple to perform. 
The hardware architecture is characterized by a high degree of parallelism 
that gives a short critical path and fast computation. The structure of the 
methodology will also assure an area efficient hardware implementation. 
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CHAPTER 1 
 
 

1 Introduction 

In relatively recent research of the history of science interpolation theory, in 
particular of mathematical astronomy, revealed rudimentary solutions of 
interpolation problems date back to early antiquity [1]. Examples of 
interpolation techniques originally conceived by ancient Babylonian as well 
as early-medieval Chinese, Indian, and Arabic astronomers and 
mathematicians can be linked to the classical interpolation techniques 
developed in Western countries from the 17th until the 19th century. The 
available historical material has not yet given a reason to suspect that the 
earliest known contributors to classical interpolation theory were influenced 
in any way by mentioned ancient and medieval Eastern works. For the 
classical interpolation theory it is justified to say that there is no single 
person who did so much for this field as Newton. Therefore, Newton 
deserves the credit for having put classical interpolation theory on a 
foundation. In the course of the 18th and 19th century Newton’s theories 
[2] were further studied by many others, including Stirling [3], Gauss [4], 
Waring [5], Euler [6], Lagrange [7], Bessel [8], Laplace [9] [10], and 
Everett [11] [12]. Whereas the developments until the end of 19th century 
had been impressive, the developments in the past century have been 
explosive. Another important development from the late 1800s is the rise of 
approximation theory. In 1885, Weierstrass [13] justified the use of 
approximations by establishing the so-called approximation theorem, which 
states that every continuous function on a closed interval can be 
approximated uniformly to any prescribed accuracy by a polynomial. In the 
20th century two major extensions of classical interpolation theory is 
introduced: firstly the concept of the cardinal function, mainly due to E. T. 
Whittaker [14], but also studied before him by Borel [15] and others, and 
eventually leading to the sampling theorem for band limited functions as 
found in the works of J. M. Whittaker [16] [17] [18], Kotel'nikov [19], 
Shannon [20], and several others, and secondly the concept of oscillatory 
interpolation, researched by many and eventually resulting in Schoenberg's 
theory [21] [22] of mathematical splines.  
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The parabolic synthesis methodology. 
Unary functions, e.g. trigonometric functions, logarithms as well as square 
root and division functions are extensively used in computer graphics, 
digital signal processing, communication systems, robotics, navigation, 
astrophysics, fluid physics, etc. For these high-speed applications, software 
solutions are in many cases not sufficient and a hardware implementation is 
therefore needed. Implementing a numerical function f(x), by a single look-
up table [23] is simple and fast which is straight forward for low-precision 
computations of f(x), i.e., when x only has a few bits. However, when 
performing high-precision computations a single look-up table 
implementation is impractical due to the huge table size and the long 
execution time. 
Approximations only using polynomials have the advantage of being ROM-
less, but they can impose large computational complexities and delays [24]. 
By introducing table based methods to the polynomials methods the 
computational complexity can be reduced and the delays can also be 
decreased to some extent [24]. 
The CORDIC (COordinate Rotation DIgital Computer) algorithm [25] [26] 
has been used for these applications since it is faster than a software 
approach. CORDIC is traditionally an iterative method and therefore slow 
which makes the method insufficient for this kind of applications. 
This thesis proposes a methodology of parabolic synthesis [27] develops 
functions that perform an approximation of original functions in hardware. 
The architecture of the processing part of the methodology is using 
parallelism to reduce the execution time. For the development of 
approximations of unary functions a parabolic synthesis methodology is 
applied. Only low complexity operations that are simple to implement in 
hardware are used 
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CHAPTER 2 
 
 

2 Hardware Approximation Methods 

An unavoidable problem when implementing signal and image processing 
algorithms in hardware is to find realizations of elementary function 
approximations in hardware. With the increasing digitalization there is a 
growing request for hardware realization methods of approximations of 
elementary functions. In view of the increasing relevance it is natural that 
the subject of developing hardware realization methods of approximations 
of elementary functions gets more and more attention. This chapter will 
give a brief overview of existing hardware realization methods of 
approximations of mathematical defined elementary functions. 
 

2.1 Lookup Table 
 
Computation by lookup table is an attractive VLSI realization method 
because a memory simplifies the implementation of random logic in 
hardware [28]. Also with improving memory density, multimegabit lookup 
tables can become more practical in some applications. A benefit with 
lookup tables is that it reduces the costs of hardware development when it 
comes to design, validation and testing. It will also provide more flexibility 
for design changes and reduce the number of different building blocks or 
modules required when implementing arithmetic system designs. 
 
When storing tables in read-only memories the benefit is also an improved 
reliability since memories are more robust than combinational logic 
circuits. By exchanging to read/write memories and reconfigurable 
peripheral logic it will facilitate simpler evaluation of different functions as 
well as simplifying the maintenance and repair of a design. 
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2.1.1 Direct and Indirect Table Lookup 
The straight forward usage of lookup table is a direct table lookup. When 
given an m-variable function f(xm-1, xm-2, … , x1, x0), the evaluation of f 
when the input values is u-bit and the desired result is v-bit then the 
required table construction is 2u×v. The concatenated u-bit string is then 
used as an address into the table, with the read out v-bit value from the table 
and directly forwarded to the output. This arrangement gives a high degree 
of flexibility but is not practical in most cases. When implementing unary 
functions the size of the table can be manageable when the input operand is 
up to 12 to 16 bits, which gives a table size of 4K to 65K words. To 
implement binary functions, such as xy, x mod y or xy, in lookup tables the 
input operand has to be shorten to half of size of the operand size in the 
previous case to be manageable. This since the growth of the table size is 
exponential, which becomes intolerable when implementing in hardware. 
With increasing size the logic latency of the memory will also contribute to 
be a problem for many applications. 
 
To reduce the consequences of the exponential growth of the table size 
preprocessing steps of the operands and postprocessing steps [23] of the 
values read out from the tables can be introduced and thereby perform an 
indirect table lookup. When implementing this hybrid scheme the elements 
in the pre- and postprocessing parts are both simpler and faster and may 
also be more cost-effective than either a pure table lookup approach or a 
pure logic circuit implementation based on an algorithm. 
 

2.1.2 Lookup Table Reduction by Auxiliary Function 
An approach to reduce the table size is to develop a binary function as an 
auxiliary unary function. With different complexity of the auxiliary 
function the size of the lookup table can be reduced to different extents. 
These auxiliary functions are used in both the pre- and postprocessing steps 
[23] of the lookup table. The reduction of the table size for a given 
resolution can be rather significant and can also allow pipelining of the 
design, which increases the throughput. 
 

2.1.3 Interpolation 
A simple method to reduce the size of the lookup table is to use linear 
interpolation when implementing a function [28]. When a function f(x) is 
known for x = xlo and x = xhi, where xlo < xhi, the values for x in the interval 
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[xlo,xhi] can be computed from f(xlo) and f(xhi) by interpolation. The simplest 
method to perform an interpolation is to use linear interpolations where f(x) 
for x in [xlo, xhi] is computed according to (1). 
 

  
f (x) = f (x

lo
) + (x − x

lo
) ⋅

f (x
hi

) − f (x
lo

)⎡⎣ ⎤⎦
x

hi
− x

lo

 
(1) 

 
When implementing linear interpolation in hardware two lookup tables are 
needed, one for the starting point of the interpolation a = f(xlo), and one for 
the direction coefficient b = [f(xlo) - f(xhi)]/(xhi - xlo), as shown in Figure 1 
for the initial linear approximation. When choosing xlo and xhi it is 
beneficial to express them as numbers in the form of 2 to the power of z, 
since the addressing of the lookup tables and computation of the linear 
interpolation can be simplified. This will do that the addressing of the 
lookup tables will be in the most significant part of x and the subtraction for 
Δx = (x - xlo) will be in the least significant part of x. This do that the 
hardware realization of the approximation can be simplified to a + b·Δx 
where a and b fetched from memories for the interval in which the 
computation is to be performed.  
 
 

 
Figure 1. Linear interpolation for computing f(x). 
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To minimize the absolute and the relative error in the worst case an 
improved linear approximation strategy, as shown in Figure 1, can be 
chosen. As shown in Figure 1 the starting point a and the direction 
coefficient b is chosen to minimize the error of the interpolation in the 
interval. 

2.2 Polynomial Approximation 
 
Since polynomials only involve additions, subtractions, multiplications and 
comparisons it is natural to approximate elementary functions with 
polynomials. To ensure the computation efficiency the multiplier is the 
most crucial part of the implementation. To choose a fast multiplier is 
therefore important for the efficiency of the computation of the polynomial 
approximation. For polynomial approximations there are a various number 
of polynomial schemes available. The chosen polynomial scheme affects 
the number of terms included for a given precision and thus the 
computational complexity. 

TABLE I. APPROXIMATION SCHEMES. 

Taylor Polynomial 
Maclaurin Polynomial 
Legendre Polynomial 
Chebyshev Polynomial 
Jacobi Polynomial 
Laguerre Polynomial 

 
When developing polynomial approximations the challenge is to develop an 
efficient approximation that conforms to the function to be approximated in 
the desired interval. When developing an approximation two development 
strategies are available, one to minimize the average error, called least 
squares approximations, and one to minimize the worst case error, called 
least maximum approximations to the function to be approximated [24]. 
The strategy to choose depends on the requirements of the design. When 
the requirements of the design is that the error of the approximation is to 
get the best fitting to the function to be approximated, least squares 
approximations is favorable. An example when least squares 
approximations are favorable is when the approximation is used in a series 
of computations. Least maximum approximations are favorable when it is 
important that the maximum error to the function to be approximated is 
important to keep small. An example when least maximum approximations 
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are favorable is when the error from the approximation has to be within a 
limit from the function to be approximated. 
A list of commonly known approximation schemes is given in Table I. 
For additional information the reader can consult Muller’s book [24]. 
 

2.3 Piecewise Approximation 
 
Piecewise polynomial approximation [29] is a more flexible method to 
approximate a function f(x) since the interval to perform an approximation 
is divided into a number of subintervals, which are implemented as 
piecewise approximations by polynomials of a low degree. These 
piecewise-polynomial approximations are called splines, and the endpoint 
of a subinterval is known as knots. An example of a linear spline 
approximation is shown in Figure 2. 

 
 

 
Figure 2. Example of a linear spline approximation. 

 
The definition of a spline of degree n, n ≥ 1, is a polynomial function of the 
degree n or less in each subinterval and has a prescribed degree of 
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smoothness. The spline is expected to be continuous and also have a 
continuous derivatives of the order up to k, 0 ≤ k < n. 
In real-time applications performing elementary functions in dedicated 
hardware, software routines are often too slow and computationally 
intensive [30]. When using piecewise approximation methods in hardware 
implementations the degree of spline used is therefore often limited to first 
order approximations, also called linear approximations. 
When developing hardware design much effort is put on reducing the delay 
of the computation and the chip area. To exclude multipliers is therefore 
interesting since excluding multipliers will reduce the execution time and 
the chip area of the implementation. An example of this is shown in [31] 
where the multipliers have been replaced with configurable shifts. 
 

2.4 Sum of Bit-Product Approximation 
 
For implementation of elementary functions in hardware the approximation 
method of sum of bit-products [32] can be beneficial since it can give an 
area efficient implementation with a high throughput and reasonable 
accuracy. 
 
When formulating the approach, given a function, f(X), where X is 
composed of N bits, as shown in (2). 
 

 
(2) 

 
This gives the function 2N function values, f(x), where 0 ≤ X ≤ 2N-1. The 
functions values are then computed as a weighted sum of bit-products as 
shown in (3). 
 

 
(3) 

 
In (Y) cj corresponds to the weight and pj to the bit-products there each bit-
product, pj, is composed of the bits xj that are one in the binary 
representation of j. 
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2.5 CORDIC 
 
The CORDIC (COordinate Rotation DIgital Calculation) algorithm is an 
iterative algorithm able of evaluating a numeral of elementary functions 
only using shifts and additions. The algorithm is therefore very appealing 
for hardware implementation compared to software approaches [33] [26] 
using multiplications and additions. The CORDIC algorithm was 
introduced by Volder [25] and later generalized by Walther [34]. 
The CORDIC algorithm approximates the sine, cosine, etc. of an angle 
iteratively, using only simple mathematical operations such as additions, 
shifts and table lookups. The algorithm is a traditionally an iterative 
process, consisting of micro-rotations where the initial vector is rotated by 
predetermined step angles. However, unrolled architectures can be 
beneficial for hardware as well [35] [36]. Any angle can be represented to 
certain accuracy by a set of predetermined angle steps. 
 
 

 
Figure 3. Vector rotation. 

 
In Figure 3, the principle idea of CORDIC is shown. Rotation of a vector 
(X1, Y1) by the angle θ to (X2, Y2) is computed according to (4).  
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X
2
= ( X

1
⋅cos(θ)) − (Y

1
⋅sin(θ))

Y
2
= ( X

1
⋅sin(θ)) + (Y

1
⋅cos(θ))

 
(4) 

 
The functions in (4) can be rearranged according to (5).  
 

  

X
2
= cos(θ) ⋅ X

1
− (Y

1
⋅ tan(θ))⎡⎣ ⎤⎦

Y
2
= cos(θ) ⋅ ( X

1
⋅ tan(θ)) +Y

1
⎡⎣ ⎤⎦

 
(5) 

To generalize (5) it can be further rearranged according to (6). 
 

  

X
i+1

= cos(θ
i
) ⋅ X

i
− (Y

i
⋅ tan(θ

i
))⎡⎣ ⎤⎦

Y
i+1

= cos(θ
i
) ⋅ ( X

i
⋅ tan(θ

i
)) +Y

i
⎡⎣ ⎤⎦

 
(6) 

 

The methodology is to compute the rotation angles θ, in steps i, where each 
step size is tan(θ) = ±2-i. Through iterative rotations the vector will rotate in 
one or the other direction by decreasing steps until the desired angle is 
achieved. The iterative rotation method is based on that the rotation from θi 
to θi+1 is done in carefully chosen steps with values that imply that the 
operations used are only shifts and additions. The values for θi are therefore 
chosen such that tan(θi) is a fractional number expressed in trivial numbers 
i.e. numbers to the 2 power. The multiplication by tan(θi) can thus be 
replaced by a simple right-shift operation. 
 
If the iterations of (6) are analyzed the cosine factors Ki shown in (7), falls 
out as an iterative product series. 
 

 
(7) 

 
Equation (7) is referred to as a scale factor, which represents the decrease in 
magnitude of the vector during the rotation process. When the number of 
iterations/rotations is approaching infinity the scale factor approaches the 
value 0.607253. The cos(θi) term in (6) can therefore be replaced with the 
scale factor Ki, as shown in (8).  
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(8) 

 
As previous described in the iterative process the vector will rotate in one 
or the other direction which do that the direction of the rotation di, must be 
introduced in (8). 
 
To keep track of the angle that has been rotated, (9) is introduced. 
 

  θi+1
= θ

i
− d

i
arctan(2− i )  (9) 

 
The direction of the rotation di, is defined according to (10). 
 

  

d
i
=

−1  if θ
i
< 0

1  otherwise

⎧
⎨
⎪

⎩⎪
 

(10) 

 
Since the first rotation of the vector would be rotated 45° counterclockwise 
it is convenient to set the initial angle θ0 to 0. 
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CHAPTER 3 
 
 

3 Parabolic Synthesis 

Unary functions, e.g. trigonometric functions, logarithms as well as square 
root and division functions are extensively used in computer graphics, 
digital signal processing, communication systems, robotics, navigation, 
astrophysics, fluid physics, etc. For these high-speed applications, software 
solutions are in many cases not sufficient and a hardware implementation is 
therefore needed. 
 
The proposed methodology of parabolic synthesis [27] develops functions 
that perform an approximation of original functions in hardware. The 
architecture of the processing part of the methodology is using parallelism 
to reduce the execution time. For the development of approximations of 
unary functions a parabolic synthesis methodology is applied. Only low 
complexity operations that are simple to implement in hardware are used. 
 
The methodology is developed for implementing approximations of unary 
functions in hardware. The approximation part is of course the important 
part of this work but there are sometimes two other steps necessary, a 
preprocessing normalization and a postprocessing transformation step as 
described by [23] [24]. The computation is therefore divided into three 
steps, normalizing, approximation and transforming. 
 

3.1 Normalizing 
The purpose with the normalization is to facilitate the hardware 
implementation by limiting the numerical range. 
The normalization has to satisfy that the values are in the interval 0 ≤ x < 1 
on the x-axis and 0 ≤ y < 1 on the y-axis. The coordinates of the starting 
point shall be (0,0). Furthermore, the ending point shall have coordinates 
smaller than (1,1) and the function must be strictly concave or strictly 
convex through the interval. An example of such a function, here called an 
original function forg(x), is shown in Figure 4. 
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Figure 4. Example of normalized function, in this case 
  
sin

π ⋅ x
2

⎛
⎝⎜

⎞
⎠⎟

.  

 

3.2 Developing the Hardware Architecture 
When developing a hardware architecture that approximates an original 
function, only low complexity operations are used. Operations such as 
shifts, additions and multiplications are efficient to implement in hardware 
and therefore searched for. The downscaling of the semiconductor 
technologies and the development of efficient multiplier architectures has 
made the multiplication operation efficient in both size and execution time 
when implemented in hardware. The multiplier is therefore commonly used 
in this methodology when developing the hardware. 
As in Fourier analysis [37] the proposed methodology is based on 
decomposition of basic functions. The proposed methodology is not, as in 
Fourier analysis, a decomposition method in terms of sinusoidal functions 
but in second order parabolic functions. Second order parabolic functions 
are used since they can be implemented using low complexity operations. 
The proposed methodology also differs from the Fourier synthesis process 
since the proposed methodology is synthesized through using 
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multiplications in the recombination process and not additions as in the 
Fourier case. 
The proposed methodology is founded on terms of second ordered 
parabolic functions called sub-functions sn(x), that when recombined, as 
shown in (11), obtains to the original function forg(x). When developing the 
approximate function, the accuracy depends on the number of sub-functions 
used. 
 

  
f

org
(x) = s

1
(x) ⋅ s

2
(x) ⋅ ...⋅ s∞ (x)  (11) 

 
The procedure when developing sub-functions is to divide the original 
function forg(x), with the first sub-function s1(x). This division generates a 
parabolic looking function called the first help-function f1(x), as shown in 
(12).  
 

  
f
1
(x) =

f
org

(x)

s
1
(x)

 
(12) 

 
The first sub-function s1(x), will be chosen to be feasible for hardware, 
according to the methodology. In the same manner the following help-
functions fn(x), are generated, as shown in (13). 
 

  
f

n+1
(x) =

f
n
(x)

s
n+1

(x)
 

(13) 

 
It is important that the sub-functions sn(x), are chosen to be feasible for 
hardware realization. The purpose with the normalization is to facilitate the 
hardware implementation by limiting the numerical range. 
 

3.3 Methodology for developing sub-functions 
The methodology for developing sub-functions is founded on 
decomposition of the original function forg(x), in terms of second order 
parabolic functions for the interval 0 ≤ x < 1.0 and the sub intervals within 
the interval. The second order parabolic function is chosen as 
decomposition function since the structure is reasonably simple to 
implement in hardware i.e. only low complexity operations such as 
additions and multiplications are used. 
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The first sub-function 
The sub-function s1(x), is developed by dividing the original function 
forg(x), with x as a first order approximation. As shown in Figure 5 there are 
two possible results after dividing the original function with x, one where 
f(x)>1 and one where f(x)<1. 

 
 

 
Figure 5. Two possible results after dividing an original function with x. 

 
The first sub-function s1(x), is shown in (14). To approximate these 
functions the expression 1+(c1·(1-x)) is used. The first sub-function s1(x), is 
given by a multiplication of x and 1+(c1·(1-x)), which is resulting in a 
second order parabolic function according to (14). 
 

  s1
(x) = x ⋅ (1+ (c

1
⋅ (1− x))) = x + (c

1
⋅ (x − x2 ))  (14) 

 
In (14) the coefficient c1 is determined as the limit from the division of the 
original function with x and subtracted with 1, according to (15). 
 

  
c

1
= lim

x→0

f
org

(x)

x
−1  

(15) 
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The second sub-function 
The first help-function f1(x), is calculated according to (12) and dividing 
two functions that are both continuous convex or concave and with the 
same start and ending point will result in a function with an appearance 
similar to a parabolic function, as shown in Figure 6. 
 
 

 
Figure 6. Example of the first function f1(x) compared with sub-function s2(x). 

 
The second sub-function s2(x), is chosen according to the methodology as a 
second order parabolic function, see (16). 
 

  s2
(x) = 1+ (c

2
⋅ (x − x2 ))  (16) 

 
In (16) the coefficient c2, is chosen to satisfy that the quotient between the 
function f1(x) and the second sub-function s2(x) is equal to 1 when x is set to 
0.5 in (17). 
 

 
(17) 
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When developing the second help-function f2(x), will result in that the new 
help-function can be divided into a pair of parabolic looking functions as 
shown in Figure 7, where the first interval are from 0 ≤ x < 0.5 and second 
interval from 0.5 ≤ x < 1.0. 
 
 

 
Figure 7. Example of the second function f2(x). 

 
The size of the sub-intervals are chosen as a 2 power since the 
normalization of the interval can be performed as a left shift of x where the 
fractional part is the normalization of the two new intervals and the integer 
part is the addressing of the coefficients for the intervals, used in the 
hardware implementation as shown in section 4.1.4 Architecture. 
 
Sub-functions when n > 2 
For help-functions fn(x) when n > 2, the functions are characterized by the 
form of one or more pairs of parabolic looking functions. When developing 
the higher order sub-functions, each pair of parabolic looking functions is 
divided into two parabolic help-functions. For each sub-interval, a parabolic 
sub-function is developed as an approximation of the help-function fn(x), in 
the sub-interval. To show which sub-interval the sub-sub-functions is valid 
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for, the subscript index is increased with the index m, which gives the 
following appearance of the sub-help-function fn,m(x). 
In equation (18) it is shown how the help-function fn(x), is divided into sub-
help-functions fn,m(x), when n > 2. 
 

 

(18) 

 
As shown in (18), the numbers of sub-help-functions are doubled for each 
order of n > 1 i.e. the numbers of sub-help-functions are 2n-1. From these 
sub-help-functions, the corresponding sub-sub-functions are developed. In 
analogy to the help-function fn(x), the sub-function sn+1(x), will have sub-
sub-functions sn+1,m(x). In (19) it is shown how the sub-function sn(x), is 
divided into sub-sub-functions when n > 2. 
 

 

(19) 

 
Note that in (19), the sub-sub-functions to the sub-functions; x has been 
changed to xn. The change to xn is normalized to the corresponding interval, 
which simplifies the hardware implementation of the parabolic function. To 
simplify the normalization of the interval of xn it is selected as an 
exponentiation by 2 of x where the integer part is removed. The 
normalization of x is therefore done by multiplying x with 2n-2, which in 
hardware is n-2 left shifts and the integer part is dropped, which gives xn as 
a fractional part (frac( )) of x, as shown in (20). 
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x

n
= frac 2n−2 ⋅ x( )  (20) 

As in the second sub-function s2(x), the second order parabolic function is 
used as an approximation of the interval of the help-function fn-1(x), as 
shown in (21). 
 

  
s

n,m
(x) = 1+ c

n,m
⋅ x

n
− x

n
2( )( )  (21) 

 
Where the coefficients cn,m is computed according to (22). 
 

  
c

n,m
= 4 ⋅ f

n−1,m

2 ⋅ (m+1) −1

2n−1

⎛
⎝⎜

⎞
⎠⎟
−1

⎛

⎝⎜
⎞

⎠⎟
 

(22) 

 
After the approximation part the result is transformed into its desired form. 
 

3.4 Hardware Implementation 
 
 

 
Figure 8. The hardware architecture of the methodology. 

For the hardware implementation two’s complement representation [28] is 
used. The implementation is divided into three hardware parts, 



 
 

35 

preprocessing, processing, and postprocessing as shown in Figure 8, which 
was introduced by P.T.P. Tang [24]. 
 

3.4.1 Preprocessing 
In this part the incoming operand v is normalized to prepare the input to the 
processing part, according to section 3.1. If the approximation is 
implemented as a block in a larger system, the preprocessing part can be 
taken into consideration in the previous blocks, which implies that the 
preprocessing part can be reduced or even excluded. 
 

3.4.2 Processing 
In the processing part the approximation of the original function is directly 
computed in either iterative or parallel hardware architecture. The three 
equations (14), (16) and (21) has the same structure, which leads to that the 
approximation can be implemented as an iterative architecture as shown in 
Figure 9. 

 
 

 
Figure 9. The principle of iterative hardware architecture. 

 
The benefit of the iterative architecture is the small chip area whereas the 
disadvantage is longer computation time. The advantages with parallel 
hardware architectures are that they give a short critical path and fast 
computation to the prize of a larger chip area. The principle of the parallel 
hardware architecture for four sub-functions is shown in Figure 10. 
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Figure 10. The architecture principle for four sub-functions. 

To increase the throughput even more, pipeline stages can be inserted in the 
parallel hardware architecture. 
 
In the sub-functions (14), (16) and (21) x2 and xn

2 are reoccurring 
operations. Since the square operation xn

2, in the parallel hardware 
architecture is a partial result of x2 a unique squarer has been developed. In 
Figure 11 the algorithm that performs the squaring and delivers partial 
product of xn

2 is described.  
 
 

 
Figure 11. Squaring algorithm for the partial product xn

2. 
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The squaring algorithm for the partial products xn
2 can be simplified as 

shown in Figure 12. 

 
Figure 12. Simplified squaring algorithm for the partial product xn

2. 

When simplifying the squaring algorithm in Figure 11, the result of the 
component p0 in the vector p is simplified accordingly to (23). 
 

 (23) 

 
The result of the component p1 in the vector p is equal to 0 since the result 
of p0 never can contribute to p1. 
The result of the component q1 in the vector q is simplified according to 
(24). 
 

  
q

1
= p

1
⋅21 + x

1
x

0
⋅21 + x

0
x

1
⋅21 = 0 ⋅21 + x

1
x

0
⋅22 = 0 ⋅21

 (24) 

 
The result of the component q2 in the vector q is simplified accordingly to 
(25). 
 

  
q

2
= x

1
x

0
⋅22 + x

1
x

1
⋅22 = x

1
⋅22 + x

1
x

0
⋅22

 (25) 

 
The result of the component r2 in the vector r is simplified accordingly to 
(26). 
 

  
r

2
= q

2
⋅22 + x

2
x

0
⋅22 + x

0
x

2
⋅22 = q

2
⋅22 + x

2
x

0
⋅23 = q

2
⋅22

 (26) 

 
The result of the component r3 in the vector r is simplified accordingly to 
(27). 
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(27) 

 
The result of the component r4 in the vector r is simplified accordingly to 
(28). 
 

  
r

4
= x

2
x

1
⋅24 + x

2
x

2
⋅24 = x

2
⋅24 + x

2
x

1
⋅24

 (28) 

 
The result of the component s3 in the vector s is simplified accordingly to 
(29). 
 

  
s

3
= r

3
⋅23 + x

3
x

0
⋅23 + x

0
x

3
⋅23 = r

3
⋅23 + x

3
x

0
⋅24 = r

3
⋅23

 (29) 

 
The result of the component s4 in the vector s is simplified accordingly to 
(30). 
 

 

(30) 

 
The result of the component s5 in the vector s is simplified accordingly to 
(31). 
 

 

(31) 

 
The result of the component s6 in the vector s is simplified accordingly to 
(32). 
 

  
s

6
= x

3
x

2
⋅26 + x

3
x

3
⋅26 = x

3
⋅26 + x

3
x

2
⋅26

 (32) 

 
In Figure 11 and Figure 12, the squaring algorithm that performs the partial 
products xn

2, is shown. The first partial product p, is the squaring of the 
least significant bit in x. The second partial product q, is the squaring of the 
two least significant bits in x. The partial product r, is the result of the 
squaring of the three least significant bits in x and s is the result of the 
squaring of x. The squaring operation is performed with unsigned numbers. 
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When analyzing the squarer in Figure 11 and Figure 12, it was found that 
the resemblance to a bit-serial squarer [38] [39] is large. By introducing 
registers in the design of the bit-serial squarer the partial results of xn

2 is 
easily extracted. The squaring algorithm can thus be simplified to one 
addition since only an addition is needed when computing each new partial 
product. 
 
From (14), (16) and (21) it is found that only the coefficients values differs 
when implementing different unary functions. This implies that different 
unary functions can be realized in the same hardware in the processing part, 
just by using different sets of coefficients. 
 
Since the methodology is calculating an approximation of the original 
function the error in the desired precision can be both positive and negative. 
Especially, if the value of the approximation is less than the desired 
precision, an increased word length compared with the word length needed 
to accomplish the desired precision, might be necessary. If the order of the 
last used sub-function is n > 1, an improvement of the precision can be 
done by optimizing one or more coefficients c2 in (17) or cn,m in (22). The 
optimization of the coefficients will minimize the error in the last used sub-
function and thereby it can reduce the word length needed to accomplish 
the desired accuracy. Computer simulations perform such coefficient 
optimization numerically. 
 

3.4.3 Postprocessing 
The postprocessing part transforms the value to the output result z, as 
shown in Figure 8. If the approximation is implemented as a block in a 
system the postprocessing part can be taken into consideration in the 
following blocks, which implies that the postprocessing part can be reduced 
or excluded. The main reason for the post processing is thus to transform 
the output to a feasible form for the proceeding parts in the system.  
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CHAPTER 4 
 
 

4 Implementation of the sine function 

 
An implementation of the function sin(v), using the proposed methodology 
(Hertz & Nilsson, 2009) is described in this chapter as an example. 
 

4.1.1 Preprocessing 
 
 

 
Figure 13. The function f(v) before normalization and the original function forg(x). 

 
To satisfy that the values of the incoming operand x is in the interval 
0 ≤ x < 1, the operand x is multiplied with π/2 as shown in (33). 
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v = π

2
⋅ x  

(33) 

 
To normalize the function f(v)=sin(v) v is substituted with x which gives the 
original function forg(x) (34). 
 

  
f

org
(x) = sin

π
2
⋅ x

⎛
⎝⎜

⎞
⎠⎟

 
(34) 

 
In Figure 13, the f(v) function is shown together with the original function 
forg(x). 
 

4.1.2 Processing 
For the processing part, sub-functions are developed according to the 
proposed methodology. For the first sub-function s1(x), the coefficient c1 is 
defined according to (15), here repeated for the sine function. 
 

  
c

1
= lim

x→0

f
org

(x)

x
−1= π

2
−1 

(15) 

 
The determined value, using the c1 coefficient, is shown in (35). 
 

  
s

1
(x) = x + (c

1
⋅ (x − x2 )) = x + π

2
−1

⎛
⎝⎜

⎞
⎠⎟
⋅ x − x2( )⎛

⎝⎜
⎞

⎠⎟
= 0.570796  

(35) 

 
The first help-function f1(x), is computed as shown in (36). 
 

  
f
1
(x) =

f
org

(x)

s
1
(x)

 
(36) 

 
To develop the second sub-function s2(x), the coefficient c2 is defined 
according to (17), here repeated again for the sine function 
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⎜
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⎟
⎟
⎟

= 0.400858  

(17) 

 
The determined value of the second coefficient is numerically shown in 
(37). 
 

  
s

1
(x) = 1+ c

2
⋅ x − x2( )( ) = 1+ 0.400858 ⋅ x − x2( )( )  (37) 

 
The second help-function f2(x), is computed as shown in (38). 
 

 
(38) 

 
To develop the third sub-functions s3(x), the second help-function f2(x), is 
divided into its two sub-help-functions as shown in (18). The third order of 
sub-functions is thereby divided into two sub-sub-functions, where s3,0(x3) 
is restricted to the interval 0 ≤ x < 0.5 and s3,1(x3) is restricted to the interval 
0.5 ≤ x < 1.0 according to (19). A normalization of x to x3 is done to 
simplify in the implementation in hardware, which is described in (20). 
For each sub-function, the corresponding coefficients c3,0 and c3,1 is 
determined. These coefficients are determined according to (22) where 
higher order sub-functions can be developed. The determined values of the 
coefficients are shown in (39). 
 

  

s
3,0

(x
3
) = 1+ c

3,0
⋅ x

3
− x

3
2( )( ) = 1+ −0.0122452 ⋅ x

3
− x

3
2( )( ),  0 ≤ x < 0.5

s
3,1

(x
3
) = 1+ c

3,1
⋅ x

3
− x

3
2( )( ) = 1+ 0.0105947 ⋅ x

3
− x

3
2( )( ),  0.5 ≤ x <1

 

(39) 

 
The third help-function f3(x), is computed as shown in (40). 
 

 
(40) 
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To develop the fourth sub-functions s4(x), the third help-function f3(x), is 
divided into its four sub-sub-functions as shown in (18). The fourth order of 
sub-functions is thereby divided into four sub-sub-functions, where s4,0(x4) 
is restricted to the interval 0 ≤ x < 0.25, s4,1(x4) is restricted to the interval 
0.25 ≤ x < 0.5, s4,2(x4) is restricted to the interval 0.5 ≤ x < 0.75 and s4,3(x4) 
is restricted to the interval 0.75 ≤ x < 1.0 according to (19). A normalization 
of x to x4 is done here as well, to simplify the hardware implementation, 
which is described in (20). 
 
For each sub-function, the corresponding coefficients c4,0, c4,1, c4,2 and c4,3 
is determined. These coefficients are determined according to (22) which 
accomplish that higher order of sub-functions can be developed. The 
determined values of the coefficients are shown in (41). 
 

  

s
4,0

(x
4
) = 1+ −0.00223363⋅ x

4
− x

4
2( )( ),   0 ≤ x < 0.25

s
4,1

(x
4
) = 1+ 0.00192558 ⋅ x

4
− x

4
2( )( ),   0.25 ≤ x < 0.5

s
4,2

(x
4
) = 1+ −0.00119216 ⋅ x

4
− x

4
2( )( ),   0.5 ≤ x < 0.75

s
4,3

(x
4
) = 1+ 0.00126488 ⋅ x

4
− x

4
2( )( ),   0.75 ≤ x <1

 

(41) 

 
No postprocessing is needed since the result out from the processing part 
has the appropriate size. 
 

4.1.3 Optimization 
If no more sub-functions are to be developed the precision of the 
approximation can be further improved by optimization of coefficients c4,0, 
c4,1, c4,2 and c4,3. The precision is improved by adjusting the coefficient of 
the sub-sub-function with the lowest precision in a manner that the sub-sub-
function reaches the minimum error of the function. The optimization of the 
error can favorably be performed in software. As later described by Figure 
15, sub-sub-function s4,3(x) in the interval 0.75 ≤ x < 1.0 has the largest 
relative error, here in floating point but also in fixed point. When 
performing an optimization of sub-sub-function s4,3(x) in the interval 
0.75 ≤ x < 1.0 it was found that the word length in the computations could 
be reduced from 17 to 16 bits. 
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4.1.4 Architecture 
In Figure 14, the architecture of the approximation of the sine function 
using the proposed methodology is shown. The x2 block in Figure 14, is a 
specially designed multiplier described in Figure 11 and Figure 12 that 
performs the partial result u, i.e. u3 and u4, are used in the following blocks. 
In the x-u block, x is subtracted with the partial result u, from the x2 block. 
The result w from the x-u block is then used in the two following blocks as 
shown in Figure 14. In the x+(c1·w) block s1(x) is performed, in 1+(c2·w) 
s2(x) is performed, in 1+(c3·(x3-u3)) s3(x) is performed, and in 1+(c4·(x4-u4)) 
s4(x) performed. Note, that in the blocks for sub-function s3(x) and s4(x), the 
individual index m is addressing the MUX that selects the coefficients in 
the block, i.e. the most significant bits of x not used in x3 and x4, 
represented by i0 and i1 in Figure 14, controls the MUXes. 

 

 

 
Figure 14. The architecture of the implementation of the sine function. 
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4.1.5 Optimization of Word Length 
As shown in (39) and (41) the absolute value of the coefficients decreases 
in size with increasing index number of the coefficient. In similarity to the 
word length of the coefficients the word length of the (xn-un) part, shown in 
Figure 14, will decrease in size with increasing index number. The 
decreased word length will course that the size of the multiplier used in a 
sub-function to decrease as well, according to the highest value bit in the 
coefficients and of the (xn-un) part. In resemblance to above the size of the 
multipliers computing the multiplication of the sub-functions can be 
analyzed. This analysis will also result in that some of the following 
multipliers accordingly can be decrease in size. 
 

4.1.6 Precision 
 
 

 
Figure 15. Estimation of the relative error between the original function and different numbers of sub-functions. 

In Figure 15 the resulting precision when using one to four sub-functions is 
shown. A decibel scale is used to visualize the precision since the 
combination of binary numbers and dB works very well together. In the dB 
scale, 2 is equal to 20log10(2) = 20·(0.3) ≈ 6 dB and since 6 dB corresponds 
to 1 bit, this will make it simpler to understand the result. As shown in 
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Figure 15, the relative error decreases with the number of used sub-
functions. With 4 sub-functions we can see that accuracy better than 14 bits 
will correspond to at least 14 adders in the CORDIC algorithm. A critical 
path of 14 adders is thus unavoidable for the same result. In the general 
case, one single adder cell delay is added to the critical path for each new 
adder. However, in the CORDIC case, the sign bit from the previous stage 
must be ready before next stage can start. 
 
As shown in Figure 15, the relative error decreases with the number of sub-
functions used. However, it increases the delay with the number of sub-
function as shown in Table II. 

TABLE II. NUMBER OF OPERATIONS IN RELATION TO THE NUMBER OF SUB-FUNCTIONS. 

Number of sub-functions Delay 
1 2 mult + 2 add 
2 3 mult + 2 add 

3 to 4 4 mult + 2 add 
5 to 8 5 mult + 2 add 

 
If we assume that the delay of one multiplier is about two adders, we get a 
delay of 10 adders compared to 14 in the CORDIC case.  
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CHAPTER 5 
 
 

5 Using the Methodology 

 
It has been shown that the methodology of parabolic synthesis can directly 
compute the sine function but the methodology is also able to compute 
other trigonometric functions, logarithms as well as square root and 
division. In the following parts algorithms for elementary functions will be 
shown.  
 
When describing the implementation of each function the different parts are 
shown in a table. The first row in the table shows the function to be 
implemented and in which interval the function is feasible to be 
implemented in. In the second row it is described how to perform the 
normalization of the function. The third row shows the original function to 
be used when developing the approximation. The last row describes how to 
perform transformation of the approximation into desired interval. 
 

5.1.1 The Sine Function 
When developing the algorithm that performs the approximation of the sine 
function, the normalization in the preprocessing part is performed as a 
substitution according to Table III. Since the outcome of the approximation 
has the desired form no postprocessing is needed. 

TABLE III. ALGORITHM FOR THE SINE FUNCTION. 

 Algorithm Range 

Function   f (v) = sin(v)  
  
0 ≤ v < π

2
 

Preprocessing 
  
x = 2

π
⋅v   

Processing 
  
y = sin

π
2
⋅ x

⎛
⎝⎜

⎞
⎠⎟

  

Postprocessing   
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5.1.2 The Cosine Function 
The algorithm that performs the approximation of the cosine function is 
founded on the algorithm that performs the approximation of the sine 
function. To perform the approximation of the cosine function x is 
substituted with 1-x in the preprocessing part of the approximation for the 
sine function. 

TABLE IV. ALGORITHM FOR THE COSINE FUNCTION. 

 Algorithm Range 

Function   f (v) = cos(v)  
  
0 < v ≤ π

2
 

Preprocessing 
  
x = 1− 2

π
⋅v   

Processing 
  
y = sin

π
2
⋅ x

⎛
⎝⎜

⎞
⎠⎟

  

Postprocessing   

 

5.1.3 The Arcsine Function 
When developing the algorithm that performs the approximation of the 
arcsine function, the methodology, as well as other methodologies, has a 
problem to perform an approximation for angels larger than π/4. Therefore, 
the range of the approximation has been limited according to the range of 
the function in Table V. To satisfy the requirements of the methodology in 
the preprocessing part a substitution according to Table V has to be 
performed. To get the desired outcome the approximation is multiplied with 
a factor according to Table V. 

TABLE V. ALGORITHM FOR THE ARCSINE FUNCTION. 

 Algorithm Range 

Function   f (v) = arcsin(v)   

Preprocessing   

Processing 
  
y = arcsin

x

2

⎛
⎝⎜

⎞
⎠⎟

  

Postprocessing 
  
z = π

4
⋅ y  

  
0 ≤ z < π

4
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5.1.4 The Arccosine Function 
The algorithm that performs the approximation of the arccosine function is 
founded on the algorithm performing the approximation of the arcsine 
function. The difference between the two approximations is in the 
transformation in the postprocessing part, as shown in Table VI. 

TABLE VI. ALGORITHM FOR THE ARCCOSINE FUNCTION. 

 Algorithm Range 

Function   f (v) = arccos(v)  
  
0 ≤ v < 1

2
 

Preprocessing   

Processing 
  
y = arcsin

x

2

⎛
⎝⎜

⎞
⎠⎟

  

Postprocessing 
  
z = π

4
+ π

4
⋅(1− y)  

  

π
4
< z ≤ π

2
 

 

5.1.5 The Tangent Function 
When developing the algorithm that performs the approximation of the 
tangent function the angle range is from 0 to π/4, since the tangent function 
is not strictly concave or convex for higher angles. To perform the 
normalization the preprocessing part is performed as a substitution 
according to Table VII. Since the outcome of the approximation has the 
desired form no postprocessing is needed. 

TABLE VII. ALGORITHM FOR THE TANGENT FUNCTION. 

 Algorithm Range 

Function   f (v) = tan(v)  
  
0 ≤ v < π

4
 

Preprocessing 
  
x = 4 ⋅v

π
  

Processing 
  
y = tan

π
4
⋅ x

⎛
⎝⎜

⎞
⎠⎟

  

Postprocessing    0 ≤ z < 1  

 

5.1.6 The Arctangent Function 
When developing the algorithm that performs the approximation of the 
arctangent function it can only be performed in the range from 0 to 1 where 
the function is strictly concave or convex. To get the desired outcome the 
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approximation is in the postprocessing part multiplied with a factor 
according to Table VIII. 

TABLE VIII. ALGORITHM FOR THE ARCTANGENT FUNCTION. 

 Algorithm Range 
Function   f (v) = arctan(v)   
Preprocessing   

Processing 
  
y = arctan(x) ⋅ 4

π
  

Postprocessing 
  
z = π

4
⋅ y  

  
0 ≤ z < π

4
 

 

5.1.7 The Logarithmic Function 
When developing the algorithm that performs the approximation of the 
logarithm function with the base two, it is only performed on the mantissa 
of the floating-point number, since the exponential part only act as a scaling 
of the mantissa. For the preprocessing part a substitution according to 
Table IX has to be performed to satisfy the normalization criteria for the 
methodology. Since the outcome of the approximation has the desired form 
no postprocessing is needed. 

TABLE IX. ALGORITHM FOR THE LOGARITHM FUNCTION. 

 Algorithm Range 
Function f (v) = log2 (v)   
Preprocessing   
Processing y = log2 (1+ x)   

Postprocessing   

 

5.1.8 The Exponential Function 
When developing the algorithm that performs the approximation of the 
exponential function with the base two, it is only performed on the 
fractional part of the logarithm since the integer part is scaling the 
fractional part of the logarithm. As shown in Table X only a one needs to 
be added in the postprocessing part to get the desired outcome.  
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TABLE X. ALGORITHM FOR THE EXPONENTIAL FUNCTION. 

 Algorithm Range 

Function 
  f (v) = 2v   

Preprocessing   

Processing   

Postprocessing   

 

5.1.9 The Division Function 
When developing the algorithm that performs the approximation of the 
division it is limited to the range according to Table XI, since the division is 
not strictly concave or convex outside this range. The pre- and post-
processing part both needs computation when performing the 
approximation of the division. 

TABLE XI. ALGORITHM FOR THE DIVISION FUNCTION. 

 Algorithm Range 

Function   

Preprocessing   x = 2 ⋅(1− v)   

Processing 
 

 

Postprocessing   

 

5.1.10 The Square Root Function 
When developing the algorithm that performs the approximation of the 
square root function the range is limited according to Table XII. The pre- 
and post-processing part both needs computation when performing the 
approximation of the square root function. 

TABLE XII. ALGORITHM FOR THE SQUARE ROOT FUNCTION. 

 Algorithm Range 

Function   

Preprocessing   

Processing   

Postprocessing 
  
z = 2 + y ⋅ 3 − 2( )   
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CHAPTER 6 
 
 

6 Results 

The most common methods used when implementing an approximation of 
unary functions in hardware are look-up tables, polynomials, table-based 
methods with polynomials and CORDIC. Computation by table look-up is 
attractive since memory is much denser than random logic in VLSI 
realizations. However, since the size of the look-up table grows 
exponentially with increasing word lengths, both the table size and 
execution time becomes totally intolerable. Computation by polynomials is 
attractive since it is ROM-less. The disadvantages are that it can impose 
large computational complexities and delays. Computation by table-based 
methods combined with polynomials is attractive since it reduces the 
computational complexity and decreases the delays. But since the size of 
the look-up tables grows with the accuracy the execution time will 
increases with the needed accuracy. Computation by using the CORDIC 
algorithm is attractive since it is using an angular rotation algorithm that 
can be implemented with small look-up tables and hardware, which is 
limited to simple shifts and additions. The CORDIC algorithm is an 
iterative method with high latency and long delays. This makes the method 
insufficient for applications where a short execution time is essential. 
  
In all methods including the proposed method, it is a trade-off between 
complexity and memory storage. By using parallelism in the computation 
and parabolic synthesis in the recombination process, the proposed 
methodology thereby gets a short critical path, which assures fast 
computation. 
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CHAPTER 7 
 
 

7 Conclusions 

A novel methodology for implementing approximations of unary functions 
such as trigonometric functions, logarithmic functions, as well as square 
root and division functions etc. in hardware is introduced. The architecture 
of the processing part automatically gives a high degree of parallelism. The 
methodology to develop the approximation algorithm is founded on 
parabolic synthesis. This combined with that the methodology is founded 
on operations that are simple to implement in hardware such as addition, 
shifts, multiplication, contributes to that the implementation in hardware is 
simple to perform. By using the parallelism and parabolic synthesis, one of 
the most important characteristics with the out coming hardware is the 
parallelism that gives a short critical path and fast computation. The 
structure of the methodology will also assure an area efficient hardware 
implementation. The methodology is also suitable for automatic synthesis. 
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CHAPTER 8 
 
 

8 Future Work 

The feasibility of the methodology of parabolic synthesis has not fully been 
investigated why different issues of the methodology remain to be 
investigated. For the methodology there are computational cases as 
wordlength optimization of the data flow in the architecture. There are 
hardware implementation issues regarding that with increasing order of the 
sub-function the weight of the coefficients will decrease. Both these issues 
can result in better area efficiency and computation rate for the hardware 
implementation. 
 
To investigate the feasibility of the methodology it is also important to 
compare it with other existing methodologies for implementing 
approximations of unary functions. 
 
When analyzing help functions it is found that these function are piecewise 
continues functions. Since a help function represent the fault to an 
approximation and since the fault will decrease with increasing order of 
sub-function it can be interesting to use the parabolic synthesis 
methodology as a preprocessing part to an interpolation methodology. It 
can be expected that this approach can increase both area efficiency and 
computation rate of the approximation. 
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