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Abstract

With the increasing capacity in today’s hardware systems enabled by technol-
ogy scaling, image processing algorithms with substantially higher complexity
can be implemented on a single chip enabling real-time performance. Com-
bined with the demand for low power consumption or larger resolution seen
in many applications such as mobile devices and HDTV, new design method-
ologies and hardware architectures are constantly called for to bridge the gap
between designers productivity and what the technology can offer.

This thesis tries to address several issues commonly encountered in the
implementations of real-time image processing system designs. Two imple-
mentations are presented to focus on different design issues in hardware design
for image processing systems.

In the first part, a real-time video surveillance system is presented by com-
bining five papers. The segmentation unit is part of a real-time automated
video surveillance system developed at the department, aiming for tracking
people in an indoor environment. Alternative segmentation algorithms are
elaborated, and various modifications to the selected segmentation algorithm
is made aiming for potential hardware efficiency. In order to bridge the mem-
ory bandwidth issue which is identified as the bottleneck of the segmentation
unit, combined memory bandwidth reduction schemes with pixel locality and
wordlength reduction are utilized, resulting in an over 70% memory bandwidth
reduction. Together with morphology, labeling and tracking units developed
by two other Ph.D. students, the whole surveillance system is prototyped on
an Xilinx VirtexII pro VP30 FPGA, with a real-time performance at a frame
rate of 25 fps with a resolution of 320× 240.

For the second part, two papers are extended to discuss issues of a con-
troller design and the implementation of control intensive algorithms. To avoid
tedious and error prone procedure of hand coding FSMs in VHDL, a controller
synthesis tool is modified to automate a controller design flow from C-like con-
trol algorithm specification to controller implementation in VHDL. To address
issues of memory bandwidth as well as power consumptions, a three level of
memory hierarchy is implemented, resulting in off-chip memory bandwidth re-
duction from N2 per clock cycle to only 1 per pixel operation. Furthermore,
potential power consumption reduction of over 2.5 times can be obtained with
the architecture. Together with a controller synthesized from the developed
tool, a real-time image convolution system is implemented on an Xilinx Vir-
texE FPGA platform.
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H. Jiang, H. Ardö and V. Öwall, “Hardware Accelerator Design for Video Seg-
mentation with Multi-modal Background Modeling,” in IEEE International
Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 2005.

F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson and V. Öwall, “Hardware
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Chapter 1

Overview

Imaging and video applications are one of the fastest growing sectors of the
market today. Typical application areas include e.g. medical imaging, HDTV,
digital cameras, set-top boxes, machine vision and security surveillance. As
the evolution in these applications progresses, the demands for technology in-
novations tend to grow rapidly over the years. Driven by the consumer elec-
tronics market, new emerging standards along with increasing requirements
on system performance imposes great challenges on today’s imaging and video
product development. To meet with the constantly improved system perfor-
mance measured in, e.g., resolution, throughput, robustness, power consump-
tion and digital convergence (where a wide range of terminal devices must pro-
cess multimedia data streams including video, audio, GPS, cellular, etc.), new
design methodologies and hardware accelerator architectures are constantly
called for in the hardware implementation of such systems with real-time pro-
cessing power. This thesis tries to deal with several design issues normally
encountered in hardware implementations of such image processing systems.

1.1 Thesis Contributions

In this thesis, implementation issues are elaborated regarding transforming
image processing algorithms into hardware realizations in an efficient way. With
the major concern to address memory bottlenecks which are common to most
image applications, architectural considerations as well as design methodology
constitute the main scope of the thesis research work. Two implementations
are contributed in the thesis for the design of image processing accelerators:

3



4 CHAPTER 1. OVERVIEW

In the first implementation, a real-time video segmentation unit is imple-
mented on an Xilinx FPGA platform. The segmentation unit is part of a real-
time embedded video surveillance system developed at the department, which
are aimed to track people in an indoor environment. Alternative segmenta-
tion algorithms are elaborated, and an algorithm with Mixture of Gaussian
approach is selected based on the trade-offs of segmentation quality and com-
putational complexity. For hardware implementation, memory bottlenecks are
addressed with combined memory bandwidth reduction schemes. Modifications
to the original video segmentation are made to increase hardware efficiency.

In the second implementation, a synthesis tool is modified to automate a
controller design flow from a control algorithm specification to VHDL imple-
mentation. The modified tool is utilized in the implementation of a real-time
image convolution accelerator, which is prototyped on an Xilinx FPGA. An
architecture of three levels of memory hierarchy is developed in the image con-
volution accelerator to address issues of memory bandwidth and power con-
sumption.

1.2 Thesis Outline

The thesis is structured into three parts. The introduction part covers topics
concerning a range of technologies used in the hardware implementation of a
typical image processing systems, e.g. image sensors, signal processing units,
memory technologies and displays. Comparisons are made in various technolo-
gies regarding performance, area and power consumption cost etc. Following
the introduction are two parts covering implementations by the author with
the aim of different design goals.

Part I

A design and implementation of a real-time video surveillance system is
presented in this part. Details on video segmentation implementation from
algorithm evaluation to the architecture and hardware design are elaborated.
Novel ideas of how off-chip memory bandwidth can be reduced by utilizing
pixel locality and wordlength reduction scheme are shown. Modifications to
the existing Mixture of Gaussian (MoG) [1] is proposed aiming for potential
hardware efficiency. The implementation of the segmentation unit is based on:

H. Jiang, H. Ardö and V. Öwall, “Hardware Accelerator Design for Video
Segmentation with Multi-modal Background Modeling,” in IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), Kobe, Japan,
2005.

H. Jiang, H. Ardö and V. Öwall, “Real-time Video Segmentation with
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VGA Resolution and Memory Bandwidth Reduction,” in IEEE Inter-
national Conference on Advanced Video and Signal based Surveillance
(AVSS), Sydney, Australia, 2006.

H. Jiang, H. Ardö and V. Öwall, “VLSI Architecture for a Video Segmen-
tation Embedded System with Algorithm Optimization and Low Memory
Bandwidth,”To be Submitted to IEEE Transactions on Circuits and Sys-
tems for Video Technology, February, 2007.

The second chapter of the part is dedicated to system integration of the
segmentation into a complete tracking system, which includes segmentation,
morphology, labeling and tracking. The complete system is implemented on an
Xilinx VirtexII pro FPGA platform with real-time performance at a resolution
of 320 × 240. The implementation of the complete embedded tracking system
is based on:

F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson and V. Öwall, “Hardware
Aspects of a Real-Time Surveillance System,” in European Conference on
Computer Vision, Graz, (ECCV), Graz, Austria, 2006.

F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson and V. Öwall, “Working
title: Hardware Aspects of a Real-Time Surveillance System,” To be
submitted to Springer Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, February, 2007.

The author’s contribution is on the segmentation part.

Part II

Controller design automation with a modified controller synthesis tool is
discussed in the procedure of implementing control intensive image processing
systems. For signal processing systems with increasing complexity, hand cod-
ing FSMs in VHDL becomes a tedious and error prone task. To bridge the
difficulty of implementing and verification of complicated FSMs, a controller
synthesis tool is needed. In this part, various aspects of FSM structures and
implementations are explored. Details on design flows with the developed tool
are presented. In the second chapter, the controller synthesizer is applied on
the implementation of a real-time image convolution hardware accelerator. In
addition, an architecture of three levels of memory hierarchy is developed in
the image convolution hardware. It is shown how power consumption as well as
memory bandwidth can be saved by utilizing memory hierarchies. Such archi-
tecture can be generalized to implementing different image processing functions
like morphology, DCT or other block based sliding window filtering operations.
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In the implementation, power consumption due to memory operations are re-
duced by over 2.5 times, and the off-chip memory access is reduced from N2

per clock to only one pixel per operations, where N is the size of the sliding
window. The whole part is based on:

H. Jiang and V. Öwall, “FPGA Implementation of Controller-Datapath
Pair in Custom Image Processor Design,” in IEEE International Sympo-
sium on Circuits and Systems (ISCAS), Vancouver, Canada, 2004.

H. Jiang and V. Öwall, “FPGA Implementation of Real-time Image Con-
volutions with Three Level of Memory Hierarchy,” in IEEE Conference
on Field Programmable Technology (ICFPT), Tokyo, Japan, 2003.



Chapter 2

Hardware Implementation Technologies

The construction of a typical real-time imaging or video embedded system
is usually an integration of a range of electronic devices, e.g. image acquisi-
tion device, signal processing units, memories, and a display. Driven by the
market demand to have faster, smarter, smaller and more interconnected prod-
ucts, designers are under greater pressure to make decisions on selecting the
appropriate technologies in each one of the devices among many of the alter-
natives. Trade-offs are constantly made concerning e.g. cost, speed, power,
and configurability. In this chapter, a brief overview of the varied alternative
technologies is given along with elaborations on the plus and minus sides of
each of the technologies, which motivates the decisions made on the selection
of the right architecture for each of the devices used in the projects.

2.1 ASIC vs. FPGA

The core devices of an real-time embedded system are composed of one or
several signal processing units implemented with different technologies such as
Micro-controller units (MCUs), Application Specific Signal Processors(ASSPs),
General Purpose Processors (GPPs/RISCs), Field Programmable Gate Arrays
(FPGAs) and Application Specific Integrated Circuits (ASICs). A comparison
is made for the areas where each of these technologies prevails [2], which is a
bit biased to DSPs. This is shown in Table 2.1. No perfect technology exists
that is competent in all areas. For a balanced embedded system design, a
combination of some of the alternative technologies is a necessity. In general,
an embedded system design is initiated with Hardware/Software partitioning,
once the original specifications are settled under various system requirements.

7



8 CHAPTER 2. HARDWARE IMPLEMENTATION TECHNOLOGIES

Table 2.1: Comparisons of different types of signal processing units. Sources
are from [2].

Performance Price Power Flexibility Time to

market

ASIC Excellent Excellent 1 Good Poor Fair
FPGA Excellent Poor Fair Excellent Good
DSP Excellent Excellent Excellent Excellent Good
RISC Good Fair Fair Excellent Excellent
MCU Fair Excellent Fair Excellent Excellent

The partitioning is carried out by either a heuristic approach or by a certain
kind of optimization algorithm, e.g. simulated annealing [3] or tabu search [4].
Software is executed in processors (DSPs, MCUs, ASSPs, GPPs/RISCs) for
features and flexibility, while dedicated hardware are used for parts of the
algorithm which are critical regarding timing constraints. With the main focus
of the thesis being on the blocks that need to be accelerated and optimized
by custom hardware for better performance and power, only ASIC and FPGA
implementation technologies are discussed in the following sections.

With the full freedom to customize the hardware to the very last single bit
of logic, both ASICs and FPGAs can achieve much better system performance
compared to other technologies. However, as they differ in the inner structure of
logic blocks building, they posses quite different metrics in areas such as speed,
power, unit cost, logic integration, etc. In general, designs implemented with
ASIC technology is optimized by utilizing a rich spectrum of logic cells with
varied sizes and strengths, along with dedicated interconnection. In contrast,
FPGAs with the aim of full flexibility are composed of programmable logic
components and programmable interconnects. A typical structure of an FPGA
is illustrated in figure 2.1. Figure 2.2 and 2.3 show the details of programable
logic components and interconnects. Logic blocks can be formed on site through
programming look up tables and the configuration SRAMs which control the
routing resources. The programmability of FPGAs comes at the cost of speed,
power, size, and cost, which is discussed in details in the following. Table 2.2
gives a comparison between ASICs and FPGAs.

Speed In terms of maximum achievable clock frequency, ASICs are typically
much faster than an FPGA given the same manufacture process technol-
ogy. This is mainly due to the interconnect architecture within FPGAs.

1Unit price for volume production
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Logic block

Configurable routing

I/O block

Figure 2.1: A conceptual FPGA structure with configurable logic blocks
and routing.
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Figure 2.2: Simplified programmable logic elements in an typical FPGA
architecture.
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CLB CLB

CLBCLB

MUX

SRAM

SRAM

SRAM

Figure 2.3: Configurable routing resources controlled by SRAMs.

Table 2.2: Comparisons between ASICs and FPGAs.

ASICs FPGAs

Clock speed High Low
Power Low High

Unit cost with volume production Low High
Logic Integration High Low

Flexibility Low High
Back-end Design Effort High Low

Integrated Features Low High
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To ensure programmability, many FPGA devices utilize pass transistors
to connect different logic cells dynamically, see figure 2.3. These active
routing resources add significant delays to signal paths. Furthermore, the
length of each wire is fixed to either short, medium, and long types. No
further optimization can be exploited on the wire length even when two
logic elements are very close to each other. The situation could get even
worse if high logic utilization is encountered, in which case it is difficult
to find a appropriate route within certain regions. As a result, physically
adjacent logic elements do not necessarily get a short signal path. In
contrast, ASICs has the facility to utilize optimally buffered wires imple-
mented with metal in many layers, which can even route over logic cells.
Another contributor to FPGAs speed degradation lies in its logic granu-
larity. In order to achieve programmability, look-up tables are used which
usually have a fixed number of inputs. Any logic function with slightly
more input variables will take up additional look-up tables, which will
again introduce additional routing and delay. On the contrary, ASICs,
usually with a rich spectrum types of logic gates of varying functionality
and drive strength (e.g. over 500 types for UMC 0.13 µm technology
used at the department), logic functions can be very fine tuned during
synthesis process to meet a better timing constraint.

Power The active routing in FPGA devices does not only increase signal path
delays, it also introduce extra capacitance. Combined with large capaci-
tances caused by the fixed interconnection wire length, the capacitance in
FPGA signal path is in general several times larger than that of an ASIC.
Substantial power consumption is dissipated during signal switching that
drives such signal paths. In addition, FPGAs have pre-made dedicated
clock routing resources, which are connected to all the flip flops on an
FPGA in the same clock domain. The capacitance of the flip flop will
contribute to the total switching power even when it is not used. Fur-
thermore, the extra SRAMs used to program look-up tables and wires
also consume static power.

Logic density The logic density on an FPGA is usually much lower compared
to ASICs. Active routing device takes up substantial chip area. Look-up
tables waste logic resource when they are not fully used, which is also
true for flip-flops following each look-up table. Due to relatively low logic
density, around 1/3 of large ASIC designs in the market usually could not
fit into one single FPGA [5]. Low logic density increase the cost per unit
chip area, which makes ASIC design more preferable for industry designs
in mass production.

Despite of all the above drawbacks, FPGA implementation also comes with
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quite a few advantages, which is served as the motivation in the thesis work.

Verification Ease Due to its flexibility, an FPGA can be re-programmed as
requested when a design flaw is spotted. This is extremely useful for
video projects, since algorithms for video applications usually need to be
verified over a long time period to observe long term effects. Computer
simulations are inherently slow. It could take a computer weeks of time
to simulate a video sequences lasting for only several minutes. Besides, an
FPGA platform is also highly portable compared to a computer, which
makes it more feasible to use in heterogeneous environments for system
robustness verification.

Design Facility Modern FPGAs comes with integrated IP blocks for design
ease. Most importantly, microprocessors are shipped with certain FP-
GAs, e.g. (hard Power PC and soft Microblaze processor cores on Virtex
II pro and later version of Xilinx FPGAs). This gives great benefit to
hardware/software co-design, which is essential in the presented video
surveillance project. Algorithm such as feature extraction and tracking
is more suitable for software implementation. With the facilitation of
various FPGA tools, interaction between software and hardware can be
verified easily in an FPGA platform. Minor changes in hardware/software
partitioning are easier and more viable compared to ASICs.

Minimum Effort Back-end Design The FPGA design flow eliminates the
complex and time-consuming floor planning, place and route, timing anal-
ysis, and mask/re-spin stages of the project, since the design logic is al-
ready synthesized to be placed onto an already verified, characterized
FPGA device. This will facilitate hardware designers more time to con-
centrate mainly on architecture and logic design task.

From the discussions above, FPGAs are selected as our implementation
technology due to its fair performance and all the flexibilities and facilities.

2.2 Image Sensors

An image sensor is a device that converts light intensity to an electronic signal.
They are widely used among digital cameras and other imaging devices. The
two most commonly used sensor technologies are based on Charge Coupled De-
vices (CCD) or Complementary Metal Oxide Semiconductor(CMOS) sensors.
Descriptions and comparisons of the two technologies are briefly discussed in
the following which are based on [6–8]. A summary of the two sensor types
is given in Table 2.3. Both devices are composed of a array of fundamental
light sensitive elements called photodiodes, which excite electrons (charges)
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Table 2.3: Image sensor technology comparisons: CCD vs. CMOS.

CCD CMOS

Dynamic Range High Moderate
Speed Moderate High

Windowing Limited Extensive
Cost High Low

Uniformity High Low to moderate
System Noise Low High

when there is light with enough photons striking on it. In theory, the trans-
formation from photon to electron is linear so that one photon would release
one electron. In general, this is not the case in the real world. Typical image
sensors intended for digital cameras will release less than one electron. The
photodiode measures the light intensity by accumulating light incident for a
short period of time (integration time), until enough charges are gathered and
ready to be read out. While CCD and CMOS sensors are quite similar in these
basic photodiode structure, they mainly differs in the way how these charges
are processed, e.g. readout procedure, signal amplification, and AD conver-
sion. The inner structures of the two devices are illustrated in figure 2.4 and
2.5. CCD sensors read out charges in a row-wise manner: The charges on each
row are coupled to the row above, so when the charges are moved down to the
row below, new charges from the row above will fill the current position, thus
the name Coupled Charged Device. The CCD shifts one row at a time to the
readout registers, where the charges are shifted out serially through a charge-
to-voltage converter. The signal coming out of the chip is a weak analog signal,
therefore an extra off-chip amplifier and AD converter are need. In contrast,
CMOS sensors integrates separate charge-to-voltage converter, amplifier, noise
corrector and AD converter into each photosite, so the charges are directly
transformed, amplified and digitized to digital signals on each site. Row and
column decoders can also be added to select each individual pixel for readout
since it is manufactured in the same standard CMOS process as main stream
logic and memory devices.

With varied inner structures of the two sensor types, each technology has
unique strengths but also weaknesses in one area or the other, which are de-
scribed in the following:

Cost CMOS sensors in general come at a low price at system level since the
auxiliary circuits such as oscillator, timing circuits, amplifier, AD con-
verter can be integrated onto the sensor chip itself. With CCD sensors,
these functionality have to be implemented on a separate Printed Circuit
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Board (PCB) which results in a higher cost. On the chip level, although
CMOS sensor can be manufactured using a foundry process technology
that is also capable of producing other circuits in volume, the cost of the
chip is not considerable lower than a CCD. This is due to the fact that
special, lower volume, optically adapted mixed-signal process has to be
used by the requirement of good electro-optical performance [6].

Image Quality The image quality can be measured in many ways:

Noise level CMOS sensors in general have a higher level of noises due
to the extra circuits introduced. This can be compensated to some
extent by extra noise correction circuits. However this could also
increase the processing time between frames.

Uniformity CMOS sensors use separate amplifier for each pixel, the
offset and gain of which can vary due to wafer process variations.
As a result, the same light intensity will be interpreted as different
value. CCD sensor with an off-chip amplifier for every pixel, excel
in uniformity.

Light Sensitivity CMOS sensors are less sensitive to light due to the
fact that part of each pixel site are not used for sensing light but for
processing. The percentage of a pixel used for light sensing is called
fill factor, which is shown in figure 2.2. In general, CCD sensors
have a fill factor of 100% while CMOS sensor has much less, e.g.
30%−60% [9]. Possibly, such a drawback can be partially solved by
adjusting integration time of each pixel.

Speed and Power In general, a CMOS sensor is faster and consumes lower
power compared to a CCD. Moving auxiliary circuits on chip, parasitic
capacitance is reduced, which increase the speed at the same time con-
sumes less power.

Windowing The extra row and column decoders in CMOS sensors enable data
reading out from arbitrary positions. This could be useful if only portion
of the pixel array is of interest. Reading out data with using different
resolution is made easy on CMOS sensor without having to discard pixels
outside the active window as compared to a CCD sensor.

2.3 Memory Technology

As a deduction from Moore’s law, the performance of processors is increasing
roughly 60% each year due to the technology scaling. This is never the case
for memory chips. In terms of access time, memory performance have only
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Light detection
Area

Peripheral
Circuits

Figure 2.6: Fill factor refers to the percentage of a photosite that is
sensitive to light. If circuits cover 25% of each photosite, the sensor is
said to have a fill factor of 75%. The higher the fill factor, the more
sensitive the sensor.

managed to increase by less than 10% per year [10, 11]. The performance gap
between processors and memories has already become a bottle neck of today’s
hardware system design. With different increase rate, the situation will get even
worse in the future until it reaches a point where further increase in processor
speed yield little or no performance boost for the whole system, a phenomenon
that is called ”hitting the memory wall” from the most cited article [12] by W.
Wulf et al. on processor memory gap. The traditional way of bridging the gap
is by introducing a hierarchical level of caches, while many new approaches are
under investigation e.g. [13–15]. In order for better understanding of memory
issues today, topics regarding memory technology are given in the following
section.

In general, memory technology can be categorized into two types, namely
Read Only Memory (ROM) and Random Access Memory (RAM). Due to its
read only nature, a ROM is generally made up of a hardwired architecture
where a transistor is placed on a memory cell depending on intended content
of the cell. The use of a ROM is limited to store fixed information, e.g. look-
up table, micro-codes. Many variant technology exists to provide at least one
time programmability, e.g. PROM, EPROM, EEPROM and FLASH. RAMs on
the other hand with both read and write access are widely used in hardware.
Basically, RAMs consists of two types: Static RAM (SRAM) and Dynamic
RAM (DRAM). A typical 6 transistor SRAM cell is shown in figure 2.7, while
a 1 transistor and a 3 transistor DRAM cells are shown in figure 2.8.
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Figure 2.8: DRAM cell architectures with 1 or 3 transistors.
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From the figure, static RAM holds its data in a positive feedback loop
with two cascaded inverters. The value will be stored for as long as power is
supplied to the circuit. This is in contrast to DRAM, which holds its value on a
capacitor. Due to the leakage, the charge on the capacitor will disappear after
a period of time. To be able keep the value, the capacitor has to be refreshed
constantly. With their respective strengths and weaknesses incurred by their
inner structures, SRAMs and DRAMs are used in quite different applications.
A brief comparison is made on the two technologies in the following:

Density Each DRAM cell is made up of fewer transistors compared to a SRAM
cell, which makes it possible to integrate much more memory cells given
the same chip area. Due to the same reason, the cost of DRAMs is much
lower.

Speed In general, DRAMs are relatively slow compared to SRAMs. One rea-
son for this is that its high density structure leads to large cell arrays with
high word and bit line capacitance. Another reason lies on its compli-
cated read and write cycle with latencies. With its capacity, the address
signals are multiplexed into row and column due to limited number of
pins, potentially degrading performance. Furthermore, DRAMs needs to
be refreshed constantly, during which period no read and write accesses
are possible.

Special IC process Integrating denser cells requires modifications in the man-
ufacturing process [16], which makes DRAMs difficult to integrate with
standard logic circuits. In general, DRAMs are manufactured in separate
chips.

From these properties, DRAMs are generally used as system memory placed
off-chip due to its density and cost, while SRAMs is placed on-chip with stan-
dard logic circuits, working as L1 and L2 caches due to its speed and ease of
integration.

2.3.1 Synchronous DRAM

To overcome the shortcomings existing in traditional DRAMs, new technologies
have evolved over years, e.g. Fast Page Mode DRAM (FPM), Extended Data
Out DRAM (EDO) and Synchronous DRAM (SDRAM). A good overview can
be found from many sources, e.g. [17, 18]. SDRAM gains its popularity by
several reasons:

• By introducing clock signals, memory buses are made synchronous to
processors. As a result, the commands to be issued to the memories
are put in pipelines, so that new operation is executed without waiting
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for the completion of the previous ones. Besides, the effort of memory
controller design is made easier to some extent, since timing parameters
are measured in clock cycles instead of physical timing data.

• SDRAM supports burst memory access to an entire row of data. Syn-
chronous to the bus clock, the data can be read out sequentially without
stalling. No column access signals are needed for burst read, the length
of the burst accessed in set by a mode register, which is a new feature
in SDRAMs. Burst data access will increase memory bandwidth sub-
stantially if the data needed by the processor are stored successively in a
row.

• SDRAM utilize bank interleaving to minimize extra time introduced by
e.g. precharge, refresh. The memory space of a SDRAM is divided into
several banks (usually two or four). When one of the bank is being
accessed, other banks remains ready to be accessed. When there is a
request to access another bank, this will take place immediately without
having to wait for the current bank to complete. A continuous data flow
can be obtained in such cases.

2.3.1.1 Double Data Rate Synchronous DRAM

To further improve the bandwidth of a SDRAM, Double Data Rate SDRAM
(DDR) is developed with doubled memory bandwidth. By using 2n pre-fetching
techniques, two bits are picked up from the memory array simultaneously to
the I/O buffer in two separate pipelines, where they are to be sent on to the bus
sequentially on both rising and falling edges of the clock. However, the usage is
limited to the situation where the need of multiple accesses is on the same row.
In addition to double data rate, the bus signaling technology is changed to a
2.5v Stub Series Terminated Logic 2 (SSTL 2) standard [19], which consumes
less power. Data strobes signals are also introduced for better synchronization
of data signals to memory controllers.

2.3.2 DDR Controller Design on Xilinx VirtexII pro FPGA

With high data bandwidth and complicated timing parameters of a DDR
SDRAM, the design of a DDR interface can be challenging. DDR SDRAM
works synchronously on a clock frequency at 100 MHz or above. Clock sig-
nals together with data and command signals are transferred between memory
and processor chips through PCB signal traces. To make sure all data and
command signals to be valid in the right timing in respective to the clock is a
nontrivial task. Many factors contributes to the total signal uncertainties, e.g.
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Figure 2.9: Two DCMs are used to synchronize operations on an off-chip
DDR SDRAM and on-chip memory controller. DCM external sends off-
chip clocks for DDR SDRAM, while DCM internal are used for sending
data off-chip or capturing data from an DDR SDRAM.
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PCB layout skew, package skew, clock phase offset, clock tree skew and clock
duty cycle distortion.

In the following, the timing closure of a DDR controller design for the im-
plementation of the video surveillance unit is described. The memory interface
is implemented on a Xilinx Virtex II pro VP30 platform FPGA platform with
a working frequency of 100 Mhz.

According to the standard, the data are transferred between a DDR and a
processor (FPGA in our implementation) with a bidirectional data strobe signal
(DQS). The signal is issued by the memory controller during write operation
and it is center aligned with the data. During a read operation, the DDR send
the signal together with the data with edge alignment in respect to each other.

To synchronize the operations between an FPGA and a DDR SDRAM, two
Digital Clock Managers (DCM) are used, which is shown in figure 2.9.

DCM is a special device in many Xilinx FPGA platforms that provide
many functionalities related to the clock management, e.g. delayed locked loop
(DLL), digital frequency synthesizer and digital phase shifter. By using the
clock signal feedback from the dedicated clock tree, the clock signal referenced
internally by each flip-flop inside an FPGA are in phase with the source of
the clock from off-chip. From figure 2.9, the DCM External generates the
clock signals (clk0 and clk180) that go off-chip to the DDR SDRAM through
double data rate flip-flops (FDDR). FDDR updates its outputs on the rising
edges of both input clock signals. Thus the clock signals to a DDR can be
driven by an FDDR instead of an internal clock signal directly. The DCM
Internal generates the clock signals that are used internally by all flip-flops in
the memory controller. To be able to align the two clock signals, they are
both aligned to the original clock source (the signal driven by IBUFG). The
alignment of the DCM External are implemented using a off-chip PCB trace
signals that is designed to have the same length as the clock signal trace from
the FPGA to the DDR SDRAM. Thus the clock signal arrives at the DDR
SDRAM is assumed to be in phase with the external feedback signal that
arrives at the DCM External. As the internal clock signals referenced by all
flip-flops in the memory controller are also aligned to the original clock signal
driven by IBUFG through an internal feedback loop, the clock signal in memory
controller is aligned to the clock signal that arrives at the DDR SDRAM clock
pin. During read operation, data are transferred from an off-chip DDR on both
edges of the clock, in a edge alignment manner. To register the data in the
memory controller, a 90◦ and 270◦ phase shifted clock signals are used to align
with the read being data in the center. This is shown in figure 2.9.

In practice, the internal and external clock signals are not entirely in phase
with each other due to skews from many sources. From Xilinx datasheet [20–
22], the worst case skews on an Xilinx Virtex II pro devices can result in
leading and trailing uncertainties of 880 ps and 540 ps respectively in a read
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Figure 2.10: DDR read capture data valid window.

data window, which is shown in figure 2.10.
The internal DCM is phase shifted by 1 ns to take the advantage of varied

leading and trailing uncertainties, thus the margin of the valid data window is
improved, see figure 2.10.

On the other hand, the timing problem with data write operation is minor
since clock signals and data signals generated within FPGA propagate through
similar logics and trace delays.

2.4 Power Consumption in Digital CMOS technology

Minimization of power consumption has been one of the major concerns in the
design of embedded systems due to one of the following two distinctive reasons:

• The increasing system complexity of portable devices leads to more power
consumption by more integrated functionality and sophistication, e.g. the
multimedia applications on mobile phones such as digital video broadcast-
ing (DVB) and digital camera, higher data rate wireless communication
with emerging technologies such as WiMax/802.16. This shortens battery
life significantly.

• Reliability and cost issues regarding heat dissipation in the manufacturing
of non-portable high end applications. High power consumption requires
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expensive packaging and cooling techniques given that insufficient cooling
leads to high operating temperatures, which tend to exacerbate several
silicon failure mechanisms.

This is especially true for battery-driven system design. With only 30% battery
capacity increase in the last 30 years and 30 to 40% over the next 5 years by
using new battery technologies [23], e.g.the rechargeable lithium or polymers,
the computational power of digital integrated circuits has increased by several
orders of magnitude. To bridge the gap, new approaches must be developed to
handle power consumption in mobile applications.

2.4.1 Sources of power dissipation

Three major sources contribute to the total power dissipation of digital CMOS
circuits, which can be formulated as:

Ptot = Pdyn + Pdp + Pstat, (2.1)

where Pdyn is the dynamic dissipation due to charging and discharging load ca-
pacitances, Pdp is the power consumption caused by direct path between VDD

and GND with finite slope of the input signal, and Pstat is the static power
caused by leakage current. Traditionally, the power consumption by capacitive
load has always been the dominant factor. This will not be the case in the
design with deep sub-micron technologies, since leakage current increases ex-
ponentially with threshold scaling in each new technology generation [24]. For
130 nm technology, leakage can account for 10% to 30% of the total power when
active, and dominant when standby [25]. With 90 nm and 65 nm technology,
the leakage can reach more than 50%. Power dissipation due to direct path,
on the other hand, is usually of minor importance, and can be minimized by
certain techniques e.g. supply voltage scaling [26]. With the focus of the the-
sis being on architecture exploration, power consumption regarding switching
power is briefly discussed in the following.

2.4.1.1 Switching Power Reduction Schemes

Power consumption due to signal switching activity can be calculated as [16]:

Pswitch = P0→1CLV 2
DDf, (2.2)

where P0→1 is the probability that a output transition of 0 → 1 occurs, CL is
the load capacitance of the driving cell, VDD is the supply voltage, and f is the
working clock frequency. From the equation, power minimization strategy can
be carried out by constraining any of the factors, which is especially effective
for power supply reduction since the power dissipation decreases quadratically
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Table 2.4: Power Savings in Different Level of Design Abstraction.

Technique Savings

Architectural/Logic Changes 45%
Clock Gating 8%

Low power Synthesis 15%
Voltage Reduction 32%

Table 2.5: Core power consumption contribution from different parts of a logic
core [36].

Component Percentage

PLLs/Macros 7.21%
Clocks 52.13%

Standard Cells 6.72%
Interconnect 5.97%

RAMs (including leakage) 16.94%
Logic Leakage 11.04%

with VDD. Power minimization techniques can be applied in all level of design
abstractions, ranging from software down to chip layout. In [27–34], compre-
hensive overviews of various power reduction techniques are given. Suggestions
are made to minimize power consumption in all level of a circuit design. In [35],
a survey is made to give an overview of amount of power savings that can be
generally achieved at different design level. Their experimental results are given
in Table 2.4. From the table, it is shown that the most efficient way of lower-
ing power consumption is to work on either high architecture level or the low
transistor level. In [36], the contributions to the total power consumption from
different blocks of a design are given, which is shown in table2.5. From the
table, it can be seen that clock net and memory access contribute over 50% of
the total power consumption in the logic core. In the following section, example
power reduction schemes are discussed, which only covers power consumption
minimization in high level architecture design.

2.4.2 Pipelining and Parallel Architectures

Power consumption can be reduced by using pipelining or parallel architectures.
According to [37], the first order estimation of the delay of a logic path can be
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calculated as

td ∝ VDD

(VDD − Vt)α
. (2.3)

With a pipelining architecture, the calculation paths of a design is inserted with
pipeline registers. This effectively reduces the td in the critical path. Thus
VDD can be lowered in the equation while the same clock frequency can be
maintained. As stated above, power consumption can be reduced by lowering
VDD since it has quadratic effects on power dissipation. The same principle
applies to parallel architecture. With hardware duplicated several times, the
throughput of a design increases proportionally. Alternatively, a design can
achieve for lower power consumption by slowing down the clock frequency of
each duplicates. The same throughput is maintained, while the supply voltage
can be reduced.
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Chapter 1

Segmentation

1.1 Introduction

The use of video surveillance systems is omnipresent in the modern world in
both a civilian and a military contexts, e.g. traffic control, security monitor-
ing and antiterrorism. While traditional Closed Circuit TV (CCTV) based
surveillance systems put heavy demands of human operators, there is an in-
creasing needs for automated video surveillance system. By building a self
contained video surveillance system capable of automatic information extrac-
tion and processing, various events can be detected automatically, and alarms
can be triggered in presence of abnormity. Thereby, the volume of data pre-
sented to security personnel is reduced substantially. Besides, automated video
surveillance better handles complex cluttered or camouflaged scenes. A video
feed for surveillance personnel to monitor after the system has announced an
event will support improved vigilance and increase the probability of incident
detection.

Crucial to most of such automated video surveillance systems is the quality
of the video segmentation, which is a process of extracting objects of interest
(foreground) from an irrelevant background scene. The foreground information,
often composed of moving objects, is passed on to later analysis units, where ob-
jects are tracked and their activities are analyzed. To be able to perform video
segmentation, a so called background subtraction technique is usually applied.
With a reference frame containing a pure background scene being maintained
for all pixel locations, foreground objects are extracted by thresholding the
difference between the current video frame and the background frame. In the
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Figure 1.1: Video segmentation results with the frame difference ap-
proach. Different threshold value are tested in the indoor environment
in our lab.

following section, a range of background subtraction algorithms are reviewed,
along with the discussions on their performances and computational complex-
ity. Based on these discussions, trade-offs are made with a specific algorithm
based on Mixture of Gaussian (MoG) being selected as the baseline algorithm
for hardware implementation. The algorithm is subjected to modifications to
better fit implementation on an embedded platform.
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1.2 Alternative Video Segmentation Algorithms

1.2.1 Frame Difference

A Background/Foreground detection can be achieved by simply observing the
difference of the pixels between two adjacent frames. By setting a threshold
value, a pixel is identified as foreground if the difference is higher than the
threshold value or background otherwise. The simplicity of the algorithm comes
at the cost of the segmentation quality. In general, bigger regions are detected
as foreground area than the actual moving part. Also it fails to detect inner
pixels of a large, uniformly-colored moving object, a problem known as aperture
effect [1]. In addition, setting a global threshold value is problematic since the
segmentation is sensitive to light intensity. Figure 1.1 shows segmentation
results with a video sequence taken in our lab, where three people are moving
in front of a camera. From these figures, it can be seen that with lower threshold
value, more details of the moving objects are revealed. However, this comes
with substantial noise that could overwhelm the segmented objects, e.g. the left
most person in figure 1.1(b). On the other hand, increasing the threshold value
reduces noise level, at the cost of less details detected to a point where almost
whole objects are missing, e.g. left most person in figure 1.1(d). In general,
inner parts of all objects are left undetected, due to their uniformity colors that
result in minor value changes over frames. In spite of the segmentation quality,
the frame difference approach suits well for hardware implementation. The
computational complexity as well as memory requirements are rather low. With
the memory size of only one video frame and minor hardware calculation, e.g.
an adder and a comparator, it is still found as part of many video surveillance
systems of today [1–4].

1.2.2 Median Filter

While the frame difference approach uses the previous frame as the background
reference frame, it is inherently unreliable and sensitive to noise with the mov-
ing objects contained in the reference frame and the varying illumination noise
over frames. An alternative approach to obtain a background frame is by using
median filters. A median filter has traditionally been used in spatial image fil-
tering process to remove noise [5]. The basic idea of noise reduction lies in the
fact that a pixel corrupted by noise makes a sharp transition in the spatial do-
main. By checking the surrounding pixels that centers at the pixel in question,
the middle value is selected to replace the center pixel. By doing this, the pixel
in question is forced to look like its neighbors, thus the extinctive pixel value
corrupted by noise are replaced. Inspired by this, median filters are used to
model background pixels with reduced noise deviation by filtering pixel values
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in the time domain. they are used in many applications [6–8], with the median
filtering process carried out over the previous n frames, e.g. 50 − 200 frames
in [6]. To avoid foreground pixel values to be mixed into the background, the
number of frames has to be large so that more than half the pixel values be-
longs to the background. The principle is illustrated in figure 1.2, where the
number of both foreground and background pixels are shown in a frame buffer.
Due to various noise, a pixel value will not stay at exactly the same value over
frames, thus the histograms are used to represent both the foreground and the
background pixels. Consider the case when the number of background pixels
is more than that of foreground pixel by only one. The median value will lie
right at the right foot of background histogram. With increasing background
pixel filled into the buffer, the value is moving towards the peak of the back-
ground histogram. Under the previous assumption that no foreground pixel
will stay in the scene for more than half size of the buffer, the median value
will move along the background histogram back and forth, representing the
background pixel value for the current frame. Using buffers to store previous
n frames is costly in memory usage. In certain situations, number of buffered
frames could increase substantially, e.g. slowly moving objects with uniformly
colored surface are present in the scene or the foreground objects stopped for a
while before moving on to another location. The calculation complexity is also
proportional to the number of buffers. To find the median value it is necessary
to sort all the values in the frame buffer in numerical order which is hardware
costly with large number of frame buffers.

1.2.3 Selective Running Average

One similar alternative to median filtering is to use the average instead of the
median value over previous n frames. Noise distortions to a background pixel
over frames can be neutralized by taking the mean value of the pixel samples
collected over time. To avoid huge memory requirements similar to the median
filtering approach, a running average can be utilized which takes the form of

Bt = (1 − α)Bt−1 + αFt, (1.1)

where α is the learning rate, F and B are the current frame and background
frame formed by the mean value of each pixel respectively. With such an
approach, only a frame of mean values are needed to be stored in a memory.
The average operation is carried out by incorporating a small portion of the
new frames into the mean values at a time, using a learning factor α. At the
same time, the same portion of the current mean value is discarded. Depending
on the value of α, such a average operation can be fast or slow. For background
modeling, a fast learning factor could result in foreground pixels to be quickly
incorporated into background, thus limiting its usage to certain situations, e.g.
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Figure 1.2: Foreground and Background pixel histograms: With more
pixels in the buffer falling within Background, the median value moves
towards the center of Background distribution.

initialization phase with only background scene.
To avoid a foreground pixel to be mixed into the background updating

process, a selective running average can be applied. This is shown in the
following equations:

Bt = (1 − α)Bt−1 + αFt if Ft ⊂ background (1.2)

Bt = Bt−1 if Ft ⊂ foreground. (1.3)

With the foreground/background distinction performed before background
frame updating process, more recent “clean” background pixels contributes to
the form of the new mean value, which makes the background modeling more
accurate. The selective running average method is used in many applications,
e.g. [9, 10], and forms the basics of other alternative algorithms with much
higher complexity, e.g. Mixture of Gaussian (MOG) discussed in the follow-
ing sections. The merit of the approach comes in its relatively low hardware
complexity, e.g. simple multiplications and additions are needed to update the
mean value for each pixel. Together with low memory requirements of storing
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only one frame of mean values, running selective average fits well for hardware
implementation. Acting virtually with the same principles as a mean filter,
selective running average achieves similar segmentation results as that of the
median filtering approach.

1.2.4 Linear Predictive Filter

To be able to estimate the current background more accurately, linear predictive
filters are developed for background modeling in several literatures [11–15]. The
problem with taking the median or mean of the past pixel samples lies in the
fact that it does not reflect the uncertainty (variance) of how a background
pixel value could drift from its mean value. Without any of this information,
the foreground/background distinction has to be done in a heuristic way. An
alternative approach can be utilized which predicts the current background
pixel value from its recent history values. Compared to mean and median
values, a prediction value can more accurately represent the true value of the
current background pixel, which effectively decrease the uncertainty of the
variation of a background pixel. As a result, a tighter threshold value can
be selected to achieve a more precise segmentation with a better chance of
avoiding camouflage problem, where foreground and background holds similar
pixel values. Toyama et al. [11] uses an one-step Wiener filter to predict a
background value based on its recent history of values. In their approach, a
linear estimation of the current background value is calculated as:

B̂t =

N
∑

k=1

αkIt−k, (1.4)

where B̂ is the current background estimation, It−k is one of the history values
of a pixel, and αk is the prediction coefficient. The coefficient are calculated to
minimize mean square of the estimation error, which is formulated as:

E[e2
t ] = E[(Bt − B̂t)

2]. (1.5)

According to the procedure described in [16], the coefficients can be obtained
by solving a set of linear equations as follows:

p
∑

k=1

αk

∑

t

It−kIt−i = −
∑

t

ItIt−i, 1 ≤ i ≤ p. (1.6)

The estimation of coefficients and pixel predictions are calculated recursively
during each frame. In [11], a pixel value with a deviation of more than 4.0 ×
√

E[e2
t ] is considered foreground pixel. In total, 50 past values are used in [11]

for each pixel to calculate 30 coefficients.
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Wiener filters are also expensive in computation and memory requirement.
N frame buffers are needed to store a history of frames. Background pixel
prediction and coefficients updating are very costly since a set of linear functions
are needed to obtain the value. p multiplication and p−1 additions are needed
for prediction, plus the solution of a linear equation of order p.

An alternative approach for linear prediction is to use Kalman filters. Basic
Kalman filter theory can be found in many literatures, e.g. [12,13,15]. Kalman
filters are widely used for many background subtraction applications, e.g. [13–
15]. It predicts the current background pixel value by recursive computing
from the previous estimate and the new input data. A brief formulation of the
theory is given in the below according to [13], while a detailed description of
Kalman filters can be found in [12].

Kalman filters provide an optimal estimate of the state of the process xt,
by minimizing the difference of the average of the estimated outputs and the
average of the measures, which is characterized by the variance of the estimation
error. The definition of a state can vary in different applications, e.g. the
estimated value of the background pixel and its derivative in [15]. Kalman
filtering is performed in essentially two steps: prediction and correction: In the
prediction step, the current state of the system is predicted from the previous
state as

x̂
−

t = Ax̂t−1, (1.7)

where A is the state transition matrix, x̂t−1 is the previous state estimate and
x̂
−

t is the estimation of the current state before correction. In order to minimize
the difference between the measure and the estimated state value It −Hx̂

−

t . It

is the current observation and H is the transition matrix that maps the state
to the measurements. A variance of such difference is calculated based on

P−

t = APt−1A
T + Qt, (1.8)

where Qt represents the process noise, Pt−1 is the previous estimation error
variance and P−

t is the estimation of error variance based on current prediction
state value. With a filter gain factor calculated by

Kt =
P−

t CT

CP−

t CT + Rt

, (1.9)

where Rt represents the variances of measurement noise and C is the transition
matrix that maps the state to the measurement. The corrected state estimation
becomes

x̂t = x̂t−1 + Kt(It − Hx−

t ), (1.10)

and the variance after correction is reduced to

Pt = (1 − KtC)P−

t . (1.11)



40 CHAPTER 1. SEGMENTATION

Ridder et al. [15] use both background pixel intensity value and its temporal
derivative Bt and B′

t as the state value:

x̂t =

[

Bt

B′

t

]

, (1.12)

and the parameters are selected as follows:

A =

[

1 0.7
0 0.7

]

and H =
[

1 0
]

. (1.13)

The gain factor Kt varies between a slow adaptation rate α1 and a fast
adaptation rate α2 depending on whether the current observation is a back-
ground pixel or not:

Kt =

[

α1

α1

]

if It−1 is foreground, and

[

α2

α2

]

otherwise. (1.14)

In summary, a recursive background prediction approach with Kalman fil-
ters can be obtained by combining equations 1.10,1.12,1.13 and 1.14, which can
be formulated as follows:

[

Bt

B′

t

]

= A

[

Bt−1

B′

t−1

]

+ Kt

(

It − HA

[

Bt−1

B′

t−1

])

. (1.15)

The Kalman filtering approach is efficient for hardware implementation.
From equation 1.15, three matrix multiplication with size of 2 are needed.
Memory requirement is low with one frame of estimated background pixel value
stored. The linear predictive approach is reported to achieve better results
than the many other algorithms e.g. median or mean filtering approaches,
especially in dealing with camouflage problem [11], where foreground pixels
holding similar color as that of the background pixels are undetected.

1.2.5 Mixture of Gaussian

So far, predictive methods have been discussed which model the background
scene as a time series and develop a linear dynamical model to recover the cur-
rent input based on past observations. By minimizing the variance between the
predicted value and past observations, the estimated background pixel is adap-
tive to the current situation where its value could vary slowly over time. While
this class of algorithms may work well with quasi-static background scenes with
slow lighting changes, it fails to deal with multi-modal situations, which will
be discussed in detail in the following sections. Instead of utilizing the order
of incoming observations to predict the current background value, a Gaussian
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distribution can be used to model a static background value by accounting for
the noise introduced by small illumination changes, camera jitter and surface
texture. In [17], three Gaussian are used to model background scenes for traffic
surveillance. The hypothesis is made that each pixel will contain the color of
either the road, the shadows or the vehicles. Stauffer et al. [18] generalized
the idea by extending the number of Gaussian for each pixel to deal with a
multi-modal background environment, which are quite common in both indoor
and outdoor environments. A multi-modal background is caused by repetitive
background object motion, e.g. swaying trees or flickering of a monitor. As a
pixel lying in the region where repetitive motion occurs will generally consists
of two or more background colors, the RGB value of that specific pixel will have
several pixel distributions in the RGB color space. The idea of multi-modal
distribution is illustrated by figure 1.3. From the figure, a typical indoor envi-
ronment in 1.3(a) consists of static background objects, which are stationary
all the time. A pixel value in any location will stay within one single distri-
bution over time. This is in contrast with the outdoor environment in figure
1.3(c), where quasi-static background objects e.g. swaying leaves of a tree, are
present in the scene. Pixel value from these regions contains multiple back-
ground colors from time to time, e.g. the color of the leave, the color of house
or something in between.

With multi-modal environments, the value of quasi-static background pixels
tends to jump between different distributions, which will be modeled by fitting
different Gaussians for each distribution. The idea of Mixture of Gaussians
(MoG) is quite popular and many different variants are developed [19–24] based
on it.

1.2.5.1 Algorithm Formulation

The Stauffer-Grimson algorithm is formulated as modeling a pixel process with
a mixture of Gaussian distributions. A pixel process is defined as the recent
history values of each pixel obtained from a number of consecutive frames.
For a static background pixel process, the values will rather be pixel clusters
than identical points when they are plotted in a RGB color space. This is due
to the variations caused by many factors, e.g. surface texture, illumination
fluctuations, or camera noise. To model such a background pixel process, a
Gaussian distribution can be used with a mean equal to the average background
color and variances accounting for the value fluctuation. More complicated
background pixel processes appear when it contains more than one background
object surfaces, e.g. a background pixel of a road is covered by leaves of a
tree from time to time. In such cases, a mixture of Gaussian distributions
are necessary to model multi-modal background distributions. Formally, the
Stauffer-Grimson algorithm tries to address background modeling as in the
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Figure 1.3: Background pixel distributions taken in different environ-
ments possess different properties in the RGB color space.

following:

Each pixel is represented by a set of Gaussian distributions k ⊂ {1, 2...K},
where the number of distributions K is assumed to be constant (usually be-
tween 3 and 7). Some of the K distributions correspond to background objects
and the rest are regarded as foreground. Each of the mixture of Gaussians is
weighted with a parameter ωk, which represents probability of current obser-
vation belonging to the distribution, thus the equation

ΣK
k=1ωk = 1. (1.16)

The probability of the current pixel value X being in distribution k is cal-
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Figure 1.4: Three Gaussian distributions are plotted in the figure with
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new pixel observation belonging to one of the distributions can be seen
as a sum of three Gaussian distributions [25].

culated as:

f(X |k) =
1

(2π)
n
2 |Σk|

1
2

e−
1
2 (X−µk)T Σ−1

k
(X−µk), (1.17)

where µk is the mean and Σk is the covariance matrix of the Kth distribution.
Thus, the probability of a pixel belonging to one of the Gaussian distribution is
the sum of probabilities of belonging to each of the Gaussian distribution, which
is illustrated in 1.4 [25]. A further assumption is usually made that the different
color component is independent of each other so that the covariance matrix
is diagonal - more suitable for calculations, e.g. matrix inversion. Stauffer
et.al. go even further in assuming that the variances are identical, implying for
example that deviations in the red, green, and blue dimensions of a color space
have the same statistics. While such simplification reduce the computational
complexity, it has certain side effects which will be discussed in the following
sections.
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The most general solution to the foreground segmentation can be briefly
formulated as: at each sample time t, the most likely distribution k from a set
of observations is estimated from X, along with a procedure for demarcating
the foreground states from the background states.

This is done by the following: A match is defined as the incoming pixel
within J times the standard deviation off the center, where in [18] J is selected
as 2.5. Mathematically, the portion of the Gaussian distributions belonging to
the background is determined by

B = argminb

(

b
∑

k=1

ωk > H

)

, (1.18)

where H is a predefined parameter and ωk is the weight of distribution k. If a
match is found, the matched distribution is updated as:

ωk,t = (1 − α)ωk,t−1 + α (1.19)

µt = (1 − ρ)µt−1 + ρXt (1.20)

σ2 = (1 − ρ)σ2
t−1 + ρ(Xt − µt)

T (Xt − µt); (1.21)

where µ, σ are the mean and variance respectively, α, ρ are the learning factors,
and Xt are the incoming RGB values. The mean, variance and weight factors
are updated frame by frame. For those unmatched, the weight is updated
according to

ωk,t = (1 − α)ωk,t−1, (1.22)

while the mean and the variance remain the same. If none of the distributions
are matched, the one with the lowest weight is replaced by a distribution with
the incoming pixel value as its mean, a low weight and a large variance.

1.2.6 Kernel Density Model

In [26], it was discovered that the histogram of a dynamic background in an
outdoor environment covers a wide spectrum of gray levels (or intensity level
of different color component), and all these variations occur in a short period
of time, e.g. 30 seconds. Modeling such a dynamic background scene with a
limited number of Gaussian distributions are not feasible.

In order to adapt fast to the very recent information about an image se-
quence, a kernel density function background modeling can be used which only
use a recent history of past values to distinguish foreground from background
pixels.

Given a history of past values x1, x2,...xN , a kernel density function can be
formulated as the following:
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The probability of a new observation having a value of xt can be calculated
using a density function:

Pr(xt) =
1

n

N
∑

i=1

K(xt − xi). (1.23)

What this equation actually indicates is that a new background observation
can be predicted by the combination of its recent past history samples. If K is
chosen to be a Gaussian distribution, then the density estimation becomes

Pr(xt) =
1

N

N
∑

i=1

1

(2π)
d
2 |Σ| 12

e−
1
2 (xt−xi)

T Σ−1(xt−xi). (1.24)

Under similar assumptions as the mixture of Gaussian approach, if different
color components are independent of each other, the covariance matrix Σ be-
comes

Σ =





δ2
1 0 0
0 δ2

2 0
0 0 δ2

3



 (1.25)

and the density estimation is reduced to

Pr(xt) =
1

N

N
∑

i=1

d
∏

j=1

1
√

2πδ2
j

e
−

1
2

(xtj
−xij

)2

δ2
j . (1.26)

From the definition of probability estimation, a foreground/background
classification process can be carried out by checking the probability value
against a threshold value, e.g. if Pr(xt) < th, the new observation can not
be predicted by its past history, thus recognized as a foreground pixel. Kernel
density estimation generalize the idea of the Gaussian mixture model, where
each single sample of the N samples is considered to be a Gaussian distribu-
tion by itself. Thus it can also handle multi-modal background scenarios. The
probability calculation only depends on its N past values, which makes the
algorithm quickly adapt to the dynamic background scene.

Regarding hardware implementation complexity, the kernel density model
needs to store N past frames, which makes it a memory intensive task. The
calculation of probability in equation 1.26 is costly. In [26], a look-up table
is suggested to store precalculated value for each xt − xi. This will further
increase the requirement on the memory.

1.2.7 Summary

A wide range of segmentation algorithms have been discussed, each with re-
lated robustness to different situations and each with different computational
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Table 1.1: Algorithm Comparison.

FD Median LPF MoG KDE
Algorithm per-
formance

fast fast medium medium slow

Memory re-
quirement

1 frame 50− 300
frames

1 frame of
mean

1 frame
of k
Gaus-
sian
parame-
ters

n
frames
of k
Gaus-
sian
parame-
ters

Segmentation
quality

worst low acceptable good best

Hardware
complexity

very low medium low to
medium

low high

complexity. A comparison is made in [11] on segmentation qualities of some of
the algorithms. In fact, an unbiased comparison with a significant benchmark
is absent. No perfect system exists to handle all kinds of issues within differ-
ent background models. Furthermore, for realistic implementation of such a
system, trade-offs have to be made between system robustness (quality) and
system performance (frame rate, resolution, etc.). From the discussion above,
a summary is made in Table 1.1 concerning Algorithm performance, memory
requirements, the segmentation quality and hardware complexity.

From the table, it can be seen that Stauffer-Grimson algorithm gives good
segmentation quality with relatively low hardware complexity and memory
requirements. In [18], a frame rate of 11-13 FPS is obtained for a frame size
of 160×120 on an SGI O2 workstation. In our software implementation on an
AMD 4400+ processor, a frame rate of 4-6 FPS is observed for video sequences
with 352×288 resolution.

In this thesis, the hardware accelerator design is based on Stauffer-Grimson
algorithm with several modifications for better segmentation quality and hard-
ware efficiency. A variety of memory access reduction schemes are implemented,
resulting in more than 70% memory bandwidth reduction.

1.3 Algorithm Modifications

The Mixture of Gaussian algorithm works efficiently only in controlled envi-
ronments. Issues regarding algorithm weaknesses in different situations are
addressed in many publications [19–21, 23]. In this section, instead of mainly
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Figure 1.5: Indoor environment taken in the lab.

focusing on improving algorithm robustness, we propose several modifications
to the algorithm, with a major concern on their impacts that could lead to
potentially improved hardware efficiency.

1.3.1 Color Space Transformation

In theory, multi-modal situations only occur when repetitive background ob-
jects are present in the scene. However, this is not always true in practice.
Consider an indoor environment where the illumination comes from a fluores-
cence lamp. An example video sequence of such environment is taken from our
lab, which is shown in figure 1.5. In our experiments, 5 pixels are picked up
evenly from the scene are measured over time. Their RGB value distributions
are drawn in figure 1.6. Clearly from the figure, instead of 5 sphere like pixel
distributions, the shapes of the pixel clusters are rather cylindrical. Pixel val-
ues tend to jump around more in one direction than another in the presence
of illumination variations caused by the fluorescence lamp and camera jitter.
This should be distinguished from the situation where one sphere distribution
is moving slowly towards one direction due to slight daylight changes. Such
a case is handled by updating the corresponding mean values in the original
background model. Without an upper bound for the variance, the sphere de-
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Figure 1.6: Five distributions in RGB color space.

scribing the distribution tends to grow until it covers nearly every pixel in the
most distributed direction, thus taking up a large space such that most of it
does not belong to the distribution (sphere A in figure 1.7). A simple solution
to work around this problem is to set an upper limit for the variance, e.g. the
maximum value of the variance in the least distributed direction. The result is
multi-modal distributions represented as a series of smaller spheres (B-E in the
same figure). Although a background pixel distribution is modeled more pre-
cisely by such a method, several Gaussian distributions are inferred which are
hardware costly in terms of extra parameter updating and storage. In [27] D.
Magee proposed a cylindrical model to address the issue, with primary axes of
all distribution cylinders pointing towards the origin. However, more parame-
ters are needed for each cylindrical distribution than the spherical counterpart.
The coordinates of a cylindrical system comprises distance, two angles and a
diameter and the height. Furthermore, it is hardware costly computation to
transform RGB values to cylindrical coordinates, e.g. division and square root.
In addition, not every distribution cylinder is oriented towards the origin, see
the left middle distribution in figure 1.6.

To be able to model background pixels using a single distribution but with-
out much hardware overhead, color space transformation is employed in our
implementation. Both HSV and Y CbCr space were investigated, and their
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Figure 1.7: A closer look of 2 Gaussian distributions on the bottom in
the left figure.

corresponding distributions are shown in figure 1.8and 1.9. By transforming
RGB into Y CbCr space, the correlation among different color coordinates are
mostly removed, resulting in nearly independent color components. With vary-
ing illumination environment, only the Y component (intensity) varies accord-
ingly, leaving Cb and Cr components (chromaticity) more or less independent.
In [28], such feature is utilized for shadow reduction. Consequently, values of
three independent components of a pixel in Y CbCr color space tends to spread
equally. As shown in figure 1.8, most pixel distributions are transformed from
cylinders back to spheres, capable of being modeled with a single distribu-
tion. The transformation from RGB to Y CbCr is linear, and can be calculated
according to the following:

Y = 16 + 65.481× R + 128.553× G + 24.966× B (1.27)

Cb = 128 − 37.797× R − 74.203× G + 112.0 × B (1.28)

Cr = 128 + 112.0 × R − 93.786× G − 18.214× B. (1.29)

Only minor hardware overhead with a few extra multipliers and adders are
introduced, where multiplication with constant can be further utilized to reduce
hardware complexity. Simplifications can be performed to further reduce the
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Figure 1.10: The conceptual block diagram of the segmentation unit.

number of multipliers to be 4 [29]. HSV color space, on the other hand, also
with correlated coordinates, is no better than RGB color space if not worse.
Unpredictable pixel clusters appeared occasionally as shown in figure 1.9, which
is impossible to model using Gaussian distributions.

1.3.2 Algorithm Simplifications

We propose two simplifications to the algorithm. In the original algorithm
specification, unbounded growing distribution will absorb more pixels. As a
result, the weight of that distribution will soon dominate all others. To over-
come this, in [18], all updated Gaussian distributions are sorted according to
the ratio ω/σ. In this way, the distribution with dominant weight but large
variance does not get to the top, identified as background distribution. In our
approach, with Y CbCr color space transformation, no upper bound is needed.
All distributions can be simply sorted by their weights only, effectively elimi-
nating division operations in the implementation.

Another simplification made in the process of foreground/background detec-
tion is instead of using equation 1, the determination can be made by checking
the weight of each distribution only. This is due to the fact that one pixel clus-
ter will not spread out in several distributions by color space transformation to
Y CbCr. The equation that determines the background distribution is changed
to

B = argmink (ωk > H) . (1.30)
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Figure 1.11: The system architecture of the segmentation unit.
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This results in automatic single or multi modal background model without
having to adjust the value of H.

1.4 Hardware Implementation of Segmentation Unit

To perform the algorithm with VGA resolution in real-time, a dedicated hard-
ware architecture, with a streamlined data flow and memory bandwidth reduc-
tion schemes, is implemented to address the computation capacity and memory
bandwidth bottlenecks. Algorithm modifications covered in previous sections
are implemented with potential benefits on hardware efficiency and segmenta-
tion quality. This is a large improvement to the previous work [30], where only
352×288 resolution is achieved without any memory reduction schemes and
algorithm modifications. In this section, a thorough description of the whole
system architecture of the segmentation unit is given, followed by detailed dis-
cussions on memory reduction schemes.

To help for a better understanding of the architecture, a simplified con-
ceptual block diagram of the whole system is given in figure 1.10 to illustrate
the dataflow within the system. From the figure, the whole system starts with
CMOS image sensor capturing video sequence in real-time and feeding it to
the system through a sensor interface. The interface is designed to be able to
control the parameters of the image sensor on run-time, e.g. analog gain and
integration time, so that better image quality can be obtained within different
environments. The sensor interface is also responsible for sampling the image
data transferred from off-chip. In our implementation, an over sampling scheme
by higher clock frequency (100Mhz) is used to ensure the accuracy of the image
data. The image data is captured with one color component at a time, and
three complete color components are sent to the system after serial-parallel
transform. To handle different clock frequencies, input FIFOs, implemented as
distributed RAMs, are used to interface to both the segmentation logic and the
VGA controller where the original video data can be monitored on a screen.
The image data from the sensor are RGB values, and need to be converted into
Y CbCr components before entering the segmentation logic block according to
the algorithm modification above. Each pixel has a series of corresponding
Gaussian distributions, where are stored on off-chip memories (DDR SDRAM)
due to its size. With all the Gaussian parameters read from the DDR SDRAM
and decoded by the parameter encoder/decoder, a match is calculated in the
matching logic block to check if the incoming pixel matches any of the exist-
ing distributions. The match and switch block is composed of mainly com-
parators and multiplexer so that any the matching Gaussian parameters are
multiplexed to a specific output port. The output from the matching block is
reordered Gaussian distributions with the matching distribution switched to a
specific port. The Gaussian distributions are updated according to the algo-
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rithm modifications mentioned above, from where the foreground/background
detection can start by checking the weight of the updated matched Gaussian
distribution. The output is a binary stream to be multiplexed to the monitor,
indicating foreground and background pixels with white and black colors. The
updated Gaussian parameters have to be sorted for use in the next frame, and
all distributions should be ordered according to their weight. This is imple-
mented in a dedicated sorting network that will be covered in more details in
the following section. To reduce heavy memory bandwidth incurred by access-
ing off-chip DDR SDRAM that stores one frame of Gaussian distributions, an
encoding/decoding block is designed by utilizing pixel localities in succeeding
neighboring pixels. This is covered in more detail in Section 1.4.3.

In the following sections, implementation details of the architecture shown
in figure 1.11 are explained with an emphasis on the parts with algorithm mod-
ifications, which are indicated by shaded area. From the figure, with the image
data captured and transformed into Y CbCr color space as explained earlier,
the match and switch block tries to match the incoming pixel with Gaussian
distributions taken from the previous frame. To avoid the competition sev-
eral Gaussian distributions matching the incoming pixel, only the one with
highest likelihood (large weight) is selected as the matching distribution. A
matched Gaussian is switched to the bottom(3 in the figure). In case no match
is found, a No match signal is asserted for use in later blocks. Depending
on if there is a match for a distribution, each distribution is updated accord-
ingly. For the matched Gaussian distribution, a proposed updating scheme
is implemented with only adders/subtractors for the mean and variance val-
ues. Depending on whether the incoming Y CbCr value is larger than the mean
values, a addition or subtraction is applied for parameter updating. Similar
updating schemes are utilized for variance update. The proposed parameter
update results in low hardware complexity by replacing the hardware costly
operations in equation1.20 and 1.21, e.g. square and multiplication with large
wordlength with incrementors/decrementors. Other benefits of the proposed
updating schemes are described in detail in section 1.4.2. For the case that no
match is found, a MUX is used together with a No match signal to update all
parameters for the distribution (3 in the figure) with predefined values.

1.4.1 Sorting

The updated Gaussian parameters have to be sorted for use in the next frame.
In order to reduce hardware complexity found in parallel sorting networks,
such as [31] [32] [33], while still maintaining the speed, a specific feature in
the algorithm is explored. By observing that only one Gaussian distribution is
updated at a time and all the distributions are initially sorted, the sorting of
N Gaussian distributions can be changed to rearranging an updated distribu-
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Figure 1.12: The sorting architecture. Five Gaussian are sorted according
to their weight. The architecture scales well with increasing number of
Gaussian due to its fixed logic level (one comparator and one MUX).
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Table 1.2: Hardware complexity within different sorting architecture, where p
is log2 N .

Scheme Nr. of Comparators Nr. of Stages
Proposed N − 1 2

[31] (p2 − p + 4)2p−2 − 1 (1
4 )(N)(log2 N)2

Odd-even trans. sort O(N) O(N2)
Bitonic Sort O(N log N)2 O(log N)2

tion among N-1 ordered distributions. As a result, both the number of sorting
stages and the number of comparators are reduced to only one sorting stage
with N-1 comparators and N MUXes. This results in both increased speed and
reduced area. The architecture for the sorting network is shown in figure 1.12.
From the figure, all unmatched ordered Gaussian distributions are compared
with the updated distribution (3 in the figure), and the output of each com-
parators signifies which distribution is to be multiplexed to the output, e.g.
if the weight of any unmatched distribution is smaller than the updated one,
all unmatched distributions below the current one is switched to the output
at the next MUX below. Such an architecture scales very easily to support
sorting more Gaussian distributions. The number of stages will not increase
with the number of Gaussian distributions to be sorted. Due to memory band-
width limitation, only 3 Gaussians needed to be sorted in our implementation
which makes it trivial task. However, if in future implementations with more
Gaussians per pixel is wanted, e.g. 9 Gaussians, such an architecture will be
useful to reduce hardware complexity. A comparison of hardware complexity
between proposed sorting architecture and other schemes mentioned above is
shown in table1.2. The foreground detection is achieved by simply comparing
the weight of the distribution on the bottom with a predefined parameter H
according to the simplifications made in previous sections. All sorted Gaussian
parameters are encoded and decoded before and after writing to and reading
from a DDR SDRAM, with manipulated data flow controlled by a custom made
DDR controller. The encoding and decoding scheme is explained in details in
section 1.4.3. A sequence of binary data indicating background and foreground
is multiplexed out to a monitor through a VGA controller.

1.4.2 Wordlength Reduction

Slow background updating requires large dynamic range for each parameter in
the distributions. This is due to the fact that parameter values are changed
slightly between frames, but could accumulate over time. In this section, pa-
rameter wordlength reduction is investigated for potential memory bandwidth
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(a) The original parameter updating scheme in presence of relatively fast light
changes. Red color component values (solid line) of a pixel over frames are plotted
together with updated mean values for the red color channel (diamond line).
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(b) A closer look at the zoom in area in the the figure above.

Figure 1.13: The results from the original parameter updating scheme.
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(a) The proposed parameter updating scheme in presence of relatively fast light
changes. Red color component values (solid line) of a pixel over frames are plotted
together with updated mean values for the red color channel (star line).
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(b) A closer look at the zoom in area in the figure above

Figure 1.14: The results from the proposed parameter updating schemes.
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(a) The original parameter updating scheme in presence of fast light changes.
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(b) A closer look at the zoom in area in the original updating scheme.

Figure 1.15: The results from the original parameter updating scheme.
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(a) The original parameter updating scheme in presence of fast light changes.
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(b) A closer look at the zoom in area in the original updating scheme.

Figure 1.16: The results from the original parameter updating scheme.
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(a) The original parameter updating scheme in presence of minor light changes.
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(b) A closer look at the zoom in area in the original updating scheme.

Figure 1.17: The results from the original parameter updating scheme.
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(a) The original parameter updating scheme in presence of minor light changes.
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(b) A closer look at the zoom in area in the original updating scheme.

Figure 1.18: The results from the original parameter updating scheme.
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reduction.
According to equations 1.20 and 1.21, the mean and variance of a Gaussian

distribution is updated using a learning factor ρ. The difference of mean and
variance between current and previous frame is derived from the equation as

∆µ = µt − µt−1 = ρ(Xt − µt−1) and (1.31)

∆σ2 = σ2
t − σ2

t−1 = ρ((Xt − µt)
T (Xt − µt) − σ2

t−1). (1.32)

Given a small value for ρ, e.g. 0.0001, a unit difference between the incoming
pixel and the current mean value results in a value of 0.0001 for ∆µ. To be able
to record this slight change, 22 bits have to be used for the mean value, where 14
bits accounts for the fractional part and 8 bits are used for the integer one. Less
bits can be achieved by ignoring small deviations of the incoming pixel from
current mean, while picking up only large ones. The extreme case is when only
the largest deviation is picked, e.g. where the incoming pixel is in the range of J
times standard deviation off the current mean. Larger than that, the incoming
pixel will not match the current distribution. With an upper bound for the
variance, e.g. 16, a maximum value of 0.0001×2.5×

√
16 = 0.001 is derived for

∆µ, which can be represented by 10 bits. Using a wordlength lower than that,
no changes would be recorded ever. In practice, the bits for fractional parts
should be somewhere in the range of 10-14 bits. With similar calculations, 7-14
bits are obtained for the fractional parts of the variance. Together with 16 bits
weight and integer parts of the mean and the variance, 81-100 bits are needed
for a single Gaussian distribution. To reduce this number, a wordlength re-
duction scheme is proposed. From equation 1.31, a small positive or negative
number is derived depending on whether the incoming pixel is larger than the
current mean. Instead of adding a small positive or negative fractional number
to the current mean, a value of 1 or -1 is added. The overshooting caused by
such coarse adjustment could be compensated by the update in the next frame,
e.g. without illumination variation, the mean value will fluctuate with a mag-
nitude of 1. This is negligible since Gaussian distribution is usually a sphere
with a diameter of more than 10 from our experiment data. In a relatively fast
varying illumination environment, e.g. 25 RGB value changes in a second, fast
adaptation to new lighting conditions is also enabled by adding or subtracting
ones in consecutive frames. Figure 1.14(a) shows the experimental results of
the coarse updating in a varying lighting room, where the light is manually
turned up and down. The parameter updating scheme specified in the original
algorithm is also drawn in figure 1.13(a) for comparison. A closer look of the
two schemes are given in figure 1.14(b) and 1.13(b). From figure 1.13(a)
and 1.13(b), it is clear that parameter updating does not work well in the
presence of fast light changes. As slow parameter updating (diamond line in
the figure) for each Gaussian distribution will not keep track of the pixel value
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changes (solid line in the figure) in fast light changing environment, that Gaus-
sian distribution will finally not be able to match the incoming pixel values, in
which case Gaussian distribution replacement takes place in stead of parameter
updating. The coarse updating scheme on the other hand relieves the prob-
lem to certain extent, where consecutive ones are added or subtracted to keep
track of the relatively fast changes. Similar results are obtained from two other
test sequences, namely scene “trees” and “parklot” which are shown in figure
1.22(a) and 1.23(a). These two scenes are both taken in outdoor environments.
Scene “trees” records many relatively fast light changes due to it is dynamic
background, and scene “parklot” consists of nearly constant illumination con-
dition. The results from both parameter updating schemes for both sequences
are shown in figure 1.15,1.16, 1.17 and 1.18. From these figures, it can be
seen that the proposed coarse updating scheme works fine in both situations.
It keeps track of the relatively fast value changes in the dynamic scene while
fluctuates around a constant value in the latter static scene. However, with
the primary goal to reduce wordlength, the coarse parameter updating scheme
results in limited improvements to the segmentation results. Nearly no visual
difference can be observed in the segmented results from the two schemes.

With coarse updating, only integers are needed for mean specification,
which effectively reduce the wordlength from 18 − 22 down to 8 bits. Similar
approach can be applied to the variance (a step value of 0.25 is used instead),
resulting in a wordlength of 6 bits, where 2 bits account for fractional part.
Together with the weight, the wordlength of a single Gaussian distribution can
be reduced from 81 − 100 to only 44 bits, over 43% reduction is accomplished
even compared to the extreme case mentioned above in the normal updating
scheme, where only 81 bits are used for each Gaussian distribution. In addi-
tion, less hardware complexity is achieved as a bonus since multiplication with
the learning factor of ρ is no longer needed.

Thus, the proposed scheme enhance the algorithmic performance while at
the same time reduce both memory bandwidth and computational complexity.

1.4.3 Pixel Locality

In addition to wordlength reduction, a data compression scheme for further
bandwidth reduction is proposed by utilizing pixel locality for Gaussian dis-
tributions in adjacent areas. We classify “similar” Gaussian distributions in
the following way: from the definition of a matching process, each Gaussian
distribution can be simplified as a three dimensional cube instead of a sphere
in the Y CbCr color space. The center of the cube is composed of Y CbCr mean
values whereas the border to the center is specified by J times variance. One
way to measure the similarity between two distributions is to check how much
of the two cubes that overlap. If the overlap volume takes up certain percent-
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Figure 1.19: Gaussian distribution similarity as modeled by cube overlapping.

age of both Gaussian cubes, they are regarded as “similar”. The whole idea is
illustrated in figure 1.19. The reason for such a criteria lies in the fact that
a pixel that matches one distribution will most likely match the other, if they
have enough overlapping volume. The percentage is a threshold parameter that
can be set to different values among different situations.

In the architecture, two similar distributions are treated as equivalent. By
only saving non overlapping distributions together with the number of equiva-
lent succeeding distributions, memory bandwidth is reduced. Various threshold
values are selected to evaluate the efficiency for memory bandwidth reduction.

Table 1.3: Design Summary

FPGA Utilization

Nr. of Slices Nr. of Flip Flops Nr. of DCMs Nr. of BRAMs
6107 4273 5 84

Clock Domains

100Mhz 16Mhz 25Mhz
Sensor interface & DDR controller Segmentation VGA controller

System Parameters

Resolution Throughput Frame rate Nr. of Gaussians
640 × 480 170MB/s 25 3
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(b) Memory reduction in Scene stairs

Figure 1.20: Memory reduction results tested in Scene “stairs”. Video
sequences are provided by AXIS Communications [34].
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(b) Memory reduction in Scene hallway

Figure 1.21: Memory reduction results tested in Scene “hallway”. Video
sequences are provided by AXIS Communications [34].
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(b) Memory reduction in Scene trees

Figure 1.22: Memory reduction results tested in Scene “trees”. Video
sequences are provided by AXIS Communications [34].
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(b) Memory reduction in Scene parklot

Figure 1.23: Memory reduction results tested in Scene “parklot”. Video
sequences are provided by AXIS Communications [34].
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Figure 1.24: Memory bandwidth reductions achieved in the video se-
quences from our lab. Left: memory bandwidth reduction over frames.
Right: Memory bandwidth reduction over threshold value.

Figure 1.25: The results before and after morphological filtering for differ-
ent thresholds: (left) Original result, (middle) Threshold of 0.8, (right)
Threshold of 0.4.
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With a low threshold value where less overlapping Gaussian distributions are
regarded as the same, more savings could be achieved. However, more noise
is generated due to increasing mismatches in the matching block. Fortunately,
such noise is found non-accumulating and therefore can be reduced by later
morphological filtering [35]. Figures 1.20,1.21,1.22,1.23 show the memory
bandwidth savings over frames with various threshold values. The simula-
tion results are obtained from matlab, with four video sequences provided by
AXIS [34] are evaluated for both indoor and outdoor scenes. The sequences are
selected to reflect a range of real-world background environments with possible
difficulties for many segmentation and tracking algorithms. The scene “stairs”
comprises people moving up and down the stairs randomly. Gradual illumi-
nation changes together with shadows are the major disturbing factors. The
scene “hallway” focus on the scenarios with people moving closer or further
away from the camera. The foreground object size is varying over time. The
scene “trees” address the issue of quasi-static environments where a swaying
tree is present as the dynamic background object. The scene “parklot” presents
a environment with walking people, moving cars of different size. Gradual illu-
mination as well as waking foreground object are also within the focus. It can
be seen from the sequences, memory reductions scheme works robustly within
different real-world environments with variation only in the beginning due to
varied foreground actives. During initialization phase, only background pixels
are present, which exhibit high similarity within neighboring pixels. With fore-
ground objects entering the scene, part of Gaussian distributions are replaced,
which results in the decrease of number of similar Gaussian distributions. The
trends will continue until it reaches a certain point where most pixel locations
contains a foreground distribution. The decrease will flattens out in the end
since more foreground objects always replace the distribution that represent
a foreground pixel. Foreground objects activities can vary in different video
scenes, e.g. continuous activities in figure 1.20(a) where people going up and
down the stairs all the time, and the two peak activity periods around frames
600− 900 and frames 2100− 2500 in figure 1.21(a), where people walking by in
two discrete time period. In the long run, the bandwidth savings tends to sta-
bilize (around 50%−75% depending on threshold value) after the initialization
phase. Another test sequence is also experimented in our lab. Similar results
are observed as shown in figure 1.24. The quality of segmentation results before
and after morphology are shown in figure 1.25, where it is clear that memory
reduction comes at the cost of segmentation quality. Too low threshold value
results in clustered noises that would not be filtered out by morphological fil-
tering. In this implementation, a threshold value of 0.8 is selected, combined
with wordlength reduction scheme, a memory bandwidth reduction of over 70%
is accomplished. To evaluate long term effects of memory bandwidth reduction
scheme, FPGA platform is required to collect data in real time.
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Table 1.4: Hardware complexity for different blocks within segmentation unit.

Logic Block Nr. of Slices (%) Nr. Block RAMs
Match 253 (4%) 0
Switch 652 (11%) 0

Parameter Update 483 (8%) 0
Pixel Locality 1530 (25%) 0

Sensor Interface 540 (9%) 3
Sorting 355 (6%) 0

DDR controller 1599 (26%) 24
RGB2Y CbCr 181 (3%) 0

VGA controller 377 (6%) 57

1.5 System Integration and FPGA Prototype

The segmentation unit is prototyped in an Xilinx VIrtexII vp30 development
board, as shown in figure 1.26. The board come with one DDR memory slot
with customized on board signal traces that minimizes the skew between differ-
ent signals. Virtex II vp30 is equipped with two on-chip PowerPC embedded
processor cores. The number of on-chip block RAMs is 136, with 2448 Kb in
total. A custom-made PCB extension board is mounted on the FPGA board
to support image data read in through a image sensor. A dedicated VGA con-
troller is developed streaming output data into a monitor, where the results
from different stage of the logic can be monitored. Detailed description of the
system integration of the whole tracking system is covered in the next chapter.
In table 1.4, a summary of the hardware complexities of different blocks in the
segmentation is given. It can be seen that algorithm modifications results in a
low hardware complexity in parameter updating block, which merely occupies
8% of the total utilized resources. However, memory reduction scheme with
pixel locality incurs relatively costly in hardware, where many multiplications
are needed to calculate the cube volumes. DDR controller contributes to a
large part of the whole design resources, due to complicated memory command
and data signal manipulations, clock schemes, and buffer controls. The hard-
ware complexity of sorting and color space transformation is low by after op-
timizations. VGA controller consumes most of the on-chip memory resources.
Dual-port block RAMs are used as video RAMS in the VGA controller, which
are shared by different blocks of the whole surveillance system to display the
results from different stages on a monitor . Block RAMs are also used as data
buffers to support DDR burst read and write operations.
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Figure 1.26: FGPA prototypes.

1.6 Results

The system is implemented on a Xilinx VirtexIIpro vp30 FPGA [36] develop-
ment board as shown in figure 1.26. The whole design is partitioned into 3
clock domains for different blocks, and asynchronous FIFOs are used to inter-
face blocks working with different clocks. A KODAK KAC-9648 CMOS sen-
sor [37] is used to capture color images stream into the FPGA platform. Real
time segmentation performance is achieved on video sequences with 3 Gaussian
distributions per pixel. With the proposed memory reduction schemes, off-chip
memory bandwidth is reduced by more than 70%. A summary of the whole
design is given in Table 1.3.

1.7 Conclusions

A Real-time video segmentation unit is implemented on an Xilinx VirtexII
FPGA platform, serving as a real-time testbench for evaluating long term ef-
fects of the corresponding algorithm. The segmentation unit is an important
part of the whole tracking system developed at the department. With real
time performance, tracking schemes can be evaluated in varied environments
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for system robustness testing . Software/hardware partition is facilitated in an
FPGA platform, where high level operations e.g. features extraction in a track-
ing algorithm can be implemented in software. The calculation and memory
intensive tasks e.g. segmentation, morphology are left to customized hardware
architecture. For the implementation of the hardware units, memory usage is
identified as the main bottleneck of the whole system, which is is common in
many image processing systems. This is especially true for segmentation since
most algorithms operates in pixel-wise structures. To address the issue a joint
memory reduction scheme is proposed by utilizing pixel locality and wordlength
reduction. By measuring similarity of neighboring gaussian distributions with
overlapping volume of two cubes, threshold can be set to classify Gaussian
similarities. Wordlength reduction is as important for memory bandwidth re-
duction. By utilizing coarse parameter updating scheme, wordlength for each
Gaussian parameters is reduced by more than 43%, which effectively decrease
the memory bandwidth to off-chip memories. The substantial bandwidth re-
duction comes at the cost of segmentation quality. By setting a threshold value
to a low value, noise generated can not be removed by morphology operation.
Careful tradeoffs should be made based on different application environments.
Algorithm modifications are of great importance for the efficiency of the hard-
ware implementation. By utilizing Y CbCr color space, several simplifications
can be made that results in potential hardware savings.



Chapter 2

System Integration of Automated Video Surveil-

lance System

In this chapter, an original paper is presented for system integration of a real-
time video surveillance embedded system:

Fredrik Kristensen, Hugo Hedberg, Hongtu Jiang, Peter Nilsson, and Vik-
tor Öwall, ”Hardware Aspects of a Real-Time Surveillance System” , in
Proc. of The Sixth IEEE International Workshop on Visual Surveillance.

The author’s contribution is on the segmentation part. Many parts of the
paper have been changed since the publication. This work is currently being
updated and revised. A journal paper is in preparation to be submitted in
February, 2007.
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Abstract

This paper presents the implementation of an automated digital video surveil-
lance system for real-time performance on an embedded platform. To achieve
real-time performance, the system includes hardware accelerators for video
segmentation, morphological operations, labeling and feature extraction while
tracking is handled in software. By implementing a complete system on an
embedded platform, bottlenecks in computational complexity and memory re-
quirements can be identified and addressed. A memory access reduction scheme
for the video segmentation part that utilizes pixel locality is proposed which
shows the potential of reducing accesses with >60%. It is also shown how a
low-complexity addition to the segmentation rule can reduce the affect of shad-
ows. Furthermore, a low complexity morphology architecture with low memory
requirements is presented together with a labeling unit based on a contour trac-
ing technique. The system is running in real-time at an FPGA development
board with a resolution of 320×240 at 25 frames per second.
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Figure 2.1: Surveillance system, (a) original image, (b) binary motion
mask, (c) filtered and labeled motion mask, (d) detected objects, (e)
detected objects improved result, and (f) tracking results

2.1 Introduction

In this paper we outline an attempt to automate digital surveillance running
on embedded platforms in real-time. The goal is to hardware accelerate com-
putationally complex parts of a self contained intelligent surveillance camera
that can track moving objects. The demands on video surveillance systems are
rapidly increasing regarding parameters such as frame rate and resolution. Fur-
thermore, with an ever increasing data rate together with an increased number
of video streams an automated process for extracting relevant information is
required. Due to the large amount of input data and the computational com-
plexity of the algorithms, software implementations are not yet sufficient to
sustain real-time performance on embedded platforms. Therefore, algorithms
that are well suited to be implemented as dedicated hardware accelerators with
streamlined dataflow are required. The presented hardware platform has been
developed with the goal of identifying computational and memory access bottle-
necks. Furthermore, when proposing modifications to the original algorithms
to overcome these bottlenecks extensive simulations are needed, especially if
long-term effects in the video sequences can be envisioned. Utilizing a recon-
figurable platform based on a Field Programmable Gate Array (FPGA) reduces
the simulation and development time considerably.

A conceptual overview of the surveillance system is shown in Fig. 2.1. The
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camera feeds the image processing system with a real-time image stream of
25 frames per second (fps). A segmentation algorithm, in this case Gaussian
Mixture background Model (GMM), preprocesses the image stream and pro-
duces a binary mask in which zeros and ones correspond to background and
foreground, respectively. In theory, only the moving parts of an image should
be distinguished as independent objects in the binary mask. However, in re-
ality the mask will be distorted with noise and single objects are shattered,
e.g., if parts of the moving object has the same color as the background. In
order to remove noise and merge shattered objects, one or more morphological
operations are performed on the mask. These morphological operations will
produce a frame of connected clusters which have to be identified, i.e. labeled,
and features should be extracted to be sent as input to the tracking algorithm.

The main bottlenecks of the segmentation algorithm, shared with many
other image based algorithms, are the high memory bandwidth and the overall
memory requirements. A reduced memory access scheme is proposed, which
introduces coding of the Gaussian parameters using pixel locality. A reduction
of >60% is indicated but results in increased noise in the binary mask. However,
this noise is non-accumulating and can be reduced by the morphology operation
at no extra cost. Long term effects of the memory reduction scheme as well
as more advanced version have to be further investigated. Furthermore, it
has been investigated how different color spaces affect the segmentation result
in terms of noise and shadow sensitivity. A low complexity and low memory
requirement architecture for morphological operations is presented which allows
for a larger number of such operations to be performed. In addition, a labeling
unit based on a contour tracing technique is presented which extracts features
at low extra cost.

Typical examples of intermediate results are shown in Fig. 2.1. In Fig. 2.1a
the original image is shown and the segmented binary mask in Fig. 2.1b. The
labeled objects are shown in Fig. 2.1c were we can notify that the noise has
been removed. By modifying the segmentation algorithm to be able to identify
potential shadows we see that these can be removed to a large extent, e.g. the
large shadow attached to the lower right side of the mid-person as shown in
Fig 2.1d and e. Finally, Fig. 2.1f shows the output from the tracking algorithm
where the objects are identified by the colored bounding boxes.

2.2 Segmentation

Compared to many other algorithms for video segmentation, one based on
Gaussian Mixture background Model (GMM) was proposed in [18] with the
unique feature of robustness in multi-modal background scenarios. A GMM
is required for modeling repetitive background object motion, for example,
swaying trees, reflections on a lake surface, a flickering monitor, etc. A pixel
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located in the region where repetitive motion occurs will generally consist of two
or more background colors, i.e. the RGB value of that specific pixel toggles
over time. This would result in false foreground object detection with most
other adaptive background estimation approaches.

The advantage of the GMM is achieved by updating several Gaussian pa-
rameters for each pixel, imposing a computational complexity and high memory
bandwidth that prohibit real-time performance using a general purpose com-
puter. In our simulations, on an AMD 4400+ dual core processor, a frame rate
of only 4-6 fps is achieved for video sequences with 320x240 resolution. For a
real-time video surveillance system with higher resolution, hardware accelera-
tion is required.

2.2.1 Algorithm formulation

The algorithm is briefly formulated as follows: Measured from consecutive
video frames, the values of any pixel can be regarded as a Gaussian distribu-
tion. Characterized by mean and variance values, the distribution represents
a location centered at its mean values in the RGB color space, where the pixel
value is most likely to be observed over frames. A pixel containing several
background object colors, eg. the leaves of a swaying tree and a road, can be
modeled with a mixture of Gaussian distributions with different weights. The
weight of each distribution indicates the probability of matching a new incom-
ing pixel. A match is defined as the incoming pixel within certain deviation
off the center. In this paper, J times the standard deviation of the distirbu-
tion is used as matching threshold [18], where J is 2.5. The higher the weight
is, the more likely the distribution belongs to the background. Mathemati-
cally, the portion of the Gaussian distributions belonging to the background is
determined by

B = argminb

(

b
∑

k=1

ωk > H

)

,

where H is a predefined parameter and ω is the weight. The mean, variance and
weight factors are updated frame by frame. If a match is found, the matched
distribution is updated as:

ωk,t = (1 − α)ωk,t + α, µt = (1 − ρ)µt−1 + ρXt

σ2 = (1 − ρ)σ2
t−1 + ρ(Xt − µt)

T (Xt − µt);

where µ, σ2 are the mean and variance respectively, and α, ρ are learning fac-
tors. For those unmatched, the weight is updated according to

ωk,t = (1 − α)ωk,t,
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Figure 2.2: The system architecture of the segmentation unit.

while the mean and the variance remain the same. If none of the distributions
are matched, the one with the lowest weight is replaced by a distribution with
the incoming pixel value as its mean, a low weight and a large variance.

Maintaining a mixture of Gaussian distributions for each pixel is costly in
terms of both calculation capacity and memory storage, especially with large
frame size. To manage the RGB data from a video camera in real time, a
dedicated hardware architecture is developed with a streamlined data flow.
The hardware architecture as shown in Fig. 2.2 is presented in [30] and briefly
explained as follows: A pixel value is read into the matching logic block from the
sensor together with all the parameters for the mixture of Gaussian distribution
and a match is calculated. In case an incoming pixel matches several Gaussian
distributions, only the one with highest weight is selected as the matching
distribution.

2.2.2 Hardware implementation

After the updated Gaussian parameters have been sorted foreground detection
is achieved simply by summing up the weights of all the Gaussian distributions
that have a higher likelihood than the updated one. By comparing the sum
with a predefined parameter H, a sequence of binary data indicating background
and foreground is streamed out to both the morphology block and the VGA
controller.

2.2.3 Memory bandwidth reduction

Slow background updating process requires high precision for each parameter
in the distributions. This is due to the fact that parameter values are changed
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Figure 2.3: Memory bandwidth reduction over frames is shown to the left
and memory bandwidth reduction versus different threshold is shown to
the right.

slightly at a time, but could accumulate over time. From C++ simulation, both
mean and variance for a Gaussian distribution in adjacent frames vary in the
order of 10−4 to record slight light changes. For a fixed number representation,
28 bits are assigned to each RGB mean parameters and the variance takes 24
bits. The weight (likelihood) for each Gaussian distribution is updated using
a learning factor. To avoid an over-segmentation effect with a fast learning
factor, 16 bits are used for the weight with a slow learning factor (eg. 0.0002).
One Gaussian distribution consists of the weight together with 3 means and
1 variance and contributes to 124 bits. For a video sequences with 320x240
resolution, a total of 27 Mbit Gaussian parameter data have to be stored and
updated for each new frame, which is far beyond the on-chip memory resources.

In this paper, a data compression scheme is proposed which utilizes sim-
ilarities for Gaussian distributions in adjacent areas. We classify ”similar”
Gaussians in the following way: from the definition of a matching process, each
Gaussian distribution can be regarded as a three dimensional cube in the RGB
space, where the center of the cube is composed of RGB mean values whereas
the border to the center is specified by J times variance. One way to measure
the similarity between two distributions is to check how much of the two cubes
volume that overlap. If the overlap volume takes up a certain percentage of
both Gaussian cubes, they are regarded as ”similar”. The reason for such crite-
ria lies in the fact that a pixel that matches to one distribution will most likely
match to the other, if they have enough overlapping volume. The percentage
is a threshold parameter that can be set to different values among different
simulations.

In the architecture, two similar distributions are treated as equivalent. By
only saving non overlapping distributions together with the number of equiva-
lent succeeding distributions, memory bandwidth is reduced. From simulation
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a) b) c)

Figure 2.4: The result before and after morphological filtering for differ-
ent thresholds, (a) original result, (b) with 0.8, and (c) with 0.4 thresh-
old.

in C++, various threshold values are selected to evaluate the efficiency for mem-
ory bandwidth reduction. With a low threshold value where less overlapping
Gaussians are regarded as the same, more savings could be achieved. However,
more noise is generated in the segmented image due to increasing mismatches
in the matching block. Fortunately, such noise is found non-accumulating and
therefore can be reduced by later morphological filtering. Fig. 2.3 shows the
memory bandwidth savings over frames with various threshold values. From
the figure, large memory bandwidth savings (around 95%) are achieved from
the start to approximately 380 frames, in which case no foreground object en-
ters the scene and only one out of three Gaussian distributions are updated to
contain the background. With more foreground objects moving in and occu-
pying a bigger part of the frame, the number of similar Gaussian distributions
drops dramatically, but tends to stabilize after some time when most pixels
contains both foreground and background distributions. It is also shown in
the figure that low threshold, by relaxing the criteria of similarity, results in
more memory bandwidth savings. The quality of segmentation results before
and after morphology is shown in Fig. 2.4. From these Figures, it is clear
that memory reduction comes at the cost of segmentation quality. Too low
threshold value results in noise clusters that would not be filtered out by mor-
phological filtering. In this implementation, a threshold value of 0.8 is selected,
with memory bandwidth savings of around 60%. To evaluate long term ef-
fects of memory bandwidth reduction scheme, FPGA platform is required to
collect data in real time. In future implementations, commonly used video
compression scheme such as transform coding using a DCT or DWT are under
consideration for further Gaussian parameter compressions.
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Figure 2.5: The original result (a) and the result with three different
shadow detection rules (b,c,d) in the CbCr plane, where X is the stored
mean of CbCr, five example points are shown for each rule. A new pixel
part of a potential shadow if it falls in the gray area and there is a
negative change in the Y component.

2.2.4 Shadow reduction

One drawback with the Gaussian mixture model segmentation algorithm is
that it is sensitive to shadows and noise. Thus it has been investigated in
[38] how different color spaces affect the segmentation result in terms of noise
and shadow sensitivity. The YCbCr color space was found to be best, due to
numeric stability and an independent brightness channel. The investigation
was conducted with the implementation aspects in mind, i.e. simple changes
that easily could be incorporated in the existing hardware.

To reduce the number of detected shadows, pixels that could be part of a
potential shadow have to be recognized. Assuming white light, Y will always
be smaller when shaded and that Cb and Cr will go towards the origin. With
this information a simple rule for shadows can be formed; A potential shadow
is found if a negative change is detected in Y and CbCr have moved slightly
towards origin, compared to the stored mean of YCbCr. In addition, a shadow
is not detected if a too large negative change in Y is found. Without this
limit, a pixel that change color from white to black would be classified as a
shadow which would result in a loss of sensitivity instead of a shadow reduction.
Based on experimental results, a suitable indoor value for the maximum allowed
negative change in Y is around 20-30% of the dynamic range of Y .

In the upper part of Fig. 2.5 three different rules for the CbCr plane to
detect potential shadows are shown. All three assume that a negative change
in Y has already been detected. The gray areas represent the part of the CbCr

plane where a new pixel is ruled to be a potential shadow. The area location
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is based on the stored mean of Cb and Cr, five example points are shown for
each rule. With the first rule a new pixel is part of a potential shadow if the
sum of absolute differences in CbCr is less than a threshold. The second rule
compares the difference in Cb and Cr separately to thresholds that depend on
the position of the stored mean of Cb, Cr. The last rule allows changes in a
small sector from origin or, if the values are close to origin, in a small box
around the stored mean of Cb, Cr [39]. The segmentation result with the three
different shadow rules are shown in Fig. 2.5. As seen, most of the shadows
are removed compared to Fig. 2.5a, with all three rules. However, the rule in
Fig. 2.5d removes a part of the objects neck as well, due to acceptance of large
changes in color and that color can move away from origin and still be classified
as a shadow. In this particular image no significant performance difference can
be seen between the two first rules. From a hardware complexity perspective,
the first rule is simplest, since it only requires add and compare operations.
The second rule is more complex since the thresholds depend on the location
of the stored mean of CbCr and the third rule is most complex, since it requires
a division to approximate the arctan function.

If any form of human recognition is to be included in the surveillance sys-
tem, face detection becomes very important. To increase the chances of correct
segmentation of faces, we try to find pixels with skin tone and use that infor-
mation to improve the foreground/background decision. Skin tones differ much
between human races, from black to white and with different tones of red and
yellow. However, in the YCbCr color space, these colors are tightly distributed
in the CbCr plane along the Y axis. This means that the Y component can be
disregarded, since human skin tone has about the same color distribution in
CbCr for most Y values [40] [41] [42].

With these methods, pixels that are likely to be part of a shadow or human
skin can be found and the decision kernel of the segmentation algorithm can be
altered to vary the likelihood of including these pixels as part of the foreground.
Shadows should have a lower and human skin should have a higher probability
to be included in the foreground. In the original paper [43], the threshold used
to find a match is a constant, J , times the deviation. We propose to increase
this constant if a potential shadow is detected and to decrease it if a potential
skin pixel is detected. A matching distribution is found if

−JShstd < (Ynew − Y ) < Jstd,

|Cbnew − Cb| < JSkstd, and

|Crnew − Cr| < JSkstd

are true. Here std is the standard deviation, Sh is 1 if no shadow is found and
> 1 if a shadow is found, and Sk is < 1 if the new pixel has skin color and
1 else. Fig. 2.1e shows the result of the improved segmentation with J = 2.5,
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Figure 2.6: Input and output to an erosion operation were the SE is
decomposed into B1 and B2.

Sh = 2, and Sk = 0.5.

2.3 Morphology

Erosion and Dilation (E&D) are the two foundations in mathematical mor-
phology, since most morphologic operations can be broken down into these two
basic operations [44]. For example, operations such as opening, closing, gradi-
ent, and skeletonization are performed with these two base functions. Derived
from these facts, the need for efficient architectures to perform E&D becomes
evident. To address this issue a low complexity architecture has been proposed
in [45].

To easily incorporate the E&D unit into the system, some requirements
are placed on the architecture. First and most important, input and output
data must be processed sequentially from first to last pixel in the binary image
to avoid unnecessary memory handling. In addition, this allows burst reads
from memory and that several E&D units can be placed sequentially after
each other without any storage in between. Secondly, the hardware should be
small, simple, and fast in order to allow as much time and hardware space for
the object classification/tracking part of the system as possible. To increase
the overall performance of the system, it is also desirable that the size of the
Structuring Element (SE) can be changed during run time. With a flexible SE
size comes the ability to compensate for different types of noise and to sort
out certain types of objects in the mask, e.g., high and thin objects (standing
humans) or wide and low objects (side view of cars). In this paper A will
represent the binary input image and B the structuring element.

If the SE is both reflection invariant, i.e. B = B̂, and decomposable, i.e
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B = B1 ⊕ B2. Then the following two equations can be derived

A ⊕ B = (A ⊕ B1) ⊕ B2 = ((A′ ⊖ B1) ⊖ B2)
′ (2.1)

A ⊖ B = A ⊖ (B1 ⊕ B2) = (A ⊖ B1) ⊖ B2 (2.2)

where ′ is bit inversion, ⊕ is dilation, and ⊖ is erosion. However to find decom-
positions to a general SE is a hard problem and not always possible [46] [47]. In
addition, for a SE to be reflection invariant it has to be symmetric both in re-
spect to the x and y direction, e.g., a square or a circle. However, one common
class of SEs that is both decomposable and reflection invariant is rectangles
of ones. This type of SE is well suited for the opening and closing operations
that are needed in this system. An example of erosion with a decomposed SE
is shown in Fig. 2.6, were the SE is decomposed into B1 and B2. The input is
first eroded with B1 and then B2. The first position of B1 and B2 that produce
a one is shown in the Figure, together with location in the output of this one.
With a decomposed SE, the number of comparisons per output is decreased
from the number of ones in B to the number of ones in B1 plus B2, in this case
from 15 to 8.

The proposed architecture is based on Equation 2.1 and 2.2, in order to
take advantage of the reduced number of comparisons that a decomposed SE
require. In addition, when comparing Equation 2.1 and 2.2, it can be seen that
only the erosion operation with a decomposed SE has to be implemented. To
perform a dilation, the input A and the result is inverted. Hence, the same
inner kernel can be used for both operations.

With a rectangular SE of ones, erosion can be performed as a summation
followed by a comparison. To perform binary erosion, bits in A that lies directly
below the current position of B are added and compared to the size of B. If the
sum is equal to the size of B the result is one otherwise zero. When combining
this with decomposition, the summation can be broken up into two stages,
where the first stage compares the number of ones under B1 to the width of
B1 and the second stage compares the number of ones under B2 in the result
from the first stage to the height of B2.

2.3.1 Architecture

In Fig. 2.7, the architecture of the datapath is shown together with the wordlength
in each stage. The architecture includes logic to insert padding and to choose
between erosion and dilation operation. The input and output parts, stage-
0 and 3, have a single bit wordlength, whereas the wordlengths in stage-1
and 2 depends on the largest supported size of B. The wordlengths are,
⌈log2(Bwidth)⌉ and ⌈log2(Bheight)⌉ in stage-1 and 2, respectively. Thus, the
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total amount of required memory to perform dilation or erosion is

Mem = ⌈log2(Bwidth)⌉ + ⌈log2(Bheight)⌉Acolumns bits,

where the first part is the flip-flop in stage-1 and second part is the row memory
in stage-2. For example, with a resolution of A = 240×320 bits and the size of
B = 15× 15, the required amount of memory is ⌈log2(15)⌉+ ⌈log2(15)⌉ · 320 =
1.25 kbit. The delay line implementations in [48] and [49], with the same A and
B would require (Bheight −1)Acolumns +Bwidth = 4.4 kbit of memory, which is
≈ 3.5 times more than the required memory in the presented implementation.

When sliding B1 over a row in A, each position in A is used as many times
as the width of B1 to calculate the sum. However, if a running sum records the
number of consecutive ones in the currently processed input row, each input
is used only once. In Fig. 2.7, the flip-flop (ff) in stage-1 stores the sum of
consecutive ones. When the input is one, the recorded sum is increased and if
the input is zero the sum is reset to zero. Each time the sum plus the input
equals the width of B1, stage-1 outputs a one to stage-2 and the old sum, i.e.,
B1width − 1 , is kept to be compared to the next input. The same principle
is used in stage-2 but instead of a flip-flop a row memory is used to store the
number of consecutive hits from stage-1, i.e. number of rows above the current
point with B1width consecutive ones, for each column in A.

The morphological operation used in this system is an opening (erosion
followed by dilation), and due to the pipelined nature of the architecture, two
E&D units in series will not increase the execution time and only add a few
clock cycles delay. In fact, the opening operation can be performed directly
on the output stream from the segmentation unit without adding any image
memories and without adding anything to the overall execution time of the
system.

An example of a filtered segmentation result is shown in Fig. 2.1c. An
opening operation is performed with a SE size of 5x3 (height x width) pixels
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in the erosion part and 7x5 in the dilation part.

2.4 Labeling

After segmentation, a binary frame is produced containing connected clusters of
pixels that represent different objects. Assuming that noise has been removed
by the morphology unit, the frame now only contain objects of interest that
can be tracked and classified. To be able to separate and distinguish between
these clusters, they have to be identified, i.e. labeled.

Various labeling algorithms have been proposed and a survey of various
algorithms can be found in [50]. A common property for all these algorithms
is that they are memory access intense. Furthermore, all algorithms have to
handle the same obstacle, i.e. label collisions. In a binary image, a typical label
collision occur when a u shaped object is encountered. Since an image typically
is scanned from top to bottom and from left to right, it is not possible to know
that the two pillars in the u is part of the same object until the bottom part
of the u is encountered. Two common methods to handle this problem is:

• Equivalence Table Based Algorithms – Two scans with a corresponding
equivalence table.

• Contour Tracing Based Algorithms – A single scan with contour tracing.

Equivalence table based algorithms [51] scan through the memory writing
every label collision into an equivalence table. The first label scan is completed
on the fly as the frame is written into the memory by comparing each pixel
with its neighbors to the left and above. After the first scan all pixels are
assigned a label and all collisions have been detected. The second scan resolves
all collisions and reduce the number of labels per cluster to one.

Contour tracing based algorithms [52] is a technique that requires one global
scan together with some additional random memory accesses for the contour
tracing procedure. The major advantage is that label collisions will never occur
since when an unlabeled cluster is encountered, the contour of that cluster is
labeled immediately and every pixel within a label is regarded as part of the
same cluster. If a cluster with a labeled contour is encountered, the scan
proceeds without modification continuing until an unlabeled pixel is reached,
restarting the contour tracing procedure, or the last pixel is reached. If a cluster
has a hole inside its contour, this hole will not be traced. Every pixel between
two labels can therefore be considered a part of an object, cluster holes are
filled.

Extracting properties by post processing in the tracking stage or by a gen-
eral purpose processor can be time consuming, thus every property that can
be extracted by an algorithm without inferring additional hardware complexity
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Figure 2.8: Overview of the implemented architecture.

should be seen as an advantage. In comparison, both types of labeling algo-
rithms can extract maximum and minimum coordinates and the number of
pixels in each cluster. In addition, the contour tracing algorithm can calculate
moments (center of gravity) and fill holes inside the clusters. Thus, the contour
tracing label algorithm is more suitable to be used in a automated surveillance
system.

2.4.1 Architecture

An overview of the architecture is illustrated in Figure 2.8. The first Finite
State Machine (FSM1) in Figure 2.8, first writes the incoming frame into the
labeling memory, since the contour tracing phase can not start without the
complete frame. Secondly, a global scan starts from left to right and top to
bottom, searching for the upper leftmost pixel equal to one in a cluster. This
pixel is marked as starting point and the contour of that cluster is traced,
writing the label to each contour pixel.

As the input frame is being sequentially written into the label memory, the
location of the first and last 1 in the input is set as start point and end point
respectively. When the global scan starts, the first visited address is the start
point and the last visited location is the end point. Depending on the input,
this procedure can in many cases reduce memory accesses without additional
complex hardware.

During the contour tracing phase, FSM1 outputs the coordinates for every
contour pixel together with control signals to FSM2. FSM2 updates the max-
imum /minimum coordinates for every label together with the variables used
to calculate moments. The dual memory architecture, depicted in Figure 2.8,
is a memory pipeline which gives the tracking stage access to the label infor-
mation of the previous frame, i.e. when the FSMs are updating one of the two
memories, they give access to the other.
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An example of a labeled motion mask is shown in Fig. 2.1c. Each label is
represented by a color.

2.5 Feature extraction

Features are used to separate the tracking/classification part of the system
from the image stream. This is necessary since the amount of data in the
image stream is very large and the tracking/classification part is implemented in
software running on an embedded processor. A feature is a property extracted
from an object in the image, e.g. size, color, texture, or shape, that can separate
different objects or recognize a certain object class.

Features are calculated for each object in each video frame and if several
features are used, heavy calculations are required. This means that they often
are well suited to be implemented in hardware. With good features, the amount
of data that the track/classification algorithms have to handle can be reduced
to a level that is suitable for an embedded software implementation

A good feature describes each object with a unique and compact code and
does not change if the object is scaled, rotated, or enters an area with different
lighting. This is necessary to be able to track an object through different
environments. For example, to track a person standing under a lamp close to
the camera that moves away from the camera to a darker corner of the room,
features that are size- and lighting-invariant are required.

In this system we have three types of features. First, the once that can
be acquired from the contour tracing in the label unit, i.e., minimum and
maximum X and Y coordinates, the number of pixels (size), and center of
gravity coordinates. These features are often enough to track non-occluded
objects in the video stream. Secondly, color features are calculated to solve
occlusions, these include color-mean, -variance, and -histogram of an object.
These features have been chosen since they can be calculated from streaming
data without any reordering of the pixels and produce a small number of data,
i.e. minimum processing time and memory requirements. In addition, color
features are size invariant and with the right color space also lighting invariant.
Thirdly, the tracking program calculates prediction features, such as motion
and size predictions, where the size prediction corresponds to motion prediction
in the direction towards or away from the camera. These features are used to
make an initial guess about which objects from previous frame corresponds to
which objects in the current frame.

2.6 Tracking

Tracking are most suitable to implement in software, since this process involves
a lot of exceptions and bookkeeping. Another concern is updating the algo-
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Figure 2.9: The system development board.

rithms or modify them to fit a certain scenario, which is also easily done with a
software solution. Thus, our tracking is performed in software and it consists of
two parts; clustering and matching. Clustering is necessary since segmentation
is not perfect and larger objects, like humans, are often split into more than
one object. Clustering, merge smaller objects into larger ones based on the
size of the objects found in previous frame. Matching is performed between all
stored objects and all new clustered objects, based on the least mean error of
the features.

The features described in the previous section are sufficient to perform
tracking of moving objects in the video stream during the period they are
present in the view of the surveillance camera. However, they are not reliable
to keep track of an object that walks out from the scene and reenters at a later
time. Partial and total occlusion can be handled in most cases but if two or
more persons enter the scene with similar clothing occlusion handling between
those persons becomes unreliable. The obvious solution to these problems is
to include more and better features, which is currently investigated.

2.7 Results

The system is implemented on a Xilinx VirtexIIpro vp30 FPGA development
board, with a 256MB DDR SDRAM and two FPGA embedded Power PCs.
A KODAK KAC-9648 CMOS sensor is used to capture color images at 25 fps
with a 320x240 resolution. The development board is shown in Fig. 2.9 with
the sensor attached directly onto the board. A custom made VGA-controller
provides a monitor with results from the different parts of the system.

Real time segmentation performance is achieved on video sequences with 3
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Gaussian distributions per pixel at an operating frequency of 100 MHz. The
off-chip SDRAM is used to fulfill the requirements to store the large amount
of Gaussian parameter data. With the proposed memory reduction scheme ap-
plied to experimental test video inputs, off-chip memory bandwidth is reduced
from 1.37 Gbit/s to 0.55 Gbit/s. The morphology unit supports structuring
elements (SE) up to the size of 15x15 pixels with individual settings for width
and height. The SE size can be changed during runtime and is individual for
each erosion/dilation unit. The datapath memory and intermediate FIFOs are
less than 3.2 kbit per unit and the operating speed is 100 MHz. The labeling
unit extracts min and max coordinates of up to 64 objects per frame. The dual
memory architecture requires 300 kbit of memory and the operating speed is
67 MHz. The color feature extraction and the tracking algorithm are currently
running in software on the embedded Power PC. In the next versions of the
system, moment calculation will be added to the labeling part and the color
feature extraction will be moved to hardware.

The system prototype is modular, in the sense that each block can be re-
placed with other algorithms without changing the system architecture. Fur-
thermore, each unit is parameterized in order to evaluate long and short time
effects of various settings. More information and example videos can be found
at the project homepage [53].

2.7.1 Bottlenecks

The presented system use a resolution of 320x240, which is rather low com-
pared to modern digital video cameras. This resolution is used since there is a
limited amount of resources, especially memory, on the FPGA. However, future
surveillance systems will most likely require a higher resolution and therefore
it is of interest to study the bottlenecks of the system and how they react to
an increased resolution. For example, if the resolution increase to 640x480,
i.e. four times as many pixels per image, and the frame rate remains 25 fps,
how will this affect the different parts of the system and what can be done to
decrease the impact of an increased resolution?

The segmentation algorithm scales linearly, i.e. the critical memory band-
width increases to 5.5 Gbit/s with the straight forward implementation and 2.2
Gbit/s with the presented memory reduction scheme. To reduce the bandwidth
further the approach used in [54] could be used, where the distributions are not
updated every frame. The morphology unit is much less affected by a resolution
increase, since the memory is only dependent on the width of the image. If the
SE is increased to match the higher resolution, i.e. to 31x31 pixels, only 2.5
times more memory is required in the data path and the intermediate FIFOs
are unaffected. In the label unit, both label memories increase with a factor
of 4. One way to reduce this could be to only keep one label memory used
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by the contour tracing algorithm as it is, and compress the resulting labeled
image into a smaller memory using a compression scheme, e.g. run length en-
coding or JBIG [55]. In terms of memory, feature extraction is unaffected by
the resolution increase, since it only works on streaming data and only stores
the result. It will however, require 4 times as many clock cycles to execute,
this is true for all previous blocks as well. The only part totally unaffected by
the resolution increase is the tracking part. Neither the number of objects nor
the number of features per object is affected by a resolution increase.

2.8 Conclusions

In this paper a real-time hardware platform for an automated digital surveil-
lance system is presented. The platform has been developed in order to identify
and propose solutions to computational and memory bottlenecks. Due to the
real-time processing it also substantially reduces analysis of long terms effects
due to changes in the algorithms and to parametric changes. A memory scheme
reducing memory accesses with > 60% in video segmentation is proposed. Fur-
thermore, a low complexity morphology architecture in combination with a
labeling unit and the video segmentation part is presented. Feature extraction
and tracking is currently implemented in software on an embedded Power PC
on the FPGA. While the feature extraction is moving towards a hardware im-
plementation the tracking will stay in software. A simplified system prototype
is running on an FPGA development board.
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yond rgb,” in Proc. Asian Conference on Computer Vision, 2006.

[29] Color-space converter: RGB to Y CrCb. [Online]. Available:
http://www.xilinx.com/bvdocs/appnotes/xapp930.pdf
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Chapter 1

Introduction

1.1 Motivation

As mentioned in the general introduction, signal processing algorithms can be
implemented in a range of technologies with much differed efficiencies in terms
of speed (throughput), power and flexibility. By moving the implementation
from general purpose processors down to dedicated hardware in the design
space, parallelism within a algorithm can be increasingly utilized to optimize
for speed or power at the cost of flexibility. However, with more details exposed
to the designer when the abstraction level is moving down, design efforts are
increased substantially. To overcome these problems, new design methodologies
are needed. For dedicated hardware implementation, limited flexibility can be
achieved by using time-multiplexed architectures, which can be found in many
applications, e.g. filter design, FFT and CNN. By sharing logic blocks with the
similar functionality in a hardware mapped implementation, a time-multiplexed
architecture can achieve the same functionality with reduced size, increased
flexibility at the cost of the throughput. Such architecture can be crucial in
many situations, where fully hardware mapped implementation is not feasible,
e.g. FFT implementation with large number of points and image processing
with CNN at large resolution. The trade-offs of a time-multiplexed architecture
can be easily illustrated by the finite impulse response(FIR) filter design, as
shown in Fig.1.1 and Fig.1.2. From the hardware implementation perspective,
an FIR filter is generally conceived as the sum of a history of input data being
processed by many multiply-accumulate (MAC) units with different coefficients.
The MAC operations can be shared in a time-multiplexed architecture. Thus
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Figure 1.1: Direct hardware mapped FIR architecture.

calculations for an n tap FIR filter can be implemented in one MAC unit with
n clock cycles instead of n MAC units with one clock cycle. All the coefficients
are stored in a memory, feeding the shared MAC unit with one at a time.
A control unit is needed to schedule all the operations, so that each of them
takes place at the right time, e.g. which coefficient is feed to the MAC unit at
what time, when to reset the MAC unit at the end of each filtering stage. The
design is flexible to some extent since the coefficients can be changed later for
different filtering function. The size of the design is also reduced to only 1 MAC
unit being instead of n. To generalize the idea, the throughput of a hardware
system can be sacrificed for certain flexibility and the size of a design by using
time-multiplexed architecture, which is composed of three parts: datapaths,
finite state machines (FSM), and memories.

As algorithms in image processing increases substantially, datapaths can
get very complicated with large quantity of functional blocks. With the tra-
ditional way of hand coding FSMs in HDLs from the state transition graph,
the design of a control unit capable of scheduling complex operations can be
tedious and error prone. In addition, state transition graph is not an intuitive
way to manipulate the dataflow within the datapath. More naturally, a se-
quential language with concurrency and clock cycle precision may be preferred
by hardware designers for control algorithm specification. Ideally, such lan-
guage can have C-like structures concentrating on functional behaviors of the
datapaths while low level control signal assignments and state transition can
be ignored. Synthesis of such language should also be enabled for mapping the
control algorithm into a hardware controller with optimized architectures that
is ready to be incorporated to state of the art hardware design flow. Motivated
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Figure 1.2: Time multiplexed FIR architecture.

by these, a design environment for controller design automation was imple-
mented [1]. However, as the tool was designed in the 90’s targeting on the
old implementation environment, it can not be integrated into today’s widely
adopted commercial hardware design flow. As part of the thesis work, many
modifications are made to the tool, which enables a design environment for a
controller synthesis from a C-like sequential language transformed into a con-
troller hardware specified in VHDL. In the following sections, various aspects
of the design environment is explained in detail, together with the descriptions
of possible architecture optimization techniques. An example design of image
convolution accelerator implementation is also given for the demonstration of
controller synthesis tool.

1.2 FSM Encoding

Control algorithm can be specified in a low level microprogram, with the syn-
tax constructs of which being composed of statements with branch transitions.
A statement is responsible for assigning values to the control signals that ma-
nipulate the dataflow of a datapath. It also decides which of the statements
is to be executed next, a procedure called branch address transition. Such a
transition can be sequential or conditional. Sequential branch transitions take
place when non-conditional statements are present, with the address of the
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Figure 1.3: Basic idea of FSM encoding



1.3. ARCHITECTURE OPTIMIZATION 107

Select, EOB

Signals

+1

Control

Logic

Address Branch Address

Status

D

Control

Figure 1.4: FSM architecture with incremental circuitry.

next statement being the increment of the current address by one. However,
for a conditional branch transition the decision is based on the relevant con-
ditional variable(s). For hardware implementations, such a microprogram can
be realized by an FSM with the control signals as the output, the address of
each statement as the states, and the conditional variables as the inputs. The
mapping from a microprogram to an FSM process can be interpreted as an
FSM encoding. Fig.1.3 illustrates the basic idea of FSM encoding by an ex-
ample, where a simple algorithm specified as a signal transition graph (STG)
is encoded into a truth table, which is the combinational logic part of a FSM.
From the figure, each statement is assigned a unique address. During the exe-
cution of each statement, control signals are generated accordingly as part of
the outputs. In addition, the address of the next statement is calculated. For
sequential branch address transition, the encoding of the address for the next
statement is the increment of the current address. This could get a slightly
more complicated when a conditional branch transition is encountered, where
two branch address entries are added to the truth table depending on the value
of the conditional variable a.

Loops can be treated as a special case of a conditional branch transition,
where the conditional variable is a loop counter.

1.3 Architecture Optimization

Based on the basic FSM encoding approach described above, optimizations
can be done by utilizing special features within a microprogram. Usually, a big
part of a microprogram is made up of a large number of sequential statements.
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Instead of adding incremental address entry to the control logic (True table), an
external incrementer can be used. As shown in Fig.1.4, the basic FSM structure
can be extended with an extra incremental circuitry to calculate an incremental
address or remains at the current address. With an extra select signal added to
control logic to control the external incrementer, the branch address encoding of
sequential blocks of a microprogram can be ignored (dont care signals). Thus
logic minimization can take advantage of the situation, effectively reducing
the complexity of logic gates. However, the benefit of architecture extension
is limited to control algorithms with large number of sequential blocks. The
overhead by introducing extra incremental circuitry and select signal can be
dominant for algorithms with many conditional branch transitions.

Another optimization can be done in the area of subroutine reuse. With
the basic architecture, the reuse of subroutines at different location of the mi-
croprogram is prohibited. With the basic FSM encoding approach, the same
block of codes referenced in different locations in a microprogram have to be
duplicated in most parts, differing only at the branch address calculation upon
completion. As shown in Fig.1.5, subroutine node 2 is referenced in two dif-
ferent locations. To realize this with the basic FSM encoding, the same block
has to be duplicated twice into in the true table, varying only in the branch
address calculation at the end of the block. This is obviously waste of logic
resources.

To make more efficient use of a control logic, state variables can be in-
troduced to provide additional information of the context environment for a
subroutine block. Basic FSM encoding approach can be extended, so that
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branch address is calculated with the knowledge of its current location in a
microprogram by referring to the state variable. As shown in Fig.??, a state
variable is assigned with different value based on the location where the subrou-
tine is referenced. With the extra location information, the subroutine 2 can
be implemented with single blocks able to determine its branch address upon
the completion of each reference. The state variables can be binary encoded,
e.g. the number of bits is dependant on the number of times a subroutine is
referenced in the microprogram. Fig.1.6 shows the extended architecture that
supports both state variables and incremental branch address calculation.

1.4 Memories and Address Processing Unit

Memories are essential in image processing algorithms. They are used to
store e.g. coefficients, parameters or intermediate calculation data. For time-
multiplexed hardware implementations of image processing algorithms, com-
plicated control flows are in a large part contributed by manipulating memory
address calculations. To assist the designer for memory address calculating,
Address Processing Units (APUs) synthesis is incorporated into controller syn-
thesis. In the microprogram, the user of the tool can declare memories and
their associate memory address variables. Whenever the address calculation is
needed, the user can simply use C-like syntaxfor the address variables, e.g. +,
-, ++, –. The rest of the task is done in the synthesis tool by mapping each of
the address variables to the corresponding hardware components and sending
control signals to calculate /update their values. The basic architecture of a
APU is shown in figure 1.7. From the microprogram, the synthesis tool tries
to locate each place where a address is calculated and map each one of the
address variable into a register. The address calculation can be classified into
one of the three categories: an address variable calculation with a constant,
calculations between two address variables, an increment or decrement of an
address variable. From figure 1.7, any of these operations can be performed in
the basic hardware architecture. The constants can be implemented as a fix
value, being one of the inputs to the MUX, and an increment and a decrement
can be regarded as a special constant (a logic ’1’). Architecture extensions can
be made, e.g. using an extra MUX as described in the following chapter. An
initial address value can be obtained from other logic blocks of a design. This
can be useful if the APU is used as a loop counter, whose initial value depends
on different requirements in a different situation.

1.5 Conclusion

The Controller synthesis tool can assist in complicated controller design by re-
ducing design effort substantially. With a design flow from C-like syntax control
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algorithm specification down to VHDL implementation, a controller hardware
can be generated automatically and implemented on any technologies by using
state of the art digital IC design environment. Architecture extensions to basic
FSM architecture can be utilized to optimize a control logic in different design
tasks. Facilities like Address calculating unit are incorporated which further
provides the design ease in a complex design with many address calculations.
In the following section, the power of the tool is demonstrated in the design of
a real-time image convolution hardware accelerator design.





Chapter 2

Controller synthesis in image convolution hard-

ware accelerator design

2.1 Introduction

Two dimensional image convolution is one of the fundamental processing el-
ements among many image applications and has the following mathematical
form:

y(K1, K2) =
∑∑

x(K1 − m1, K2 − m2)h(m1, m2).

where x and h denotes the image to be filtered and kernel functions respec-
tively. Due to its nature of computation intensity and a consequent high I/O
data transfer, several dedicated solutions are adopted nowadays to fulfill the
demanding processing task. For example, as part of image processing library
for TI’s highest performance TMS320C64x DSP series, such fundamental func-
tion has been implemented as software routines written in optimized assembly
language to take advantage of the specific DSP architectures [2]. Although such
high performance DSP can run up to 600Mhz, performing real-time image con-
volutions for image size of 512×512 with kernel size larger than 7×7 is still be-
yond its limitations [3]. Alternatively, many FPGA implementations of image
convolutions has been reported [3–5]. Focusing mainly on FPGA architectures
for enhancing calculation capacity, few of these implementations address the
combination of data flow architecture which enables low I/O datarates with sus-
tained calculation capability. In this paper, A streamlined dataflow composed
of three level of memory hierarchy are employed, resulting in substantial I/O
bandwidth reduction. Furthermore, potential power savings are also identified
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by such memory hierarchy for the future ASIC solutions. It is estimated that
power consumed by memory operations in three level hierarchies can be over 35
times lower than that of the one level direct memory scheme. Combined with
four parallel processor with pipelined adder tree structure, a calculation capac-
ity of larger than 2.5G MAC/s is achieved at the clock frequency of 50Mhz.

2.2 Two dimensional image convolution

Two dimensional image convolution is computationally intensive and requires
a corresponding high data throughput. If such an application is demanded for
large image size in a real-time manner, it would not be possible without a cus-
tom solution with a tailored architecture. In this application, two-dimensional
image convolution is performed by scanning a rectangular image with a kernel
function, a 15×15 two dimensional data array as shown in figure 2.1. For each
kernel position, the overlapped data are multiplied and then summed together
to form one output filtered image pixel. A boarder image frame is added to the
raw image to prevent data missing when the position of filtering operation is
close to the image boarder. The scanning pattern could be horizontal first and
then vertical or the other way around. The kernel values represent the filter
function that performs specific feature extractions on the image data. To facil-
itate flexible filtering alternatives, a RAM solution is usually demanded for the
kernel changes in later use when other filtering function is applied. Kernel size
is another parameter that can be changed as well. The larger the kernel size,
the more the noise is reduced from the output image but more memories and
calculations are needed. Therefore a trade off between performance and the
hardware cost has to be made. For one example of grain quality assessment [6],
it is shown that a kernel size of 15×15 is considered to be a reasonable solution
in terms of the output image quality and relative implementation cost.

As a consequence of the image size, the complete image has to be stored
on off-chip memory. During the convolving operations, each kernel position
requires 15×15 pixel values from off-chip memory in a direct way. When this is
performed in real-time, a very high data throughput is needed. Furthermore,
accessing large off-chip memory is expensive in terms of power consumption
and so is the signaling due to the large capacitance of package pins and PCB
wires.

In [6], a tailored architecture with a streamlined dataflow was proposed
to achieve the desired filtering while keeping a low I/O bandwidth. By the
observation that each pixel value, except the one in the extreme corners, is
used in several calculations, a two level memory hierarchy were introduced.
instead of accessing off-chip memories 225 times for each pixel operation, 14
full rows of pixel values and 15 values on the 15th row are filled into 15 on-chip
line memories before any convolution starts. After the first pixel operation,
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Figure 2.1: Convolution of an image by kernel function.

Table 2.1: memory hierarchy schemes and access counts for an image of 256×256
(M0=off-chip 0.18µm, C0 and C1=0.35µm)

Scheme M0 C0 C1 energy cost

A: M0 13176900 790 mJ
B: M0→ C0 65536 13176900 56.6 mJ
C: M0→ C1 929280 13176900 68.9 mJ

D: M0→C0→C1 65536 929280 13176900 20.8 mJ

for each successive pixel position, the value in the upper left is discarded and
a new value is read from the off-chip memory. As a result, pixel values from
the off-chip memories are read only once for the whole convolving process from
upper left to the lower right. Thus the input datarates are reduced from 15×15
accesses/pixel to only 1 read.

In light of the fact that using a two level memory structure can reduce both
power consumptions and I/O bandwidth requirements, one extra cache level
is introduced in this paper to further optimize for power consumptions during
memory operations, figure 2.2. Since accessing large memory consumes more
power, 15 small cache memories are added to the two level memory hierarchy.
The small cache memories are composed of 15 separate memories to provide
one column pixel values during each clock cycle. Instead of reading pixel values
directly from line memories 15 times for each pixel operation, one column of
pixel values are read to cache memories first from the line memories for each
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new pixel operation except for the first one. During each pixel operation, di-
rect line memory access is replaced by small caches read. As a result, reading
pixel values from line memories 15 times could be replaced by only once plus
15 times small cache accesses. Under the assumption that the embedded mem-
ories are implemented in a 0.35µm process CMOS, by the calculation method
in [7], it is shown in Table. I that the power consumption for the total memory
operations could be reduced to over 2.5 times compared to that of a two level
hierarchy. In addition to the new cache memory, one extra address calculator
is synthesized by proposed synthesis tool to handle the cache address calcula-
tion, the architecture of which is shown in the following section. In order to
simplify address calculation, the depth for each cache is set to 16. In doing so,
incrementing the largest address represented in 4 bits binaries will reset it back
to the beginning. This will allow circular operations on the cache memories.
During new pixel operations each new column of data are filled into the cache
in a cyclic manner. However, the achieved low power solution has to be traded
for extra clock cycles introduced during the initial filling of the third level cache
memories. In the case of an image size of 256×256, this will contribute 61696
clock cycles in total. Compared with the total clock cycles in the magnitude
of 107, such a side effect is negligible.

In fact, alternative schemes exists by different combinations of the three
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Figure 2.4: Controller Architecture with incremental circuitry.

memories in the hierarchy. All these possible solutions differ substantially in
memory accesses. In Table. I, different memory scheme is shown where M0,
C0, C1 denotes off-chip memory, line memories and smaller caches respectively.
Although the number of data provided to the datapath remains the same for all
four schemes, the access counts to the large off-chip memories varies. For the
two and three level hierarchy structures, the counts to the large memory M0 are
reduced by nearly 225 times compared to that of the one level solution. Between
scheme B and D, the least access counts to both external memories and line
memories are identified in three level memory structure, but this is achieved
at the cost of extra clock cycles introduced during each pixel operation. Thus,
trade off should be made when different implementation techniques are used.
For the FPGAs where power consumption is considered less significant, two
level hierarchies prevails due to its lower clock cycle counts. While for ASIC
solutions, three level hierarchy is more preferable for it results in reasonable
power reduction.

In addition to memory schemes, a pipelined adder tree is implemented on
four processor cores to fulfil the sustained calculation capacity. Four cores have
been chosen to be able to perform several convolutions in parallel. Each core
contains 15 multipliers with adjoining RAMs filled with the kernel function.
During each clock cycle, one column of data comprising 15 pixel values are
read to the corresponding multipliers. The multiplication are performed in
parallel and the products are summed in the subsequent adder tree. Combined
with memory hierarchy, a very high sustained calculation capacity is obtained.
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2.3 Controller synthesis

The processor cores require a very simple controller with only 2 control signals.
However, the line memories and caches, plus RAMs accommodating kernel
function values require extensive address calculations and loop control. In or-
der to reduce the effort of the controller design, a synthesis tool is modified
based on [1] to support synthesis process from C-like control algorithm speci-
fication to RTL controller module in VHDL format. The modified tool takes
in a behavioral description of the datapath architecture defining the available
set of micro-operations, and a microprogram written in C-like input syntax
that contains the algorithm with additional declarations such as memories.
As an output a complete controller with module descriptions and interconnec-
tion specifications is generated. Since architecture extensions to basic FSM
could result in optimized controllers in specific application, a range of con-
troller architectures are supported and can be accessed through architecture
option specification before the synthesis starts. For the current image pro-
cessor, a controller architecture with incremental circuitry is implemented, as
shown in figure 2.4. In this architecture, the branch address calculation within
the same block of code, composed of only sequential statements, is performed
by the hardware incrementer. At the end of a block a non-incremental branch
address is calculated by the control logic and a select branch signal is set. This
architecture is particularly suitable for algorithms that have long stretches of
sequential statements, i.e. the next state generation logic in the basic FSM
architecture can be replaced by an incrementer and MUX. With the tool, more
complicated architectures can be implemented freely based on user require-
ments and algorithm structures since it is a fully automated synthesis process.

In addition to the control structure, address processing units (APU) are also
synthesized by the tool to perform address calculation. Due to the considerable
data flow in calculating the memory addresses, APUs are usually implemented
separately from controllers to reduce control logic. Declared in the micropro-
gram, like variables in C, APUs are implemented in a common structure as
shown in figure 2.5. To map the address calculations in the microprogram into
hardware, constant value assignments to the APUs are implemented as one of
the MUX constants. Additions and subtractions are performed in the adder
and the results are stored in one of the register banks on either sides. Param-
eters such as image size is provided through the external input. To facilitate
simple calculation descriptions in a microprogram, several sets of micro opera-
tions are predefined by the synthesis tool so that the user of the microprogram
could use calculation functions like ”++” and ”--” with no knowledge of the
implementation details. This will simplify the microprogram substantially in
an address calculation intensive tasks.
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Figure 2.5: The address processing unit used in image convolution unit.

In the future, system level modelling language like SystemC is within special
interest for its ability to specify both algorithm and hardware. With this
support, future designs could go up further to the system level to enable more
complicated system design and early verification.

2.4 Results

The control logic is generated in the format of espresso [8]–a PLA design for-
mat supported by Synopsys design compiler. Other formats are also likely in
the future since the information stored in the database are truth tables and
could be easily modified for other formats. The associated controller archi-
tecture as well as the datapath are implemented in VHDL. The whole system
has been prototyped on Xilinx VirtexE 1156G FPGAs. Extra parts dealing
with communication with PCs is developed to enable image transfer between
PC and FPGAs. The whole design works under 20Mhz with a total equivalent
gate count of nearly 800000. Matlab is used as an interface for both handling
the communication on the PC side and results comparison with built-in filter
functions. The image data are 8 bits unsigned values while the kernel functions
are signed. The results are 24 bits signed values in the form of double preci-
sion matrix. The word length is only implemented for comparison with Matlab
results. In real applications, scaling or rounding scheme can be used to reduce
the output bits. To demonstrate the functionality, an edge detection operator
Mexican hat is chosen to detect image edges in figure 2.6. Convolution results
from different kernel size are given together with their zero crossings. Its dis-



2.5. CONCLUSIONS 121

Figure 2.6: Edge detections using Mexican hat operator.

tribution in two dimensions may be expressed in terms of the radial distance r
from the origin,

z(r) = ∇2G(r) = K(1 − r2

2σ2
)e−

r2

2σ2 .

The filtered image by Matlab functions is also given in the picture, by sub-
tracting these two filtered images in Matlab, a zero plane is acquired meaning
they are exactly the same.

2.5 Conclusions

The controller synthesis tool is powerful for the design of controller/datapath
systems. By supporting higher level C-like control algorithm specification, the
effort of controller design is reduced substantially. Memory hierarchy schemes
are important factors for optimizing datapath designs. In this image applica-
tion, both I/O requirements and power consumptions are reduced considerably.
In future controller designs, reprogrammability is considered to be one of the
major concerns. By enabling user reprogrammability, the user can often provide
functionality equal to that of a programmable processor without any change
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of the circuits. In recent years, this has already become a hot topic among
networking and wireless communication system designs [9]. But it should be
realized that level of programmability be taken as a trade off between perfor-
mance and flexibility in the design space [10].
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