
Reconfigurable Architectures for
Embedded Systems

Henrik Svensson

Lund 2008



The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt,
with the LATEX Documentation System
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Abstract

Application-specific circuits are used to migrate computer systems from work-
stations to handheld devices that need real-time performance within the budget
for physical size and energy dissipation. However, these circuits are inflexible as
any modification requires redesign and refabrication, which is both expensive
and time-consuming considering the complexity of recent embedded platforms.
Therefore, reconfigurable architectures that can be dynamically reconfigured
and reused over several platforms have been suggested, and they have proven
to provide high performance in a wide range of applications.

This thesis focuses on two important topics when designing reconfigurable em-
bedded systems: coarse-grained reconfigurable architectures and system level
architectural exploration. It is argued that embedded systems that require pro-
grammable hardware acceleration of regular computation intensive kernels with
word-level arithmetic should utilize coarse-grained reconfigurable architectures.
It is also argued that design of these complex systems should be performed with
tools for efficient modeling, simulation, and architectural exploration in order
to analyze and tune design parameters before a chip is fabricated. This thesis
presents two different coarse-grained reconfigurable architectures and a model-
ing and exploration environment to build and explore complete reconfigurable
computing platforms.

The first reconfigurable architecture consists of a number of locally intercon-
nected processing elements and memory banks. The processing elements are
configured into customized datapaths and the memory banks are used to move
data back and forth between datapath and memory at high data rates. The
reconfigurable architecture was integrated as a coprocessor and used to accel-
erate the G.723.1 speech codec. It is shown that the number of used clock
cycles is reduced with 83% compared to processor only execution. The sec-
ond reconfigurable architecture is built as an array of small instruction set
processors and memory blocks, which are interconnected with local dedicated
wires and a global hierarchical routing network. To address efficient archi-
tectural exploration, a SystemC exploration environment with user-interactive
control is presented. The reconfigurable architecture is described as a scalable
and parameterizable SystemC transaction level model. To evaluate a complete
system, models of instruction set processors, busses, and memories have been
developed.
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We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T. S. Eliot (1888 - 1965)
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eling of a Reconfigurable Computing Platform,” In preparation for ACM
Transactions on Reconfigurable Technology and Systems.

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “Modeling and Ex-
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Chapter 1

Introduction

In the year 1960, in a landmark paper by Estrin, a new type of computing
machine was first suggested [1]. It dynamically adapted its computational re-
sources to different algorithms so that each algorithm could be executed very
fast. The machine was named fixed plus variable (F+V) structure computer,
and it was built using a conventional microprocessor and reconfigurable hard-
ware. The reconfigurable hardware was used to construct high performance
computational structures, whereas the microprocessor controlled when and how
often a new computational structure was initiated. At the time, the F+V struc-
ture computer was intended for scientific computational problems that were out
of reach for conventional microprocessors. However, it did not reach into com-
mercial products as reconfigurable hardware was a hardly explored field and as
the performance of conventional microprocessors was constantly growing and
simply considered sufficient.

Today, the field of reconfigurable computing is compelling as a complement
to embedded systems that contain numerous application specific integrated cir-
cuits (ASICs). Since 1960, reconfigurable architectures have evolved and there
is a consensus that they are a promising solution to bridge the gap between
ASIC performance and processor flexibility. However, customary architectures
such as field programmable gate arrays (FPGAs) can not match energy and
area efficiency of ASICs. It is because FPGAs are built as arrays of intercon-
nected functional blocks operating at bit-level, whereas many signal processing
algorithms utilize word-level arithmetics. Word-level arithmetics implemented
on architectures that have bit-level functional blocks, cause an overhead in
required hardware area and energy consumed during operation. In order to
reduce this weakness, researchers have suggested new types of reconfigurable
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2 CHAPTER 1. INTRODUCTION

architectures with coarse-grained functional blocks. The design space for these
coarse-grained architectures is neither sufficiently explored nor well understood
when it comes to implement their micro-architecture, to integrate them into an
embedded systems, and to efficiently map programs to them. Advanced design
tools are required to explore design parameters and establish their relationship
to performance, area, and power. That modeling methods and computer-aided
tools are keys in development and analysis of reconfigurable computers, was
recognized already by the pioneers [2]. Still, many recently presented reconfig-
urable architectures have been developed without tools for efficient modeling
and analysis of the embedded system. New reconfigurable architectures, to
be used in increasingly complex embedded systems, require development of
modeling and exploration tools.

This thesis discusses coarse-grained reconfigurable architectures as a com-
plement to ASICs in embedded systems. It presents two different coarse-grained
reconfigurable architectures and a modeling and exploration environment to
build and explore complete reconfigurable computing platforms. Embedded
systems that require programmable hardware acceleration of regular computa-
tion intensive kernels with word-level arithmetic should utilize coarse-grained
reconfigurable architectures. Design of these complex systems should be per-
formed with tools for efficient modeling, simulation, and architectural explo-
ration in order to analyze and tune design parameters before a chip is fabri-
cated.

Thesis Contribution

The main contributions of this thesis are the following:

◾ An exploration methodology, is introduced, based on tool support to
construct, simulate, analyze, and tune models. Transaction level models
are consistently used to compose and simulate complete reconfigurable
computing systems.

◾ A coarse-grained reconfigurable coprocessor implemented in VHDL is pre-
sented. The coprocessor provides over 30 times speedup of kernels that
accounts for nearly 90% of the processing time on a RISC processor that
executes a signal processing intensive speech codec.

◾ A reconfigurable array that consists of memory and processing cells is in-
troduced and it is suggested how these cells should be constructed. Pro-
cessing cells are instruction set processors with enhanced performance for
communication-intensive inner loops. Inter-processor communication is
performed using a self-synchronizing protocol that simplifies algorithm
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mapping and manages unpredictable time variations. Memory cells are
shared resources that are distributed throughout the array to reduce
memory bottlenecks.

◾ A hybrid interconnect network is presented, and it consists of dedicated
local links and a global hierarchical network. The hierarchical network
enhances routing flexibility, allows communication links to be dynami-
cally created, and provides a shared connection to external memory and
processor. It is shown that the hybrid interconnect maintains high data
rates assuming realistic localization of communicating blocks in the array.

Thesis Outline and Included Papers

This section summarizes the purpose and content of each of four chapters and
four parts in this thesis. Included parts are based on merged and revised
versions of published papers. The material presented in Part II and III is
a result of a joint project between the author and PhD Thomas Lenart. For
published material the main contributor is indicated by the first named author,
and for unpublished material the contribution is indicated in this section.

Chapter 2 introduces embedded systems and is intended to give a short
background to better understand subsequent chapters and parts. It describes
the embedded system components and relates architectural techniques to design
goals such as performance, area, energy, and flexibility.

Chapter 3 is on reconfigurable architectures. After a short introduction
on reconfigurable computing platforms, the chapter discusses reconfigurable
architectures. The latter is intended to provide related work to Part I–III, and
it focuses on coarse-grained reconfigurable architectures.

Chapter 4 discusses modeling and exploration of embedded systems. It
describes advantages with abstract models, and it presents transaction level
models as a complement to register transfer level models. It also deals with
architectural exploration and claims the importance of tool-support to build,
observe, evaluate, and tune a system.

Part I: A Coarse-grained Reconfigurable Coprocessor Targeting DSP Kernels

This part investigates the applicability of reconfigurable coprocessors targeting
processing kernels in multimedia applications. Many multimedia applications
contain a large portion of regular and computation intensive signal process-
ing kernels that are suitable for acceleration in reconfigurable fabrics. With
dynamic reconfigurability, the hardware resources can be reused across these
kernels and across applications. A generic coarse-grained reconfigurable co-
processor has been developed in VHDL, and its efficiency accelerating signal
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processing kernels and the G.723.1 speech codec is evaluated. Speedups in the
range of 2 to 46 compared to general purpose processor execution is achieved
for vector operations and larger kernels such as filtering and fast fourier trans-
form. These kernels utilize 86% of the G.723.1 processing time on the RISC
based target architecture. With our approach the average used clock cycles are
reduced by 83% compared to processor-only execution.

The content in this part is based on modified versions of the following
publications:

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Implementing the G.723.1
Speech CODEC using a Coarse-Grained Reconfigurable Coprocessor,” in Pro-
ceedings of International Conference on Engineering of Reconfigurable Systems
and Algorithms, Las Vegas, USA, pp. 195–198, June 25-28, 2007.

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Accelerating Vector Op-
erations by Utilizing Reconfigurable Coprocessor Architectures,” in Proceedings
of IEEE International Symposium on Circuits and Systems, New Orleans, USA,
pp. 3972–3975, May 27-30, 2007.

Part II: System Level Exploration of Reconfigurable Computing Platforms

This part presents a SystemC environment and transactions level models in
order to address efficient design exploration of reconfigurable computing plat-
forms. System level evaluation of reconfigurable platforms is necessary to pre-
dict performance, and find and cure bottlenecks before a chip is fabricated.
Evaluation of a complete system at register transfer level becomes unattractive
because small architectural changes require a considerable design effort. Elec-
tronic system level design has been a driving factor for modeling languages that
support multiple abstraction levels. Standard SystemC is one such language
that supports modeling abstractions from register transfer level to transaction
level. A set of flexible transaction level models has been developed so that a
complete system with instruction set processors, buses, and memories is eval-
uated together with the reconfigurable architecture itself. Architectural explo-
ration is addressed using our proposed SystemC environment with interactive
control (Scenic).

The content in this part is based on modified versions of the following
publications:

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “System Level Modeling of
a Reconfigurable Computing Platform,” In preparation for ACM Transactions
on Reconfigurable Technology and Systems.

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “Modeling and Explo-
ration of a Reconfigurable Architecture for Digital Holographic Imaging,” in
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Proceedings of IEEE International Symposium on Circuits and Systems, Seat-
tle, USA, pp. 248-251, May 18-21, 2008.

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Modelling and Explo-
ration of a Reconfigurable Array using SystemC TLM,” in Proceedings of Re-
configurable Architectures Workshop, Miami, Florida, USA, April 14-15, 2008.

Thomas Lenart, Henrik Svensson, and Viktor Öwall, “A Hybrid Interconnect
Network-on-Chip and a Transaction Level Modeling approach for Reconfig-
urable Computing,” in Proceedings of IEEE International Symposium on Elec-
tronic Design, Test and Applications, Hong Kong, China, pp. 398–404, January
23-25, 2008.

The author’s contributions to the Scenic exploration environment are new
features, basic building blocks, porting the environment to operating systems
supporting POSIX, and integrating ArchC instruction set simulators. The
Scenic core functionality was mainly developed by PhD Thomas Lenart.

Part III: Modeling and Exploration of a Reconfigurable Processor Array

This part presents a coarse-grained reconfigurable architecture built as an ar-
ray of interconnected processing and memory cells. A hybrid interconnect net-
work that consists of local communication with dedicated wires and a global
hierarchical routing network is proposed. Memory cells are distributed and
placed close to processing cells to reduce memory bottlenecks. Processing cells
are instruction set processors with enhanced performance for communication-
intensive inner loops. Inter-processor communication is performed using a self-
synchronizing protocol that simplifies algorithm mapping and manages un-
predictable time variations. The reconfigurable architecture is described as a
scalable and parameterizable SystemC transaction level model, which allows
rapid architectural exploration. Our exploration environment Scenic is used
to setup scenarios, control the simulation models and to extract performance
data during simulation.

The content in this part is based on modified versions of the following
publications:

Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Modelling and Explo-
ration of a Reconfigurable Array using SystemC TLM,” in Proceedings of Re-
configurable Architectures Workshop, Miami, Florida, USA, April 14-15, 2008.
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Network-on-Chip and a Transaction Level Modeling approach for Reconfig-
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23-25, 2008.
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The author’s contributions to the presented hybrid network are performance
simulations and the transaction level modeling approach. The VHDL models
used for synthesis have been developed in the IC project and verification course.
The VHDL models were integrated and synthesized by PhD Thomas Lenart.

Part IV: Algorithm and Coprocessor Implementation of a Speech Packet
Loss Concealment Method

This part presents a speech data packet loss concealment algorithm and its
implementation in an embedded system. The presented algorithm is based on
pitch period repetition and a novel low complexity method to refine a pitch
period estimate. It is shown that the pitch refinement improves the quality of
the original concealment method. Hardware-software co-design techniques have
been investigated to implement the algorithm. With a coprocessor acceleration
unit a processing delay of 0.9 ms and a overall speedup of 3.3 was achieved as
compared to processor execution.

The content in this part is based on a modified version of the following
publication:

Henrik Svensson, Viktor Öwall, and Krzysztof Kuchcinski, “Implementation
Aspects of a Novel Speech Packet Loss Concealment Method,” in Proceedings
of IEEE International Symposium on Circuits and Systems, Kobe, Japan, pp.
2867–2870, May 23-26, 2005.



Chapter 2

Embedded Systems

Embedded systems is a broad definition of computer systems that are de-
signed for specific tasks. Their architectures are optimized to conform to re-
quirements in their intended application field. In application fields without spe-
cific requirements, standard processor systems are used. In contrast, battery
operated systems with real-time performance constraints, require customized
architectures to achieve the desired performance with constrained power con-
sumption. This characterizes a segment of embedded systems as for example
digital cameras, mobile phones, and portable music players. The architectural
optimizations that are applied, are trade-offs between competing design goals
such as: low development cost, low production cost, high performance, low
energy dissipation, high flexibility, and short development time. Extensive
research results on processing machines and techniques, which address differ-
ent combinations of design goals and balance trade-offs differently, have been
presented. Within this research there are multiple research disciplines that
concern processor architectures, interconnect structures, compilers, and design
automation tools. This chapter gives an overview of processing components,
interconnect structures, and data storage devices found in embedded systems.

2.1 Processing Machines

In this section processing architectures, from general purpose processors to
dedicated hardware, are briefly described. It starts with an overview on par-
allel architectures and then a selected number of commonly used architectures
is discussed in more detail. The discussed architectures are: general purpose

7
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Figure 2.1: Classification of architectural techniques that exploit paral-
lelism ( [3] with modifications).

processors, digital signal processors, application-specific instruction set pro-
cessors, vector processors, and dedicated architectures. These architectures
provide different amount of parallel computing and domain-specialization. Re-
configurable architectures are only briefly discussed in this section, as they are
discussed separately in Chapter 3.

2.1.1 Overview of Parallel Architectures

Figure 2.1 shows how parallel architectures (PAs) are classified into instruc-
tion set architectures, reconfigurable architectures, and dedicated architectures.
Instruction set architectures are characterized by a stored sequence of instruc-
tions that are executed in the order given by a program counter. This class is
further categorized into data- and function-level PAs. Data-level PAs apply the
same operator to different data operands, whereas function-level PAs use multi-
ple functional units or multiple processor cores to parallelize the computation.
Dedicated architectures are developed for one specific application and hence
parallelism can be tailored for this application’s specific requirements. Recon-
figurable architectures have a large number of basic functional blocks that can
be programmed to realize a custom hardware structure. A specific processor
or embedded system is often implemented by combining several architectural
techniques shown in Figure 2.1. Therefore this classification often fails when
existing machines or platforms are to be placed into one single category. There
are many open research questions on how to combine these techniques for op-
timized performance in different application fields. One example that will be
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Figure 2.2: Illustration of trade-off between flexibility and energy-
efficiency or performance when different architectural techniques are
used ( [4] with modifications).

discussed in more detail in this thesis is how to combine reconfigurable and
instruction set architectures in order to achieve an architecture with flexibility
and high performance.

Figure 2.2(a) illustrates, and makes a generalization, how flexibility, per-
formance, and energy-efficiency are balanced within each of the categories:
instruction set architecture, reconfigurable architecture, and dedicated archi-
tecture. The first fundamental aspect is the amount of parallelism that different
architectural techniques can exploit. In general, dedicated or reconfigurable ar-
chitectures are able to exploit more parallelism than instruction set processors,
as illustrated in Figure 2.2(b). Within instruction set architectures, an appli-
cation specific instruction set processor can generally exploit more parallelism
than a general purpose processor. With parallel architectures, performance is
increased or energy dissipation is reduced. Performance is gained with parallel
architectures, as more operations per second are performed. Energy dissipa-
tion is reduced as parallel architectures can exploit voltage scaling and use low
leakage cell libraries. Voltage scaling is an effective way to increase energy-
efficiency, because the dynamic energy consumption of CMOS drops quadrat-
ically with the supply voltage [5, 6]. However, reducing the supply voltage or
using low leakage libraries increases gate delay and hence, parallelism needs to
be exploited to compensate for the degraded performance.

The second fundamental aspect is that specialization, or reduced flexibil-
ity, generally gives the same performance with less energy and area cost. For
example, a reconfigurable architecture excludes energy and area overhead as-
sociated with instruction caching, fetching, and decoding, which are required
in instruction set processors. Furthermore, a dedicated architecture excludes
energy and area overhead consumed in routing resources, which are required in
reconfigurable architectures. As much as 76% of the total energy consumed on
a processor that executes typical digital signal processing (DSP) applications
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may be in instruction fetch and decode [4]. Some FPGAs use up to 90% of
the total core area for routing resources [7]. Hence, reduced flexibility leads to
positive gains in chip area and energy dissipation.

2.1.2 General Purpose Processors

General purpose processors found in embedded systems cover a wide range of
implementations from 8-bit low cost microcontrollers, to 32-bit RISC micro-
processors, to high performance embedded processors with DSP enhancements.
This section biases the discussion to the latter two, as they provide the most
flexible platform in that they support development of real-time operating sys-
tems, high-level application code, user interfaces, and signal processing. This
makes them ideal for implementations where cost and power consumption con-
straints may be relaxed in favor of short development time and flexibility.

Embedded processors are often build as single-issue reduced instruction set
computers (RISCs) that have relatively few, simple, and orthogonal instruc-
tions. Examples of instruction set architectures (ISAs) found in this group are
ARM [8], MIPS [9], and PowerPC [10]. These fall into the load-store category,
which means that operands are references to general purpose registers (GPRs).
To move data between memory and GPR a set of data transfer instructions
and memory addressing modes is supported. Compared to desktop computers,
which utilize two cache levels and a large main memory, the memory hierar-
chy is often reduced to one level cache and a size optimized main memory.
The cache memory is generally organized as a Harvard architecture that has
separate memories for instruction and data.

Compared to processors found in desktop computers, embedded processors
distinguish themselves in a few more aspects. What follows is a brief summary
of these aspects. The first two items will be discussed in more detail as they
concern performance and power aspects.

◾ DSP enhancements – The ISA is extended with commonly used DSP
operations, as ARM [11] or MIPS [12] DSP extensions.

◾ Low Power Implementations – Gate and task level techniques to reduce
power dissipation.

◾ System integration – Processors can be delivered as intellectual property
and integrated in a customized system on chip (SoC).

◾ Code size reduction – Many processors have support to mix 32-bit and
16-bit wide instructions.

◾ Coprocessor interfaces – Fast coprocessor interfaces for communication
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Figure 2.3: (a) SIMD instructions is implemented with functional units
that allow parallel operations to 4/8/16/32-bit wide sub-words. In
(b), an example of an addition instruction that operates on 8-bit wide
operands are shown.

with customized hardware extensions and specialized instructions to com-
municate with these interfaces.

◾ Tools – An extensive set of design tools for compilation, simulation, pro-
filing, and real-time operating systems.

The increased amount of signal processing incorporated into embedded sys-
tems, has led to hybrid processors that unify control and signal processing
in a single processor core. It is accomplished by extending a RISC proces-
sor with DSP instructions, as in ARM [11] or MIPS [12] DSP extensions. A
RISC processor with DSP enhancements can deliver very high performance and
still allows efficient implementations of control dominated functionality and ad-
vanced real-time operating systems. In addition, DSP enhancements can be a
cost-efficient alternative to an implementation that otherwise would use both
a general purpose and a digital signal processor [13]. With these extensions
processor companies claim that performance is increased by 30% to 400% in a
range of applications [11, 12]. The DSP extensions found target a broad range
of applications and include multiply-accumulate (MAC) instructions, single in-
struction multiple data (SIMD) instructions, saturation support, and sub-word
register references. The MAC enhancements increase performance in signal
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Table 2.1: Energy efficiencies and silicon area for PowerPC [10], ARM [8],
and AMD Athlon 64 FX [15] processors. The ARM and PowerPC core are
fabricated in 90 nm CMOS technology and have 16 kB separate instruction
and data cache.

Processor Power Max Clock Area

Consumption Frequency (mm2)

(mW/MHz) (MHz)

PowerPC 405 0.19 @ 1.1V 400 2.0

ARM1136J-S 0.24 @ 1V 320 1.6 (area)

0.45 @ 1V 620 2.5 (speed)

AMD Athlon 64 FX 40 @ 1.5V 2200 NA

processing where they are frequently used to calculate the vector dot product.
Processors may provide a set of different MAC instructions, including those
that allow half word register references with on-the-fly sign extensions. Hence,
two half-word operands fetched in one memory access can be used in the fol-
lowing MAC instruction. SIMD extensions allow simultaneous operations to
be applied to 4/8/16/32-bit wide sub-words in the operands, as illustrated in
Figure 2.3. For example, experiments performed in [14] show that execution
time for an MPEG-4 encoder is reduced a factor of 2 if only two SIMD instruc-
tions are added to a MIPS processor. Although DSP enhancements provide
improved performance, the applicability of this strategy becomes a trade-off
between the expected common case and performance gained in a specific appli-
cation domain. If more specific DSP functionality is included it might lead to
reduced performance and increased power consumption for a majority of the
applications, which sacrifices general purpose processing. For example, special-
ized image processing instructions may lead to increased performance for image
processing applications, but decreased performance for other application do-
mains that can not utilize the specialized resources. Consequently, more signal
processing specific instruction set architectures are found in another segment
of processors referred to as digital signal processors.

A comparison with desktop computers reveals that embedded processors
operate on lower supply voltage and operating frequency to reduce power con-
sumption. Energy efficiency is a key parameter for these processors and as an
example, energy consumption of an ARM7TDMI has dropped by a factor of
30 between 0.35 and 0.13 μm CMOS technology [16]. Table 2.1 shows power
consumption for ARM, PowerPC, and AMD Athlon processors. The ARM
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and PowerPC processors target low power embedded applications, whereas the
AMD processor is used for desktop computers. The ARM core is presented for
two different cell library implementations, one implementation optimized for
speed and one optimized for area. As seen in Table 2.1, the AMD processor has
a power consumption that is more than two orders of magnitude higher than
the power consumption reported for ARM and PowerPC processors.

Power reduction at gate level is accomplished by partitioning the processor
core into a set of resources with dedicated clock signals that can be activat-
ed/deactivated separately. When a specific resource is unused, the clock signal
is deactivated to reduce switching activity and thereby also dynamic power
dissipation. Another power reduction technique, performed at task level, is dy-
namic voltage and frequency scaling that adapt performance to current work-
load. Power management units that support a discrete range of supply voltages
and clock frequencies are implemented in hardware and controlled from soft-
ware. The power savings between sleep mode and highest speed are several
orders of magnitude [17]. Clearly, this technique is interesting in embedded
systems that expect a time varying workload. To allow scheduling for low
energy, real-time scheduling algorithms that incorporate the characteristics of
the underlying frequency and voltage scaling mechanism are required [17]. This
includes to take into account task deadlines and overhead related to a change
of supply voltage. A change in supply voltage has an overhead that may vary
between 30 μs and 200 μs for different implementations [17].

2.1.3 Digital Signal Processors

Digital signal processors (DSPs) have incorporated multiple techniques to ex-
ploit data and instruction-level parallelism in signal processing algorithms.
There is a wide spread of DSPs, from low power fixed-point single-issue pro-
cessors, to high performance floating-point multi-issue processors [18, 19]. As
fixed-point arithmetic is more energy and area efficient than floating-point
arithmetic, fixed-point DSPs with saturated arithmetic dominate in devices
with low power constraints.

In contrast to general purpose processing where RISC is commonly used,
many DSPs are implemented as complex instruction set computers (CISC).
These are characterized by non-orthogonal ISAs where special purpose instruc-
tions are used to increase parallelism for common operations in the applica-
tion domain. Consequently, implementations have deep pipelines and latencies
that differ between instructions. For example, instruction latencies found in
TMS320C64x varies between 6 and 10 clock cycles [20]. A typical CISC exam-
ple is special purpose instructions to support filtering, which is a key operation
in many signal processing applications. In a DSP this is supported with in-
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structions that do a MAC operation in parallel with two data fetches from data
memory, modulo update of two address registers, zero-overhead looping, and
an instruction fetch. Hence, multiple atomic operations are performed in a
single clock cycle. The result is that a finite impulse response (FIR) filter can
be implemented with a throughput of one clock cycle per filter tap.

Similar to complex instructions to accelerate filtering, there are DSPs that
have other specialized media operations to execute critical loops with relatively
few instructions. The instructions differ depending on the expected application
field, as for example instructions to support color space conversion are found
in DSPs that target video applications [21]. Drawbacks experienced with this
approach are the lack of compiler support for many of these specialized instruc-
tions in combination with the complex trade-off between the common case and
the gain for a selected number of applications. However, this approach to
exploit parallelism is driven even further with application specific instruction
set processors, which have instructions that are added based on performance
improvement for a single application.

Instruction level parallelism is a well explored technique to utilize paral-
lelism in instruction set processors. With N functional units in the processor
core, N instructions can be executed simultaneously which means that exe-
cution time can potentially be reduced N times. However, an execution time
reduction of a factor N is under assumption that instructions executed simulta-
neously are independent. If there are dependencies, then scheduling of instruc-
tions onto functional units needs to account for both dependencies and pipeline
latencies. Figure 2.4 shows how the execution pipeline is organized in a multi-
issue processor. Scheduling can be done dynamically with hardware support
as in superscalar processors or statically by compilers as in very long instruc-
tion word (VLIW) processors. Static scheduling is less flexible than dynamic
scheduling, however the repetitive nature of signal processing has proven to be
well-suited for this approach [22]. Compared to superscalar processors, which
require extensive hardware support, VLIW processors reduce hardware cost
and power consumption. Hence, the VLIW technique has been favored to im-
plement multi-issue DSPs. In VLIW processors a compiler determines exactly
what operation that should be performed on each functional unit. Functional
units may implement a heterogenous set of supported instructions in order to
reduce hardware area. For example, the TMS320C6x has eight functional units
organized as two identical groups of four different functional units [22]. An in-
struction contains control information to each functional unit in the processor
core and therefore instruction words are long. Design of VLIW architectures
is concerned with finding a balance between number of functional units and
available parallelism inherent in targeted application domains. It also involves
exploring compiler techniques that can make schedules to increase utilization of
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Figure 2.4: A multi-issue processor has a number of functional units
which operate in parallel and communicate through a centralized register
file. Scheduling operations onto the functional unit can be done statically
as in VLIW, or dynamically as in superscalar.

the functional units. The parallelism that compilers and designers can exploit,
as the number of functional units are increased, is a limiting factor for VLIW
architectures.

As the number of functional units is increased and specialized instructions
are added, the major bottleneck is moved from computations to the memory
system. Therefore DSPs often have more than one data cache port in addition
to the instruction cache. This is implemented using either a single multi-port
memory, or using multiple single port memories. The latter approach suffers
from pipeline stalls, to allow serialization of data fetches, if simultaneous load/-
store requests are issued to the same memory [21]. This shortcoming is removed
using a single memory with multiple ports, which allow simultaneous accesses.
Memory indexing is supported by multiple address generation units that main-
tain memory address pointers in special purpose registers. These address gen-
eration units operate in parallel with functional units and they have address
increment with modulus operation to support circular buffers commonly used
in signal processing. This effectively accelerates index calculations that would
require several instructions if implemented on a RISC. There are also more spe-
cialized address generation units that support bit-reversed addressing, which is
used in fast fourier transform computations.
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Figure 2.5: Customized instructions are implemented by (a) chaining op-
erators, (b) parallelize operators, or (c) combine parallelized and chained
operators.

2.1.4 Application-Specific Instruction set Processors

Whereas digital signal processors target a broad range of applications, app-
lication-specific instruction set processors (ASIPs) are optimized for a single
application, or a small group of applications [3]. Optimizations may be per-
formed at the microarchitecture level, so that functional units and memory
system are tuned to the specific application. Furthermore, it may include
exploring instruction- or data-level parallel architectures. However, the most
characterizing for an ASIP is the instruction set customization. The generalized
design flow is that a baseline processor, which is either a single- or multi-issue
architecture, is extended with application-specific instructions. Customized
instructions are designed by parallelizing and chaining operators in the appli-
cation [3, 23] and this is illustrated in Figure 2.5. As compared to traditional
instruction-parallel architectures, such as VLIW or superscalar, ASIPs trade
flexibility to increase energy- and cost-efficiency.

To determine what parts of the functionality that should be implemented as
specialized instructions is a difficult problem, which requires advanced design
tools and systematic design-flows. The ASIP methodology presented in [3],
uses a high level language (LISA) to allow designers to rapidly evaluate a cus-
tomized instruction set. There are also automated instruction customization
approaches. These are based on methods applied to formal representations
such as data-flow graph (DFG) as used in [23], or hierarchical conditional de-
pendency graph (HCDG) as used in [24–26]. The methods have as objective
to identify customized instructions that fulfill external constraint parameters
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such as area and execution time. The former methodology [23] uses a heuristic
guide function to search for candidate subgraphs that can be implemented as
customized instructions. A candidate subgraph is required to fulfill constraints
such as maximum number of registers that are used for input and output com-
munication. After candidate subgraphs have been identified, similar subgraphs
are grouped into a customized functional unit in a combination step. Finally,
functional units are selected based on an area constraint and the estimated
performance improvement. The latter approach [24, 25], uses constraint pro-
gramming techniques to find computational patterns that may be implemented
as instructions. The explorer selects patterns in order to minimize the execution
time on a given baseline processor. By running these explorers repeatedly with
different area constraints, performance versus area can be investigated. Within
the exploration of sixteen benchmarks in encryption, audio, network and im-
age processing, an average speedup of 1.69 is reported for the DFG exploration
approach [23]. Results from exploring fifteen multimedia benchmarks with the
constraint driven approach, show that the customized instructions identified
are able to provide speedups in the range of 1.17 to 3.5, with an average of
1.9 [25].

As ASIPs sometimes target a group of applications in a domain, aspects
that concern cross-application applicability of customized instructions need to
be considered. A natural approach is to do customized instructions for each
application. However, this strategy somewhat limits flexibility to design time,
and hence it omits new applications that need to be supported by an already
fabricated ASIP. It is shown in [23], that exact subgraph matching typically
does not occur across applications in a domain. This means that customized
instructions discovered by identifying subgraphs in one application can not
likely be applied to accelerate another application. To address this shortcom-
ing generalization techniques are applied on customized instructions. In [23],
two generalization techniques are described: subsumed subgraph and wildcard-
ing. Subsumed subgraphs refers to the ability for operands to pass through an
atomic operation unaltered. Hence, a customized instruction that performs the
operation AND-XOR-AND could, after this technique has been applied, be used
to perform AND-AND, AND-XOR, XOR-AND, AND, and XOR. Wildcarding refers to
changing node operations in a subgraph, so that instructions with similar shape
but with different operations, can execute on the customized instruction. With
these generalization techniques, an ASIP designed for one particular application
may provide increased performance also for other applications implemented on
it. As an example, if a GSM decoder is implemented on an ASIP designed for
GSM encoding a speedup of 1.3 is achieved without any of these generalization
techniques. If subsumed subgraph and wildcarding are applied, a speedup of
1.7 is achieved. As a comparison, an ASIP designed for GSM decoding pro-
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Table 2.2: Example of vector instructions.

Instruction Operation Comment

ADDV V1,V2,V3 V1[i]=V2[i]+V3[i] vector + vector

ADDS V1,F0,V2 V1[i]=F0+V2[i] scalar + vector

LV V1,R1 V1[i]=M[R1+i] load, stride=1

LVWS V1,R1,R2 V1[i]=M[R1+i*R2] load, stride=R2

LVI V1,R1,V2 V1[i]=M[R1+V2[i]] indexed

vides a speedup of 1.9 for that particular application. Clearly, generalization
techniques improve flexibility. However, flexibility may be further improved if
instruction customization approaches are combined with reconfigurable archi-
tectures to implement customized instructions.

2.1.5 Vector Processors

Vector instruction set architectures have been used in scientific and high per-
formance computing for three decades [27]. Vector ISAs are different from
scalar processors, or SIMD extensions previously discussed. In scalar proces-
sors, arithmetic instructions perform operations on scalar operands to produce
a scalar result. SIMD extensions exploit data-level parallelism through a set of
instructions that perform simultaneous operations on short vectors with narrow
data. However, the degree of available data-level parallelism in multimedia is
only partially utilized with SIMD extensions. In contrast, vector instructions
perform element-wise operations on variable sized linear arrays of operands in
order to produce the result array. Table 2.1 shows two vector instructions for
addition. As compared to RISC, CISC, VLIW, and superscalar processors,
code size, instruction fetch, and decode rates are reduced with vector instruc-
tion sets [27, 28]. A vector instruction set often contains vector instructions
for integer, logical, and floating-point operations. As with RISC, all vector
processors since late 1980s are load-store processors that have vector operands
in vector register files (VRFs) and special instructions to move data between
memory and VRFs [27]. Processors commonly have three addressing modes:
unit stride, strided, and indexed, see Table 2.1. As memory access patterns are
deterministic, prefetch techniques can be used to increase performance of the
implementation.

If SIMD extensions are excluded, there have been few studies or commercial
products with vector architectures for embedded low power multimedia applica-
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tions. In [28] the VIRAM instruction set is proposed and it extends traditional
vector architectures with multimedia enhancements. These enhancements in-
clude fixed-point arithmetic, narrow data type, and support for conditional
execution in the main loop body. It is shown that most benchmarks in a
multimedia benchmark suite do 90% of their operations using VIRAM vec-
tor instructions. The average vector length for benchmarks varies between 13
and the maximum vector length, which were 128 in the experiments. This
shows that SIMD extensions that have 2/4/8 simultaneous operations fail to
fully exploit the available data-level parallelism in these benchmarks. Two mi-
croarchitecture implementations of the VIRAM instruction set are presented,
VIRAM-I [29] and CODE [30]. VIRAM-I uses a centralized VRF and multiple
vector lanes to allow parallel execution, whereas CODE uses multiple cores
with local VRFs and its own instruction stream in addition to multiple lanes.

2.1.6 Dedicated Architectures

Dedicated architectures are designed to compute specific tasks. Therefore
memories, datapaths, and controllers may be optimized to meet design goals.
This gives dedicated architectures by far the highest performance and energy-
efficiency, as compared to other architectural techniques. The discussion in this
section will be on dedicated architectures implemented as a fixed network of
logic cells. However, tasks statically mapped to any programmable logic also
fall into the category dedicated architectures.

A design flow for dedicated architectures contains several levels, the main
ones are [31]:

1. Algorithm – On the algorithm level, number of operations, memory
sizes, and numeric precision are explored and selected to fulfill the design
constraints. The design entry is generally a model with floating-point
arithmetic and therefore powerful signal processing functions, available
in tools such as Matlab, are used to increase productivity. The algorithm
is gradually refined to use fixed-point or floating-point operators and
standard constructs such as for-loops and if-then-else. Fixed-point
algorithms are most common due to area and power constraints in many
application fields in which dedicated architectures are used. However,
any floating-point algorithm may also be implemented with dedicated
hardware. The final model contains information about wordlengths, op-
erations, order of operations, memory sizes, and memory addressing. This
information is passed to the architectural level. The model is also used
as a reference for other derived refinements when traversing the design
flow.
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2. Architecture – The architectural level is concerned with time-sharing,
parallelism, and pipelining. The design is divided into submodules and
hierarchy is imposed as a method to reduce design complexity. The archi-
tecture is described at register transfer level with hardware description
languages (HDL) such as VHDL, Verilog, or SystemC, which all have
mechanisms to describe hierarchy, concurrency, and arbitrary wordlengths.

3. Netlist – A netlist is generated from an architectural description with a
synthesis tool. Synthesis tools automatically determine the hardware im-
plementation to meet design constraints such as speed, area, and power.
For any given register transfer level (RTL) description, area and perfor-
mance depend on cell library, choice of cells from that cell library, and
also how HDL operators are mapped to specific architectures. The syn-
thesis tool comes with pre-built synthetic components that implement the
built-in HDL operators. Synthetic components are technology indepen-
dent and several components to implement the same operator exist. For
example, an addition operator could be implemented as ripple-carry or
carry lookahead. As different implementations have different properties
when it comes to power, area, and delay, designers provide power, area,
or delay constraints to the synthesis tool, which selects the most suitable
implementation. After the initial step, which is to determine the archi-
tecture of arithmetic operators, the design is mapped to standard cells in
order to generate the final netlist. With the netlist, estimates on the final
area, speed, and power consumption are generated. Figure 2.6 shows the
area-delay design space for a 16-bits addition operator. The figure has
been generated by performing synthesis repeatedly, with different delay
constraints. As seen in the figure, optimal area-delay curve spans through
different types of adder architectures. For example, a required delay in
the range of 1.7 to 2.0 ns would be implemented with a ripple carry adder
(rpl), and a delay in the range of 0.4 to 0.75 ns would be implemented
with a brent-kung adder (bk). The infeasible region says that there is no
adder with delay smaller than 0.4 ns.

4. Physical layout – Place and route tools place cells on a defined floorplan
and route wires between them. In addition, clock and power wires are
automatically routed. Accurate timing and area can be extracted from
this level.

Development time is a major bottleneck using traditional design flows. Es-
pecially going from an algorithm to an architectural description is time con-
suming, because of the complex design space. This is addressed by high level
synthesis tools that automate transformation from an algorithm description
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Figure 2.6: Area versus delay for 16-bits addition, which is implemented
with a 0.13 μm CMOS cell library. The plot is generated by running
synthesis repeatedly for each type of architecture and for different delay
constraints. The adder architectures explored are: ripple carry (rpl),
ripple carry select (rpcs), carry look-ahead (cla), fast carry look-ahead
(clf), brent-kung (bk), and conditional sum (csm).

to an RTL architectural description [32]. With designer provided constraints
these tools perform resource allocation, scheduling, and mapping in order to
generate the RTL description. The implementation is supposed to fulfill given
design constraints and minimize a designer provided cost function, such as ex-
ecution time, area, or latency [33]. With automated approaches a wider part
of the available design space is explored.

If properly addressed, a dedicated architecture may be designed with limited
amount of flexibility. For example [34, 35], proposes an ASIC accelerator for
holographic image reconstruction, in which a streaming accelerator Xstream
exposes configuration registers to software. These registers are used to control
the operation of individual processing blocks, such as CORDIC, FFT, and
DMA interfaces. In [36], a flexible architecture for Trellis decoding is proposed.
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The architecture adapts decoding resources to the channel’s signal-to-noise-
ratio. However, flexibility in these approaches is highly application-specific, and
subordinated other design parameters that require a dedicated architecture.

2.2 Interconnect Structures

Traditional system on chips use bus-based interconnect, derived from a conven-
tional microprocessor bus, to allow communication between various functional
blocks. Each functional block is attached to the bus as a slave, a master,
or both. Slaves on the bus are assigned an address range to which they re-
spond. A master may initiate a transfer, whereas a slave remains passive and
only responds when it is addressed. A typical interface contains address, data
in, and data out in addition to control signals to make a request, acknowl-
edge a response, etcetera. When masters make simultaneous requests, the bus
performs arbitration in order to select a master based on some priority selec-
tion algorithm. Existing bus architectures range from simple or -gate networks
to pipelined implementations with separate phases for address and data buses.
Most processors have their own specific bus interconnect system such as AMBA
for ARM, and CoreConnect for PowerPC.

To determine the actual bus performance is complex as it depends on dy-
namic behavior of the application. However, theoretical single word and burst
throughput are easily determined from bus specification. Features that deter-
mine the actual performance are:

◾ Data bus wordlength – Typically 32-, 64-, or 128-bit wide buses. How-
ever, dynamic bus sizing allows devices with narrower data interfaces to
be attached to the bus.

◾ Decoupled data buses – Allows concurrent read and write operations.

◾ Burst support – Fixed and variable length bursts allow several data
words, usually stored in consecutive addresses, to be transferred with a
single request. This reduces the address phase overhead and allows slaves
to pipeline subsequent data words.

◾ Cache line support – Allows a cache line to be transferred with a single
request. To reduce processors idle time, a cache line request responds with
critical word first and wrap to the lowest byte address at the high address
boundary. For example, a 16 byte cache line request with address 0x4,
will result in data transfers from addresses in the following order: 0x4,
0x8, 0xC, and 0x0.
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◾ Split transactions – Allows splitting the read request from the data
transfer, so that time between the request and the transfer can be used
to send more requests. This may effectively hide long latencies associated
with external memory accesses.

◾ Priority scheme – Priorities are used by an arbitration algorithm such
as round robin, least recently used, or fixed priority to resolve bus con-
tention. This ensures that time critical requests are handled before non-
critical. The priorities can be fixed priority per master, dynamically
configurable master priority, or priority per request.

◾ Address Pipelining – A new transfer can be initiated while there is an
ongoing transfer in the same direction.

Bus systems provide limited scalability in number of interconnected compo-
nents. When the bus lengths increase or when number of components increase,
the propagation delay grows and can eventually exceed the required clock pe-
riod [37]. Consequently, this limits the number of components that can be
attached to a bus and thereby limits scalability of bus systems. As a single
bus do not scale well with increased number of components, these interconnect
structures contain different buses and bridges, so that bus hierarchies can be
built. Hence, communication between two units can include several buses and
bridges. Typically, peripheral devices with moderate data rate are attached
to a slow and low complexity bus (CoreConnect OPB, AMBA APB), whereas
memories and DMA devices are attached to a high performance bus (CoreCon-
nect PLB, AMBA AHB).

Another approach to scalable systems is network on chip interconnects [37].
In this research field, flexible networks are built from short wires and routers to
share the wires using circuit switching, packet switching, or wormhole switch-
ing. All components have a common interface to the network and data com-
munication between components are carried within packets, which also carry
information to control the network. Popular network topologies are mesh, torus
and folded torus.

2.3 Memory and Storage

As new architectures for parallel processing evolve, fast transfers of data back
and forth between memories and datapaths, are as important as the processing
itself. However, the performance of memories has not improved at the same
pace as the performance for processing [27]. This is referred to as the processor-
memory performance gap. To overcome this gap several techniques have been
deployed and here will be mentioned a few.
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2.3.1 Memory Hierarchy

As there is not an unlimited amount of fast, small, and low-power memories
the principle of locality is used. This principle states that accesses to memory
are not uniformly distributed, but generally have a strong temporal correlation.
Data recently used in processing has high probability to be used soon again.
Hence, a hierarchy of memories is built, so that recently used data is stored
in fast and low-power memories referred to as caches, whereas other data is
stored in small but slower and less power-efficient memories. This is used in
processors in which general purpose registers are at the highest level followed
by cache memory, off-chip main memory, and disk memory. In general, on-
chip memory is implemented with static random access memory (SRAM), or
registers, and off-chip memory is implemented with dynamic random access
memory (DRAM).

2.3.2 Distributed Memories

For algorithms that can be divided into partitions that operate on different
memory segments, multiple memory banks can be utilized to improve data de-
livery. This is a well known technique, used to improve performance for digital
signal processors, which often have a multi-bank or multi-port memory sys-
tem. For example, in an algorithm that consists of two different filters F1 and
F2, filter coefficients are only accessed by the corresponding filter algorithm.
Hence, the filter coefficients for F1 and F2 can be stored in two different mem-
ories that can be accessed simultaneously. Memory distribution may operate
in conjunction with a memory hierarchy, so that each memory bank is loaded
from a larger cache prior to execution.

2.3.3 Access Pattern

Algorithms that operate on large chunks of data with a single reference to each
data element can not utilize the benefits provided by caches. Typically, such
algorithms better access data directly in the off-chip main memory. Modern
off-chip memories, such as DRAM or synchronous DRAM (SDRAM), are burst
oriented and the achieved data rate depends on the order of accessed addresses.
If data is randomly accessed each transfer is associated with a high latency,
which significantly degrades overall performance. To cure such bottlenecks,
designers need to change the access pattern by reorganizing how data is stored
or by changing in what order data is accessed. A DRAM is organized as multiple
memory banks that are indexed with row and column address. To perform a
read or write operation, a bank and a row must be activated, with an initial
latency. In an activated row, read and write operations are performed by
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altering the column address with higher latency for randomly selected columns
as compared to subsequent columns. To access a different row, the current row
needs to be deactivated, and the new row activated.

2.4 Discussion

Many different types of architectures are combined in order to build an em-
bedded system. This chapter has briefly described five classes of architec-
tures: general purpose processors, digital signal processors, application-specific
instruction set processors, vector processors, and dedicated hardware. These
architectures balance competing design goals differently, so that one type of ar-
chitecture may provide fast development time and flexibility, but with reduced
performance and higher energy dissipation. The next chapter will introduce
reconfigurable architectures and it discusses how reconfigurable architectures
and instruction set architectures are combined into a reconfigurable computing
platform.





Chapter 3

Reconfigurable Architectures

Reconfigurable architectures (RAs) are devices that contain programmable func-
tional blocks and programmable interconnects between functional blocks, as il-
lustrated in Figure 3.1. Spatial distribution of functional blocks in conjunction
with a flexible interconnect of them, allows exploiting various forms of par-
allelism inherent in the application. In comparison with the programmability
provided by instruction set architectures, the programmability provided by RAs
allows substantial changes to the datapath itself. Hence, as with dedicated ar-
chitectures, RAs can implement application-specific computing structures, but
without sacrificing flexibility. That property makes reconfigurable architec-
tures a promising solution to bridge the gap between the programmability of
instruction set architectures and the performance of dedicated architectures.

The most mature class of reconfigurable architectures is field programmable
gate arrays (FPGAs), which are considered to be fine-grained reconfigurable
architectures. Recent advances in the field of reconfigurable computing are
development of coarse-grained reconfigurable architectures and reconfigurable
computing platforms. Reconfigurable computing platforms combine a reconfig-
urable architecture with other architectural techniques such as instruction set
architectures. This idea originates from the work presented by Estrin already
1960 [2]. In this work he considers a new type of computing system, which com-
bines a microprocessor with a reconfigurable structure, that can be temporarily
distorted into a special purpose computer. Whereas the reconfigurable archi-
tecture is used to accelerate regular and computation intensive functionality,
the microprocessor executes functionality that can not be efficiently acceler-
ated. The word temporarily here means that the reconfigurable architecture

27
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Programmable
functional blocks

Programmable
interconnect

Figure 3.1: A reconfigurable architecture is built from programmable
functional blocks and interconnect.

is dynamically adapted to match the current computational problem. This is
referred to as run-time reconfiguration (RTR) and it is an important concept to
reuse the reconfigurable hardware between applications or between functions
within applications. Research on reconfigurable computing platforms addresses
issues concerning system level integration, configuration management, and au-
tomatic tools to do partitioning, placement, routing, and scheduling.

Traditional RAs, such as FPGAs, provide interconnect structures and func-
tional blocks that operate at bit-level. Hence, they are able to realize datapaths
and controllers with arbitrary wordlengths. For signal processing algorithms
that are based on operands represented with multiple bits, bit-level reconfig-
urability gives a large overhead in area, delay, energy, and configuration time.
As a majority of multimedia applications are based on multi-bit arithmetic,
fine-grained reconfigurable architectures have not been successfully applied to
battery operated embedded systems. Within the research of coarse-grained
reconfigurable architectures (CGRAs), interconnect structures and functional
blocks with increased granularity are suggested in order to reduce the overhead.

3.1 Reconfigurable Computing Platforms

A reconfigurable computing platform (RCP) is constructed by combining re-
configurable fabrics with other processing machines. A common configuration
is one or more processors, one or more reconfigurable units, and one or more
memories [38]. It is argued that such a system is a more area-efficient alterna-
tive to higher performance than increasing number of processors. Integration
of an additional processor doubles the area and gives at best a speedup of
2, whereas using that same area for a reconfigurable fabric provide means to
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Figure 3.2: Overall speedup as the fraction (f) and the fractional speedup
(Sf ) are varied.

reach speedups close to theoretical upper bounds [39]. This is according to
Almdahl’s law, which states that the total speedup has an upper bound of
1/(1 − f), where f is the fraction of the total execution time to which the im-
provement is applied. If Sf is the speedup of the fraction, the overall speedup
is written as

Soverall =
1

1 − f + f
Sf

.

Figure 3.2 shows the effect of Almdahl’s law as the fraction (f) and the
fractional speedup (Sf ) are varied. From the figure it is seen that even mod-
erate fractional speedups, 50 ≤ Sf ≤ 100, bring the overall speedup close to the
upper bound if it is assumed that functionality that can be accelerated in the
reconfigurable fabric stands for a fraction 0.9 ≤ f ≤ 0.94 of the total execution
time. Numerous implementations of signal processing algorithms on reconfig-
urable architectures have been reported to reach these fractional speedups over
a single embedded processor [40–42]. Under these assumptions, with f ≥ 0.9
and Sf ≥ 50, Soverall ≥ 9.2 is reachable.

The programmability of early reconfigurable devices were either mask pro-
grammable, or field programmable. Mask programming is performed by the
semiconductor company by using a program table from the customer. Field
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programming referred to the ability for users to program the devices after fab-
rication, or in the field. With the introduction of reconfigurable computing
platforms a new programming technique was required as the device was to be
reprogrammed during run-time, referred to as run-time programmable, or dy-
namically reconfigurable. This technique allows timesharing available hardware,
so that large designs can be implemented on a limited amount of resources. It
is also used to adapt the reconfigurable architecture based on information only
available during run-time. Dynamic reconfiguration has raised issues related to
both design-automation tools in order to analyze applications and specify when
and how often the reconfigurable architecture should be reconfigured, and to
the support required in the underlying micro-architecture. A reconfiguration
refers to that a stream of configuration data is downloaded to the configuration
memory. The configuration memory controls functionality in communication
and computational resources. There are three main categories of architectures
in terms of the underlying mechanism to reconfigure the system.

◾ Single context – A reconfigurable architecture that has a single config-
uration memory bit to hold each configuration data bit. Consequently,
downloading a new configuration stream to the device, erases any pre-
viously downloaded configuration. Additionally, any context switch in-
cludes downloading a new configuration stream. Hence, dynamic recon-
figuration can result in a significant configuration time overhead in the
total execution time.

◾ Multi-context – A reconfigurable architecture that has multiple con-
figuration memory bits for each configuration data bit. Consequently,
a multi-context reconfigurable architecture can switch very fast between
two configurations. In addition, new configurations can be downloaded in
parallel with an actively used configuration, and thereby effectively hide
configuration time when context is switched.

◾ Partial reconfiguration – Is the ability to reconfigure only parts of the
reconfigurable fabric at a time. A new context only requires the resources
allocated by that context to be configured, whereas other resources are
left unaltered. The configuration memories operate as random access
memories, so that addresses can be used to selectively change their con-
tent.

The first two, single and multi-context, are mutually exclusive, whereas partial
reconfiguration may be added to any of these two mechanisms.

Implementation of an application on a RCP are summarized in four phases.
First, hardware-software partitioning are performed, which means that an ap-
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plication is divided into partitions that are either implemented in the proces-
sor (software), or on the reconfigurable architecture (hardware). Hardware-
software partitioning is carried out either by analyzing software profiling re-
sults followed by manual partitioning, or by applying automatic partitioning
methods that operate on formal models, as suggested for example in [25]. In
this thesis, functionality that are implemented in the reconfigurable fabric is
referred to as functional kernels, kernels, or acceleration objects.

In the second phase, each kernel is subject to spatial partitioning, which
means that each kernel is divided into smaller pieces that will execute in dif-
ferent functional blocks. In fine-grained reconfigurable architectures, such as
FPGAs, parallelism is described by using HDL at RT-level, whereas many pro-
posed coarse-grained architectures have adopted a more software-centric pro-
gramming approach. Examples of software-centric approaches are VLIW [43] or
vectorizing [44] compiler technology, customized compilers [45], data-flow lan-
guages [46,47], and custom description formats that aid designers to manually
perform spatial partitioning [48]. Although, a software-centric programming
approach is one of the key elements for reconfigurable computing platforms to
succeed, there is no existing generalized programming framework and many
presented architectures require manual efforts to be efficiently programmed.

In the third phase, the resulting description is mapped to the reconfigurable
architecture. During mapping it is determined onto which resource each sub-
kernel partition should be executed (placement) and onto which interconnect
resource communication should be performed (routing). If the kernel does
not fit onto the reconfigurable fabric, time-sharing or temporal partitioning is
applied. Time-sharing is performed by applying folding techniques to the kernel
and then redoing the spatial partitioning. Temporal partitioning is a form of
hardware virtualization, which is accomplished by dividing the kernel that does
not fit onto the reconfigurable fabric into smaller configurations. The smaller
configurations may then be executed at different periods in time, however the
actual schedule has to consider communication dependencies between temporal
partitions. A special form of temporal partitioning is pipeline partitioning,
which has been suggested in PipeRench [47,49]. It is accomplished by breaking
up the configuration into smaller pieces, each describing one pipeline stage in
the overall computational structure. A pipeline configuration is loaded to the
reconfigurable fabric when a previous pipeline stage is finished and hardware is
deallocated. Typically, a new pipeline configuration is loaded in a single clock
cycle.

In the last phase, the whole system must be tested to verify that configu-
rations are loaded correctly, that data communication is functional, and that
performance related constraints are satisfied. Typically, a processor is used to
download new configurations. Hence, software drivers for the reconfigurable
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Figure 3.3: A reconfigurable computing platform is classified according
to the coupling between reconfigurable architecture and the processor.
The classes are: (a) external, (b) attached to bus, (c) coprocessor, or (d)
functional unit.

device need to be developed and tested. The coupling and communication
mechanism between processors and reconfigurable devices is used to classify a
reconfigurable computing system. In [7] four classifications are suggested as
shown in Figure 3.3, and summarized below.

(a) External – The processor and the reconfigurable fabric are placed on sep-
arate chips. Communication between them is mapped to standard com-
munication protocols such as peripheral component interconnect (PCI),
or universal serial bus (USB). As the off-chip interconnect speed is rel-
atively low and has high initial latency, this type of system is intended
for applications in which complex kernels are accelerated with limited
intervenience from the processor.
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(b) Attached to processor bus – The reconfigurable fabric is placed on the
same chip as the processor and attached to the processor bus, to act as an
additional processor. The reconfigurable architecture typically has both
master and slave interfaces. The slave interface is used to reconfigure the
fabric from the processor and the master interface is used for direct mem-
ory access during kernel execution. The processor’s cache is not visible
to the reconfigurable architecture. Consequently, data communication
is handled mainly through a shared main memory. This means an ini-
tial high communication latency and slower transfer rates as compared
to cache accesses. This coupling mechanism is used to accelerate larger
kernels that execute thousands of clock cycles and operate on larger data
arrays. As a consequence, this class of coupling often needs a substantial
amount of memory banks distributed within the reconfigurable architec-
ture in order to store intermediate results and to reorder data.

(c) Coprocessor – The reconfigurable fabric is attached as a coprocessor.
Communication is handled either by allowing the reconfigurable device
to access the processor cache memory or by allocating the processor for
data shuffling using any special-purpose coprocessor instructions. After
some initialization, the reconfigurable fabric can operate without proces-
sor supervision for a relatively large number of clock cycles and return
the result after completion. This coupling mechanism is suitable to accel-
erate kernels that operate on data that fits inside the cache. Preferably,
data already resides in the cache memory when needed by the coproces-
sor. This direct cache access allows high-speed transfer rate back and
forth between reconfigurable device and memory. However, kernels that
have high degree of temporal data locality and that allow data to be par-
titioned and placed into different memories, benefit from a multi-bank
memory system embedded in the reconfigurable architecture.

(d) Functional unit – The reconfigurable fabric is embedded as a func-
tional unit within the processor and occupies a range of opcodes to im-
plement application-specific instructions. The customized instructions
implemented in the fabric are typically reconfigured between applications.
Hence, a customized instruction set can be selected based on performance
improvement for a specific application. Communication is explicitly ex-
pressed within the instruction-format, which constrains number of input-
output variables per clock cycle. As communication is fast and has low
initial latency, this coupling mechanism is suitable for pipelined and paral-
lel operations found in inner loops. Typically, there is no memory system
embedded into the reconfigurable architecture, but only registers to store
data between pipeline stages.
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Because these coupling mechanisms provide different peak data rates, la-
tencies, and degrees of time uncertainty due to contention in shared resources,
each one has its preferable range of functional granularities that will benefit
from execution in the reconfigurable architecture. In general this is summarized
as: The tighter coupling between processor and reconfigurable architecture, the
smaller kernels will benefit from acceleration. For example, a functional unit
can be used to accelerate inner loop operations, whereas this would actually
give longer execution time if applied with an external reconfigurable architec-
ture.

3.2 Reconfigurable Functional Blocks

An early type of reconfigurable architecture is the programmable logic de-
vice (PLD), which realizes combinational functions with an AND-OR-array. By
adding flip-flops and allowing outputs to be taken either from the OR-gates or
the flip-flops, sequential logic is implemented. These early PLDs were small
and several of them needed to implement a digital system. The solution was
to collect several PLDs on a single chip and connect them through a pro-
grammable switch, and thereby the complex PLD (CPLD) was born. Ad-
vancement in the field have led to new types of reconfigurable architectures
and this section discusses three of them: field programmable gate arrays, ALU
arrays, and processor arrays. The complexity of functional blocks, referred to
as the granularity, is used to classify an architecture. The FPGA is considered
fine-grained, whereas ALU arrays and processor arrays are medium-grained to
coarse-grained. Fine-grained functional blocks are useful for bit-level manipu-
lations, while coarse-grained blocks are better for standard DSP applications.
Some reconfigurable architectures have a mixture of fine- and coarse-grained
functional blocks in order to support different application domains.

3.2.1 Field Programmable Gate Arrays

Field programmable gate arrays are the most mature type of reconfigurable ar-
chitecture and most commercially available devices are placed in this category.
Field programmable gate arrays were first introduced 1986 by Xilinx [50] and
since then many new architectures have evolved. An FPGA offers fine-grained
reconfigurability. As the name gate array indicate, any digital circuit can be
realized with these devices. However, the actual implementation is not an array
of gates. Instead, the most common type of functional blocks in these archi-
tectures are small lookup tables. Commercial FPGAs contain a large number
of lookup tables, which have up to six inputs. These lookup tables are typ-
ically included in a basic computational unit, which also contains registers,
multiplexors, and I/O ports to the interconnect. For example Altera has their
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Figure 3.4: Functional blocks in field programmable gate arrays is fine-
grained. The figure illustrates a functional block based on a 4 input
lookup table.

architecture with logic array blocks, and Xilinx has configurable logic blocks.
An example of a basic computational unit is shown in Figure 3.4.

FPGAs are programmed with hardware description languages that support
RT-level modeling. Although, as with dedicated architectures there are tools
which automate the step from algorithm description to RT-level description.

3.2.2 ALU arrays

In ALU arrays each basic functional block consists of an ALU that supports a
set of word-level operations. A typical functional block used in ALU arrays are
seen in Figure 3.5. Wordlengths of ALUs may be smaller than the required al-
gorithm wordlength and more coarse-grained operations are then implemented
with several ALUs. For example, eight 4-bit ALUs are allocated to implement a
32-bit ALU. This is implemented in medium-grained fabrics such as Garp [48],
which is built out of 2-bit wide functional blocks. There are also architectures
that have fixed wordlenghts, which are statically adapted to the application
domain, as for example DReAM [51], RaPiD [52], and RSVP [46].

Significant for ALU arrays is that there is no locally controlled sequential
execution flow. It means that typical functionality associated with an execution
flow such as local program memory, execution pipeline, and branch instructions
are excluded in the functional blocks. Instead each ALU operation is part of the
configuration that is loaded into the reconfigurable fabric under management of
a global controller. Each ALU operation and all connections between ALUs are
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Figure 3.5: An ALU array is build from functional blocks that contain
an ALU, internal registers, pipeline registers, and I/O ports to the in-
terconnect.

set up by the global controller and remain static until the next reconfiguration.
With that property ALU arrays are sometimes categorized as single instruc-
tion multiple data (SIMD) machines. This is typical for architectures such as
ADRES [43], Garp [48], ARRIVE [53], XPP [44], RSVP [46], RaPiD [52]. The
global controller is generally implemented in an attached processor, with some
additional hardware support in the reconfigurable architecture to interface with
the attached processor.

There are two major drawbacks with statically configured operators and
connections. First, implementations can not exploit time-shared structures
within a single context. Secondly, such architectures are not suitable for more
control-oriented functionality that tends to generate complex computational
structures with low utilization if they are parallelized. For example, if there is
an if-then-else branch, static mapping requires that both branches are per-
formed in parallel and that the appropriate result is selected with a multiplexer
operation.

Several techniques have been deployed to address control flow in ALU ar-
rays. Some architectures, which are intended to be used as functional units,
rely completely upon the host processor to handle the control flow. Typical
examples of this are ADRES [43] and ARRIVE [53]. Other architectures, in-
tended to operate more autonomous, have incorporated various strategies to
handle control flow in the reconfigurable fabric itself. In REMARC [54], each
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Figure 3.6: Some ALU arrays suggest hardware mechanisms to support a
control flow as in (a) REMARC that uses a globally distributed program
counter, or (b) RICA that uses special JUMP cells to change execution
flow.

ALU has a local instruction memory, but there is no locally controlled pro-
gram counter. Instead, one single program counter is distributed to all ALUs,
as shown in Figure 3.6(a). An instruction controls which operation to per-
form and also to which I/O ports operands and results should be associated.
Hence, the interconnect network is controlled by the configuration, which al-
lows different data streams to time-share a single ALU resource. As this type
of control flow mechanism requires static schedules, REMARC reminds of a
VLIW architecture. However, compared to VLIW machines, which distribute
an instruction to every functional unit, only the program counter is globally
distributed. Additionally, operations and connections can remain static for a
time longer than a clock period. Hence, instruction rate and program size is
effectively reduced for regular data-flow computations. One weakness with this
mechanism is that if only a few ALUs require an instruction flow, remaining
ALUs will need to replicate the same instruction in order to have an unaltered
functionality when the program counter is updated. Another weakness is that
a local condition can not change the control flow locally. Instead, the condition
must be communicated back to the global controller, which alters the program
counter and changes the context globally.

In RICA [45] there are specialized cells, which control the next configura-
tion, embedded in the array. These cells are called JUMP cells and they allow
conditional loading of a new configuration by altering the program counter.
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When the program counter is altered a new configuration is loaded into the
reconfigurable fabric. The RICA control flow mechanism is shown in Fig-
ure 3.6(b). With this technique conditional execution is supported, however
the context is changed globally.

A more general approach is suggested in XPP-III [55] where sequential ex-
ecution is supported by small embedded processor blocks. With an instruction
flow to the ALU control functions such as if-then-else and loop-constructs
can execute within a single functional block to allow time-sharing to be effi-
ciently implemented.

3.2.3 Processor arrays

Significant for processor arrays is that they allow operations to change on a
cycle-by-cycle basis without any reconfiguration. Hence, all functional blocks
have their own program flow and therefore processor arrays are classified as
multiple instructions multiple data (MIMD) machines. A typical processor
array have functional blocks that contain an ALU, execution pipeline, instruc-
tion memory, and a program counter, as seen in Figure 3.7. The same type
of pipelined and parallel implementations supported by ALU arrays are also
supported by processor arrays. In addition, implementations that require se-
quential execution are supported. Typical architectures in this family are MA-
TRIX [56], RAW [41], CHESS [57], PicoArray [58], WPPA [59], MPPAs from
Ambric [60], and FPOAs from MathStar [61]. Early presented architectures
such as MATRIX and CHESS had 4-bit and 8-bit ALUs and hence wider
wordlengths required several functional blocks to be interconnected. Recently
suggested architectures have wider ALUs with 16 or 32 bits. What follows is a
brief summary of main features in MATRIX, CHESS, RAW, and PicoArray.

◾ MATRIX – The basic block consists of an 8-bit ALU and a 256 × 8-
bit memory block. The basic block can operate as either instruction
memory, data memory, independent ALU operation, or a byte slice of a
bundled ALU operation. Although memory blocks are included in func-
tional blocks, they are shared resources as address and data ports can
be connected to other blocks through the interconnect. The intercon-
nect contains three levels: dedicated links to 4 nearest neighbors, bypass
connections, and row and column buses.

◾ CHESS – The basic block consists of a 4-bit ALU and a 16×4-bit memory
block. As in MATRIX, basic blocks can operate as either instruction
memory, data memory, independent ALU operation, or a 4-bit bundled
ALU operation. In addition to memory blocks embedded into the basic
blocks, there are dedicated 256 × 8-bit memory blocks distributed across



3.2. RECONFIGURABLE FUNCTIONAL BLOCKS 39

A
L

U

IMEM

GPR
PC

IF ID EX

I1 I2 I3 I4

O1 O2 O3 O4

Figure 3.7: A processor array is made of functional blocks that contain an
ALU, execution pipeline, instruction memory, program counter, general
purpose registers, and I/O ports to the interconnect.

the array and they cover whole columns. The interconnect is build as 16
segmented buses connected to switches across each row and column.

◾ RAW – The basic block consists of an 8-bit ALU, a small amount of con-
figurable logic, an 16 kB instruction memory, a 32 kB data memory and
a switch and its associated 16kB instruction memory. The configurable
logic is used to construct operations uniquely adapted to specific appli-
cations, which gives another level of adaption. The memories inside the
basic block are dedicated to that specific block and cannot be accessed
by any other block. However, the processor can operate as a address
generator that feds data from memory to any other basic block. The
interconnect consist of the switches that are integrated into the processor
pipeline. These switches support statically defined interconnect channels
by using the switch instruction memory, but also allow messages to be
dynamically routed from source to destination.

◾ PicoArray – The basic block consists of a 16-bit processor, an instruc-
tion memory, and a data memory. Amount of memory and supported
instructions are varied in three predefined basic blocks: standard, mem-
ory, and control. The memory block has 8704 bytes of memory, whereas
the standard block has 768 bytes. As in RAW, memories are dedicated
to each basic block and not part of the network as shared resources. The
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interconnect is build of 32-bit row and column buses and programmable
switches. Each port to the interconnect contains a buffer so that syn-
chronization is performed when ports are accessed with special-purpose
read-write instructions.

Although these architectures remind of multi-processor systems, they have
unique features that make them more efficient when fine-grained parallelism
is exploited. Compared to conventional multi-processor systems, processor ar-
rays allow communication with less latency and higher throughput. This is
accomplished by a reconfigurable interconnect with fast communication be-
tween processor registers, whereas multi-processor systems implement commu-
nication through the memory system. In order to unify a local instruction flow
with efficient inter-processor communication, processor arrays need some mech-
anism to synchronize communication. Although there are static approaches,
the dominating mechanism is based on handshaking channels. A typical pro-
tocol is to have a control bit from sender to receiver, which signals that the
sending unit has valid data. Furthermore, there is a control bit that flows from
receiving unit back to the sending unit, which signals that the receiving unit
needs new data. Although dynamic approaches result in an area overhead,
they simplify programming and mapping and they can effectively handle non-
deterministic effects such as unknown execution time or contention in shared
resources [58–60]. Typically, a handshaking channel is a word-level, unidirec-
tional, point-to-point link from one functional block to another. Sending or
receiving a word on these channels is carried out either by special purpose
move instructions [58], or by allowing ports to be used as any local register
in any instruction [60]. When a word is sent through a channel it is both a
communication and a synchronization event. Local execution is stalled if in-
puts can not be received, or outputs can not be transmitted. A handshaking
channel can be implemented with a two-phase protocol with request and ac-
knowledge signals or with a FIFO that generates a back-pressure signal when it
can not receive more data. With FIFO buffers between communicating blocks
globally asynchronous locally synchronous architectures may be implemented,
which eliminates the complexity involved with clock distribution networks in
large processor arrays.

3.2.4 Heterogenous architectures

To obtain better performance or reduced hardware area, different types of func-
tional blocks are used to build the reconfigurable array. A typical example is
memory blocks that are used to provide improved storage capacity in both
fine- and coarse-grained arrays. Heterogeneity introduces an extra design as-
pect, which is how to spatially distribute different functional blocks within
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the array. It also increases complexity of spatial partitioning, placement, and
routing as compared to a homogeneous set of functional blocks.

The current trend in commercially available FPGAs is that more coarse-
grained functional blocks are embedded into the reconfigurable architecture.
Compared to utilizing the fine-grained blocks, kernels that utilize coarse-grained
blocks have improved area utilization, power consumption, and performance.
Typical coarse-grained blocks found in commercially available FPGAs are listed
below in increasing granularity.

◾ Memory blocks – A memory block allows a set of memory widths and
depths to be implemented. In addition, memory blocks can be cascaded
to implement deeper or wider memory types. The memory blocks are
typically implemented with synchronous static RAM (SRAM). For ex-
ample Altera Excalibur has 2 kbit memory blocks and Xilinx Virtex II
has 18 kbit memory blocks.

◾ Multiplier blocks – Multiplications are common in DSP algorithms and
they are not efficiently implemented with lookup tables. Consequently,
FPGAs embed hardwired multipliers to improve performance for typical
signal processing algorithms. For example, a Virtex-II multiplier block is
an 18-bit by 18-bit wide multiplication.

◾ DSP blocks – In addition to multipliers these blocks typically contains
large accumulators, pipeline registers, and multiplexors. This is used
for efficient implementation of multiply-accumulate operations, which are
commonly used in digital signal processing.

◾ Processor blocks – Hardwired processor blocks with caches such as
ARM922T inside the Altera Excalibur family and the PowerPC 405 in-
side the Xilinx Virtex-II Pro and Virtex-4 families. This allows embed-
ded systems, with custom acceleration units implemented in the recon-
figurable architecture, to be implemented. With a configuration interface
attached to the embedded processor this allows reconfigurable computing
platforms to be realized.

◾ Embedded blocks – A recent trend is to hardwire common building
blocks that are used to implement embedded systems. These blocks con-
tain, in addition to processor blocks, more advanced embedded compo-
nents such as buses and frequently used peripherals.

Heterogeneity is also exploited in many ALU and processor arrays, which
have different functional blocks and also memory blocks embedded into the re-
configurable architecture. Heterogenous functional blocks are used to improve
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performance in a constrained chip area. That is, hardware complexity of indi-
vidual functional blocks are reduced and the released area utilized to increase
number of functional blocks. For example, PicoArray [58] has three types of
processors: a standard, a memory, and a control processor. Another example
is WPPA [59], which allows the instruction set of individual processors to be
decided prior to implementation.

The advantages with embedded memory blocks are that data may be parti-
tioned into different memories, in order to improve data delivery. Furthermore,
they may operate as scratchpad memories during computation to avoid slow
external interfaces. In FPGAs, memory blocks are shared resources embedded
into the interconnect, which means that they are not included and dedicated to
a specific functional block. Shared memory blocks is also used in architectures
such as RaPiD [52] and Pleiades [62]. These architectures typically have local
address generation units embedded into the memory block itself. Processor ar-
rays, generally have memories dedicated and included in the functional block.
In contrast to architectures that have dedicated address generation units, pro-
cessor arrays can use the processor to generate addresses, as in RAW [41] and
PicoArray [58].

Memory blocks are excluded in some coarse-grained arrays that are intended
to be tightly coupled to a processor. In these systems, the reconfigurable units
use the processor cache memory or access data in main memory using direct
memory access. This is significant for MorphoSys [63], PipeRench [47, 49],
Garp [48], XPP [44], ARRIVE [53], and ADRES [43].

3.3 Reconfigurable Interconnect

The reconfigurable interconnect includes resources such as programmable switch-
es and wires organized so that specialized communication networks can be
created. As with functional units, reconfigurable interconnects can be either
fine-grained or coarse-grained. A fine-grained interconnect allows individual
wires to be switched, to route bit-level connections between functional blocks.
On the other hand, a coarse-grained interconnect considers a group of wires
as a bus that is switched as one unit. In most architectures the granularity of
the interconnect and functional blocks are matched, as for example 4-bit ALU
arrays have 4-bit buses.

Traditional FPGAs, typically have vertical and horizontal channels that
consist of programmable switch blocks and connection blocks, as seen in Fig-
ure 3.8 [50]. The logic block is connected to the channel through the connection
block. Switches are used to connect horizontal and vertical channels, to allow
signals to change direction. To provide both local and global routing two pri-
mary methods have been presented [7]. The first, segmental routing, is to use
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Figure 3.8: Traditional FPGAs contain interconnect based on vertical
and horizontal channels with programmable switches and connection
blocks.

longer wires that span multiple functional blocks without being switched. The
second, hierarchical routing, provides denser wiring within a group of functional
blocks and these groups are then connected with a hierarchical organization of
switches.

In contrast to FPGAs that have horizontal and vertical channels, many
coarse-grained arrays combine dedicated local communication with another
level of interconnect through shared buses. The idea with dedicated local inter-
connect is that, assuming efficient placement, communication is mainly local
and only a fraction of the communication requires to be routed longer distances.
REMARC [54], for example, has dedicated wires between adjacent four neigh-
bors and shared buses that span each row and column. Functional blocks in
MorphoSys [63] have dedicated connections between four nearest neighbors, a
second level of connections for a group of 4×4 functional blocks, and horizontal
and vertical buses that span each row and column. A denser nearest neigh-
bor interconnect is suggested in MATRIX, which has dedicated connectivity
between the 12 nearest neighbors, a second level of 8 bypass connections, and
row and column buses. In order to obtain a clock frequency that are known
prior to placement and routing, these interconnects typically have deterministic
delay by including pipeline registers within the interconnect.

To reduce routing overhead, some coarse-grained architectures utilize one
dimensional routing. A typical result of this strategy is RaPiD [52], which is a
one dimensional array in which functional blocks are connected with ten seg-
mented buses. Two other examples are PipeRench [47, 49] and ARRIVE [53],
which are both two dimensional arrays, but with limited routing in one dimen-
sion. ARRIVE uses switches for horizontal routing, whereas vertical routing
is one directional and must be handled by a functional block. PipeRench has
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a crossbar to connect functional blocks horizontally, whereas vertical routing
is carried out in one direction only. The idea behind this is that in a good
placement of regular functionality, data flows in a pipelined fashion from one
stage to another.

3.4 Nomenclature

In the field of reconfigurable computing there are many terms and here is a
brief summary of the terminology used in this chapter and in included parts:

◾ Configuration – Is the information stream used to configure or recon-
figure the reconfigurable architecture.

◾ Context – A task with its own configuration.

◾ Dynamic reconfiguration – Is the ability to reconfigure the fabric dur-
ing execution by downloading a new configuration to the configuration
memories. Also referred to as run-time reconfiguration.

◾ Hardware-software partitioning – Division of an application into par-
titions that are either implemented in the processor (software) or on the
reconfigurable fabric (hardware).

◾ Mapping – Is to assign functionality to different functional blocks. It
can include some or all of spatial partitioning, temporal partitioning,
placement, and routing.

◾ Multi-context – A reconfigurable architecture that has multiple mem-
ory bits per configuration bit. A multi-context reconfigurable architec-
ture can switch very fast between two configurations. In addition, new
configurations can be downloaded in parallel with an actively used con-
figuration.

◾ Partial reconfiguration – Is the ability to reconfigure only parts of
the reconfigurable fabric at a time. The configuration memories operates
like random access memories, so that addresses can be used to selectively
change their content.

◾ Placement – To bind functionality to a specific functional block in the
reconfigurable fabric.

◾ Routing – To bind communication between functional blocks to specific
channels in the interconnect.
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◾ Single context – A reconfigurable architecture that has a single memory
bit per configuration bit. Significant for these architectures is that loading
new configurations may result in a significant overhead in dynamically
reconfigurable systems.

◾ Spatial partitioning – Division of a computational kernel into smaller
pieces that are mapped onto different functional blocks in order to exploit
parallelism. Also referred to as functional partitioning.

◾ Temporal partitioning – Division of a computational kernel into smaller
pieces that each have their own configuration and can execute in the re-
configurable fabric at different periods in time.

3.5 Discussion

Reconfigurable computing systems is still a maturing field and there are many
open research questions. Over the last ten years numerous new reconfigurable
architectures have been proposed [7, 38, 64]. However, there is not an existing
framework to allow quantitative analysis of these architectures and hence it
is not straightforward to relate impact of innovations to previously presented
techniques. This is a major challenge and to allow such an analysis, the design
parameters needs to be well understood. They need to be related to physical
entities such as power-delay-area and the constraints imposed by the applica-
tion domain [62]. Typical design parameters are number of resources, resource
types, area-balance between resources, interconnect, and integration into a sys-
tem. The complexity of these systems requires advanced modeling, simulation,
and analysis tools. This was recognized as a key issue already by the pioneers
in the field, which 1976 developed system architects apprentice (SARA) to
discover and cure problems before the system was physically realized [2].

Another major challenge is to find tools that can map an application to a
reconfigurable architecture and make use of all innovative mechanisms embed-
ded in the reconfigurable architecture. Without automatic tools, the mapping
step becomes a bottleneck both during design of an application, and in the
evaluation of a specific reconfigurable architecture, as mapping is an integral
part of a design exploration loop.

Part I presents a coarse-grained reconfigurable ALU array and evaluates it’s
performance in executing a signal processing intensive speech codec. Part III
presents a processor array, and suggests how system level modeling tools may
be used to evaluate and tune system parameters before a chip is fabricated.
In Part II, it is described how a complete reconfigurable computing platform
is constructed, simulated, evaluated, and tuned using a system level design
approach.





Chapter 4

System-Level Modeling and Exploration

Development of embedded systems requires modeling concepts that allow
designers to reason about different aspects of the system. These concepts in-
clude behavior, parallelism, time, structure, hierarchy, and communication. At
different phases of development there are different views of the system with
varying importance of these modeling concepts. For example, software devel-
opment requires hardware to be modeled with precise register and memory map
and accurate behavior, but may exclude timing information. System architects
carrying out performance exploration to find bottlenecks require an estimated
time metric, but may exclude detailed hardware modeling. In order to eval-
uate the design, an executable modeling language is needed [65]. Traditional
modeling languages have emphasized the hardware design flow, whereas recent
languages have incorporated concepts for efficient modeling at system level.
With traditional modeling abstraction, models take too much time to develop,
have poor simulation performance, and are not available early enough in the
design flow to allow architectural exploration and software development. In
this chapter, transaction level modeling is introduced as an efficient abstrac-
tion for system level architectural exploration. Transaction level modeling is
supported in languages such as SystemC and SpecC by abstract channels that
connect communicating modules. The discussion in this chapter will bias the
discussion towards the transaction level approach suggested by the SystemC
transaction level model working group. After discussing transaction level mod-
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els, this chapter continues with a brief discussion on architectural exploration.

4.1 Transaction Level Modeling

There are two major abstraction levels used to model hardware systems: reg-
ister transfer level and transaction level (TL). The former is the traditional
modeling abstraction and the term register transfer refers to that models de-
scribe signal transitions between synchronously clocked registers. With design
tools, an RT-level description is translated into a netlist of logic gates. Transac-
tion level modeling is an abstraction adopted by system companies to address
limitations of register transfer level design when system complexity increases.
This section first gives a brief overview of transaction level modeling, and then
the SystemC TLM library is introduced as it is currently the most widely
spread language for simulating at the transaction level. After introducing the
SystemC TLM library, this section describes the abstraction levels commonly
used in system simulations, followed by a short modeling example of a bus
system.

4.1.1 Overview

Transaction level models use abstract channels to model communication be-
tween concurrent processes in the system using function calls [66–69]. Conse-
quently, an interface that is modeled with several ports in a RT-level model, is
reduced to one single port in a TL model. In addition, a series of signal assign-
ments used to model the timing behavior are replaced with function calls that
either send or receive a transaction. A transaction is the atomic information
that modules exchange in the simulation. It may represent a complex structure
that contains control information and burst of data, or it may represent a single
word of data. How a transaction is defined depends on how accurate the system
is modeled. One transaction may be represented by multiple function calls in
the model in order to accurately capture the time behavior. Time within TLM
components are modeled as untimed, estimated timing or cycle accurate [70]. It
is possible to make a transaction model cycle accurate and still achieve better
simulation performance than offered by an RT-level model [68].

Transaction level modeling is intended as a complement to RT-level mod-
eling, in order to perform activities such as [71]:

◾ Hardware micro-architecture exploration and starting point for more de-
tailed hardware modeling.

◾ System level architectural exploration, such as selecting communication
and processing components and HW/SW partitioning.
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◾ Virtual platform for software development.

◾ Reference model for hardware functional verification.

Transaction level modeling is supported by languages such as SystemC
[71, 72] and SpecC [65], through the channel concept. A channel connects
communicating modules, which are either initiators or targets. An initiator
can actively start a transaction whereas a target is only allowed to respond to
an initiator request. When multiple initiators and targets need to communi-
cate, the channel is required to implement arbitration and routing algorithms.
The arbitration algorithm selects which initiator that should be given access
to the channel, and the routing algorithm assures that the correct target is
addressed by using information annotated in the transaction. With these con-
cepts, interconnect structures found in SoCs can be modeled with adequate
accuracy.

4.1.2 SystemC TLM Library

The open SystemC initiative (OSCI) [73] maintains a simulation library for
SystemC. OSCI SystemC is a C++ library that contains routines and macros
to simulate concurrent processes using a HDL like semantic. Systems are con-
structed from SystemC modules, which are connected to form a design hierar-
chy. A SystemC module encapsulates processes, which describe behavior, and
communicates through ports and channels with other SystemC modules. Pro-
cesses are used to describe concurrency and wait-statements are used to halt
process execution for a specific time or until an event occurs.

The OSCI SystemC TLM library contains ports, interfaces, channels, and
also data structures used to represent request and response in an initiator-to-
target communication scenario. These are TLM primitives that increase model
interoperability and allows rapid development of customized TL models, and
it is not ready-to-use models of SoC components. SystemC TLM channels
provide an inter-process communication mechanism based on unidirectional or
bidirectional function calls. The unidirectional mechanism is based on blocking
and non-blocking put and get functions. The get function moves transactions
from the channel to the module, while the put function moves transactions from
the module to the channel, as illustrated in Figure 4.1(a). The bidirectional
mechanism is a single call to a transport function which sends a request and
returns with or without delay with a response, as illustrated in Figure 4.1(b).

As seen in Figure 4.1(b), the bidirectional mechanism is based on that
initiators call the transport function from a process, whereas targets do not
contain processes. Consequently, targets implement the transport function call,
which will be invoked in the initiator-process. The unidirectional mechanism,
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Figure 4.1: The OSCI TLM standard defines (a) unidirectional and (b)
bidirectional function calls to model communication between modules.
The figure shows sequences of function calls necessary to model a transac-
tion. Function calls to put, blocks the calling process when the channel
FIFO is full and function calls to get blocks the calling process if the
channel FIFO is empty. With the bidirectional interface, function calls
to transport is blocked if the target calls wait.

on the other hand, requires both initiators and targets to call their functions
from a process, as seen in Figure 4.1(a). Hence, context switching will increase
with a unidirectional interface. The advantage with the unidirectional interface
is that it increases temporal accuracy, as many features implemented in modern
bus systems require initiators, targets, and the bus itself to be modeled with
separate processes. For example, consider overlapped arbitration, which is
modeled as parallel activities, that is arbitration on the bus in parallel with
an ongoing transfer from the currently addressed target. However, for untimed
models, the bidirectional mechanism is preferred as simulation performance is
increased, and model complexity is reduced.

The unidirectional channel, shown in Figure 4.1(a), are implemented as first-
in-first-out (FIFO) queues with a configurable buffer depth. Blocking functions
will block the calling process until the condition for getting or putting a trans-
action to the channel is fulfilled. The non-blocking versions return a boolean
value to indicate if the call succeeded, but return immediately even if the con-
dition is not satisfied. There are also functions to find out if a transaction
can be moved without doing the transfer, events emitted when a new transac-
tion enters or leaves the channel, and functions to get a transaction without
consuming it from the channel.
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Figure 4.2: Transaction level models refer to a set of abstraction levels
with different structural and temporal accuracy. One definition of TLM
abstraction levels according to OSCI TLM standard are programmers
view and architects view.

4.1.3 Levels of Abstraction

Even though the word transaction level may indicate a single level of detail,
it refers to a set of abstraction levels with varying degree of functional and
temporal detail [74]. Although terminology and definitions of specific abstrac-
tion levels within this set is still under development, two important abstraction
levels are singled out here according to the OSCI TLM standard [74], see Fig-
ure 4.2:

◾ Programmers view (PV) – This abstraction level is intended to be
used for software development and functional verification of the applica-
tion. It contains adequate structure to represent the different components
such as buses, processors, memories, and other hardware components.
In addition, registers and memory map are accurately modeled so that
software drivers can be developed and verified. This abstraction level
provides an untimed model in which all transactions occur at a single in-
stance in time. Although time is not modeled, communication channels
may use some simple arbitration algorithm to resolve bus contention.

◾ Programmers view with time (PVT) – This abstraction level is also
referred to as architects view (AV) as it is intended to be used for per-
formance analysis and architectural exploration. It contains the same
structural accuracy as the PV model, but has increased temporal accu-
racy to model cycle accurate or estimated time models. Time information
is annotated into models with wait-statements inside processes.
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Figure 4.3: Temporal accuracy of TL-models in two dimensions: commu-
nication and computation. With these abstractions communication and
computation can be developed, evaluated, and refined independently.

It is suggested in [67] that temporal accuracy in communication and com-
putation can be developed and evaluated independently. This leads to an
extended view of TLM abstraction levels, as shown in Figure 4.3. If, for ex-
ample, the bus system should be explored, a cycle accurate bus model is used
while masters and slaves are estimated time models. Mixed abstraction levels
are also useful for micro-architecture exploration of new hardware components,
which then use cycle accuracy while remaining components are modeled with
estimated time. Temporal and structural accuracy should be carefully selected
to match design activities and required prediction accuracy.

4.1.4 Modeling Example

With the TLM primitives in the OSCI TLM standard, more complex models
can be developed. This section gives a brief description on how to model a
generic bus system. Buses are one of the most required components in system
simulations and several proposals of generic TLM bus models are found in
[75, 76]. The main objectives for these models are to increase productivity by
reusing the same models for different bus protocols, increase interoperability
between models, and allow mixed abstractions. In addition, base classes with
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Figure 4.4: User modules inherits from the master or slave base class and
expand functionality to model the specific behavior, timing, or register
map.

common functionality for bus slaves or masters can be developed, so that new
bus components can be developed reusing these base classes, as illustrated in
Figure 4.4. The typical design process to develop bus-based transaction level
models are:

1. Decide if the model should be used for software development, architec-
tural exploration, or both.

2. Extract from bus specification what needs to be communicated in parallel.
For example, data and address buses might operate in parallel, and hence
it needs to be decided if this should be modeled as separate channels in
order to reach desired temporal accuracy.

3. Define request and response structures and write interface classes. It
is advised that information in request and response have a one-to-one
correspondence to the information transferred in the pin accurate model.
For example, if there are three transfer types, single, burst, and cache
line, there should be a data-type called transfer-type in the request data
structure.

4. Implement bus functionality, arbitration and routing, as untimed model.

5. Implement slave and master base classes as untimed models.

6. Verify functionality of the bus protocol by implementing a system consist-
ing of traffic generators derived from the master base class, and memories
derived from the slave base class.
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Figure 4.5: A generic bus model that uses the unidirectional TLM chan-
nels. The bus implements arbitration and routing algorithms. A trans-
action can be modeled with several request and response pairs in order to
adequately model different phase in the bus protocol. The bus contains
three processes to model parallel address (PA), data read (PR), and data
write (PW ) interfaces.

7. Refine timing by annotating wait-statements in the processes according
to the protocol. Guard wait-statements with a condition that can be
switched on and off in order to improve simulation performance when
temporal accuracy can be sacrificed.

8. New user modules are developed from the base classes.

Figure 4.5 shows how unidirectional channels is used to model the Core-
Connect processor local bus (PLB) [77] at the Architects View. Each master
and slave is connected to the bus module through a unidirectional channel.
The type of channel used to model buses, uni- or bi-directional, depends on the
level of temporal accuracy required in the model. If the model is intended only
for software development, the bidirectional channel is preferred. The unidirec-
tional channel is used for models intended for software development as well as
architectural exploration.

The model illustrated in Figure 4.5 uses separate channels for address and
data to reflect the PLB bus specification, which has decoupled address and data
buses to support overlapped arbitration and address pipelining. The bus model
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has 3 processes, PR, PW , PA, to represent parallel read, write, and address
interfaces. A transaction is initiated by a master which sends an address request
to start an address cycle. The address-process inside the bus-module is then
activated and performs arbitration using priority in the request combined with
round robin arbitration on masters’ fixed priority numbers. After arbitration,
routing is performed by matching the request address to any of the slaves
memory map. Finally, the request is transferred to the correct slave. After the
address cycle, read or write data cycle starts, as the slave acknowledges the
address request. The data cycle consist of a single word, a burst, or a cache
line. Burst and cache line transactions are modeled either returning all words
in a single response, or by modeling a data exchange for each word. The latter
is used for higher temporal accuracy. The model is cycle accurate if enabling all
wait-statements and if burst and cache line requests are modeled with one word
per response. Hence, bus features such as data bus size, address pipeline depth,
arbitration policy, burst size, etcetera can be evaluated for different application
scenarios.

4.2 Architectural Exploration

A major task in a system level design flow is to systematically search for an
architecture that balances competing design goals, such as performance and
area, referred to as architectural exploration. In some design scenarios this ac-
tivity can be as simple as tuning soft parameters, such as arbitration policy on
a fixed hardware platform, to ensure real-time performance. In other design
scenarios, such as development of new architectures, it might be required to
evaluate how various design parameters are related to performance and area.
The design metric is estimated as a combination of static and simulation-based
analysis [65]. For example, area is extracted from the number of allocated
resources such as memories and arithmetic operations, whereas performance
metrics are extracted from simulation. A typical architectural exploration pro-
cess is summarized as [78]:

I. A target architecture is selected and functionality mapped to this archi-
tecture. Bottlenecks are identified by observing performance data, such
as execution time and utilization, extracted during the simulation.

II. Modifications to the architecture are suggested and architecture tuning is
carried out by controlling different architectural parameters.

III. One of the architectures is finally selected based on the performance and
other properties such as area and energy consumption.
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Architectural exploration requires performance metrics to be collected dur-
ing the simulation. This metric needs to be defined and annotated into models
as it is module-specific. In a bus-based system, the bus itself is a natural
module for communication based metric, and hence arbitration and slave la-
tencies, utilization, throughput, number of requests, burst size, etcetera, are
collected for each master. For some performance metrics, such as latency, it is
natural to keep average, maximum, and minimum value. As these statistical
values depend on simulation time, the time-frame during which they should be
calculated should be controllable, in order to carry out both short-term and
long-term analysis.

An important aspect for efficient design exploration and performance anal-
ysis is the design methodology. It involves construction and configuration of
the system to be simulated, as well as controllability and observability of sim-
ulation modules. All the simulation modules are instantiated, connected and
configured prior to the simulation step. During simulation, the modules are
controlled to setup a simulation scenario, while performance and simulation
data is observed and used for performance analysis. As there might be several
thousands of systems that need to be evaluated, it is also important that explo-
ration scenarios are expressed in a formal language that can step through the
systems, post-process gathered metric, and organize the result for visualization
in existing graphical tools. For example, if 8 processors, 4 arbitration poli-
cies, 4 memory configurations, and 2 different buses should be evaluated, there
are in total 256 different systems that should be explored. Hence, manually
constructing each system, observing performance metric, and post-processing
gathered data, would be to time-consuming and error-prone.

4.3 Discussion

Due to the continuous increase in design complexity, system level exploration
tools and methodologies are required to rapidly evaluate system functionality
and performance. SystemC has shown to be a powerful system level explo-
ration and modeling language. The advantages with SystemC, besides the
wellknown C++ syntax, include modeling at different abstraction levels, sim-
plified hardware/software co-simulation, and a high simulation performance.
The abstraction levels range from cycle accurate to transaction level modeling,
where higher abstractions trade simulation accuracy for a higher simulation
speed. To address the discussed aspect for efficient design exploration, a Sys-
temC environment with interactive control (Scenic) has been developed and
it is presented in Part II.



Part I

A Coarse-grained Reconfigurable Coprocessor
Targeting DSP Kernels

Abstract

This part investigates the applicability of reconfigurable coprocessors that tar-
get processing kernels in multimedia applications. A coarse-grained reconfig-
urable coprocessor is presented and we evaluate its efficiency with respect to
accelerating signal processing kernels and the G.723.1 speech codec. Speedups
in the range of 2 to 46 compared to processor execution are achieved for vector
operations and larger kernels such as filtering and fast fourier transform. These
kernels utilize 86% of the G.723.1 processing time on the RISC based target
architecture. With our approach the average used clock cycles are reduced by
83% compared to processor-only execution.

Based on: Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Accelerating Vector
Operations by Utilizing Reconfigurable Coprocessor Architectures ,” in Proceedings
of IEEE International Symposium on Circuits and Systems, New Orleans, USA, May
2007, pp 3972–3975.
and: Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Implementing the G.723.1
Speech CODEC using a Coarse-Grained Reconfigurable Coprocessor,” in Proceed-
ings of International Conference on Engineering of Reconfigurable Systems and Algo-
rithms, Las Vegas, USA, June 2007, pp 195–198.
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1 Introduction

Hardware platforms that target speech and audio signal processing are of-
ten composed of digital signal processors (DSPs), general purpose processors,
and hardware accelerators. Hardware accelerators found in these platforms
are dedicated hardware, single-instruction multiple-data (SIMD) units, vector
processing units, and reconfigurable architectures (RAs). Among these ap-
proaches, reconfigurable architectures become increasingly interesting because
they combine high performance and flexibility. They have proven to be adapt-
able and effectively exploit parallelism in a variety of application domains [7].
Current trends in embedded multimedia processing are coarse-grained reconfig-
urable architectures (CGRAs) compiled from a heterogeneous set of hardware
elements such as processing elements, memories, address generators, and in-
terconnect [7, 46, 47, 79, 80]. Coarse-grained architectures provide datapaths,
which are build from word-level interconnect switches and processing elements.
Compared to traditional field programmable gate arrays (FPGAs), a CGRA
trades mapping flexibility to reduce delay, area, power consumption, and con-
figuration time.

This part is concerned with design and system integration of a coarse-
grained reconfigurable coprocessor that is used to accelerate kernel functions
in digital signal processing (DSP) applications. It introduces our coprocessor
accelerator Cpac, and proposes a hybrid computational model that allows it
to operate as a functional unit extension, vector accelerator, or DSP kernel ac-
celerator. Cpac contains programmable processing elements, a reconfigurable
interconnect, and a memory system with multiple memory banks. Applica-
tions with one or more signal processing kernels that require some amount of
acceleration beyond a basic RISC processor can utilize Cpac. Performance
is enhanced by dynamically configuring processing elements into specialized
datapaths that compute operations in inner loops. Furthermore, a multi-bank
memory system operates as scratchpad memory to reduce the amount of exter-
nal communication. Multiple memory banks allow data to be communicated in
parallel. Cpac is designed as a parameterizable architecture in register trans-
fer level VHDL. A parameterizable description facilitates rapid optimization of
resources, wordlenghts, and interconnect to different application domains.

For a case study, we choose to accelerate the G.723.1 [81] fixed-point speech
codec, to evaluate Cpac in the speech processing domain. The G.723.1 codec is
part of the H.324 standard and it is used to transmit and receive speech at 6.3
and 5.3 kbps using multipulse maximum likelihood quantization (MP-MLQ)
and algebraic code excited linear prediction (ACELP), respectively. Accelera-
tion is carried out by extending a PowerPC system with Cpac and move time
consuming DSP kernels from PowerPC to Cpac. Profiling results gathered
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from a Xilinx Virtex-II Pro PowerPC show that 86% of the 6.3 kbps and 77%
of the 5.3 kbps encoder execution time is spent in such DSP kernels. If these
kernels are accelerated, Amdahl’s law states that overall speedups have upper
bounds that are 7.1 and 4.3 for the 6.3 kbps and 5.3 kbps codec, respectively. It
is expected that similar figures may be extracted from profile investigations of
other speech codecs, such as GSM enhanced full-rate and adaptive multi-rate.
Experimental results demonstrate a significant performance improvement when
these kernels are accelerated in Cpac. The implementation achieves an overall
speedup of 5.9 for the high rate encoder and 4.0 for the low rate encoder. Com-
pared with the target architecture without any coprocessor, this platform can
operate with reduced clock frequency and voltage in order to conserve energy
and still be able to maintain real time constraints.

2 Related Work

Several approaches have been proposed to find architectures that meet the
challenging requirements on flexibility, performance, and energy dissipation in
multimedia applications. Processor designers have suggested to use vector pro-
cessing or SIMD extensions. In [29] it is shown that 8 out of 10 benchmarks
in a multimedia benchmark suite have a degree of vectorization higher than
90%. Although vector and SIMD architectures result in programmable solu-
tions, their performance is limited by their centralized memory system and their
hardwired datapaths.

Reconfigurable architectures can dynamically change the datapath opera-
tion itself. Hence, they can explore pipelined and parallel computational struc-
tures that are customized for the specific application. Additionally, memories
embedded into reconfigurable architectures may be distributed, so that memory
bottlenecks are reduced. Several systems that extends a processor system with
a reconfigurable architecture have been presented [7,46,80]. Proposed architec-
tures differ in several aspects, among others mechanisms by which to interface
and communicate with the processor, granularity of processing elements (PEs)
and memory management system. These are all key issues that require more
investigation and need to be evaluated for specific application domains.

In the case study, Cpac is used to accelerate speech processing kernels found
in the G.723.1 speech codec. Several implementations of the G.723.1 codec have
been reported in the research community. In the approach presented in [82],
single for-loops are accelerated in a dedicated coprocessor that operates in tan-
dem with an MIPS R3000 processor. The implementation reported in [83]
utilizes a functional unit extension to a standard RISC in order to accelerate
basic operators that are used in several fixed-point speech codecs from the inter-
national telecommunication union (ITU) [84]. Both approaches [82, 83] utilize
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fine-grained parallelism. There are also approaches which utilize coarse-grained
parallelism, such as in [85] where an DSP operates in parallel with an ASIC
accelerator that implements perceptual weighting filter, pitch estimator, and
noise shaping filter. There are also pure hand-optimized DSP implementations,
as presented in [86, 87]. In [79, 88] a reconfigurable architecture that targets
the speech coding domain is described. Authors report a 44.6% reduction of
clock cycles for the GSM coder and 98.2% clock cycle reduction for kernels they
accelerate.

Compared with the dedicated coprocessor architectures reported in [82,83]
our approach is able to provide better performance. There are two other ad-
vantages with the our proposed architecture. First, these implementations lack
embedded memories. Consequently, data access speed is limited by the mem-
ory interface provided by the host processor. Hence, they have poor scalability
because increasing datapath resources in these implementations might not af-
fect the execution time since memory communication has become the major
bottleneck. Secondly, our approach based on a reconfigurable architecture pro-
vides hardware that can be reused in the application domain. Compared to the
reconfigurable implementation reported in [79, 88], our architecture provides a
more flexible computational model. This allows the reconfigurable datapath to
be used either as a kernel accelerator where the coprocessor memory system
and address generators are utilized during computation, or a functional unit
extension where memory operations and loop variables are kept in the proces-
sor. These models enhance the flexibility as it allows design automation tools,
such as reported in [25], to find acceleration objects with different granularities.

3 Architecture

This section introduces the Cpac architecture, which has been developed as a
parameterizable VHDL description. A parameterizable description here refers
to the ability to adapt machine parameters to different application domains
prior to synthesis, contrary to reconfiguration, which refers to the ability to
dynamically change the functionality after fabrication. A Cpac configuration
is derived from a data-flow graph that describes parallel and pipelined compu-
tations. The nodes in the data-flow graph represent fundamental operations,
such as addition or multiplication, which are mapped to processing elements.
A configuration is held in registers and controls the current operation in pro-
cessing elements, interconnection of processing elements, and access patterns to
memory banks. A Cpac configuration is single-context and remains static dur-
ing a computation, which means that no operations or connections are changed.
Figure 1 shows a 4-way add-compare-select (ACS) datapath, which is used in
Viterbi decoders to evaluate path metric, configured onto the processing ele-
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Figure 1: The figure shows how to map a 4-way add-compare-select data-
flow graph to the coarse-grained processing elements in Cpac .

ments. There are five system parts used to compose the architecture:

◾ processing elements,

◾ memory system with memory banks and address generators,

◾ reconfigurable interconnect of memory banks and PEs,

◾ controller with scheduler and configuration manager, and

◾ host independent FIFO interface.

Figure 2 shows an overview of Cpac connected to an embedded processor by
using the host independent first-in first-out (FIFO) interface. This section
describes the different system parts and introduces a computational model to
interact with a host processor.

3.1 Host Interface

The host interface contains three FIFO blocks, one for instructions or con-
figurations and two for bidirectional data communication, see Figure 2. The
wordlengths of data FIFOs are adaptable to the wordlentgh as provided by
the host interface, whereas the instructions are 32-bits wide. Communication
between Cpac and an external device is synchronized by using FIFOs’ blocking
read and write. In addition, FIFOs are used to form a queue of instructions
and data.
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Figure 2: The reconfigurable computing system: processor core and re-
configurable coprocessor

3.2 Processing Elements

To target reconfigurable architectures for the DSP domain, coarse-grained func-
tional blocks have been proposed and proven more efficient in terms of area and
speed as compared to fine-grained functional blocks [7]. This is because DSP
computations in general are characterized by arithmetic operations on multi-bit
words of data. Hence, fine-grained logic blocks, such as 4-input look-up tables,
give a large overhead when implementing word-level arithmetic. The process-
ing elements developed for Cpac are customized ALUs that support a set of
different operations. In addition, post- and pre-processing steps such as data
slicing, scaling, and truncation is included as these operations are commonly
used in fixed-point datapaths. To make the RTL implementation flexible, the
VHDL generic operator was used in order to control implemented features such
as supported operations, number of pipeline registers, wordlengths, etcetera.
Hence, instantiated PEs can be made a heterogeneous set by configuring these
parameters prior to synthesis.

Figure 3 shows an example of the processing element. The stages marked
at the top of the figure are controlled through a set of software controlled
32-bit wide configuration registers, which are shown in the lower part of the
figure. These registers are written by software in order to route the datapath
and configure the ALU operation. Only PEs used in the computation need to
be configured. What follows is a brief summary of the pipeline stages of the
developed processing elements.



64 PART I. A COARSE-GRAINED RECONFIGURABLE COPROCESSOR . . .

SXT

SHIFT

SAT

SXT

R1

R3 R5R4

R2

OP

SXT

SXT

R1

R4
R3

Interconnect Slice Operation Shift Saturate Select output

R3

R3

Select
Slice

Select
Operands

Select
Feedback

Shift Max
Min

Select
Output

Select
Operation

Software Controlled Configuration Registers

R3

Select
saturation

Figure 3: An example of processing element (PE) used as a datapath
resource.

Interconnect Stage

The interconnect stage is used to select source operands from other processing
elements, memory system, or FIFO. It is implemented with multiplexers and
prior to synthesis, a setup is used to select types of interconnect, ranging from
cross-bar to partial interconnects. A cross-bar interconnect provides a connec-
tion from every processing elements output to every other processing element
input. Partial interconnects, such as nearest neighbor, reduce the interconnect
cost but also mapping flexibility.

Slice Stage

The slice stage is used to split a word operand into sub-word operands and
do sign extension to the operational wordlength. This is used to support wide
accesses to memory and split operands to different processing elements which
do operations in parallel. In the experimental studies, memories are 32 bits
wide and slicing to 16 bits is supported.

Operation Stage

The operation stage supports a set of fundamental arithmetic and logic oper-
ations. In particular, basic operators used in standard codecs from ITU were
studied in order to find suitable arithmetic operations. The basic operators are
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currently used in the standards for G723.1, G729, GSM enhanced full-rate, and
adaptive multi-rate speech codecs [84] and use 16 and 32 bits numbers. These
operators are sufficient to build computational structures such as radix-2 FFT
butterfly, complex multiplication, dual and quad multiply and accumulate, ac-
cumulated mean squared error, sum of absolute differences, and basic vector
operations. To support accumulate operations with short latency, a feedback is
connected to the operation stage from the result register R3, found in Figure 3.

Shift Stage

The shift stage is used to scale the result after multiplication, addition, or
substraction to avoid overflow. As many processing elements are envisioned to
use shifting by a fixed set of numbers {1,15,16}, implementation of the shifter
can be selected either as partial shifter, or a barrel shifter that supports all
shift operations.

Saturate Stage

The saturation stage is used to saturate the result from the shifter (R4) or
from the operation (R3). Saturation values are software controlled through the
registers min and max found in Figure 3.

Select Output Stage

The final stage is used to select results that are propagated to the output
register and moved to next processing element, memory system, or FIFO. Data
can be moved to the output register directly from any of the pipeline stages.

3.3 Memory System

Integration of Cpac into an embedded system is based on the assumption that
requested data reside in the processor cache or registers. With this assumption,
the memory hierarchy provided by the host processor is utilized rather than
to directly access the main memory. The processor is responsible to load and
store data and configurations before the computation starts. This coupling
mechanism has been used in similar approaches [80] and is referred to as a
tightly coupled coprocessor. The advantage over direct memory access is that
cache incoherency is avoided, and that fast specialized coprocessor interfaces
can be used to move data back and forth between processor and Cpac.

In kernels that reference data more than once, performance is improved if
the Cpac internal memory system is used to store operands and result. First,
it relieves the processor from data shuffling. Secondly, it reduces effects of
slow interfaces between the processor and Cpac. Third, it allows operands and
results to be partitioned and distributed into different memory banks, which
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Figure 4: Data stored in internal Memory System is described with vec-
tor definition registers (VDRs). The figure shows an example in which
Vector 1 and Vector 2 are streamed through the datapath in two passes
to generate the result Vector 3. Within a pass, the stride value is used
to index the next element. Between each pass, the stride start address
value is used to index the first element.

parallelizes memory accesses to increase data delivery. These are key parame-
ters to gain performance in kernels where temporal locality in data accesses can
be utilized. When Cpac operates from the internal memory system, memory
indexing, and data fetches are done in parallel with the actual computation.
Consequently, loop-control, memory accesses, and datapath operations found
in the DSP kernels are effectively accelerated.

The memory system is a structural design that instantiates a number of
single-port SRAM memory blocks. Number of memory blocks, wordlengths,
and size of the memory blocks are generic parameters. The memory wordlength
is an important parameter to increase data delivery in DSP algorithms that
have linear access patterns. For example, a 64-bit wide memory provides the
datapath PEs with four 16 bits linearly accessed operands in a single cycle. In
our proposed architecture, input register are used to align, buffer, and sequence
data during such parallel memory fetches.

Data operands and results stored in the internal memory system are de-
scribed using vector definition registers (VDRs) attached to each memory bank.
The size and shape of vectors are described using start address, stop address,
stride, and stride start address. During computation, these values are used by
address generation units (AGUs) to compute next address and determine end
of computation. Figure 4 shows how the first two elements in Vector 3 are
generated by streaming Vector 1 and Vector 2 through the datapath. For our
current investigation, this way of describing data have been sufficient. How-
ever, it is clear that the concept would benefit from a more general approach
of address generation, such as described in [89], where distributed address gen-
erators and a loop unit are proposed. This architecture supports a generalized
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set of loop constructs and array indexing techniques.

3.4 Computational Model

The computational model is the mechanism by which operands and results are
moved to and from the reconfigurable datapath. Figure 5 shows a conceptual
model of sources and destinations during computation. Different computational
models are used in order to provide support for different acceleration objects
from inner-loop blocks, to vector operations, to nested loop constructs. The
proposed computational models are:

M1 Load and store of coprocessor datapath registers. This is used when the
acceleration object is a basic block of functionality which appears inside a
loop-construct and the loop-control and memory operations are handled
by the main processor.
Example C-code:

r e s u l t = ( a − b) ∗ c ;

M2 Stream operation where data operands are taken from the data input
FIFO and/or the memory system and the result is stored in memory
system, or redirected to output FIFO. This has the advantage to hide
communication time when vector operations are performed.
Example C-code:

for ( j = 0 ; j < 100 ; j ++ )
r e s u l t = ( a [ j ] − b [ j ] ) ∗ c ;

M3 Load and store of coprocessor memory system. Used when temporal
locality could be explored to increase performance in acceleration objects
that contains nested loop constructs.
Example C-code:

for ( i = 0 ; i < 100 ; i ++ ) {
d i f f = 0 ;
for ( j = i ; j < 100 ; j ++ )

d i f f = ( a [ j ] − b [ j − i ] ) ∗ c ;
r e s u l t [ i ] = d i f f ;

}

The first model (M1) is used if control and memory operations are kept
in the processor and only the inner-loop data operations are mapped to the
coprocessor, which then works as a functional unit extension. This is essential
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in order to utilize the reconfigurable datapath in functions with access patterns
unsupported in the coprocessor. Operands are received sequentially from the
input FIFO and results sent sequentially to the output FIFO. The configuration
controls to which processing element the sequenced data should be fed. If this
is not a repetitive pattern, each data operand can be proceeded by an address
word used to index a specific processing element.

The second model (M2) is useful when vector operations are accelerated, as
it preserves linear access patterns. A vector operation is performed by loading
the first vector to the memory system, and then stream the second vector
while executing the operation in parallel. This is also beneficial in computations
where performance is enhanced if the processor gets access to results on sample-
instead of block-basis. For example, the result from a block filter computation
is streamed to the output FIFO and then accessed by the processor sample by
sample.

In the third model (M3) the processor downloads all data to the coprocessor
memory system before execution starts. The processor is responsible for data
partitioning over the different memory banks. Data stored in the memory
system are described using VDRs used by address generation units (AGU)
attached to each memory port. When the VDRs and the datapath have been
configured, the processor issues an instruction that starts the execution.
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3.5 Configuration

Reduced configuration time is one of the major advantages with a coarse-
grained instead of a fine-grained architecture. Thus, even kernels with short
execution time may benefit from acceleration. This means that the recon-
figurable resources can be shared within tasks as the penalty from swapping
kernels in and out is small. For Cpac, with 12 processing elements and 3 mem-
ories, configurations are about 100-200 bytes and can be downloaded in less
than 1 μs using a 100 MHz system clock. In contrast, to partially configure an
FPGA takes several milliseconds. For example, to configure a tenth of a Virtex
XC2V6000 FPGA with 260 KB of configuration data requires 4 ms [90].

An example of a Cpac programming scenario is described as:

1. Configure vector definition registers.

2. Download data vectors.

3. Configure processing elements.

4. Start computation.

5. Synchronize by performing a blocking read operation to the result FIFO.

Configurations of processing elements or VDRs are sent to the instruction
FIFO in Figure 5a. Configuration words are read out from the FIFO until the
start command is found. When start command is found, new configurations
will be buffered in the FIFO until current context is completed. However,
new configurations can be written to hide communication time. In addition to
VDR and PE configurations, there are instructions to read and write from the
memory system and to set up data streams.

4 System Level Integration

We assume that an embedded processor is present in the system where the
coprocessor should be integrated [7, 46, 79]. The embedded processor runs the
control-oriented part of the application, whereas time consuming dataflow com-
putations are mapped to the reconfigurable coprocessor. In particular, the em-
bedded processor is used to configure, communicate data and schedule tasks
in the coprocessor. This section discusses integration of Cpac into a embed-
ded processor system using a general purpose bus, or a dedicated coprocessor
interface. In addition we describe how acceleration objects are identified and
mapped to Cpac.
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configurations back and forth from the reconfigurable architecture

4.1 Processor Interface

Figure 5a) shows the Cpac main interface with three FIFOs and a bus wrapper.
These FIFOs are used to communicate data, instructions and configurations.
Wordlengths in the data FIFOs are adapted to the provided host processor
interface. Wordlengths of 32 or 64 bits are supported in the studied host
processors Virtex-II Pro PowerPC 405, Virtex-4 FX PowerPC 405, ARM9,
and ARM11 [8, 91]. The instruction FIFO has a fixed 32-bit wide wordlength
in order to allow integration of configuration data into the processor instruction
flow.

The interface provides synchronization primitives for parallel tasks executed
on the processor and coprocessor through blocking read and blocking write.
Hence, when an execution has been programmed in Cpac, the processor con-
tinues with its work and synchronizes with a blocking read operation when the
result from Cpac is needed.

Cpac is attached to the processor subsystem using a general purpose bus
(AMBA, OPB, DSOCM) or a dedicated coprocessor interface. Dedicated co-
processor interfaces are found in ARM9, ARM11 and PowerPC 405 Virtex4
embedded processors. A dedicated coprocessor interface provides a higher data
rate between processor data cache and the coprocessor, as well as special pur-
pose instructions to handle communication with the coprocessor. Figure 6 lists
a set of typical instructions and shows the timing for an instruction which
moves data from data cache to the coprocessor interface. When requested data
resides in the cache, these instructions can move a burst of linearly spaced data
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in N + L cycles, where N is the number of words and L is the initial transfer
latency. When Cpac is integrated as a bus component, software drivers with
similar functionality as the instructions found in Figure 6, are developed.

4.2 Mapping Functionality

An application is initiated as a software implementation and functionality is
migrated to Cpac based on analysis of software profiling metrics. After software
profiling, functions are explored and mapped to Cpac in the order they affect
the overall speedup according to Amdahl’s law [27]. We refer to these functions
as acceleration objects. An acceleration object is a computation that use a
single loop, nested loops, or a block of operations in an inner loop. The loops
describe repetitive computations with operands and result indexed by the loop
variables commonly found in DSP applications.

An acceleration objects is made into a separate function and then trans-
formed into Cpac configurations and communication routines by using the
computational models M1, M2, or M3. In some cases this means that larger
loops are split into several smaller loops. Conversion from C-code to copro-
cessor routines is currently carried out in a pre-compilation step by replacing
code recognized as a macro with hand-optimized coprocessor configurations us-
ing the Cpac programming interface. A typical acceleration object is depicted
below and it is taken from the G.723.1 codec:

for ( i = 0 ; i < SubFrLen ; i ++ ) {
Acc0 = (Word32 ) 0 ;
for ( j = i ; j < SubFrLen ; j ++ )

Acc0 = L mac (Acc0 ,Tv [ j ] , Imr [ j − i ] ) ;
ErrBlk [ i ] = L sh l (Acc0 , Exp ) ;

}

The operations, L mac and L shl, used in the inner and outer for -loops are
basic fixed-point operators. In the example, operands are referenced more than
once during computation, which means that performance is enhanced if compu-
tational model M3 is used. This means that all of this functionality are moved
from processor to coprocessor. If there is other useful work for the processor
after the coprocessor has been configured, the processor may continue execu-
tion. If the processor operates on sample basis, output is redirected to FIFO.
This is part of the designer’s decisions when programming the coprocessor.

Figure 7 shows an example of how this functionality can be mapped to
the coprocessor resources. In this case it is implemented to calculate two taps
and two outputs in parallel, with a throughput of four multiply and accumu-
late (MAC) operations per cycle. The operand and result vectors have been
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Figure 7: An example of resource allocation and mapping to implement
a quad multiply and accumulate.

partitioned into different 32-bit wide memories in order to provide the dat-
apath with operands at datapath throughput. To allow higher throughput,
memory wordlength and number of PEs are increased. The example does not
show the detailed implementation of the arithmetics used. However, each PE
is programmed to comply with the arithmetic used in the reference code.

5 Experiments and Results

This section shows performance results from an FPGA implementation of an
embedded system with Cpac. In particular, a version of Cpac that targets
speech processing were synthesized and the G.723.1 speech codec accelerated.
We also show how the processor interface affects the performance as size of
acceleration objects are varied from vector operations to DSP kernels.

5.1 Experimental setup

For the sake of rapid prototyping, a Virtex-II Pro development system was
used. The Virtex-II Pro contains two on-chip hardwired PowerPC (PPC) 405
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Figure 8: Embedded System with Cpac, PowerPC (PPC), data-side on-
chip memory (DSOCM) bus, processor local bus (PLB), on-chip pe-
ripheral bus (OPB), block random access memory (BRAM), memory
controller (MC), PLB to OPB Bridge, Timer, universal asynchronous
receiver/transmitter (UART), and system advanced configuration envi-
ronment (SystemACE).

processors. Figure 8 shows the embedded system used in the case study. The
coprocessor was attached to the PowerPC using the data-side on-chip memory
bus (DSOCM), since the processor had no dedicated coprocessor interface. Be-
tween processor cache and coprocessor, the DSCOM bus provides a maximum
throughput of 32 bits every third clock cycle.

Figure 9 shows the Cpac configuration used in the experiments. The setup
consists of three 256x32-bit single-ported SRAMs, six 32-bit ALU PEs, four
32-bit ALU+MULT PEs, two 40-bit ALU PEs, and three 16x32-bit FIFOs.
The reconfigurable array is organized as 3 × 4 processing elements with near-
est neighbor interconnect. The memory sizes were selected to target speech
processing kernels that operate on frames of data with up to 256 samples.
Supported operations and datapath wordlengths were also adapted to speech
processing domain by adding support for 16-bit and 32-bit basic operations.

The PowerPC has 16 kB separate instruction and data cache and SDRAM,
used as main memory, attached to the processor local bus (PLB). The profiling
measurements were performed on target hardware using the GNU statistical
profiler gprof, and a custom made profiler used to measure execution time of
loop constructs. Hardware synthesis and software compilation were carried us-
ing XST and gcc, respectively [92]. The Cpac implementation has a maximum
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Figure 9: Resource Configuration of Cpac with processing elements or-
ganized as a 3 × 4 heterogeneous structure with nearest neighbor inter-
connect.

clock frequency of 135 MHz when mapped to the FPGA and utilizes 7500 slices.
The interconnect system is implemented with multiplexers and utilize 2000 of
these slices.

Test vectors were accessed reading and writing to compact flash using sys-
tem advanced configuration environment (SystemACE) peripheral, as seen in
Figure 8. Communication with a desktop computer to control simulation and
receive printouts was handled through a UART peripheral. The timer in Fig-
ure 8 is used to measure execution time using gprof and the loop-level profiler.

5.2 Accelerating DSP kernels

We found that 86% of the execution time for the G723.1 6.3 kbps speech codec
was spent in 23 acceleration objects. The kernels found in these acceleration
objects were block filtering, autocorrelation, cross-correlation, etcetera. This
section shows the speedup achieved when mapping these kernel to Cpac.

Figure 10 shows the speedup for a selected set of fixed-point vector opera-
tions and DSP kernels. The DSP kernels are marked with *) on the horizontal
axes of Figure 10, whereas the other benchmarks are vector operations. DSP
kernels use the memory system to access operands and results using compu-
tational model M3, whereas vector operations use computational model M2.
When DSP kernels are executed, all three memories in Figure 9 are used. The
number at the top of each bar specifies the number of output data elements
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for the FIR filter kernels and the number of input elements in the remaining
kernels. Each bar shows the distribution of time between:

◾ configuration of Cpac,

◾ load and store,

◾ execute, and

◾ load and execute in parallel.

The speedups were measured for the DSOCM bus, Figure 10a), and esti-
mated for a dedicated coprocessor interface, Figure 10b). The speedups vary
between 2 and 46. The speedup gained over a processor implementation is due
to several factors. First, inputs are 16-bit wide and the output is either two
16-bit numbers or a single 32-bit number. Hence, several result elements are
computed in parallel, which is similar to techniques used in SIMD architec-
tures. Secondly, the computations require several instructions to be executed
in a serial fashion on the processor, but are implemented as pipelined opera-
tions in the coprocessor. Finally, overhead caused by loop-control and array
indexing is eliminated when accelerating DSP kernels.

The main part of the time in the DSP kernels is spent in the execution
stage in which the processor is free to do other useful work. If speedups for
DSP kernels in Figure 10a) and 10b) are compared, it is seen that there are
only small differences between a fast coprocessor interface and a 3 times slower
interface. Consequently, when Cpac operates from the internal memory system
slow speed interfaces are not critical. The datapath operations configured onto
Cpac for the DSP kernels are a radix-2 butterfly for the FFT kernel and a quad
multiply and accumulate (MAC) for the other four kernels. The quad MAC
computes 2 accumulated outputs and 2 taps in parallel. Hence, it provides
a throughput of 4 MACs per cycle. During execution, datapath latency is
effectively hidden when filter computations are performed. It is because a new
vector dot product is started as soon as all operands from previous vector dot
product have been fetched from memory. This feature is not utilized during
the FFT computation since the result from the previous pass is needed in the
current pass.

Speedups for vector operations presented in Figure 10 are completely limited
by the transfer rate between cache memory and Cpac, as described in Section
3.4. This is because each operand is only referenced once. Hence, changing from
the DSOCM interface to a 32-bit dedicated coprocessor interface directly affects
the speedup. The difference in transfer rate between the presented interfaces
is about a factor 3. It is clear vector operations would benefit from a 64-bit
or 128-bit coprocessor interface in which a complete cache line is transferred
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Table 1: Average and worst case per frame clock cycle count for G.723.1 en-
coders executing on Virtex-II Pro PowerPC

Encoder Rate Average Worst case

6.3 kbps 10.5 ⋅ 106 11.6 ⋅ 106

5.3 kbps 8.63 ⋅ 106 9.28 ⋅ 106

in a single cycle. The difference in speedup for the different vector lengths is
caused by overhead due to function call, reconfiguration time, and latency in
interface and datapath.

If we compare the speedup for the 64-point vector dot product with the 64
taps block filtering, it is clear that operating from memory system enhances per-
formance. If block filtering is performed by accelerating only of the vector dot
product, the speed of the interface limits the overall speedup. When Cpac op-
erates from the coprocessor memory system, different performance points may
be explored by changing memory organization and datapath resources.

5.3 Accelerating G.723.1

The low bandwidth required to transfer speech signals has made the G.723.1
codec popular in voice over internet protocol. It encodes speech or other au-
dio signals in frames using linear predictive analysis-by-synthesis coding. The
encoder operates on 30 ms frames and encodes them into 10 or 12 code-words
for the 5.3 kbps and 6.3 kbps channels, respectively. The pitch period and a
differential value are sent to the decoder. When a frame is encoded, signal
processing kernels is applied to the 30 ms frame and on subframes that are
7.5 ms and 15 ms. A 30 ms frame consist of 240 16-bit PCM samples. The
fixed-point implementation found in [81] was used in experiments presented in
this section.

Table 1 shows the average and worst case per frame encoding clock cycle
count when the codec is executed on the PowerPC without any acceleration in
Cpac. In order to perform real-time mixed-rate encoding, a minimum clock
frequency of 11.6/0.03 = 390 MHz is required. Decoding only consumes a
fraction of processing time compared to the encoding, and requires an average
of 0.6⋅106 clock cycles per frame. Input test vectors used to generate Table 1 are
DTX63.TIN and DTX53MIX.TIN, which contain 864 and 120 frames, respectively.

Figure 11 shows the profile graphs for the 6.3 kbps and 5.3 kbps encoder.
The profile graph shows how many percent of the execution time is spent
in each function. It also shows how many percent of the execution time is
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Figure 11: Profile graph for the 6.3 and 5.3 kbps encoder when mapped
to the target architecture without accelerator

spent in functionality that are targeted for acceleration Cpac. The acceleration
objects constitute in average 86% and 77% of the encoding time for the 6.3
kbps and 5.3 kbps, respectively. The acceleration objects isolated are filtering,
autocorrelation, cross-correla-tion, and vector operations. Among the 18000
lines of C-code shipped with the G.723.1 speech codec, the acceleration objects
are about 400 lines, or 23 functions. This indicates the complexity involved to
convert this part of the code into library routines for the coprocessor. Some
functionality recurrently appears in the source code and can be recognized as a
macro and substituted with the proper coprocessor routine in a pre-compilation
step. The effort to find and map this part of the code into Cpac binaries is
estimated to two weeks.

The generated version of the coprocessor provides an overall speedup of 5.9
and 4.0 for the 6.3 and the 5.3 kbps encoder, respectively. When Cpac is uti-
lized, 6% of the time is spent in configuration and 26% in data communication.
Consequently, the processor is free to do other work during 68% of the time.
The fast reconfiguration time is mainly due to the coarse-grained processing
elements and the data descriptor programming technique accomplished using
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Table 2: Comparison of average per frame clock cycle count for different imple-
mentations of the G.723.1 encoders.

Label Description 6.3 kbps 5.3 kbps

Proposed PowerPC and Cpac 1.8 ⋅ 106 2.2 ⋅ 106

CP-1 MIPS R3000 and coprocessor [82] 3.3 ⋅ 106 3.5 ⋅ 106

CP-2 Simplescalar and coprocessor [83] ≥ 4.9 ⋅ 106 ≥ 2.1 ⋅ 106

DSP-1 TMS320C54x [86] NA 2.1 ⋅ 106

DSP-2 TMS320C62x [87] 0.74 ⋅ 106 0.28 ⋅ 106

VDRs. Implementations based on fine-grained blocks and without program-
ming model would significantly increase the time spent in the configuration
mode. The data communication time is affected only by the rate provided
by the host interface and many processors have interfaces that reduce data
communication time significantly.

Table 2 shows a performance comparison between the proposed architecture,
two coprocessor approaches, and two hand-optimized implementations on Texas
Instruments digital signal processors (DSP). The table shows the number of
clock cycles required to encode one frame. It is assumed that these architectures
may operate at the same clock frequency if proper pipelining techniques are
applied to each architecture. Hence, the number of clock cycles gives a fair
comparison of the relative performance.

CP-1 accelerates a set of manually chosen single-loops and CP-2 accelerates
scalar fixed-point operations. Hence, CP-1 provides acceleration only for this
specific coder, whereas CP-2 can be reused in the application domain. The
performance reported for CP-2 is in number of instructions per frame and
hence we use greater or equal to the reported number of clock cycles, as it
is assumed that cycles per instruction (CPI) CPI ≥ 1. DSP-1 shows a hand-
optimized implementation on a power efficient fixed-point single-issue DSP.
DSP-2 shows a hand-optimized implementation on a high performance fixed-
point DSP that has eight functional units, including two multipliers and six
arithmetic units. The time required to derive the DSP-1 implementation is
reported to 2.5 man-month.

Compared to implementations CP-1 and CP-2, the proposed architecture
has better performance if the reported instructions per frame is scaled with a
realistic CPI for CP-2. Hence, a reconfigurable coprocessor can provide bet-
ter performance than customized coprocessors. In addition, a reconfigurable
coprocessor has a wider application space and can be scaled or configured to
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adopt new application domains. This is a key property for embedded platforms
that target multimedia and general purpose computing.

As seen in Table 2, best performance is achieved with the high perfor-
mance DSP. To be able to deliver the same performance, Cpac needs to target
functionality that consumes at least 93% of the execution time on the Pow-
erPC. As our current implementation with 23 acceleration objects that are
mainly DSP kernels, we believe that the reported 86% can be increased. Ei-
ther by hand-optimizing code for PowerPC or by mapping more functionality
to Cpac. However, as mapping is currently a manual step, the design effort is
high. Design tools that automate isolation and mapping of acceleration objects
are required to overcome this limitation. Such tools are currently researched to
be used in reconfigurable architectures [25] and in customization of instruction
set architectures [23].

6 Conclusions

This part presented a coarse-grained reconfigurable coprocessor and evaluated
its performance for vector operations, DSP kernels, and the G.723.1 speech
codec. The merits of reconfigurable implementations are the ability to com-
bine flexibility and performance. This is accomplished by a heterogeneous set
of hardware units such as memories, address generators, processing elements,
programmable interconnect, and a flexible computational model. A case study
was carried out to evaluate the performance of our proposed architecture for
speech processing applications. In the case study, an embedded system was im-
plemented on a Virtex-II Pro and Cpac was attached to a hardwired PowerPC
processor. Standard tools for compilation, synthesis and profiling were used in
our design flow. The case study demonstrated that up to 86% of the execution
time for the G.723.1 speech codec is spent in data driven kernels that can be
accelerated. We showed that these kernels can be accelerated 2 to 41 times
when mapped to the reconfigurable coprocessor. For a specific implementa-
tion of our coprocessor, the overall clock cycle count for the 6.3 kbps G.723.1
encoder was reduced by 83%. The implementation occupies 7500 slices and
operates up to 135 MHz on a Virtex II Pro.

A comparison with two application-specific coprocessors that target the
G.723.1 standard showed that the proposed architecture has better perfor-
mance. In addition, the proposed reconfigurable architecture provides a more
general solution to acceleration as compared to application-specific coproces-
sors. As automatic mapping tools mature more functionality may be acceler-
ated, because these tools automatically find functionality and reduce time spent
in manual programming. These tools should use the provided computational
models to find and map basic blocks, vector operations, and kernels.



Part II

System Level Exploration of Reconfigurable
Computing Platforms

Abstract

System level evaluation of reconfigurable platforms is necessary to predict per-
formance, and find and cure bottlenecks before a chip is fabricated. To evaluate
a complete system at register transfer level becomes unattractive because time
spent in programming and simulation is too long. Therefore, Electronic sys-
tem level design has been a driving factor for modeling languages that support
multiple abstraction levels. Standard SystemC is one such language that sup-
ports modeling abstractions from register transfer level to transaction level.
Although abstraction is important, another key challenge is interactive and
automated approaches to architectural exploration. This part presents a Sys-
temC environment with interactive control (Scenic), which addresses several
aspects necessary for efficient design exploration. Furthermore, it presents a
set of flexible transaction level models, which allows a complete reconfigurable
computing platform to be explored with Scenic. Developed models include a
generic coarse-grained reconfigurable architecture and a flexible instruction set
simulator.

Based on: Henrik Svensson, Thomas Lenart, and Viktor Öwall “System Level Mod-
eling of a Reconfigurable Computing Platform,” in preparation for ACM Transactions
on Reconfigurable Technology and Systems.
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1 Introduction

The last few years have seen numerous reconfigurable computing platforms that
combine a coarse-grained dynamically reconfigurable architecture with one or
more processors on a single chip [7, 38, 64]. One major challenge in this ma-
turing field is to allow quantitative analysis of these platforms, so that their
design parameters can be understood and adjusted. This requires systematic
methods that allow architectural refinement based on profiling data gathered
from different components in the system. Based on gathered performance met-
ric, architectural modifications can be suggested and explored. To perform
architectural exploration in simulations at register transfer (RT) level becomes
unattractive as small architectural changes require a considerable design ef-
fort. Furthermore, simulation speed offered at RT-level is too slow to allow
efficient software development or architectural exploration. These limitations
are addressed when developing a virtual platform. A virtual platform is used
to provide early estimates of platform performance, or used for software devel-
opment prior to RT-level, or existing silicon.

When reconfigurable computing platforms are developed, a virtual platform
is used to perform micro-architecture exploration of the reconfigurable archi-
tecture, either as a stand alone component, or integrated into the embedded
system. As a virtual platform has many different purposes, with varying de-
grees of temporal and structural accuracy, a modeling language that supports
multiple abstraction levels is best suited. Standard SystemC [93] is one such
language that supports modeling abstractions from register transfer to transac-
tion level [66–70]. With abstraction levels comes the ability to handle increased
complexity, allow gradual refinement, and provide a system perspective early in
the design flow. In addition, abstract models significantly increases simulation
speed so that complete systems can be efficiently explored with a simulation-
based methodology.

This part presents a set of flexible models intended for architectural ex-
ploration of reconfigurable computing platforms. In addition to the coarse-
grained reconfigurable architecture itself, there are models for instruction set
simulators, system buses, and external memories. Abstraction is addressed by
using the OSCI TLM standard [66], which provides a communication mecha-
nism based on function calls. Although abstraction is important, another key
challenge is interactive and automated approaches to architectural exploration.
Interactivity here refers to the ability to control and observe components dur-
ing simulation to gather profiling data for performance analysis, tune system
parameters, or debug the system. Automation refers to the ability to explore
multiple systems in batch mode and systematically change system parame-
ters and gather performance metric. These concerns are addressed with our



84 PART II. SYSTEM LEVEL EXPLORATION . . .

SPB

Transactor

ArchC
ISS

MPMC

Bridge

SMC

SPB PIM

S
M

C
P

IM

PC MC

PCMC

PC

PC

MC

MC

PC

PC

MC

MC

PC

PC

MC

MC

(a) (b)

Figure 1: A set of flexible transaction level models have been developed
for the Scenic environment, so that an reconfigurable platform can be
evaluated and tuned. The models include a reconfigurable array of pro-
cessing and memory cells, a flexible instruction set simulator, a multi-
port memory controller (MPMC), a bus (SPB), and a stream-memory
controller (SMC).

SystemC environment with interactive control (Scenic). Scenic is based on
OSCI SystemC 2.2 [94] and runs under Windows, Cygwin and Linux operating
systems.

This part has the following outline. Section 2 presents the Scenic library
models that have been developed to allow exploration of reconfigurable com-
puting platforms. Section 3 describes how the Scenic exploration environment
is used to construct modules and systems, and support interactive simulations.
Section 4 discusses different aspects of tool support for exploration, debugging,
and trade-offs between simulation performance and accuracy.

2 Scenic Library Components

A set of flexible transaction level models have been developed, so that a virtual
reconfigurable platform can be composed, evaluated, and tuned. Each model
uses Scenic features, so that performance metric can be collected, and config-
uration parameters tuned during an interactive simulation. Figure 1 shows the
different components arranged as a reconfigurable computing platform, which
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Figure 2: The developed processing cell allows a range of functional
blocks to be modeled. Either the processing cell contains a computa-
tional kernel described with behavioral code (a), an ALU (b), or a small
processor (c). The structural description of processor/ALU has cus-
tomizable instruction set and Scenic parameters to control execution
time for instructions, pipeline latencies, etcetera.

has the reconfigurable architecture connected to the system bus. This section
describes each model in more detail.

2.1 Reconfigurable Architecture

The reconfigurable architecture is organized as an W ×H array of intercon-
nected resource cells (RCs). Figure 1(b) shows a 4 × 4 array with two types of
RCs, processing cells (PCs) and memory cells (MCs). Any behavioral dataflow
component may be encapsulated in a PC, as seen in Figure 2(a), which shows
a processing cell reading two ports, calculating average, and output the result.
Behavioral models are useful for rapid development and evaluation of new func-
tionality. To allow such behavioral code to be swapped in and out, which is
necessary to simulate dynamic reconfiguration, a reconfigurable module class is
provided. Any module of that type can be repeatedly inserted and removed
from a specific PC during simulation. Another mechanism to model reconfig-
urability is suggested in [95], but it is based on modifications to the SystemC
core library.

In addition to behaviorial descriptions of processing cells, a structural model
has been developed. The structural PC allows both ALU arrays and processor
arrays to be constructed and modeled. It contains a computational kernel,
built either as processor, or ALU core. The ALU/processor model, seen in Fig-
ure 2(a) and (b), has a customizable instruction set and provides an extensive
set of exploration parameters in order to evaluate and tune its performance.

Memory cells are used to provide intermediate storage during computations
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Figure 3: A reconfigurable architecture are constructed from a set of
generic modules. First it is decided how the cells should be placed (a).
Then the amount of local communication is decided (b). At the top of
the local interconnect, a hierarchical routing network is added (c). When
the system have been elaborated, configurations can be downloaded to
control the operation and reconfigurable modules (RMs) can be swapped
in and out from a specific PC (d), in which grey area indicate configured
resources.

and they may be configured to operate as random access memory (RAM), or
first-in first-out (FIFO). They are also used as inter-processor communication
buffers as they generate a back-pressure signal to a sending cell if the buffer
is full, and a valid signal to a receiving cell if there is available data. Hence,
processing is self-synchronizing, so that any computation that uses output from
another processing cell is stalled until data becomes available, and result will
not be transmitted unless there is available buffer space. Each port on a pro-
cessing cell is connected to a memory cell, which handles communication with
other parts of the system. A memory cell can be configured to forward incom-
ing data to any arbitrary memory cell (global communication), or to simply
supply neighboring processing cells with the received data (local communica-
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tion). The memory cell can be customized with how many banks it should
contain, the storage capacity for each bank, and latency when accessing it.

The interconnect topology is a hybrid approach with dedicated local com-
munication and a global hierarchical network. Resource Cells have a number of
I/O ports from all four sides, which define local communication bandwidth ca-
pacity. In addition, RCs have an optional uplink and downlink port to connect
to the global network. Local communication uses dedicated links to connect
neighboring resource cells. The global network connects any two cells with
single-path hierarchical routing, in which transfers are dynamically routed to
the destination using an identification field in the transfer. Routers are cus-
tomized with link and routing capacity, and output buffer size.

With these flexible modules for processing, memory, and routing, a recon-
figurable architecture is composed. Constructing a reconfigurable architecture
from these modules is divided into four phases, as shown in Figure 3. First, the
array size, placement, and parameter setup for processing and memory cells
are considered Figure 3(a). Secondly, the local interconnect is specified Fig-
ure 3(b), were it is used to connect the 4 nearest neighbors. However, higher
orders of neighboring connectivity is supported if required. Third, on top of
the local interconnect is added a hierarchical routing network Figure 3(c), and
the capacity of links and routers are specified. Last, when the system has
been constructed, configurations that controls operations in processing cells,
memory cells, and the hybrid network are downloaded Figure 3(d). In this
phase, reconfigurable modules (RM) can be swapped in and out from process-
ing cells, to allow behavioral descriptions to act as being a processing cell, as
was described in Figure 2(a).

2.2 Instruction Set Simulators

Instruction set simulators (ISSs) are one of the most required models in a sys-
tem simulation. They need to be generic so that a wide range of processors can
be modeled end explored and they need to support various degrees of tempo-
ral accuracy so that simulation speed and accuracy can be selected to current
design activity. ArchC [96–98], is an architectural description language and an
ISS generator, which has been modified to the Scenic environment and used
to model different types of processors in a reconfigurable computing platform.
ArchC addresses modeling of instruction set simulators covering a wide range
of instruction set architectures (ISA) and various abstraction levels. A Sys-
temC model of an ISS is generated from a high-level architecture description
language (ADL). Several existing processor such as MIPS-I, PowerPC, SPARC-
V8, and Intel 8051 are described using the ArchC ADL and these descriptions
are available at the ArchC website [96]. The temporal accuracy in ArchC mod-
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$ acsim mips.ac -scenic
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Figure 4: The ArchC source code have been modified, so that any ar-
chitectural description can be parsed into SystemC file that contains a
sci module of the instruction set simulator. Objects in the ADL file,
such as memories and register, are automatically reflected, and custom
commands to control and observe the model are generated.

els are defined in three levels as either instruction accurate, cycle-approximate,
or cycle-accurate. The first level lacks time information in order to achieve a
high simulation speed, the second level has approximate timing, and the latter
has precise timing of the internal behavior but with reduced simulation per-
formance. Cross-compilation to existing models is supported through gcc and
binary code generation for customized instruction-set architectures supported
through the ArchC assembler generator [99].

The ArchC source code has been modified to optionally generate an ISS
that utilizes features in the Scenic core library. Hence, a sci module of any
ADL file is automatically generated, as shown in Figure 4. It means that
internal resources such as memories and registers, declared in the ADL file,
are automatically reflected in the Scenic user interface for introspection. In
addition, system parameters used to control different aspects of the simula-
tion can be changed during simulation and customized profiling data observed
and collected for visualization and exploration. Customized commands to load
applications, start GDB debugging, and read and write to variables are auto-
matically generated and reached in Scenic environment.

ArchC models allow connection to external components through OSCI TLM
ports. Any memory or register declaration in the ADL specification can be ex-
changed to the corresponding TLM port. This allows cache systems, coproces-
sors, functional units, buses, and external memories to be connected to allow
these components to be explored when profiling an application. ArchC models
connects to Scenic library components, such as RA, SPB, or MPMC, through
transactors that are used to adapt the ArchC specific TLM request-response
pairs to the once used in RA, MPMC, or SPB protocol. Transactors are also
used to model different coupling mechanisms between the processor and the
reconfigurable architecture, as shown in Figure 5. In Figure 5(a), the ISS and
the reconfigurable architecture are connected to a bus, and in Figure 5(b) a
dedicated link is used so that the RA can be coupled as a coprocessor, or as a
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Figure 5: A transactor is used to convert the ArchC specific interface to
interfaces used in other components, and it allows different coupling
mechanisms between processor and reconfigurable architecture to be
modeled. The ArchC ISS is connected to the reconfigurable architec-
ture through the bus system (SPB) (a), or through a coprocessor or
functional unit connection (b).

functional unit.

2.3 Bus and Memory Models

Generic TLM models of embedded components, such as system processor bus
(SPB) and multi-port memory controller (MPMC) have been developed for
the Scenic environment, as shown in Figure 1(a). Models have an exten-
sive set of parameters for tuning the architecture and collect profiling data.
The MPMC can be configured to emulate different data rates (SDRAM, DDR,
DDR2), operating frequencies, wordlengths, internal parameters for controlling
the memory timing, and arbitration policy for the ports. The SPB can be con-
figured to emulate buses with different characteristic such as arbitration cycles,
arbitration policy, wordlength, and latency. Scenic also supports integration
of unmodified existing TLM models such as GreenBus [75] or open source
protocol (OCP) [100], which supports several abstraction levels of bus based
communication with different characteristics of time accuracy and simulation
performance.

Processors or any other bus-master may access the reconfigurable archi-
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tecture’s internal memories, for configuration and data, using the bus bridge,
shown in Figure 1(a). In addition, a stream memory controller (SMC), which is
seen Figure 1(a), is used for fast transportation of data between main memory
and the reconfigurable array. The SMC have direct memory access through a
dedicated port to the multi-port memory controller, and it can connect to any
router in the hierarchical routing network. Data that should be read or written
using SMC are defined by a pointer to the first element, an access shape, and an
identification field which is used to route data to/from a unique resource cell
in the array. These parameters are controlled by the processor, which initiate
new data streams when the array is reconfigured. The access shape is described
with three parameters [46]: stride, span, and skip. Stride defines the distance
between addresses. Span defines how many addresses that should be accessed
before applying the skip value.

3 SystemC Simulation and Exploration Environment

To address the discussed aspects for efficient design exploration, a SystemC
environment with interactive control (Scenic) has been developed. Scenic is
based on OSCI SystemC 2.2 and extends the functionality with features to de-
fine exploration scenarios using a customized scripting environment, construct
and configure simulations from extensible markup language (XML), interact
with simulation modules during run-time, and the ability to control the sim-
ulation kernel using micro-step simulation. Scenic extends OSCI SystemC
without modifying the core library and hence integration of 3rd party modules
are supported without any modifications. These extensions provide means for
more effective simulation and exploration of complex systems, and are briefly
described below and presented in more detail in the following sections:

◾ Scripting environment – A customized set of commands to define
simulation scenarios, interact with modules, and gather and post-process
performance metrics.

◾ Module construction – New user modules are rapidly constructed
from existing base classes that contain common building blocks, conve-
nience functions, and macros. Instruction set simulators that utilize fea-
tures in the Scenic core library are automatically generated by running
a modified version of ArchC [96]. Highly flexible modules of buses and
memories have been developed to allow modeling of complete embedded
systems.

◾ System construction – User modules are automatically registered
during program start-up and stored in a module library, from which new
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Figure 6: (a) A simulation is created from an XML description format
using a library of simulation modules. (b) The modules can communi-
cate with the Scenic shell to access member variables, notify simulation
events, and filter debug messages.

simulation modules are dynamically created and instantiated. Systems
are described with XML, which can be parsed from the scripting envi-
ronment to construct and configure simulations without re-compilation
when systems are altered.

◾ Interactive simulation – Users can interactively start and stop the
simulation using the non-blocking commands run and stop. Internal
data structures and module hierarchy are accessible from the scripting
environment, allowing performance metrics to be observed and explo-
ration parameters controlled. Dynamic simulation events allow simula-
tion modules to notify the simulator of specific conditions on which to
observe, reconfigure, or halt the simulation.

Figure 6(a) shows the design flow from XML description to an interactive
SystemC simulation model, and the environment is divided into two tightly-
coupled parts: the Scenic core and the Scenic shell. The Scenic core
handles the SystemC extensions to interact with simulation modules, and the
Scenic shell handles the user interface and a tcp/ip socket to communicate
with external programs.
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3.1 Scripting environment

Scenic handles user interaction from a command line interface, script files, or
from a connection to a graphical user interface (GUI) over a tcp/ip socket.
It can also be controlled from Matlab to support a more powerful scripting
environment, and a library of Matlab functions has been developed to easily
connect and communicate with the simulator. The command line interface
enables efficient scripting and allows users to setup different scenarios in order
to evaluate system architectures.

Commands are executed from the command line interface in the Scenic shell
by typing the command name followed by a parameter list. There are two types
of commands: Built-in commands and Module commands. Built-in commands
are implemented in the Scenic shell and include setting environment vari-
ables, evaluate basic arithmetic or binary operations, loop-constructs, handle
file I/O, etcetera. Module commands are implemented inside User Modules to
allow customized module-specific functionality to be called from the command
line. If a hierarchical name of an instantiated SystemC module is given instead
of a built-in command, the command is passed to and evaluated by that mod-
ule. For example, memory modules can implement customized commands to
inspect memory contents, and processor modules can implement customized
commands to load programs, or inspect performance metric. All simulation
modules have a common interface to manipulate data structures from the com-
mand line. From the command line, internal variables of modules are viewed,
modified, and also periodically logged to capture trends over time. Structural
reflection is supported by using the built-in list command, which list names
and types of modules in the command window.

3.2 Module Construction

Scenic interacts with simulation modules during simulation-time, implemented
by extending the OSCI SystemC module class with run-time reflection. To
take advantage of the Scenic extensions, the only required change is to use
sci module, which is an extension of sc module that encapsulates func-
tionality to access the simulation modules from the Scenic shell. However,
Scenic can still simulate standard OSCI SystemC modules without any re-
quired modifications to the source code. This is an important aspect since it
allows integration and co-simulation with existing modules. The class hierarchy
and the extended functionality provided by the sci module class is shown in
Figure 7. A user module that inherits from sci module gets access to macros
and convenience functions to register variables that should be controlled and
observed during simulation, to extract constructor parameters, to output debug
messages, etcetera.
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Figure 7: Class hierarchy used to implement a user module. The regis-
tered variables are stored in sci access, which is also used for variable
registration. The callback, access and custom access functions are vir-
tual and only implemented where actually needed. Arrows show how
derived classes are created from base classes, with arrows pointing to
base classes.

3.3 System Construction

Generation of an embedded system simulation in Scenic is done either using
the traditional SystemC procedure for instantiation, configuration and binding
of the components using a C++ file, or by using an XML specification. The
XML specification contains information about how to configure and connect
components and provides information about design hierarchy. When a system is
constructed from an XML specification, all components are created dynamically
during elaboration. Consequently, source files does not have to be re-compiled
when the system is modified.

Scenic contains a module library from which SystemC modules are created.
User modules derived from sci module are automatically registered during
program start-up and stored in the module library. In XML specifications,
modules can be instantiated at any location in design hierarchy. Instantiation
and configuration are described in XML as

<INSTANTIATE>
<MODULE type="SPARC_V8" name="processor">

<PARAMETER name="PERIOD" type="TIME" value="2.5 ns"/>
<PARAMETER name="DCACHE" type="UINT" value="8192"/>
<PARAMETER name="ICACHE" type="UINT" value="8192"/>
<PARAMETER name="MULTEN" type="BOOL" value="TRUE"/>
...

</MODULE>
</INSTANTIATE>

Internally, instances of a module are created by calling the module library
and providing a list of module parameters. All sci module uses the same
constructor arguments, which are passed to the module using a parameter
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vector supporting arbitrary data types. The module extracts parameters of
any type during system elaboration to obtain its static configuration. After
elaboration, internal configuration variables are controlled from the command
line, so that they can be changed during an interactive exploration scenario.

3.4 Interactive simulation

Interactive exploration requires internal variables to be reflected and controlled
during run-time, and that simulations may be halted when reaching user-
defined observation points. In Scenic, variable reflection and controllability
are supported through access variables, and user-defined observation points
supported through dynamic or static simulation events. By introducing micro-
step simulation it is possible to interactively pause the simulation to modify or
view internal variables, and then continue execution. Simulation is controlled
using the non-blocking commands run and stop, or the blocking command
runb followed by a time. Non-blocking commands are useful for interactive
simulations, whereas blocking commands are useful for scripting.

Access Variables

Variables inside a sci module are exported to the Scenic shell as access vari-
ables. This reflects the variable type, size and value during simulation. Hence,
access variables enable dynamic configuration (controllability) and extraction
of data during simulation (observability). Figure 8 shows how the user module
exports an access variable named data, which is created and stored internally
and visible from the Scenic shell. Access variables are implemented using a
templated class, sci variable, that encapsulates the member variable and en-
able operations, for example get and set, to be evaluated on arbitrary data types
using standard C++ iostreams. Hence, for user-defined types the stream op-
erators (<< and >>) must be supported.

Performance data, such as number of bus transactions, can be directly re-
flected using a sci variable. However, in some cases a mathematical expres-
sions are required when the performance metric is data or time dependent.
This requires functional code to evaluate the expression and assign the result
to the access variable, and it is supported in Scenic by using callbacks. When
the variable associated with a callback is accessed, a callback function is eval-
uated and assigns a value to the variable. This value is then reflected in the
Scenic shell. The callback functionality may also be used when assigning
values to variables that affect functionality or configuration. For example, a
variable that represents a memory size, which requires the memory to be re-
sized (reallocated) when the variable changes. The following code shows an
example of how to reflect variables and how to implement a custom callback
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Figure 8: A local variable is registered 1○, which creates a sci variable
object 2○ pointing to the variable 3○. It contains features to create a
history buffer and to register a periodic logging interval with a global
scheduler, to capture variable values at constant intervals 6○. The
Scenic shell can access a variable through the sci access object 4○,
which contains a list of all registered sci variable objects and functions
to access those 5○.

function:

class ScenicModule : public sci_module { /* extended module */
private:

void* m_mem; /* pointer to data */
short m_size; /* scalar data type */
double m_average; /* scalar data type */
int m_data[5]; /* static vector */

public:
ScenicModule(sc_module_name nm, SCI_PARAMS& params) :

sci_module(nm, params)
{

scenic_variable(m_data, "data"); /* variable "data" */
scenic_callback(m_size, "size"); /* callback "size" */
scenic_callback(m_average, "average"); /* callback "average" */

}

virtual SCI_RETURN callback(SCI_OP op, string name) { /* callback function */
if (name == "size")

if (op == WRITE) m_mem = realloc(m_mem, m_size); /* realloc "size" bytes */
if (name == "average")

if (op == READ) m_average = average(m_data); /* return average value */
}

};

When the value of the size is modified it triggers the callback function to
be executed and the memory to be reallocated. The variable average is also
evaluated on demand, while the data vector is constant and reflects the current
simulation value. The registered variables are accessed from the Scenic shell
using set and get commands, as shown in the following command line sequence.
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[0 ns]> ScenicModule set -var size -value 256
[0 ns]> ScenicModule set -var data -value "4 7 6 3 8"
[0 ns]> ScenicModule get

data 5x4 [0] { 4 7 6 3 8 }
average 1x8 [0] { 5.6 }
size 1x2 [0] { 256 }

The value of an access variable can be periodically logged to a history buffer
to study trends over time. The periodical time interval and the depth of the
history buffer are configured from the Scenic shell. To save memory, history
buffers are created dynamically when variable logging is enabled. Periodical
logging requires the variable class to be aware of SystemC simulation time.
Normally, this would require each sci variable to inherit from sc module
and contain a SystemC process. This would consume a substantial amount
of simulation time due to increased context switching in the SystemC kernel.
To reduce context switching, we propose an implementation using a global
scheduler that handles logging for all variables in all modules. The global
scheduler, shown in Figure 8, improves simulation time since it is only invoked
once for each time event, which can log multiple variables in a single context
switch.

Simulation Events

Simulation parameters and module configuration affect module functionality
and therefore also the required simulation run-time. When running a batch
of simulations using different configurations the required simulation run-time
for each system is often unknown. A passive solution is to always run the
simulation for a longer time than optimally required. This guarantees simula-
tion completeness, but leads to poor simulation performance and problems to
correctly evaluate performance data that depends on simulation time.

We propose the use of static and dynamic simulation events, which can
be configured to execute Scenic commands when triggered. In this way, the
simulation modules can notify the simulator of specific events or conditions on
which to observe, reconfigure, or halt the simulation. A simulation event is a
sci variable of string type which can be assigned a Scenic shell command.
Static simulation events can be inserted in user code to represent special con-
ditions, which trigger execution of a any assigned shell command if satisfied.
The following code shows how a static event, named onComplete, is created.
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ScenicModule::ScenicModule() {
...
scenic_event(m_event, "onComplete", "Completed!");
SC_THREAD(SimThread);

}

void ScenicModule::SimThread() {
...
if (sc_time_stamp() == sc_time(1, SC_US))

SCI_EVENT_NOTIFY(m_event); /* notify */
...

}

The event can be configured from Scenic to execute a shell command when
the event is triggered. The following Scenic command line sequence shows
how the static event, onComplete, is assigned to execute the stop command
when triggered.

[0 ns]> ScenicModule set -var onComplete -value "stop"
[0 ns]> run 2 us

[ScenicModule] Completed!
[Scenic] Simulation halted @ 1 us.

[1 us]>

The module generates a simulation event at time 1us, which executes the com-
mand stop to halt the simulation.

When a condition that should trigger an event is unknown at compile time,
dynamic instead of static simulation events are used. Dynamic simulation
events may be registered at run-time from the Scenic shell to notify the sim-
ulator when a boolean condition associated with an access variable is satis-
fied. The following example registers a new dynamic event that executes a
Scenic script called overflow :

[0 ns]> ScenicModule log -var average -every "1 ns"
[0 ns]> ScenicModule event onOverflow -when "average > 8"
[0 ns]> ScenicModule set -var onOverflow -value "overflow"
[0 ns]> run 10 us

[4700 ns] [ScenicModule] Executing script "overflow"
[10 us]>

When the condition, average > 8, is satisfied, a user-defined script named over-
flow is executed. Since the condition is only evaluated on data in the history
buffer, repeated assignments and false values during delta execution is effec-
tively ignored. The internal function calls to create a dynamic simulation event
is shown in Figure 9. A condition is created from the Scenic shell, which reg-
ister itself with the access variable and creates a new simulation event. When
the access variable is logged, the condition is evaluated and triggers the event
if the condition is satisfied.
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scenic_variable(v)

SCI_VARIABLE SCI_CONDITION SCI_EVENT SCENIC shell

ScenicModule event onThree -when v=3
register callback

create onThree

log (v=2)

log (v=3) notify
execute "stop"

construct

simulate

ScenicModule log -var v -every 10 ns

t = 10 ns

t = 20 ns

t = 0 ns

assign "stop"

stopped

configure

end-of-elaboration

Figure 9: The function call flow to create a dynamic simulation event
from the Scenic shell. An access variable is configured to be logged ev-
ery 10 ns. A condition is created and registered with the access variable.
During simulation, the condition is evaluated each time logging to his-
tory buffer is carried out. When the condition is satisfied, the associated
event is triggered, which in this example occurs after a simulation time
of 20 ns.

Debug message filtering

The use of debug messages is a natural approach to trace if simulation models
execute correctly. However, for large simulations the flow of messages often
contains too detailed information and from too many simultaneous sources. To
address this problem, we introduce functionality to control the message flow
from each simulation module and to trace the source of each message. The
sci module contains a sci variable to configure the debug level, which de-
termines how detailed information each module produce. A group of modules
can be configured simultaneously to the same debug level and a child-module
initially inherits the debug level from its parent simulation module. The hierar-
chical SystemC name is used to specify the source of the message. Debug mes-
sages are produced by inserting macros in the functional code, and is checked
at run-time against the current debug level value.

For inactive messages, the impact on simulation performance is negligible
since the debug level is accessed without the overhead of a function call. How-
ever, printing debug messages, either to command line or to file, results in a
major simulation overhead, and that is why this functionality has been intro-
duced. As an example, experiments with a system showed that the overhead for
producing verbose debug messages was 30x the original simulation run-time.
Limiting the debug message flow to a specific source of interest and to a certain
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Figure 10: There are several ways to observe the system for debugging
or exploration purposes: Using GDB session 1○, using the Scenic shell
2○, using an external plot program 3○, or using file I/O 4○.

type of messages dramatically improve simulation run-time, and is a trade-off
between observability and simulation performance.

4 Exploring Reconfigurable Computing Platforms

This section describes how a virtual platform with processor, bus, external
memory and a reconfigurable architecture is simulated in Scenic. Different
aspects of tool support for exploration, debugging, and simulation performance-
accuracy trade-offs are discussed.

4.1 Performance Exploration

When a system is constructed and an application mapped to it, it needs to
be evaluated to ensure that its performance is sufficient. Evaluation requires
both software and hardware performance metrics to be gathered and analyzed.
This section discusses how Scenic, and our library components support such
exploration. It first describes how software profiling is performed, secondly how
hardware components can be explored, and last how systematic batch simula-
tions can be generated. Figure 10 shows an overview of different techniques to
observe models during simulation.
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Software Profiling

A common approach to application profiling is to use a tool, such as gprof [101],
to analyze data that have been collected during run time. Collected data is
used to generate a flat profile, that shows the amount of time the program spent
executing each function and a call graph, that shows how much time was spent
in each function and its children. Based on this information, system architects
can suggest candidate functionality for acceleration in reconfigurable fabric.

In Scenic the application profile may be generated by using the built-in
functionality to periodically log variables to a history buffer. By configuring log-
ging of the program counter each clock cycle, the flat profile and the call graph
is generated in a post-processing step that uses the logged program counter
and the application object dump. This approach prevents special compilation
of the application code and consequently it is non-intrusive. The overhead of
logging the program counter every clock cycle is about 10% for an embedded
system with a MIPS-I, SPB, and MPMC with cycle-approximate temporal be-
havior. The same method could be used to generate more fine-grained profiling
information such as inner loop profiling.

System Level Profiling

Application profiling provides a good indication of functionality that should be
hardware-accelerated or optimized to achieve the required performance. How-
ever, to identify and eliminate bottlenecks at system level, customized profiling
data in other system components needs to be gathered. This profiling data is
annotated into the models at design time together with exploration parame-
ters that are used to tune performance. During exploration, periodic logging
of profiling data can be switched on when required in order to analyze trends
over time. When amount of gathered data is large and complex scenarios need
to be analyzed, visualization is an important aspect to aid designers interpret
data and draw conclusions. This is supported in Scenic through a TCP/IP
connection to any external program with plotting capabilities and a library of
Matlab functions has been developed to connect and communicate with the
simulator.

The Scenic environment provides the capability to measure elapsed sim-
ulation time between different events in the system. The practical use of this
is to gather time estimates of algorithm execution time, or any other time in-
formation which can not be annotated into the models at design time. This is
supported using dynamic simulation events, which are created in run-time from
the Scenic shell. The shell command may be to simply stop the simulation,
or to execute a script which take a time stamp, gather annotated profile data,
do mathematical operations and writes any result to a file. Consequently, to
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measure execution time for an algorithm, events can be created to log elapsed
time as the program counter reaches specific values.

Systematic Batch Simulations

When embedded systems are developed there are multiple design parameters
that need to be tuned in order to optimize performance. To manually change
parameters, and collect performance data for further analysis can be very time
consuming. Within the proposed methodology, the ability to explore and tune
system parameters in batch mode has proven to be very useful. To allow batch
simulations system generation, configuration, scenario setup, and data collec-
tion have to be automated. This is supported in Scenic using the built-in
customized script language. Built-in commands include for example setting
environment variables, looping constructs, and evaluating basic arithmetic op-
erations. In particular, each modules hierarchical SystemC name is used to
communicate with the system components. Hence, loop constructs which sys-
tematically generate, configure, run and capture performance metrics may be
described in a script file. The following script shows how to evaluate different
processor cache sizes, when running a JPEG encoder.

% Define data cache size in kB
set cache "8 16 32";

% Run JPEG encoding with different cache sizes
foreach -var $cache -command run(embbeded.xml, cjpeg, $cache)

For each cache size, a new system is generated from an XML file, the cache
size is configured, the JPEG application is downloaded, and after simulation
has finished the execution time is appended to a result file.

4.2 Debugging

This section describes how Scenic library components are interactively de-
bugged.. There are several mechanisms added in all library modules to allow
them to be debugged and an overview of these mechanisms are shown in Fig-
ure 10. In addition, external debug programs can be connected to allow efficient
software debugging.

Software

All processor resources such as registers, memories and TLM ports are made
accessible in Scenic through callback functions, or access variables. Conse-
quently, basic debugging capabilities are offered when running Scenic stan-
dalone. For example, breakpoints can be dynamically configured by using
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dynamic simulation events which execute the stop command when the pro-
gram counter reaches a specific value. However, some activities require more
powerful debug environments, which is supported by connecting the SystemC
module to an external debug program such as GNU debugger (GDB).

Software debugging using GDB remote target is supported for all ArchC
generated modules instantiated in the system. Connecting one GDB session to
a single ArchC module and running the program does not give any measurable
simulation overhead. All ArchC modules have a command which dynamically
opens a GDB port and multi-core systems are supported by opening a GDB ses-
sion for each module. In addition all Scenic commands to control and observe
the system are available. When connection has been established between the
simulation models and GDB, the non-blocking command run is used to start
the simulation in Scenic. Stepping and setting breakpoints is then applied the
traditional way from each GDB session which controls how time advance in the
simulation. When GDB access memory over TLM ports it uses a backdoor ac-
cess to a global memory map, in order to avoid that simulation time advance or
that number of bus transactions are accumulated. All memory-mapped storage
is automatically registered for backdoor access.

System Components

The use of debug messages is a natural approach to trace if simulation models
execute correctly. However, for large simulations the flow of messages often
contains too detailed information and from too many simultaneous sources.
Dynamic simulation events can be used to activate more detailed debug in-
formation when specific observation points in simulation are reached. During
simulation, a designer may setup conditions that should halt simulation, write
observation data to log file, change debug level or similar. It could be used to
stop simulation after a specific amount of bus transactions, or when a transac-
tion from a master with a specific identification occurs on the bus etcetera.

In order to trace communication bugs, models using TLM channels to com-
municate may optionally be configured to output a timeout message after a
specific simulation time when a call has not returned successfully. This is very
useful to find communication bugs that occurs in a chain of connected TLM
models with master, transactor, bus, and memory and also to isolate com-
munication bugs caused by improper configuration of memory map or port
connections.

4.3 Accuracy and Simulation Performance

To make practical use of a virtual platform in software development and explo-
ration scenarios, simulation speed has to be fast. Simulation speed is affected
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Figure 11: All modules may access memory mapped storage, such as reg-
isters and memory, using a backdoor access that is implemented using a
global memory map. In this example, the ArchC transactor use back-
door access to increase simulation performance when temporal accuracy
may be reduced.

by the abstraction level but also by simulator implementation such as event-
driven or cycle based [70]. The OSCI simulator is event-driven and the following
discussion is limited to the abstraction levels that can be applied to increase
simulation speed of virtual platforms using the OSCI simulator. A number of
abstraction modeling styles have been proposed, each falling into one of the cat-
egories: untimed, estimated timing and cycle accurate. While untimed models
are mainly used for software development, estimated timing and cycle accurate
models are used for architectural exploration. An untimed model without pin
accurate interfaces is expected to provide a simulation speed several orders of
magnitude higher than a cycles accurate and pin accurate SystemC model. It
is argued that a virtual platform needs to provide support to switch abstrac-
tion levels during simulation. With abstraction level interactivity, architects
may increase accuracy of the model only during periods when profile data is
gathered, or when debugging the system on a detailed level.

The Scenic models offers two ways to interactively switch abstraction lev-
els: By reducing number of wait calls inside a SystemC thread or by reducing
number of SystemC processes that need to be invoked by the scheduler to ex-
change a transaction. These abstractions can be used to increase simulation
speed in parts of the simulation which does not need that level of detail in
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Table 1: Simulation time required when executing JPEG encoding on a vir-
tual platform with a MIPS processor, a system bus, and a multi-port memory
controller. Temporal accuracy is varied from instruction accurate, to using
memory backdoor access, to using bypassed wait statements.

Accuracy Simulation Time Relative Simulation Time

(s) (time units)

Cycle-appoximate 1340 15

Backdoor 502 5.5

Untimed 92 1.0

timing. For example, profiling is to be performed after the operating system
has been booted and the application starts it’s execution. For this purpose, a
dynamic simulation event can be configured to run a script which changes to a
more accurate abstraction level when the program counter reaches the applica-
tion code. The first optimization, invocation of wait statements, is controlled
by setting batchsize which controls number of instructions to execute before
wait is called in a thread. It is implemented in processing cells and ArchC gen-
erated modules. The second optimization, concerns reducing context switching
when chain of processes need to be activated to complete a transaction. For
example, a transaction that requires processes in processor, then bus, and then
memory to be activated to exchange a single transaction. By using backdoor
access to read and write to the system’s memory mapped storage, such context
switching is reduced. Transactors that connects ArchC modules to the sys-
tem bus can be configured to use the backdoor to find and access the memory
through a global memory map, which prohibit process activation in bus and
memory controller. Consequently, reducing the amount of context switching
during simulation at the cost of reduced temporal accuracy. The global mem-
ory map is shown in Figure 11, and it may be accessed by any module in the
system.

Table 1 shows the effect on simulation time as backdoor access and bypassed
wait calls are applied to a virtual platform executing JPEG encoding. It is
shown that reducing temporal accuracy from instruction accurate to untimed
behavior results in a 15x performance improvement. In this specific simulation
the untimed behavior is accomplished by setting batchsize to the maximum
value, which assures that no wait statement is called in the instruction set
simulator. It is clear, that if performance exploration is required only in a
fraction of the total simulation run-time and if temporal accuracy may be sac-
rificed otherwise, interactive switching of abstraction levels increases simulation
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performance without reducing the accuracy of the observed metric.

5 Conclusions

Development of reconfigurable computing platforms requires methods and tools
that aid designers in a variety of activities such as architectural exploration,
debugging, and software development. This part has presented a SystemC en-
vironment with interactive control (Scenic), which addresses these activities
through an amount of features added to the OSCI SystemC library. Further-
more, a set of flexible transaction level models have been presented, so that a
complete reconfigurable platform with reconfigurable fabrics, processors, mem-
ories, and buses may be constructed. Different aspects of tool support to build,
configure, observe, and interactively control simulation models were discussed.
With interactive simulations a number of features are controlled at run-time,
so that simulation performance and accuracy are adapted to current design
activity.





Part III

Modeling and Exploration of a Reconfigurable
Processor Array

Abstract

This part presents a coarse-grained reconfigurable architecture built as an ar-
ray of interconnected processing and memory cells. A hybrid interconnect net-
work that consists of local communication with dedicated wires and a global
hierarchical routing network, is proposed. Memory cells are distributed and
placed close to processing cells to reduce memory bottlenecks. Processing cells
are instruction set processors with enhanced performance for communication-
intensive inner loops. Inter-processor communication is performed using a self-
synchronizing protocol that simplifies algorithm mapping and manages un-
predictable time variations. The reconfigurable architecture is described as a
scalable and parameterizable SystemC transaction level model, which allows
rapid architectural exploration. Our exploration environment Scenic is used
to setup scenarios, control the simulation models and to extract performance
data during simulation.

Based on: Henrik Svensson, Thomas Lenart, and Viktor Öwall, “Modelling and Ex-
ploration of a Reconfigurable Array using SystemC TLM ,” in Proceedings of IEEE In-
ternational Parallel and Distributed Processing Symposium, Miami, USA, April 2008.
and: Thomas Lenart, Henrik Svensson, and Viktor Öwall, “A Hybrid Intercon-
nect Network-on-Chip and a Transaction Level Modeling approach for Reconfigurable
Computing,” in Proceedings of IEEE International Symposium on Electronic Design,
Test and Applications, Hong Kong, China, January 2008, pp 398–404.
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1 Introduction

Reconfigurable computing platforms can combine high performance with flexi-
bility [7]. These platforms are typically organized as a run-time reconfigurable
architecture (RA) connected to a general purpose processor (GPP), so that
computation intensive kernels are mapped to the RA and the remaining appli-
cation is executed in the GPP [38].

Coarse-grained reconfigurable architectures (CGRAs) are promising in many
application areas and several architectures have been proposed over the last two
decades [64]. Even FPGA vendors currently include specialized coarse-grained
blocks, such as signal processing datapaths, and processor kernels, to improve
performance. A CGRA trade mapping flexibility, as offered by a traditional
FPGA, to reduce delay, area, power, and configuration time [54]. Proposed
CGRAs diverge in aspects such as granularity, interconnect topology, mem-
ory system, and programming model. In particular, presented CGRAs have
different objectives when balancing resources for processing, memory and com-
munication in a constrained chip area. The design space for these architectures
is complex and architects are faced with the challenge of finding systematic
approaches to evaluate and explore architectures before a chip is fabricated.

In this part, the coarse-grained reconfigurable architecture Acelray is pre-
sented. To obtain insights into the design space before a chip is fabricated,
Acelray is developed as a scalable and parameterizable SystemC architec-
ture model. The architecture is organized as an array of processing cells and
memory cells, which communicate using a local and a global communication
network. The processing cells contain programmable processors, communicat-
ing with a self-synchronizing mechanism. The memory cells contain memory
banks that can be used as FIFO or RAM. The interconnect combines local
communication on dedicated links with a flexible global hierarchical routing
network. Hierarchical routing reduces the router complexity since there is only
a single path between processing nodes. Dedicated local links provide high
speed communication between neighbor resources.

Design of a reconfigurable architecture needs to be addressed at a system
level, and simulation-based performance exploration is required to analyze im-
pact of design parameters. Simulation-based performance exploration is lim-
ited by simulation run-time and the required design effort to develop, change,
and refine models. This is addressed using transaction level modelling (TLM),
which improves the exploration abilities, since time spent in design, simulation
and refinement is reduced, as compared to RTL code. Designer interactive
exploration is addressed using our SystemC environment with interactive con-
trol (Scenic). Scenic is used to automate construction of simulation mod-
els, simulation scenario set-up, and collection of performance data. As an



110 PART III. MODELING AND EXPLORATION . . .

approach to exploration we propose having a set of parameterizable library
models and a topology and network generator which can generate a simulation
model of a reconfigurable array. Simulations are then interactively controlled
with Scenic user interface from which architects can inspect behavior and
performance metric during simulation.

This part is organized as follows: Section 2 describes related work, Section
3 presents the modelling and exploration methodology, and Section 4 gives an
overview of the architectural organization. In Section 5 and Section 6 process-
ing and memory cells are proposed. In Section 7 routers used in the hierarchical
network are proposed. In Section 8, experimental studies and results are pre-
sented. It demonstrates the performance for the communication network, shows
how to map and analyze a filter algorithm, and presents synthesis results from
a prototype implementation. Finally, Section 9 concludes the part.

2 Related Work

There are several research fields that relate to the work presented in this part:
Organization of CGRAs, network-on-chip (NoC) communication, and method-
ologies to enable efficient design space exploration of these.

Coarse-grained Reconfigurable Architectures – An overview on re-
configurable computing is presented in [7,38]. Different CGRAs are briefly sum-
marized in [64]. There are several well known examples of industrial CGRAs
such as PACT XPP [44] and Field Programmable Object Arrays from Math-
Star [61]. The presented work reminds of MATRIX [56], RAW [41], CHESS [57],
PicoArray [58], WPPA [59], MPPAs from Ambric [60], and FPOAs from Math-
Star [61], because they are built as arrays of small processors.

We propose an array architecture that are build from processing and mem-
ory cells. The processors are RISCs with a customizable instruction set and
with enhanced functionality for fast access to the interconnect ports. Each pro-
cessor has a small program memory and can execute one ore more instructions
of a task that has been spatially partitioned. The memory cells are distributed
and shared resources that are used to store coefficients or intermediate results
during computation. They can operate as first-in first-out (FIFO) buffers, or as
random access memory (RAM). To allow address generation and datapath to
execute in different processors, the RAM mode allows data and address ports
to be associated with different processing cells.

Topology and routing – Recent work compares many popular NoC
architectures, including 2D mesh, ring, torus, folded torus, and spidergon net-
works [102] [37]. Hybrid topologies are discussed in [103] as a way of aggregating
bandwidth between adjacent processing cells, but introduce longer latency and
require bridges to convert between protocols. The 2D mesh architecture in Fig-
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Figure 1: (a) 2D mesh with resource cells, (b) Torus, (c) Proposed archi-
tecture with nearest neighbor and hierarchical communication. In this
example, four basic cells are connected together using dedicated wires for
local communication and five network routers for global communication.

ure 1(a) is a popular and well researched architecture in academia, with several
variations such as torus shown in Figure 1(b) and the folded torus. Mesh ar-
chitectures are both regular and scalable, but comes with the downside of poor
global communication and often large router logic overhead. Global communi-
cation is routed along the horizontal and vertical wires from source to destina-
tion, consuming local bandwidth along the way. Each processing cell connects
to the two-dimensional mesh using a network router, which contains buffer
queues to store and forward packets from all directions. Since every router
can potentially handle communication from any source to any destination, the
router becomes unnecessarily complex. Hence, pure mesh architectures face
problems concerning both bandwidth and high complexity.

This part proposes a hybrid network that combines fast dedicated local
communication with a flexible global network. The global network is build as
hierarchical connections of routers and it allows communication between any
two cells to be dynamically initiated during task execution. The path between
sender and receiver in the global network is deterministic, which simplifies the
router implementation. The local network is based on switches controlled by the
current configuration and the instructions executed in processors. We propose
the use of distributed memories to handle communication between processing
cells, avoiding large routing buffers in the network. Our approach is to keep
communication simple, using the main part of the area to implement memory
and processing cells.

Exploration methodology – Traditionally, computer network simula-
tions have been used to simulate NoC communication [104]. However, these ap-
proaches focus only on network communication and omits other system aspects
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required for design exploration such as implementation of processing elements
and accurate hardware modeling. Development of new CGRAs requires scal-
able and parameterizable architectural models, high simulation performance,
and tools to evaluate and explore performance at system level. In [59], a
programmable processor array is described and tuning to specific application
domains is addressed through a parameterizable architecture description. An
event-driven approach to enhance simulation performance for this specific archi-
tecture is proposed in [105]. However, this approach focus mainly on simulation
speed and omits aspect such as system level simulations, which require inter-
operability with legacy models, and that models of custom components can
be developed and explored. SystemC is one of the candidates that addresses
system level design aspects [73] and provides high simulation performance. Ex-
periments presented in [106] show that SystemC simulations can increase sim-
ulation performance several orders of magnitude, as compared to traditional
RTL simulations. Simulation frameworks and NoC models based on SystemC
has been presented in [107] and [108], but focusing mainly on communication.

In order to build, configure, and explore reconfigurable architectures, a
simulation and exploration tool based on the open SystemC initiative (OSCI)
SystemC library, has been developed. Furthermore, a consistent use of Sys-
temC and TLM to evaluate and explore our architecture, is proposed. As a
result of the raised abstraction level, models are fast to develop, become more
flexible, and simulate faster. A system level modeling perspective is suggested,
and several flexible system components have been developed in order to allow
evaluation of our architecture integrated into an embedded system.

3 Modelling and Exploration Methodology

Modules communicate through channels and interfaces specified by the OSCI
TLM standard [66], which provides a communication mechanism based on
blocking and non-blocking put and get functions. The major advantages with
TLM are high simulation speed and simulation models that are easy to modify
compared to register transfer level (RTL) models. In TLM, pin-accurate models
are replaced with an abstract communication layer, which uses transactions to
transfer data. A transaction is a data structure that contains information about
the transfer, for example memory address, transfer size and payload. The sim-
ulation speed increases compared to cycle activated models because processes
are activated or resumed only when transactions are exchanged between mod-
ules. Figure 2 shows a point-to-point communication example between a master
and a slave device, using separate FIFO channels in each direction. The slave
module blocks on a call to the get function until the master puts a request after
10ns. The master blocks while waiting for a response, which is provided by the
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Figure 2: Communication between a master and slave module connected
with a master/slave channel (containing two FIFO instances). Function
calls are from the module to the channel. The OSCI-TLM library pro-
vides channels implementing functions to exchange transactions between
modules.

slave after another 10ns. Note that function calls are always made from the
module to the channel, but the flow of information depends on the function.

A transaction exchanged between modules is refereed to as a transfer in
this part. A transfer contains destination address, source address, payload,
and payload type specification, as shown in Figure 3. The type specification
is needed as the payload can be either data, memory address, configuration,
or flow control exchanged between network routers in the global network. The
size of the payload is typically the same as used in computational operations
in processing cells.

3.1 Exploration Environment

Our SystemC environment with interactive control (Scenic) is based on the
OSCI SystemC library [73] and provides additional functionality to rapidly
develop SystemC simulations for evaluation and exploration of systems. User
interaction is enabled through module instrumentation, run-time variable ac-
cess, real-time simulation control and a scripting environment. An introduction
to key aspects in Scenic is given below, and illustrated in Figure 4.

Variable access

Interactive simulations require access to internal variables during run-time.
The standard SystemC module class has been extended with functionality to
access local member variables from the user interface. In addition, it is possible
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STATS

Virtual field used in simulations
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Figure 3: A transfer contains routing information (IDs), a payload type
field (TYPE), and the payload. It also contains annotated statistics
(STATS), such as identification number, produce time, consumption
time, etcetera.

to periodically capture content of member variables to a history buffer, which
is required when analyzing trends over time.

User interface

Scenic has a user interface that supports basic scripting to simplify simulation
setup and design space exploration. Registered variables are reached from the
user interface to setup parameters before simulation and inspect performance
metric and result data during simulation.

Modules and architectures

User modules are automatically registered at program start-up and stored in
a module library. The module library is an object creation factory that han-
dles module instantiation during elaboration. To allow design exploration of
partially reconfigurable systems, a reconfigurable module class is provided to
dynamically insert and remove modules from the simulation [95]. It is used
to configure synthetic modules, such as traffic generators into a processing cell
to create simulation scenarios in the scripting environment. Architectural tem-
plates are user objects that defines how to construct the system in terms of
modules and connections from a set of parameters.

4 Architectural Organization

The Acelray architecture is organized as an array of interconnected resource
cells (RCs). We propose a topology that splits the interconnect network into
local communication and a global network. Local communication use dedicated
links to connect neighboring cells. The global network connects any two cells
using hierarchical routing. The motivation for this topology is the fact that
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Figure 4: (a) The user interface communicate with the Scenic core li-
brary. A simulation is initiated from the user interface, which triggers the
SystemC library to initialize. When ready, Scenic calls the requested
architecture which construct a simulation platform from the module li-
brary. (b) The SystemC simulation constructed with Scenic has run-
time control and observability from the user interface.

an optimally mapped computational structure often results in a high degree of
local communication. In contrast, the mesh architecture has a shared network
for both local and global communication, where even neighboring cells com-
municate over the global network. It also means that global communication
consume bandwidth from local communication. The proposed topology can
be viewed as two independent networks interacting through network routers,
shown in Figure 1(c).

Resource cells have a number of I/O ports from all four sides, defining its
local communication bandwidth capacity and an optional uplink and downlink
port to connect to the global network. The global network connects any two
cells with single-path hierarchical routing, in which transfers are routed to
the destination using an identification field. The global network is used for
data communication between RCs to enhance routing flexibility offered by local
communication. It is also used to connect resources to external memory and
to a configuration manager that can configure tasks to execute on the array.
Connections over the hierarchical routing network are dynamically changed by
altering the destination identification field (DST ID) in transfers.

Figure 5 shows modules, ports, bindings, and channels of a 2×2 array with
two type of RCs, processing cells (PCs) and memory cells (MCs). Processing
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Figure 5: Transaction Level Modeling of Acelray using OSCI SystemC
TLM libary.

cells contain computational kernels, built either as processor cores, or dataflow
components. Memory cells are used to separate processing from communi-
cation and to provide intermediate storage during computations. Each port
on a processing cell is connected to a neighboring memory cell, which han-
dles the communication with other parts of the system. A memory cell can
be configured to forward incoming data to any arbitrary memory cell (global
communication), or to simply supply the neighbor processing cell with the re-
ceived data (local communication). Processing is self-synchronizing, so that
any computation that uses output from another processing cell is blocked until
data becomes available and result will not be transmitted to the output unless
there is available buffer space. Implementation details are presented in Section
5 and 6. The hierarchical global network is implemented with routers, depicted
in Figure 5. The coarse-grained granularity is reflected both in the communi-
cation and in basic computations, as routing (global network) and switching
(local communication) is performed on transfers, and computations performed
on payload in transfers. The size of the payload is selected as 32-bit wide for
the work presented in this part.

Models of embedded system components have been developed to explore
and evaluate Acelray integrated in an embedded system. This is important
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Figure 6: System components such as processor, multi-ported memory
controller (MPMC) and bus have been developed and integrated into our
environment to address design exploration of Acelray integrated into
an embedded system. The stream memory controller (SMC) handles
data transfers to and from the reconfigurable accelerator.

as performance depends on bandwidth to external memory and the interface
between the array and an embedded processor. Figure 6 shows the models
developed and illustrates Acelray integrated in a system with a shared bus,
a stream memory controller (SMC), a multi-port memory controller (MPMC)
and a processor (CPU).

5 Processing Cells

Implementations of algorithms are composed of either computation, control, or
memory blocks. Processing cells are responsible for implementation of com-
putation and control functionality. Computational operations are performed
in a datapath that consists of connected processing cells. Data enters and
leaves the datapath from/to another datapath, memory or from any external
device. Control operations are performed in processing cells that implements
operations such as switch, fork, and address generation used to access data
in memory cells. A key property during processing is the self-synchronizing
communication mechanism between processing cells. It reduces the complex-
ity involved in programming and mapping algorithms to the array and it copes
with time variations that can not be statically predicted. Unpredictable timing
is observed when connecting processing cells to a shared resource such as the
global network or an external memory.

This section describes the processing cell architecture and propose mecha-
nisms to implement the functionality described above. Insights into machine
parameters and balance of communication and processing capacity is discussed.
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PE
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Figure 7: A processing cell contains a processing element, which connects
to its port. The ports are connected to FIFO buffers implemented in
memory cells.

It is also shown how the model supports exploration of the instruction set, pro-
cessor resources, and timing parameters. First however, the processing element
used as building block inside processing cells, is introduced.

5.1 Architecture of processing elements

A processing element (PE) is used as a building block for processing cells.
The processing element is organized similarly as a conventional RISC processor
core. It contains a small program memory, general purpose register (GPR), and
execution pipeline. Larger memories, for data or instructions, are implemented
by connecting to a memory cell, as described in Section 6.

Processing elements connect to the I/O ports of the processing cell, which
are connected to FIFO buffers implemented inside the memory cells, seen in
Figure 7. Input and output FIFO buffers are used to synchronize communica-
tion between processing elements and their contents can be read and written
to/from GPRs with the move instruction. However, move instructions may be-
come a bottleneck in a short inner loop that implements both the I/O commu-
nication and the computation. Therefore, a new addressing mode is proposed.
In the proposed addressing mode, I/O communication is embedded into the
instruction. It means that register-register and register-immediate instructions
allow operands to be fetched directly from input buffers, and the result to
be written directly to any of the output buffers. Any such instruction must
stall the pipeline when input operands are not available or when the output
buffer is full. As the timing is not statically predictable this must be handled
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Figure 8: A modified three stage execution pipeline to enhance perfor-
mance for I/O intensive computations. Instruction source references can
be input buffers and instruction destination references can be output
buffers.

dynamically in hardware.
Figure 8 shows how the proposed addressing mode affects the execution

pipeline. For each source operand the input multiplexers are extended to select
any of the input buffers. At the output stage each output buffer is connected to
the result register and control logic is inserted to write to referenced destination
buffers. Each output transmitted to any buffer is also written back to the
general purpose registers to be used in subsequent instructions. The stall logic
stalls all pipeline stages if decoding an instruction with a source reference to
an empty buffer or if there is a destination reference to a full buffer in the
execution stage.

To implement functionality that allows PEs to operate as external address
generators, another addressing mode is suggested. Traditional load and store
instructions are complemented with an addressing mode that allows any in-
struction to select the transfer type to be transmitted to the output port. The
transfer type transmitted from a PE is either data, read address, or write ad-
dress, see Figure 3. These types are used by memory cells to determine their
operation.

Table 1 summarizes the addressing modes proposed. In the assembly code
notation, a general purpose register is denoted R and an external port that
connects to memory cells denoted with X. As described in Section 5.2, a cluster
of processing elements can be contained in a processing cell, and references to
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Table 1: Addressing modes proposed

Addressing mode Example

Register add RD RA RB

I/O data add (R∣I∣X)D (R∣I∣X)A (R∣I∣X)B

I/O read address add r@XD (R∣I∣X)A (R∣I∣X)B

I/O write address add w@XD (R∣I∣X)A (R∣I∣X)B

I/O buffers in the local cluster interconnect are denoted with I, in the assembly
notation. To distinguish the transfer types that can be transmitted to an
external port, w@ and r@, are used for address write transfers and address
read transfers, respectively.

5.2 Cluster of processing elements

A processing cell built with several processing elements is referred to as a cluster
of processing elements. The cluster is introduced to balance processing capacity
against I/O capacity. Some PEs use the full I/O capacity of the processing cell
and hence only one instance per processing cell is created. Conversely, there
are PEs which will not use the full I/O capacity offered by the processing cell
and several such PEs are clustered in a single processing cell.

Figure 9(c) shows one possible configuration, with a cluster containing 4 PEs
and a local cluster interconnect. The number of PEs contained in a PC and the
type of interconnect inside the cluster are generic settings to the model. Every
PE output port has a FIFO buffer that connects to input ports of other PEs in
the cluster, and every PE input is connected to the multiplexer at the decode
stage, as shown in Figure 8. Consequently, references to buffers in the cluster
network have the same effects on synchronization and stalling as references to
processing cells’ I/O ports. If several PEs in a cluster are connected to the
same external PC I/O port, signals are sent through a bitwise or-gate network.
Hence, mapping of programs needs to prevent that two PEs attempt to receive
or transmit to the same port simultaneously. In addition to balancing I/O
against processing capacity, the cluster interconnect allows to distinguish the
FIFO capacity offered internally from the capacity offered by memory cells.
For example, small FIFOs are implemented inside the cluster and algorithms
that need a larger FIFO or RAM use a memory cell, as described in Section 6.
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Figure 9: (a) A memory cell contains a generic number of memory banks,
a switch and a router. (b) A 2x2 Acelray with a router that connects
the memory cells to the global network (c) A processing cell that contains
a cluster of processing elements and a local interconnect.

5.3 Instruction extensions

The PE model has been developed so that architects can evaluate performance
of application-specific extensions of the instruction set, or the instruction for-
mat. To develop a custom instruction, architects write a new class that inherits
from the instruction base class. The base class contains functionality to model
behavior, timing, and side effects. The following code is required to model an
add instruction.

PE_REGISTER_INSTRUCTION(add);
add::add(sc_module_name nm) :

pe_instruction_module(nm)
{ set_execution_time(1);

set_nbr_source(2);
set_nbr_destination(1);
set_nbr_immediate(0); }

void add::operation(const vector<CA_WORD>& source,
vector<CA_WORD>& destination,
const vector<CA_WORD>& immediate,
SPECIAL_REGS& sregs )

{ destination[0] = source[0] + source[1]; }

The instruction behavior is implemented in the operation function, which is
called from the execution stage. In the constructor the architect set parameters
that are used to propagate inputs and outputs and simulate timing. An added
instruction is automatically registered through the macro on the first line, so
that any PE instantiated during elaboration finds it. During system construc-
tion or simulation, customization of PEs are controlled from the Scenic user
interface.
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5.4 Exploration Parameters

In all modules there is a set of parameters that can be explored, such as size
of memories, clock period and latency. Some parameters directly connects to
a physical entity such as clock period to execution time and memory size to
hardware area. Other parameters reflect aspects of the system connected to
functionality such as the set of supported instructions in a PE, which in a more
abstract way are connected to performance and area. The goal of exploration
is to understand how the system parameters affect performance, area and func-
tionality of the architecture. The processing element has machine parameters
such as clock period, pipeline latency, execution time for instructions, number
of outputs/inputs, size of registers and instruction memory. Furthermore, the
instruction format may easily be adapted to model special-purpose formats or
multi-issue architectures.

There are two optimizations that can be performed to reduce complexity
when having multiple PEs on the chip as compared to a single processor core:
Not all PEs need to support all instructions and some PEs may act as single-
instruction execution units which statically execute one of its operations per
configuration. The first optimization that concerns heterogeneity is quite natu-
ral and has been proposed and implemented in other RAs. Typically, hardware
support for multiplication, division, or other area consuming functionality is
not implemented in all PEs. The second optimization that concerns the ex-
ecution pipeline is proposed because many algorithms will utilize the array
as a deep pipeline were each processing element executes a single instruction.
Hence, unnecessary control logic and program memory associated with sequen-
tial execution can be removed in some PEs to reduce complexity. However, it
is also recognized that there are tasks which needs an instruction flow to im-
plement the control behavior. Both approaches, static single-instruction and
program-flow execution, have been proposed in RAs. In [44] they suggest a
single instruction per configuration to build static structures during task ex-
ecution, in [59] they suggest an array with processors with a short program
memory, and in [61] they suggest a control flow implemented in a configurable
state-machine in which each state is associated with a specific instruction.

6 Memory Cells

Algorithms require intermediate storage to buffer and reorder data. The use
of on-chip memory for intermediate storage may significantly increase perfor-
mance, as compared to implementing such storage in external memory. Perfor-
mance may be further improved by distributing the storage capacity to several
memories to improve data delivery and by placing memories close to datapaths
to reduce latency. These aspects have been considered in design of the memory
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system, which is implemented in memory cells. Memory cells are distributed
and shared resources that can be allocated by any processing cell. When bal-
ancing memory and computing resources in a constrained chip area, this may
be advantageous as compared to memories that are dedicated to a specific
processing cell. Five major functions for the memory cells are identified:

◾ Act as a self-synchronizing barrier between communicating processing
cells,

◾ implement configurable number of initial transfers,

◾ support random access,

◾ allow inter-task communication by keeping data while tasks are sequen-
tially mapped to Acelray, and

◾ support larger memory structures to be emulated from a set of smaller
distributed memories.

A memory cell is sub-divided in three types of blocks: a generic number
of memory banks (MBs), a switch, and a router. Figure 9(a) shows a block
diagram of a memory cell. Memory banks contain the actual storage, imple-
mented as dual port RAM, or registers for smaller memories. The configurable
switch connects a memory cell’s external I/O ports to memory banks with-
out latency. Communication with the global network is handled through a
bidirectional connection between each memory bank and the router.

6.1 FIFO emulation

The basic functionality in all memory banks is the FIFO mode. With a memory
bank operating as a FIFO, a link which supports self-synchronization can be
allocated to connect two processing cells with an initial number of transfers
in the buffer, see Figure 10(a). A configurable number of initial transfers is
another key property, which allows algorithms described as a data-flow graphs
(DFGs), with delays associated with an edge that connects two nodes, to be
naturally mapped to the array. This functionality is utilized in the case study
presented in Section 8.

6.2 RAM emulation

In addition to the FIFO mode a memory bank may support RAM mode, which
provides other necessary primitives to efficiently support algorithm mapping.
The RAM mode is used to randomly access local data such as coefficients or
instructions and to reorder data communicated between two processing cells.



124 PART III. MODELING AND EXPLORATION . . .

PC PC

PC PC
A Di

Do
RAM

PC
A | Di

Do
RAM

(a) (b)

Figure 10: (a) A memory bank inside a memory cell configured to operate
as FIFO that synchronizes communication between processing cells and
has a configurable number of initial transfers. (b) A memory bank inside
a memory cell operating as RAM which receives input data (Di) and
address (A) and transmits output data (Do).

When a bank supports both FIFO and RAM mode, swapping between these
operational modes is done by transferring configuration data to that bank,
while the same physical storage is reused. Hence, a memory bank can act as
a FIFO in one task and as RAM in a subsequent task, which randomly access
result data.

In RAM mode, a write access is accomplished by streaming data transfers
and address transfers to a memory bank. Address and data transfers are syn-
chronized, so that address transfers are blocked until the data transfer has been
received and conversely data transfers are blocked until a valid address transfer
has been received. A read access is done by streaming address transfers to one
of the ports in a memory bank, which triggers a read operation with resulting
data transmitted to one of the output ports.

Algorithms that have data independent address generation can be parti-
tioned into address generation and computation. These two partitions may
be mapped onto separate processing cells to improve performance. Hence,
address generation can be pipelined and access latency experienced during re-
peated read operations hidden. Figure 10(b) shows two possible connections
to a memory bank operating in RAM mode. In one of the examples shown in
Figure 10(b) address generation is mapped to a processing cell different from
the processing cell that consume and produce data. The connections shown
in Figure 10(b) can be further expanded to connections where either data or
address is communicated over the global network.
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Figure 11: (a) Hierarchical connection of routers to memory cells, (b) On-
chip scratch pads or external memory connected to routers. The designer
specifies where to connect memory controllers for external memory.

6.3 Emulating larger memories

Memory banks can be concatenated to emulate larger memories. This is im-
portant because algorithms might require larger storage capacity than offered
by any single bank available. Mapping such storage to external memory might
lead to serious drops in throughput, due to traffic contention in global network,
bus, or external memory.

The concatenation mechanism suggested is straightforward for banks oper-
ating in FIFO mode. Any number of banks can be cascaded with incoming
data forwarded to the next memory bank over the global network. The per-
formance penalty without traffic contention in the global network is two clock
cycles latency for each bank added to form the cascaded FIFO. The throughput
remains the same under the condition of no traffic contention.

In RAM mode there is a similar mechanism. Each memory bank supporting
RAM mode can be configured to have a base address and high address. If
address transfers received have an address that is out of range, it is forwarded to
the next memory in the cascade. Address data and write data enter a cascaded
memory network through the first memory and read data leaves through the last
memory. Any processing cell connecting to a cascaded memory will experience
the same interface and behavior as with a single memory bank.

6.4 Connecting to external memory

Local memory can store data during computations, but the data to be processed
is usually located in on-chip scratch pads or in external memory. To fully
benefit from the computational power, data has to be streamed in and out
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Figure 12: (a) Internal building blocks in the memory cell, consisting of
a port switch and four memory banks. Each memory bank has a unique
ID for routing data over the network. (b) Two memory cells using the
external memory interface to transparently emulate a larger buffer.

at high speed. External memory interfaces can be connected to any router
in the network and accessed using a unique identification in the same way as
memory banks, which is shown in Figure 11(b). Every memory bank that
communicates with the external memory can setup a transfer to or from the
memory. This transfer can be either a linear memory access or a more complex
stream specified using stride, span, and skip parameters. The external memory
controller handles the memory access mode and provides the memory bank
with data.

External memory may also operate as an extended buffer when required.
Local memory is limited and sometimes larger memory buffers are required be-
tween computations. A transfer between two processing cells is usually routed
from one memory cell to the other, but can transparently be connected through
an external memory controller to act as a large intermediate buffer, shown in
Figure 12(b).

6.5 Exploration parameters

The storage capacity in a memory bank is an important system parameter,
which needs to be elaborated and balanced to the processing capacity to adapt
to specific application domains. It is likely that an optimal balance for a certain
application will be a heterogenous distribution of capacity to memory banks.
For example, some application might not utilize any RAM and needs only
FIFOs with a storage capacity of a few transfers. The architecture model
facilitate exploration by setting number of memory banks, size of memories,
clock period, latencies and supported operating mode, RAM, FIFO, or both.
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7 Routers

In the proposed architecture routing is deterministic, which means that there
is only one single valid path to route network traffic. To change the routing
path, the sender must select a different receiving memory bank to reach its
final destination. This means that routing is a simple task of forwarding data
between memory cells and network routers, which reduce hardware complexity
as compared to adaptive routing algorithms. The router is built as a switch
that connects input ports to output ports. Each output port is associated with
a range of consecutive addresses to that an incoming transfer only requires a
table look-up to be routed to the correct output port. If an incoming address
is not found in the routing table, the transfer is sent to the default port which
is upwards in the hierarchical routing network, as shown in Figure 11(a). Once
the path is recognized by a router, the transfers are propagated downwards until
reaching its final destination. The data width and the capacity of the switch are
parameterizable in order to evaluate different router capacities when exploring
Acelray .

Several proposed router architectures contain output buffer queues to tem-
porarily store packets traveling through the network [103]. When the commu-
nication load increases the buffer queues fills up, resulting in dropped packets
or poor throughput. The reason is that a packet inside the communication
network is only half-delivered, still waiting for the next router to accept out-
going packets. In case the receiving node is unable to accept a packet, it is
trapped inside the communication network, resulting in increased latency in
other parts of the network. In the proposed architecture memory banks are
used as an alternative to large output queues in the network routers. Instead
of dividing the total memory resources in two static pools, i.e. local memory
and router memory, local memory will be assigned for either of these tasks.

8 Experiments and Results

This section presents a case study in which a FIR filter is implemented on
Acelray and performance data gathered to evaluate, explore and tune the
implementation. It also presents a exploration study that determines perfor-
mance characteristic for the proposed hybrid interconnect network under differ-
ent traffic loads and communication patterns. The sections ends with showing
synthesis result from a prototype implementation.

8.1 Filter Implementation

To demonstrate the usefulness of our Acelray architecture and the advan-
tages offered by our methodology, a case study implementing a finite impulse
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Figure 13: (a) A FIR filter in direct form (b) One possible partition of
functionality were dark grey is mapped to memory bank or PEs internal
output buffer and light grey to a processing element.

response (FIR) filter is presented. The Scenic scripting environment is used to
configure modules to define a scenario, reconfigure modules during simulation
(controllability), and to extract performance data during and after simulation
(observability) to evaluate the system.

Filter mapping

This case study demonstrates implementation of a fixed-point FIR filter using
direct and time-multiplexed form. Figure 13(a) depicts the data-flow graph for
the direct form, in which D denotes initial delays between the computation
nodes. The time multiplexed implementation is derived by folding the direct
form into a single multiply and accumulate operation and additional control
that sequence inputs to the computation from memory.

A task mapped to Acelray is described with a DFG were each node is
associated with a program and each edge is associated with an initial delay.
When mapping the DFG to Acelray, several constraints have to be satisfied:

◾ Map node j to PEk such that PEk supports all instructions in the pro-
gram and that the program fits into the instruction memory, and

◾ map edge (j, i) to a communication link such that initial delays are less
than the total buffer size.

There are also several optimizations that can be considered:

◾ Reduce communication latency by mapping communicating nodes closely,

◾ ensure sustained throughput by preferably use dedicated local communi-
cation links, and
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◾ reduce traffic contention when mapping nodes which communicate through
the global network.

The direct form implementation requires three single-instruction programs as
depicted in Figure 13(b): fork, multiply and add, and multiply. Partitioning
the functionality into these instructions allows having maximum throughput.
The time-multiplexed implementation separates address generation and com-
putation to maximize throughput. It requires three different programs which
all needs more than a single instruction: coefficient address generation (AG),
data input AG, and the multiply and accumulate (MAC) program. The im-
plementation also requires two memories configured to operate in RAM mode
both storing M values, where M is the filter length. Addresses from the AG
programs are connected to corresponding memory inputs and the memory out-
puts are both connected to the PE that performs the multiply and accumulate
and moves the result to an output FIFO.

The programs take parameters, which specify to which port an external
I/O reference should be bound during execution. This allow programs to be
mapped with configurable I/O orientation. It is currently accomplished by
changing programs before mapping, but may also be handled with hardware
support that performs a look-up when referencing I/O ports.

Experiments

An exploration loop requires scenario setup and performance data extraction
to be automated. Scenic provides this capability through a scripting environ-
ment, so that experiments can be completely setup from the user interface. In
the scripting environment architects can define the architecture to be simulated
in terms of machine parameters such as: number of resources, type of inter-
connect, memory sizes, supported instructions, execution times, and latency.
It also operates as configuration manager so that tasks can be programmed
from the script. The following script code shows a condensed example of how
a scenario is defined:
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% Create architecture
sim -arch CellArray -width 4 -height 4 -nr_mb 4 -nr_pe 4

% Load library modules
pc2 reconfig -mod PECluster

% Configure progam memory with AG assembly
config_cell(pc2.pe0, agu_data.asm(South))

% Configure round buffer memory
config_link(mc0.Bank0, RAM(East, South))

.

.
% Download test data input

mc4.Bank0 write -file data.txt

% Run simulation
*.* set -var clock_period -value "10 ns"
runb 1000 ns

% Inspect output data
mc3.Bank0 read

% Read performance data
pc2.pe0 get -var performance_vector

Figure 14 shows one possible mapping of an 8th order FIR filter, in (a)
direct form and in (b) time multiplexed form, to Acelray. The experimental
setup is a Acelray with 4 × 4 resource cells allocated as 8 memory cells and
8 processing cells. Each resource cell has 4 bidirectional I/O ports connecting
to the nearest neighbour. Each processing cell contains 4 processing elements
and each memory cell contains 4 memory banks. Three of these has 64 bytes
and supports only FIFO mode and the other has 1024 bytes and supports both
RAM and FIFO. Local and global communication supports transfers with a
32-bit payload field and arithmetics in PEs are 32-bit. The design is further
constrained such that only one processing element in each PC can handle a
program with more than one instruction and support for multiply and MAC
instructions. The other 3 PEs are single instruction execution units without
MAC or multiply instructions. The instructions considered in this case study
are 32-bit format. Both standard RISC instructions as well as domain specific
instructions, such as fork, mac, and loop instruction have been developed.

Results and Discussion

Figure 15 shows execution time of direct mapped (DM) and time multiplexed
(TM) implementation, when filter length is varied from 8 to 32. The execution
time is measured as filtering a block of 256 32-bit wide input samples stored in
a FIFO in the array at execution start. The speedup for DM compared to TM
is ranging from a factor of 18 down to 15, because the loop overhead of AGs
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Figure 15: Execution time in clock cycles for direct mapped (DM), time
multiplexed (TM), and pipelined time multiplexed (TMP).

are reduced in the TM implementation when the filter length increase.

The DM implementation is executing 8 taps and is then reconfigured with
the next 8 taps with intermediate result stored in a memory bank. The through-
put of the DM implementation is one output per clock cycle after an initial
latency. The latency is 30 clock cycles for an 8-tap filter and over 1000 clock
cycles for the 32-taps filter, as final outputs will not be produced until the last
configuration out of 4 has been mapped. The latency of the TM implementa-
tion is ranging from 26 to 74 clock cycles.

Figure 16 shows utilization of PEs allocated to perform the TM implemen-
tation. The bottleneck is the processing element generating the addresses for
the round buffer, PC2.PE0 in Figure 14, as it is utilized 100% while the other
two PEs have significantly lower utilization. The code executing in PC2.PE0
is:
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Figure 16: Utilization of processing elements after execution of time mul-
tiplexed (TM) and pipelined time multiplexed (TMP), see Figure 14.

% Program in PC2.PE0: Round buffer stores M data
% inputs. Example with M = 8
movei R1 256 % Block length counter
movei R9 28 % Round buffer start write

loop: % R9 mirrors X1
move w@X1 R9 % Write last input
move r@X1 R9 % Read first input
loop start end 7 % Loop next 2 instr.

start: % Next is loop start
addi R9 R9 4 % Increment address

end: % Next is loop end
modi r@X1 R9 32 % Modulus and read packet
subi R1 R1 1 % Decrement length
bne R1 R0 loop % Check length counter
terminate % Terminate program

The bottleneck is the inner loop (start to end) which implements addition and
modulo operation. To increase performance a new processing cell is allocated
and the inner loop operation is pipelined, as shown in Figure 14(c). The time
multiplexed filter with the pipelined address generation (TMP in figure), signif-
icantly reduces execution time and increase utilization of the MAC operation,
as shown in Figure 15 and 16, respectively.

Compared to measurements carried out with a standard embedded RISC
processor, the speedup offered by Acelray is a factor of 10 and 90 for the
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TMP and DM, respectively, assuming the same operating frequency. This
confirms the assumption that CGRAs are an interesting candidate to increase
performance. In addition, the case study illustrated how parallelism in an algo-
rithm can be exploited and how implementations with different characteristics
in execution time and resource allocation are supported by the architecture.

8.2 Network Characterization

This section presents simulation results and performance analysis of the pro-
posed hybrid interconnect network. Scenic is used to configure modules to
define a scenario and to reconfigure modules during simulation. Throughput,
latency, and other performance metrics are extracted during simulation to eval-
uate the system.

Experimental Setup

Processing cells are configured to operate as traffic generators, which send ran-
dom transfers to neighboring cells and to the global network. Transfers are
annotated with timestamps to keep track of when transfers were produced and
injected into the network. The traffic generators also monitor the incoming
traffic, counting the number of received transfers, and calculating the trans-
port latency as the number of clock cycles from successful injection to final
consumption. The throughput is measured by counting transfers consumed at
the final destination. Since communication is both local and global, a localiza-
tion factor μ is defined as the ratio between local and global communication,
where μ = 1 corresponds to pure local communication and μ = 0 corresponds to
fully global communication.

The traffic generators inject transfers into the network according to the
Bernoulli process, which is a commonly used injection process to characterize
a network. For traffic injected into the global network the traffic pattern is
modeled as uniform spatial distribution, which means that every processing
cell communicates with every other processing cell with equal probability. In-
jection rate, r, is the number of transfers per clock cycle and per processing cell
injected into the local or global network. Throughput is the accepted traffic, T ,
measured in transfers per clock cycle and per processing cell. Ideally, accepted
traffic should increase linearly with the injection rate. However, due to traffic
contention in the global network the amount of accepted traffic will saturate
at a certain level.

Results and Discussion

Figure 17 shows accepted traffic for a network with 2 × 2 basic cells were all
routers and links between routers have a capacity of one transfer per clock cy-
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Figure 17: Accepted traffic as a function of injection rate and localization.

cle. Accepted traffic is measured for 0.1 ≤ r ≤ 1 and 0 ≤ μ ≤ 1. When μ = 1 there
is no traffic contention and the network achieves the optimal linear relation-
ship between injection rate and accepted traffic. When μ = 0, the saturation
point for accepted traffic is T = 0.17 transfers/cycle/PC. Assuming a realistic
localization factor, μ = 0.8, throughput is 94% of the optimal performance.

Figure 18 shows the average transport latency which is measured using the
same injection process and traffic pattern as for the throughput measurement.
The average transport latency is defined as L = ∑Li/N where Li is the trans-
port latency for transfer i and N is the total number of transfers consumed
at destination after local or global transport over the interconnect network.
Transport latency is measured as the number of clock cycles between success-
ful injection into the network and consumption at the final destination. As
shown in Figure 18, the average transport latency saturates at L ≈ 100 clock
cycles for a localization factor μ = 0. The latency is bound by the available
buffer capacity inside the network. Since routers use round robin arbitration,
a transfer is guaranteed to be delivered within ∑Bi clock cycles, where Bi is
the buffer capacity in router i.

In data-driven and streaming applications, latency has small impact on
system performance. However, due to random access and feedback loops, the
impact of latency can not be omitted in realistic applications. Hence, for these
applications latency is an important parameter for the overall performance.
With the realistic localization factor μ = 0.8, the average transport latency for
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Figure 18: Average transport latency as a function of injection rate and
localization.

the proposed network is only 4 clock cycles.
The experiments show the advantages when combining high-performance

local communication with a flexible global network for realistic localization
factors. This is useful in reconfigurable computing, were the flexibility can be
utilize during algorithm mapping to achieve a high localization factor. Func-
tional units with high communication rate are mapped to adjacent processing
cells, or to closely located processing cells on the hierarchical network.

8.3 Implementation

The Acelray architecture has been translated to VHDL and synthesized with
a 0.13μm technology. Two types of processing elements have been developed: a
32-bit DSP processing element with radix-2 butterfly support, and a 16/32-bit
MAC processing element with multiplication support [34]. The VHDL imple-
mentation of these processing elements are based on a customized instruction
set, a program memory to hold processor instructions, and configurable number
of I/O ports. The configuration for the synthesized design are:

◾ Array – Half of the resource cells are memory cells and the other half
are processing cells. The 4×4 array contains 5 routers and the 8×8 array
contains 21 routers.
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Table 2: Synthesis results for 4 × 4 and 8 × 8 array. The results are based on a
0.13μm cell library.

Architecture Area Frequency Storage Router
(mm2) (MHz) (bytes) overhead

4x4 Array (5 routers) 2.48 325 10K 15.8%
8x8 Array (21 routers) 9.18 325 40K 17.7%

◾ Processing Cells – Half of the processing cells are DSP processors and
the other half are MAC processors. Each processing cell contains one of
either MAC, or DSP processing element. Each processing element has
8 general purpose registers, 4 I/O ports, and 64 32-bit word program
memory.

◾ Memory Cells – Each memory cell contain one bank, each having a
storage capacity of 256 32-bit words.

◾ Routers – Each router has an output que of 4 transfers.

Synthesis results for a 4 × 4 and 8 × 8 Acelray are presented in Table 2.
Area estimates and maximum clock frequency are taken from the synthesis
tool. The router overhead shows how much of the total area that are spent on
routers. It is seen that it is less than 20% for both designs. The estimated area
for an 8 × 8 array is less than 10 mm2, when synthesized for a maximum clock
frequency of 325 MHz.

9 Conclusions

This part has presented the coarse-grained reconfigurable architectures Acel-
ray and a SystemC simulation methodology used to explore the design space
of coarse-grained reconfigurable platforms. Concepts on hybrid interconnect
networks, memory distribution, and data driven communication have been pro-
posed. Experiments show that the hybrid network achieves a high throughput
for realistic localization factors. In reconfigurable computing, high localization
factors can be achieved by mapping functional units with high communication
rate to adjacent processing cells.

Processing cells that contains instruction-set processors with enhanced per-
formance for I/O intensive programs have been proposed. Processors commu-
nicate with a data-driven protocol, which uses FIFO buffers to synchronize
inter-processor communication. The FIFO buffers are implemented in Memory
Cells containing multiple memory banks. Memory banks are global resources
that can be allocated by any processing cell to operate as FIFO or RAM. Larger
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memories can be emulated by allocating multiple memory banks, or connecting
memory banks to external memory. External memory transfers can be either
a linear memory access or a more complex stream specified using stride, span,
and skip parameters.

A simulation-based exploration methodology based on transaction level
models were used to design, evaluate and explore our architecture. The raised
abstraction level significantly improve design time and increase simulation
speed. The case study, implementing a filter algorithm, illustrated how our
design methodology allows an architect to setup scenarios and inspect result
and performance data during execution. It also added insight into the flexibil-
ity and performance offered by our proposed Acelray architecture and how
implementations with varying characteristics can be reached.



Part IV

Algorithm and Coprocessor Implementation of a
Speech Packet Loss Concealment Method

Abstract

A speech data packet loss concealment algorithm based on pitch period rep-
etition is presented in this part and a novel low complexity method to refine
a pitch period estimate is introduced. Objective performance measurements
show that this pitch refinement improves the quality of packet loss concealment.
Hardware-software co-design techniques have been investigated to implement
the algorithm. Using a co-processor approach a processing delay of 0.9 ms and
a overall speedup of 3.3 was achieved.

Based on: Henrik Svensson, Viktor Öwall, and Krzysztof Kuchcinski “Implemen-
tation Aspects of a Novel Speech Packet Loss Concealment Method,” in Proceedings
of IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 2005,
pp 2867–2870.

139





1. INTRODUCTION 141

Spectral
Flattening

resolution
Enhance

calculation
ACF

Decimation

Lost Packet
Detection Estimation

Pitch Period
Insertion
Packet

Speech
Frame

Pitch
Period

Estimate

Figure 1: General scheme of a pitch period repetition PLC method.

1 Introduction

Packet based communication is a commonly used method for data transmission
in various communication standards. A synchronous connection oriented data
transmission such as speech conversation, has an upper bound end-to-end delay.
If a packet is delayed beyond this upper bound it is discarded from the network.
Hence, the receiver has to replace the missing speech segment, i.e. perform
packet loss concealment (PLC).

The PLC method presented in this part is based on pitch period repetition.
Such a PLC method consists of: detection of lost packet, estimation of pitch
period, and packet insertion. The part gives a brief background to pitch estima-
tion and presents a pitch estimation algorithm which includes a novel method
to refine the pitch estimate. Hardware-software design space exploration is
used to find a co-processor architecture which fulfills a processing delay less
than 1 ms for the proposed PLC method.

2 Background

The least complex PLC methods for speech include muting and packet repeti-
tion. More advanced methods, which successfully have been used in pulse code
modulated (PCM) speech, include pitch period repetition and linear prediction
of the missing speech segment [109], [110].

The upper part of Figure 1 shows a general scheme for pitch period repeti-
tion PLC methods. Lost packet detection affects both the receiver and trans-
mitter and is an integral part of the standard in which the PLC algorithm
should be implemented. Pitch estimation and packet insertion affects only the
receiver and do not need to be standardized.
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Figure 2: Waveform and Power Spectrum of voiced speech

The human speech production system can be modeled as a excitation signal
that is filtered by a Linear Time Invariant filter. The filter in the model cor-
responds to the cavity with tongue, lips and even the nose in some languages.
The excitation signal is either a glottal pulse that resembles a line spectrum or
air flow through mouth that resembles a flat spectrum in the frequency domain.
Compare this model with a guitar: The string causes the excitation signal and
the sound is filtered by the guitar cavity. The type of excitation signal classifies
the resulting speech into voiced (line spectrum) and unvoiced (flat spectrum).
Compare to utter an ”a”, which is voiced with an ”s” which is unvoiced. When
the speech signal is voiced, it has a pitch period (or fundamental frequency)
and the signal can be considered piecewise stationary. A PLC algorithm based
on pitch repetition uses this to replace lost data with stored data one pitch
period back in time.
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Figure 3: Waveform and Power Spectrum of unvoiced speech

A speech signal containing voiced speech is shown in Figure 2 with the
corresponding power spectrum. The periodicity of the signal is clearly seen
already in the waveform. The pitch period in this example is about 8 ms. The
power spectrum is almost a line spectrum with peaks at even multiples of the
fundamental frequency, which is 1/8 ms = 125 Hz.

A speech signal containing unvoiced speech is shown in Figure 3 with the
corresponding power spectrum. The waveform has no periodicity and this is
reflected in the power spectrum of the signal.

The pitch period is expected to vary between 2 – 20 ms for different speakers.
Estimation of the pitch period has been investigated in numerous papers, as it
is an important property used in many different applications [111]. A popular
method, due to low complexity, straight forward implementation, and good
performance is maximizing the autocorrelation function (ACF) [112].
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An overview of commonly used functions in a pitch period estimation (PPE)
algorithm based on the ACF is shown in the lower part of Figure 1. There
are several steps involved in the algorithm. As the fundamental frequency
lies below 400 Hz the signal is low-pass filtered and decimated, in order to
reduce the computational complexity of the autocorrelation computation. To
compensate for degradation in time resolution of the estimated pitch period
due to decimation, the last step is to enhance the pitch period resolution.

After decimation the signal is spectrally flattened in order to reduce spectral
peaks at the vocal tract resonance frequencies, because they might cause higher
correlation than the fundamental frequency. This is to prevent the first formant
frequency, which is often near or even below the fundamental frequency, to
cause higher correlation than the fundamental frequency, which would corrupt
the detection. Spectral flattening can be done with the inverse filter of the all-
pole model as in the SIFT algorithm [113], or by center clipping of the signal,
as described in the algorithms [114] and [115].

Last, the autocorrelation function is calculated and the maximum in the
interval from minimum and maximum expected pitch period, is taken as the
pitch period estimate.

3 Proposed Method

The novelty of the proposed method is that pattern matching is used to enhance
the pitch period estimate. A precise pitch estimate is important in a PLC
algorithm to diminish discontinuities at the boundaries of the replaced packet.
The proposed method for PPE is shown in Figure 4, where pattern matching
is the last step.

Samples after decoding at the receiver are denoted as x(n). If a packet is
lost at sample m, the content of the analysis frame is denoted as

s(n;m) =
⎧⎪⎪
⎨
⎪⎪⎩

x(m −M + n), 0 ≤ n ≤M − 1
0, otherwise,

(1)

and contains the last M samples of the received speech waveform. Values for
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M are in the range of 240–320 samples for a 8 kHz sampling frequency.
As the fundamental frequency lies in the range of 50–400 Hz the signal is

first low-pass filtered to remove unwanted information. Moreover, the signal is
decimated to reduce the computational complexity in the subsequent processing
steps. A low-pass filter with cut-off frequency at 800 Hz and decimation by 4
are proper values for a signal sampled at 8 kHz, as described in [113]. After
low-pass filtering and decimation the signal is denoted as sd(n).

The signal is subjected to spectral flattening using a center-clipping function
defined as

scc(n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sd(n) −CL, sd(n) > CL

sd(n) +CL, sd(n) < −CL

0, ∣sd(n)∣ ≤ CL,
(2)

where the center clipping level CL is calculated according to [111].
The short time autocorrelation function is defined as

R(k) =
M/4−1

∑
n=0

scc(n)scc(n + k), 0 ≤ k ≤M/4, (3)

and the pitch period estimate becomes

N̂p,D = arg max
Nmin≤k≤Nmax

R(k), (4)

where values Nmin and Nmax, for a signal decimated to 2 kHz, are 5 and 40,
respectively. These values correspond to a pitch period in the range of 2.5–20
ms or the fundamental frequency in the range 50–400 Hz. N̂p,D is the pitch
estimate in number of samples in the decimated domain. Hence, multiplication
of the estimate with the decimation factor, D = 4, yields the pitch period in
the 8 kHz domain, denoted as N̂ ′p.

The time resolution of the estimate is 0.5 ms (2 kHz). This is not sufficient
in a PLC algorithm, because it would cause discontinuities at the substitution
boundaries. These discontinuities are additionally caused by fine grained pitch
errors due to size and position of the analysis frame [112]. Thus, a pitch
refinement step based on pattern matching is proposed to cope with these
problems. If a packet is lost starting at sample m, the sequence w(n) is defined
as

w(n) =
⎧⎪⎪
⎨
⎪⎪⎩

s(M −L + n;m), 0 ≤ n ≤ L − 1
0, otherwise,

(5)

and contains the last L samples of the analysis frame, where L << M . The
idea is to perform pattern matching between the sequences w(n) and s(n), in
order to correct fine grained pitch errors and enhance the time resolution. The
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Figure 5: Pattern matching is used to enhance the time resolution and
correct fine grained errors in the PPE.

operation is interpreted as sliding the sequence w(n) one pitch period back in
sequence s(n), as shown in Figure 5. Mathematically the operation of pattern
matching is computed using the mean squared error (mse) denoted as e2(k).

e2(k) =
L−1

∑
n=0

{s(M −L − N̂ ′p + k + n) −w(n)}2. (6)

and the refined pitch estimate is written as

N̂p = N̂ ′p − arg min
−K≤k≤K

e2(k). (7)

The performance of pitch refinement is highly dependent on L and K. The
value L determines the summation period. A small value makes the refinement
more sensitive to noise whereas a large value degrades the advantages of fine
grained pattern matching. K determines the range around the pitch estimate
in which to perform pattern matching. As only fine grained pitch errors should
be corrected, the value K is expected to be a few samples.

Evaluation of the pattern matching scheme was performed by comparing
the PPE systems in Figure 6 with an objective measurement method. As it
was important to demonstrate that the pattern matching scheme, in addition
to enhancing time resolution, also was able to correct fine grained errors in the
pitch estimate, decimation was excluded in the comparison.

As an objective measurement the average signal-to-noise ratio per missed
packet in voiced regions (SNRL) was computed. The signal-to-noise ratio for
packet i, lost in a voiced region, is referred to as SNRi. The SNRi is calculated
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Figure 7: SNRL values plotted for M=240, FER=0.2 during 13 min of speech.

between the replaced packet and the correct packet at the receiver side. SNRL
is calculated as the average of the sequence SNRi.

In the simulations performed, the sampling frequency of the test vectors is
8 kHz, the packet length 30 samples, and approximately 20% of the packets
are lost, i.e., the frame erasure rate (FER) is 0.2. The test vectors described
in [116] are used as input.

SNRL for 13 minutes of speech with different speakers and background noise
was computed for different values of L and K in order to find optimal values
for the parameters. Figure 7 shows the result and the optimal values for L and
K, using this objective measurement, are 25 and 5, respectively.

Table 1 presents SNRL values for both systems illustrated in Figure 6.
Column A presents computed SNRL without pitch refinement and column B
presents SNRL with the pitch refinement included. In all test vectors, which
contain different speakers and background noise, the SNRL is improved using
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Table 1: SNRL for test sequences with (B) and without pitch refinement (A).
FER=0.2, M=240, K=5 and L=25

Test Description A (dB) B (dB)

T04 Female, -19.4 dBov 5.9 11

T05 Male, -18.7 dBov 3.4 5.5

T06 Female, -35.0 dBov, ambient noise 4.2 9.8

T09 Female, -35.5 dBov, car noise 6.1 8.0

T12 Male, -34.9 dBov, ambient noise 3.1 5.4

T15 Male, -34.1 dBov, babble noise 4.7 7.0

N̂p

c(n) x(n)

s(n;m)
N̂p

Packet insertion in coded domain
Direct waveform substitution

ĉ(n) x̂(n)

ĉ(n − N̂p) x̂(n − N̂p)

Buffer
20 ms

PPE

Decoder

Buffer
40 ms

Figure 8: Packet insertion can be done in the coded domain or as direct
waveform substitution.

pattern matching to enhance the pitch estimate. Hence, the pattern matching
scheme is able to correct fine grained errors in the pitch period estimate and
additionally enhance the time resolution.

The strategy for packet insertion depends on the specific codec in the system
where the PLC algorithm is implemented. Two strategies are distinguished:
direct waveform substitution and substitution in the coded domain, as shown
in Figure 8. The waveform substitution technique is straightforward. If the
segment is classified as unvoiced, the samples from the last packet are repeated,
otherwise pitch period repetition in the decoded domain is carried out.

The second strategy is to perform replacement in the coded domain. Whether
this is a feasible solution depends on the specific codec in use. Some decoders
have an internal state. Hence, if the decoder is bypassed, as in direct wave-
form substitution, the state will not be updated and the decoder will behave



4. IMPLEMENTATION 149

Table 2: Profiling results

Function Clock cycles Execution time @ 24 MHz

LPF and Decimation 29600 1.234 ms

Center clipping 6900 0.288 ms

ACF and Maximize 32400 1.350 ms

Pattern matching 4800 0.200 ms

All 73700 3.070 ms

erroneously when the first correctly received packet arrives. The concept of
replacement in the coded domain was verified with the continuous variable
slope delta modulation decoder. Subjective listening tests indicated that re-
placement in the coded domain improved quality compared to direct waveform
substitution.

4 Implementation

The processing delay of the algorithm must be kept to a minimum since it is
added to the delay budget even though no packets are lost. As the PPE is
only performed once, for a burst of lost packets, the worst case scenario is that
every second packet is lost. This result in a processing deadline less than the
duration of two packets. A packet that contains 30 samples at 8 kHz has a
processing deadline less than 7.5 ms. In order to make the solution attractive,
the implementation targets a processing delay less than 1 ms.

The parameters described in Section III are selected as: M = 320, Nmin = 5,
Nmax = 40, L = 25, K = 5 and the packet length 30 samples for a 8 kHz
signal. The low-pass filter is a linear phase FIR filter of length 31, with 10 dB
attenuation at 1 kHz.

The considered target architecture contains an embedded RISC processor
with load-store architecture, running at a 24 MHz clock frequency. The algo-
rithm was first developed using floating-point operations, for simulation pur-
poses. Next, the algorithm was transformed to ANSI C 16-bit fixed-point
operations with 32-bit accumulate. Table 2 shows the profiling results for the
algorithm mapped to the embedded RISC processor. It is assumed that code
and data reside in the on-chip memory. Penalty due to cache misses is not
considered. It is concluded that the proposed pattern matching scheme only
uses 6.5 % of the total execution time.

A computation time of 3.1 ms, as indicated in Table 2, does not meet the
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Table 3: Speedup using accelerator

Function Speedup Arch. A Speedup Arch. B

LPF and Decimation 1.4 5.5

ACF and Maximize 2.3 6.1

Overall 1.6 3.3

desired 1 ms in processing delay. Acceleration of the algorithm with a factor of
3 is not possible to achieve with software techniques. Two different combined
hardware-software techniques were evaluated to accelerate the algorithm. As
the decimation and autocorrelation accounts for almost 85 % of the execution
time, these functions were investigated for acceleration. The common factor for
these functions are that they are both based on multiply-accumulate (MAC).

The considered processor offered an interface, where up to 8 point-to-point
links, with FIFO based communication, could be added. The links can send
and receive data, from and to, the processors general purpose registers using
blocking or non-blocking communication. These links were used as interface to
a co-processor.

The architecture investigated first was to stream data from the processor
to a 16-bit MAC co-processor, as shown in Figure 9 as Architecture A. Af-
ter performing loop unrolling, the inner loop code that describes the MAC
operations are removed and replaced by instructions to stream data to the co-
processor. As both the ACF and filter computation have linear memory access
in the direct form, two 16-bit words can be fetched from the memory and sent
to the co-processor in two instructions. The switches in Figure 9 alternate to
provide the datapath with data in correct order. The speedups achieved using
this solution are presented in Table 3 as Architecture A. The overall achieved
speedup was not found sufficient for the application. If the processor had sup-
ported data to be moved directly from processor memory to the co-processor
links, the speedups would have been 3.3 and 2.1 for the ACF maximization and
filtering and decimation, respectively.

The second investigated architecture was to add cache memory to the co-
processor, as shown in Figure 9 as Architecture B. One memory with 80 16-bit
words is sufficient to hold data used for the ACF calculation. 80 16-bit words
is also enough during the filtering and decimation to hold the filter coefficients
and the 31 16-bit words needed to calculate one filter output. This solution
adds extra hardware as the control logic in Architecture A must be extended.
For the ACF calculation both operands are fed to the MAC from the internal
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Figure 9: Hardware acceleration.

memory and the processor fetches the output from the last FIFO by a blocking
read operation. During the filtering function the processor must download
4 16-bit data and fetch one filter output through a blocking read operation
to calculate one filter output. The speedups achieved using this solution are
presented in Table 3, as Architecture B. The overall algorithm speedup using
this solution is 3.3. This gives a computation time of 0.93 ms, which meets the
1 ms processing delay constraint.

5 Conclusions

A speech packet loss concealment method based on pitch period repetition has
been presented in this part. A novel technique with low complexity has been
proposed to refine a pitch estimate. Experiments using an objective perfor-
mance measure show that the proposed method is able to correct fine grained
errors in the pitch estimate and enhance time resolution.

Hardware-software co-design techniques have been used to explore the de-
sign space for the implementation. Two different co-processor architectures
have been investigated to accelerate the algorithm. An algorithm speedup of
3.3 and a processing delay of 0.9 ms was achieved.





Conclusion

Coarse-grained reconfigurable architectures are an emerging technique for pro-
grammable acceleration of computation intensive processing kernels with word-
level arithmetic. In this thesis, it has been shown that a coarse-grained recon-
figurable architecture that consists of 12 processing elements, 3 memory banks,
and a coprocessor communication mechanism is able to reduce the number of
clock cycles for a speech codec by 83% as compared to instruction set proces-
sor execution. This was accomplished by accelerating less than 25 functions
that were responsible for almost 90% of the execution time on the targeted
instruction set processor. As automatic mapping tools mature, bottlenecks en-
countered with manual mapping are reduced and larger fractions of applications
may be accelerated.

System level evaluation of reconfigurable platforms is necessary to predict per-
formance, and to find and cure bottlenecks prior to fabrication. A SystemC
simulation methodology with high abstraction level and automated approaches
to build, simulate, evaluate, and tune models, was presented. The high ab-
straction level improved design time and increased simulation speed. Further-
more, automated approaches enabled efficient architectural exploration. A set
of flexible transaction level models were developed to allow complete embedded
systems with instruction set processors, buses, and memories to be evaluated
together with the reconfigurable architecture.

Parameterizable models of reconfigurable architectures are required in order to
understand the design parameters and their relationship to performance and
area. This thesis presented a reconfigurable processor array and demonstrated
its design parameters. Concepts on processing cells, hybrid interconnect net-
works, memory distribution, and data driven communication, were proposed.
Processing cells built as processors with enhanced performance for I/O inten-
sive programs were suggested. Memory cells were proposed as global resources
that could be allocated by any processing cell to operate as FIFOs or RAMs.
The hybrid interconnect network consists of dedicated local links and a global
hierarchical network. Experiments showed that the hybrid network achieved a
high throughput for realistic localization factors.
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[95] A. V. Brito, M. Kühnle, M. Hübner, J. Becker, and E. U. K. Melcher,
“Modelling and simulation of dynamic and partially reconfigurable sys-
tems using SystemC,” in Proceedings of IEEE Computer Society Annual
Symposium on VLSI, 2007, pp. 35–40.

[96] Computer Systems Laboratory, University of Campinas , “The ArchC
Architecture Description Language,” http://archc.sourceforge.net/.

[97] The ArchC Team, The ArchC Architecture Description Language v2.0,
Computer Systems Laboratory, University of Campinas , 2007.

[98] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Bar-
ros, “The ArchC architecture description language and tools,” Interna-
tional Journal of Parallel Programming, vol. 33, no. 5, pp. 453–484, 2005.

[99] A. Baldassin, P. Centoducatte, and S. Rigo, “Extending the ArchC lan-
guage for automatic generation of assemblers,” in Proceedings of Inter-
national Symposium on Computer Architecture and High Performance
Computing, 2005, pp. 60–68.

[100] Open Core Protocol International Partnership, “An Initiative towards
Open Network-on-Chip Benchmarks,” http://www.ocpip.org.

[101] (2008) The GNU Profiler. [Online]. Available: http://www.gnu.org/

[102] L. Bononi and N. Concer, “Simulation and Analysis of Network on Chip
Architectures: Ring, Spidergon and 2D Mesh,” in Proceeding of IEEE
Conference on Design, Automation and Test in Europe, 2006, pp. 154–
159.



164 BIBLIOGRAPHY

[103] J. Chan and S. Parameswaran, “NoCGen: A template based reuse
methodology for networks on chip architectures,” in Proceeding of IEEE
Conference on VLSI Design, 2004, pp. 717–720.

[104] A. Hegedus, G. M. Maggio, and L. Kocarev, “A ns-2 simulator utilizing
chaotic maps for network-on-chip traffic analysis,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2005, pp. 3375–3378.

[105] A. Kupriyanov, D. Kissler, F. Hannig, and J. Teich, “Efficient event-
driven simulation of parallel processor architectures,” in Proceedings of
International Workshop on Software and Compilers for Embedded Sys-
tems, 2007, pp. 71–80.

[106] T. Rissa, A. Donlin, and W. Luk, “Evaluation of SystemC modelling of
reconfigurable embedded systems,” in Proceedings of Design, Automation
and Test in Europe, 2005, pp. 253–258.

[107] X. Ningyi, L. Xianglun, L. Renfei, and Z. Zucheng, “A SystemC-based
NoC Simulation Framework supporting Heterogeneous Communicators,”
in Proceedings of IEEE International Conference on ASIC, 2005, pp.
1032–1035.

[108] A. Portero, R. Pla, and J. Carrabina, “SystemC Implementation of a
NoC,” in Proceedings of IEEE International Conference on Industrial
Technology, 2005, pp. 1132–1135.

[109] D. Goodman, O. Jaffe, G. Lockhart, and W. Wong, “Waveform substi-
tution techniques for recovering missing speech segments in packet voice
communications,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 6, pp. 1440–1448, Dec. 1986.
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