
Trellis Decoding

Trellis Decoding

From Algorithm to Flexible Architectures

Matthias Kamuf

Lund 2007

c© 2007 Matthias Kamuf

Department of Electroscience
Lund University
P.O. Box 118
SE-221 00 Lund, Sweden

This thesis is set in Computer Modern 10pt
with the LATEX Documentation System

Series of licentiate and doctoral theses
No. 67
ISSN 1402-8662

Printed in Sweden by Tryckeriet i E-huset, Lund
February 2007

Abstract

Trellis decoding is a popular method to recover encoded information corrupted
during transmission over a noisy channel. Prominent members of this class
of decoding algorithms are the Viterbi algorithm, which provides maximum
likelihood estimates, and the BCJR algorithm, which is a maximum a posteriori
estimator commonly used in iterative decoding. In this thesis, the Viterbi
algorithm is chosen since it provides a good trade-off between achievable coding
gain and implementation complexity. This is the basis for considerations on
simplified, hybrid, and, most importantly, flexible VLSI architectures.

Algorithm simplifications are necessary to reduce the computational burden
laid on an implementation platform. In our work on trellis decoding blocks, a
simplification that lowers the number of arithmetic operations is derived and
evaluated. By using a complementary code property, the arithmetic complexity
of the main part on the Viterbi algorithm is reduced by 17%. Synthesized
blocks show varying savings for cell area and estimated power consumption. A
comparison to a competing simplification shows the advantage in a hardware
implementation of our work for the important class of rate 1/2 convolutional
codes.

Hybrid architectures try to combine benefits of several approaches to lower
the drawbacks of the individual contributors. For survivor path processing in
Viterbi decoders, a new hybrid approach is proposed. A low-latency algorithm,
whose implementation complexity quickly increases with the number of trel-
lis states, is combined with a scalable RAM-based method. As a result, the
developed hybrid architecture exhibits a better latency–complexity behavior
compared to other hybrid approaches.

Flexible VLSI architectures to cover several communication standards be-
come increasingly important as fabrication costs for microchips rise rapidly with
every new process generation. In the context of flexible trellis decoding, earlier
work mostly concentrated on varying encoder memory and thus the number of
trellis states. This work studies the effects on hardware size and throughput
introduced by flexibility if the code rate is varied. The investigation of a de-
coder for bandwidth-efficient codes, which was fabricated in a 0.13 µm digital

v

CMOS process and verified for functionality, distinguishes between task- and
rate-flexibility. A comparison is carried out between flexible designs, which de-
code both convolutional and TCM codes and provide two or three transmission
rates. It is concluded that the larger number of rates is more beneficial from a
cost–flexibility viewpoint.

vi

Two roads diverged in a wood, and I—

I took the one less traveled by

Robert Frost

Contents

Preface xiii

Acknowledgment xv

List of Acronyms xvii

1 Introductory Remarks 1
1.1 Algorithm–Architecture Trade-offs 1

1.1.1 On Complexity Reduction 3
1.1.2 Hybrid Architectures . 4
1.1.3 Why Flexibility? . 5

1.2 Thesis Contribution and Papers Published 6

2 Channel Coding and Decoding 11
2.1 Channel Coding . 13

2.1.1 Convolutional Codes . 13
2.1.2 Trellis-coded Modulation 20

2.2 Decoding Algorithms . 23
2.2.1 Viterbi Algorithm . 25
2.2.2 BCJR Algorithm . 29
2.2.3 Complexity Estimation 31

3 Architecture to Implementation 33
3.1 Implementation Platforms . 33

3.1.1 The Prime Question: ASIC or FPGA? 33
3.1.2 Comparison of Implementation Efficiencies 35

3.2 Mapping Methods . 35
3.2.1 Direct-mapping . 36
3.2.2 Time-multiplexing . 37
3.2.3 Parallelization . 39

ix

I Simplified Trellis Computational Blocks 41
1 Introduction . 43
2 Branch Metric Computations 44
3 Simplified Architectures . 46

3.1 Offset Approach . 48
3.2 Differential Trellis Decoding 54

4 Implementation and Synthesis Results 57
5 Comparison of Hardware Efficiency 59
6 Conclusion . 62

II Hybrid Survivor Path Architectures 63
1 Introduction . 65
2 Basic Algorithms . 65

2.1 Register-exchange . 65
2.2 Trace-back . 66

3 Existing Hybrid Approaches . 68
3.1 Register-exchange and Trace-back 68
3.2 Trace-forward and Trace-back 69

4 New Approach: Register-exchange and Trace-forward 69
5 Comparison and Discussion . 73
6 Conclusion . 77

III Designing a Flexible Trellis Decoder 79
1 Introduction . 81
2 Classification of Flexible Trellis Decoders 84

2.1 m-flexible Solutions . 84
2.2 Algorithm-flexible Solutions 85
2.3 Bandwidth-flexible Solutions 85
2.4 Performance Evaluation 86

3 Branch Metric Unit . 87
3.1 Quantization Issues . 89
3.2 Subset Decoding and Signal Memory 92

4 Trellis Unit . 94
4.1 Considered Trellises . 95
4.2 Processing Framework 95
4.3 Architectural Issues . 98
4.4 Evaluation of Synthesized Trellis Blocks 103

5 Survivor Path Unit . 104
5.1 Decoding Depth . 105

x

5.2 The Designed Rate-flexible Survivor Path Unit 105
6 Hardware Evaluation and Discussion 109

6.1 Impact of Flexibility . 111
6.2 Silicon Implementation 113
6.3 An Alternative Approach 114

7 Conclusion . 115

Conclusion and Outlook 117

Bibliography 118

xi

Preface

This thesis summarizes my academic work in the Digital ASIC group at the
Department of Electroscience for the Ph.D. degree in Circuit Design. The main
contribution to the thesis is derived from the following publications:

� M. Kamuf, V. Öwall, and J. B. Anderson, “Optimization and implemen-
tation of a Viterbi decoder under flexibility constraints,” IEEE Transac-
tions on Circuits and Systems—Part I: Regular Papers, submitted.

� M. Kamuf, V. Öwall, and J. B. Anderson, “Survivor path processing
in Viterbi decoders using register-exchange and trace-forward,” IEEE
Transactions on Circuits and Systems—Part II: Express Briefs, publica-
tion scheduled for June 2007.

� M. Kamuf, V. Öwall, and J. B. Anderson, “A hardware efficiency analysis
for simplified trellis decoding blocks,” in Proceedings of IEEE Workshop
on Signal Processing Systems, Athens, Greece, Nov. 2005, pp. 128–132.

� M. Kamuf, V. Öwall, and J. B. Anderson, “Architectural considerations
for rate-flexible trellis processing blocks,” in Proceedings of IEEE Inter-
national Symposium on Personal, Indoor, and Mobile Radio Communi-
cation, Berlin, Germany, Sept. 2005, pp. 1076–1080.

� M. Kamuf, J. B. Anderson, and V. Öwall, “Area and power efficient
trellis computational blocks in 0.13 µm CMOS,” in Proceedings of IEEE
International Symposium on Circuits and Systems, Kobe, Japan, May
2005, pp. 344–347.

� M. Kamuf, J. B. Anderson, and V. Öwall, “A simplified computational
kernel for trellis-based decoding,” IEEE Communications Letters, vol. 8,
no. 3, pp. 156–158, Mar. 2004.

xiii

The following papers are published but not considered part of this thesis:

� D. Dasalukunte, A. Pálsson, M. Kamuf, P. Persson, R. Veljanovski, and
V. Öwall, “Architectural optimization for low power in a reconfigurable
UMTS filter,” in Proceedings of International Symposium on Wireless
Personal Multimedia Communications, San Diego, CA, Sept. 2006, pp.
264–267.

� J. N. Rodrigues, M. Kamuf, H. Hedberg, and V. Öwall, “A manual on
ASIC front to back end design flow,” in Proceedings of International Con-
ference on Microelectronic Systems Education, Anaheim, CA, June 2005,
pp. 75–76.

� H. Hedberg, J. N. Rodrigues, F. Kristensen, H. Svensson, M. Kamuf, and
V. Öwall, “Teaching digital ASIC design to students with heterogeneous
previous knowledge,” in Proceedings of International Conference on Mi-
croelectronic Systems Education, Anaheim, CA, June 2005, pp. 15–16.

� M. Kamuf, J. B. Anderson, and V. Öwall, “Providing flexibility in a
convolutional encoder,” in Proceedings of IEEE International Symposium
on Circuits and Systems, Bangkok, Thailand, May 2003, pp. 272–275.

xiv

Acknowledgment

To summarize my gratitude for the people I met and who influenced me during
my years as a Ph.D. student in Sweden is a difficult task.

First and foremost, I thank my dear principal supervisor Viktor Öwall for his
enduring support, not only on a professional basis, but also for listening when
needed. Also, the trips to various places in the world were great experiences
for me and would not have been the same without him.

To my co-supervisor John B. Anderson, who has a great way to get people
interested in communication (theory, too). His professional contributions could
not be fully appreciated without all the anecdotes on the stories behind the
stories—I think you should publish them.

Thanks to Joachim for bringing me to Sweden and for being a good friend.
The things you did for me, I will not forget.

My colleagues in the DASIC corridor, both former and current, for making
the days at work extra worthwhile. Fredrik for his constructive comments
while reading parts of this thesis, Henrik for nice talks about everything and
nothing, which of course also applies to Hugo, Thomas, Hongtu, Deepak, and
Johan, who have accompanied me during these years. Also thanks to Martin
for helping me to verify my chip just two days ago.

Not to forget, all the people that keep the department up and running in
one way or another. Erik for his computer support, Stefan as CAD-responsible,
Pia, Elsbieta, and Lars for fixing all the little things that could pop up during
any single day.

Last but surely not least, to my family, my mother for her unconditional
support throughout these years, and my brother for just being the good guy
he is. Thanks for being there.

Lund, February 27, 2007

Matthias Kamuf

xv

List of Acronyms

ACS Add-Compare-Select

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Rate

BM Branch Metric

CDMA Code Division Multiple Access

CMOS Complementary Metal Oxide Semiconductor

DMC Discrete Memoryless Channel

DSP Digital Signal Processor

FA Full Adder

FIFO First In, First Out

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GPP General-Purpose Processor

HDL Hardware Description Language

LIFO Last In, First Out

MAP Maximum A Posteriori

ML Maximum Likelihood

xvii

MSB Most Significant Bit

PAM Pulse Amplitude Modulation

PE Processing Element

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RAM Random-Access Memory

RE Register-Exchange

RTL Register-Transfer Level

SDR Software-Defined Radio

SM State Metric

SNR Signal-to-Noise Ratio

SOVA Soft-Output Viterbi Algorithm

SP Survivor Path

TB Trace-Back

TCM Trellis-Coded Modulation

TF Trace-Forward

UMC United Microelectronics Company

VA Viterbi Algorithm

VHDL Very High Speed Integrated Circuit HDL

VLSI Very Large Scale Integration

WPAN Wireless Personal Area Network

xviii

Chapter 1

Introductory Remarks

This thesis discusses issues that arise at the transition from algorithm to archi-
tecture and hardware implementation. The algorithms concern channel coding
and decoding used in wireless communication systems.

According to Shannon [84], “the fundamental problem of communication
is that of reproducing at one point either exactly or approximately a message
selected at another point”. In order to achieve this goal, channel coding tries
to protect information from disturbances in a channel used as transportation
medium. Due to these disturbances, transmitted and received signal are not
the same. In order to restore the original information, the decoder exploits
the received signal’s redundancy, which was added by the channel code. There
are several coding schemes and decoding algorithms that re-establish the orig-
inal information with almost any desired accuracy. The achievable accuracy
depends on the complexity of the coding scheme; the more complex, the more
accurate the estimates. Clearly, the ultimate goal is to exactly reproduce the
sent information, which is theoretically possible for communication systems
that operate below the capacity bound defined by Shannon in [85]. More on
that in Chapter 2.

To begin with, we specify three design domains: algorithm, architecture,
and implementation. The links between these domains are design constraints,
for example, throughput, energy efficiency, flexibility, latency, and so on. These
constraints determine the choice of architecture and ultimately also the imple-
mentation platform. At last, the importance of mapping algorithms to efficient
architectures is outlined. The main contributions of this thesis are simplified,
hybrid, and flexible VLSI architectures for trellis decoding. These contributions
are briefly presented in Section 1.2.

1

2 Introductory Remarks

1.1 Algorithm–Architecture Trade-offs

An algorithm is an ordered list of (mathematical) instructions. It has neither
connection to processing time, nor is it concerned with feasibility or required
processing capacity. Take for instance the very simple algorithm S ← A + B.
The algorithm consists of a single instruction. Storage of intermediate results
is not necessary. Note that the instruction does not tell the way it is supposed
to be carried out.

An architecture specifies how an algorithm is calculated. When designing an
architecture, one must have in mind future implementation constraints set by
timing, area, and power consumption. For example, the algorithm S ← A+B
can be carried out in many ways. The simplest architecture is a ripple-carry
adder, which consists of a chain of full adders (FAs); see Figure 1.1.

B0A0

FAFA

A1 B1

. . .FA

AWBW

SW S1 S0

CW+1
C1 C0

∨ACi
i ⊕ Ci

Si = Ai ⊕Bi ⊕ Ci
Ci+1 = AiBi ∨BiCi ∨AiCi

Figure 1.1: Ripple-carry architecture to carry out S ← A + B. The
operands A, B are W + 1 bits wide. Also shown are the equations for a
1-bit addition (FA), which in turn can have several physical realizations.

Other adder architectures are carry-lookahead (CL), Brent–Kung, and so
on [76]. Why to choose one over another depends on the constraints of the
implementation, which is a physical realization of an architecture. The per-
formance of different implementations can be characterized in the area–delay
plane. Figure 1.2 shows different implementations of 16-bit adders synthesized
towards a 0.13 µm digital CMOS standard cell library. The reciprocal of delay
is a measure of throughput. Desirable is the lowest area–delay product, indi-
cated by the thick shaded line in the figure. It spans different architectures,
which are optimal in an area–delay sense in their respective delay regions.

The transition from architecture to implementation offers several platform
choices depending on the overall performance goals. The goals are throughput,
energy efficiency, flexibility, and so on. In the previous example, application-
specific integrated circuits (ASICs) were the target platform. Other platforms

1.1 Algorithm–Architecture Trade-offs 3

Delay (ns)

C
el
l
ar
ea

(u
ni
ts
)

Ripple-carry

CL
Fast CL

Brent–Kung

0 0.4 0.8 1.2 1.6 2
500

700

900

1100

1300

1500

Figure 1.2: Performance comparison of different standard cell imple-
mentations of a 16-bit adder. The shaded area is the region where there
is no physical realization of the algorithm for the chosen platform.

are general-purpose processors (GPPs), digital signal processors (DSPs), or
field-programmable gate arrays (FPGAs) to name a few. Some of these plat-
forms are discussed in Chapter 3.

In a throughput–flexibility plane, one can establish a graph shown in Fig-
ure 1.3. The different domains express the feasibility region of a certain plat-
form. As one traverses through this plane, different requirements determine
the “right” implementation platform. There is a trade-off between the order of
throughput that can be provided with a certain grade of flexibility or reconfig-
urability. As flexibility is decreased, the performance measured in throughput
or energy efficiency increases, and vice versa. The superiority of dedicated
designs on the one hand is paid for by limited flexibility on the other hand.
In Chapter 3, there are measures for these properties, exemplified by Viterbi
decoders that run on dedicated platforms compared to general-purpose ones.

1.1.1 On Complexity Reduction

Algorithms are often developed and tested in floating-point environments on
GPPs in order to show the achievable optimal performance. Besides shortest
development time, there are no requirements on, for example, processing speed

4 Introductory Remarks

DSP

FPGA

ASIC

Throughput, energy efficiency

GPP
F
le
xi
bi
lit
y

Figure 1.3: Different implementation platforms and their application
domains.

or power consumption, and hence this platform is the best choice for the job.
However, speed or power constraints might require an implementation in more
or less specialized hardware. This transition usually causes many degradations,
for example, reduced dynamic range caused by fixed-point arithmetic, which on
the other hand provides tremendous reduction in implementation complexity.

Whether fixed- or floating-point arithmetic is used, the sheer amount of
computation is often the biggest challenge when mapping an algorithm onto a
feasible architecture and implementation. Therefore, simplifications are neces-
sary that may or may not cause performance degradation. Although not cov-
ered in this thesis, consider as an example maximum likelihood (ML) decoding
of space–time codes [1,91] used in multiple-input-multiple-output communica-
tion systems [47]. To date, this decoding algorithm is much too complex in
number of operations for a straightforward implementation to run at reason-
able speed. Therefore, sphere decoding methods [42, 82] were applied, which
limit the search space of the ML algorithm and thus decrease the number of
operations to be carried out. Of course, the suboptimality of these algorithms
degrade performance compared to optimal ML decoding.

To conclude, simplifications that cause little (ideally no) degradation are
a necessity to satisfy ever increasing requirements on throughput and energy
efficiency in VLSI implementations.

1.1.2 Hybrid Architectures

Nowadays, the word “hybrid” is often connected with cars that can run on
several fuels, for example, petrol and natural gas or ethanol. With such cars,
the fatal environmental impact of burning petrol is relaxed if drivers use the

1.1 Algorithm–Architecture Trade-offs 5

more environmental-friendly (“green”) fuel in cases where driving distance is
not the prime matter, for example, in urban traffic. That is, the benefits of
two worlds, as well as drawbacks of either approach, are traded for each other
to arrive at an overall favorable solution.

The hybrid principle applied to the topics in this thesis, different algo-
rithms or architectures, with their benefits and drawbacks, can be combined
to enhance the new approaches’ overall feasibility. Recent examples of hybrid
approaches in the coding field are [27, 28]. In [28], forward trellis processing
from the suboptimal max-log-MAP algorithm is combined with the backward
pass from optimal log-MAP decoding. This hybrid scheme can also be counted
as simplification discussed in the previous subsection. Decoding performance
is slightly degraded at the benefit of reduced storage requirement and power
consumption. The authors of [27] put together two coding methods. One of the
methods performs well in memoryless channels, the other is designed to cope
with burst errors that often appear in channels with memory. The resulting
hybrid coding scheme can therefore be applied to a greater variety of scenarios.

1.1.3 Why Flexibility?

Although the word flexibility is used extensively in almost every context, it is
not easily defined as a free-standing concept. Linguistically [89], it is defined
according to

Definition 1 Susceptibility of modification or alteration; capacity for ready
adaptation to various purposes or conditions; freedom from stiffness or rigidity.

In other words, applied to the issues stated in the preceding paragraphs, flex-
ibility expresses the grade of a design being able to adapt its parameters to
various conditions and purposes. A flexible design not only serves one spe-
cific algorithm optimized in one special way, but provides an architecture with
varying capabilities for, for example, throughput or power consumption. In
particular, power consumption has become more and more important since
many applications are or will be mobile and thus processing has to be energy-
efficient. On top of all this, these objectives should be met together with high
throughputs provided by ASICs.

For example, a common effort to merge different communication standards
onto a single platform is culminating in what today is named software-defined
radio (SDR). According to this consortium [90],

“SDR is a collection of hardware and software technologies that enable
reconfigurable system architectures for wireless networks and user terminals.
SDR provides an efficient and comparatively inexpensive solution to the prob-
lem of building multi-mode, multi-band, multi-functional wireless devices that

6 Introductory Remarks

can be enhanced using software upgrades. As such, SDR can really be con-
sidered an enabling technology that is applicable across a wide range of areas
within the wireless industry.”

This excerpt certainly emphasizes today’s need for adaptable platform de-
sign, considering the cost of hardware design is far larger than the cost of
changing software. This cost factor becomes even more distinct as process
feature size shrinks; see Figure 1.4. This graph shows the progression of devel-
opment and fabrication cost of an ASIC. Note that the cost for possible re-spins
are not included in the numbers.

CMOS technology (nm)

C
os
t
(M

$)

180 150 130 90 65 45
0

10

20

30

40

Design/VerificationSoftware

Production/TestMasks and wafers

Figure 1.4: Standard cell ASIC development (large volumes) cost trend.
Figure adapted from [13].

However, from Figure 1.3 it is seen that dedicated hardware has advantages
in processing speed and is generally more efficient in energy per processed
bit. That is, the gordic knot between required flexibility on the one hand and
efficient implementation on the other hand must be solved. The solution is
flexible architectures such as the one investigated and designed in this thesis.
Note that this thesis concentrates on the decoding part of a communication
system. Recent system-oriented approaches can be found in [97].

1.2 Thesis Contribution and Papers Published 7

1.2 Thesis Contribution and Papers Published

In this thesis, algorithm–architecture issues discussed in the previous sections
are addressed in the context of channel decoding. To begin with, necessary
basics of channel coding and decoding are presented in Chapter 2. This theo-
retical chapter is followed by an overview of architectural concepts that enable
an efficient implementation of algorithms. As an example, practical aspects for
channel decoders (here, those based on the Viterbi algorithm) are discussed.
Included is also a review of hardware implementation platforms with focus on
ASICs. Having introduced these fundamental topics, the contributions of this
thesis are found in Parts I–III. The content of these three parts is summarized
now.

Part I: Simplified Trellis Computational Blocks

An algorithmic simplification to an important processing block in trellis de-
coders is derived. The block consists of add-compare-select (ACS) units that
discard suboptimal branches in a code trellis. Based on these decisions the
most likely state sequence can be reconstructed. Using the complementari-
ness of code symbols along merging trellis branches, it is shown that for rate
1/2 codes, one addition can be saved in every other ACS unit. The effects
in a hardware implementation are explored by synthesizing decoding blocks
for different code constraint lengths. Thus, the predicted savings in cell area
and power consumption compared to a conventional implementation can be
verified. It is also discussed why a competing simplification, which also relies
on the mentioned complementariness, cannot achieve the same reduction in a
hardware implementation.
This part is an extended version of:

� M. Kamuf, V. Öwall, and J. B. Anderson, “A hardware efficiency analysis
for simplified trellis decoding blocks,” in Proceedings of IEEE Workshop
on Signal Processing Systems, Athens, Greece, Nov. 2005, pp. 128–132.

� M. Kamuf, V. Öwall, and J. B. Anderson, “Area and power efficient
trellis computational blocks in 0.13 µm CMOS,” in Proceedings of IEEE
International Symposium on Circuits and Systems, Kobe, Japan, May
2005, pp. 344–347.

� M. Kamuf, J. B. Anderson, and V. Öwall, “A simplified computational
kernel for trellis-based decoding,” IEEE Communications Letters, vol. 8,
no. 3, pp. 156–158, Mar. 2004.

8 Introductory Remarks

Part II: Hybrid Survivor Path Architectures

Survivor path processing requires a large amount of computation in Viterbi
decoders. Low latency and implementation efficiency are desirable properties
and there are two basic algorithms, register-exchange (RE) and trace-back
(TB), that fulfill either property. Usually, the number of trellis states is a good
indicator for when to use which. In order to trade one property for another,
hybrid approaches have partly lowered the drawbacks of the two algorithms.
Combining the RE algorithm with a method that has been used to lower latency
in TB architectures, we develop a new hybrid survivor path architecture. Its
implementation efficiency extends to a larger number of states, with only small
sacrifices in latency compared to pure RE processing.
This part is an extended version of:

� M. Kamuf, V. Öwall, and J. B. Anderson, “Survivor path processing
in Viterbi decoders using register-exchange and trace-forward,” IEEE
Transactions on Circuits and Systems—Part II: Express Briefs, publica-
tion scheduled for June 2007.

Part III: Designing a Flexible Trellis Decoder

Flexible channel decoding is important if one has to deal with varying channel
conditions. If there is low channel signal-to-noise ratio (SNR), error-correcting
capability is crucial to maintain a basic communication link. Or, when there
is higher SNR, more information per channel use can be transmitted. Two
candidate transmission schemes suit these requirements, convolutional coding
with Gray-mapped QPSK, and trellis-coded modulation using larger constel-
lations. The trellis diagram of the respective encoders consists of radix-2 and
radix-4 butterflies, which requires two different processors in a straightforward
implementation. By emulating the radix-4 butterfly with radix-2-based com-
putation units, flexibility is provided while efficiently reusing hardware. It is
shown that other processing parts benefit from this time-multiplexed approach,
too. Furthermore, synthesized decoders indicate that providing more than two
transmission rates is beneficial, considering that the initial price for rate flex-
ibility has already been paid. The flexible Viterbi decoder was fabricated in
a 0.13 µm digital CM0S process and its functionality was verified in a test
environment.
This part is an extended version of:

� M. Kamuf, V. Öwall, and J. B. Anderson, “Optimization and implemen-
tation of a Viterbi decoder under flexibility constraints,” IEEE Transac-
tions on Circuits and Systems—Part I: Regular Papers, submitted.

1.2 Thesis Contribution and Papers Published 9

� M. Kamuf, V. Öwall, and J. B. Anderson, “Architectural considerations
for rate-flexible trellis processing blocks,” in Proceedings of IEEE Inter-
national Symposium on Personal, Indoor, and Mobile Radio Communi-
cation, Berlin, Germany, Sept. 2005, pp. 1076–1080.

Chapter 2

Channel Coding and Decoding

This chapter deals with basics of channel coding and its decoding algorithms.
It is by no means a survey of this vast area; instead, only topics relevant to this
thesis are discussed such that the contributions in Parts I–III can be followed
and appreciated. For a more general overview of the field, a good start are the
review papers of [29,46].

Following is a brief description of the simple communication model that
is assumed in the sequel. This model also helps to understand the purpose
of channel coding. Then, two popular coding approaches are discussed more
thoroughly: convolutional coding together with Gray-mapped signal constella-
tions and set-partition coding. Decoding algorithms are presented from their
theoretical background along with a basic complexity comparison.

Consider the block diagram of the simplified communication system in Fig-
ure 2.1. It consists of an information source (not explicitly drawn) that emits
data symbols {uk}. A channel encoder adds some form of redundancy, possibly
jointly optimized with the modulator, to these symbols to yield the code sym-
bol sequence {ck}, where ck denotes an M-ary transmission symbol. Linear
modulation is assumed, that is, modulation is based on a linear superposition
of (orthogonal) pulses. The signal sent over the channel is therefore

s(t) =
∑
k

ck · w(t− kTs),

where w() is the pulse waveform and Ts is the symbol time. The waveform
channel adds uncorrelated noise n(t) to the signal, which results in the wave-
form r(t) at the receiver. For the remainder, the disturbance introduced by the

11

12 Channel Coding and Decoding

channel is assumed to be additive white Gaussian noise (AWGN). That is,

E{n(t)} = 0

E{|n(t)|2} = N0/2.

The received waveform r(t) is demodulated to yield a discrete sequence of (soft)
values {yk}. Based on these values, the channel decoder puts out an estimate
{ûk} for the data symbols {uk}.

{yk}

{uk} {ck}
encoder ModulatorChannel

decoder
De-Channel{ûk}

Transmitter

modulator

Waveform
channel

Receiver

s(t)

r(t)

n(t)

Figure 2.1: A simplified communication system.

According to Shannon [85], reliable communication with arbitrarily low bit
error rate (BER) in the AWGN channel can be achieved for transmission rates
below

C =
1
2
log2

(
1 +

2Es
N0

)
(bits/dimension).

If there are J orthogonal signal dimensions per channel use, the transmission
rate of a (coded) communication system is defined as

Rd =
log2M
J

·Rc (bits/dimension), (2.1)

where M is the number of possible symbols per channel use and Rc < 1 de-
notes the code rate of the channel code in data bits/code bits. For example, a
communication system with a channel code of rate Rc = 1/2 per channel use
and a 16-QAM constellation, that is, M = 16 and J = 2, has a transmission
rate of Rd = 1 bit/dimension.

2.1 Channel Coding 13

For equiprobable signaling, the energy devoted to a transmission symbol is
expressed as

Es =
1
M

M∑
i=1

‖ci‖2,

or, alternatively, the energy per data bit is

Eb =
Es

log2M ·Rc . (2.2)

2.1 Channel Coding

Plainly spoken, a good channel code reduces the necessary Eb to achieve the
same BER over a noisy channel as an uncoded transmission system of equal
transmission rate R < C. This reduction is referred to as coding gain.

The BER of many communication systems can be estimated in closed form
based on the union bound [78]. Essentially, BER depends on the two-signal
error probability, that is, the probability that one signal is mistaken for another
upon decoding, and the minimum distance between signals. This probability
resembles

pe ∼ 2K
M Q

(
dmin

√
Eb
N0

)
, (2.3)

where K is the number of signal pairs that lie at distance dmin apart from each
other and Q() is the complementary error function defined as

Q(x) =
1√
2π

∫ ∞

x

exp(−u2/2) du.

In practice, BER is estimated by computer simulations of the underlying com-
munication model. From Equation 2.3 the task of the channel code (together
with the modulator) becomes apparent: either increase dmin, or decrease 2K/M,
or both. Then, Eb can be lowered for the same BER.

There are two major classes of binary channel codes: block codes and convo-
lutional codes. In the context of this thesis, only the latter codes are considered
since they are widely applied in today’s communication systems. Nevertheless,
the rediscovery of low-density parity-check codes [49] might reclaim some share
from convolutional-based coding in these systems in the near future.

14 Channel Coding and Decoding

2.1.1 Convolutional Codes

Discovered by Elias [35] and extensively discussed in, for example, [44] or
[61], convolutional codes operate on continuous (theoretically infinite) sym-
bol streams. In practice, though, convolutional codes are terminated in some
way to carry out the decoding on blocks of codewords.

Generation and Realization

A rate Rc = b/c, b < c transfer function matrix for a convolutional code can
be expressed as

G(D) =

g11(D) . . . g1c(D)

...
. . .

...
gb1(D) . . . gbc(D)

 , (2.4)

where

gij(D) = fij(D)/qij(D), i = 1, . . . , b, j = 1, . . . , c

are rational transfer functions and f, q are polynomial. D is the delay operator
[44] which signifies a delay of one symbol position. For Equation 2.4 to be an
encoding matrix, it must have full rank and be realizable, that is, qij(D) must
be delay free (qij(0) = 1).

From Equation 2.4, several classes of encoding matrices can be derived.
For example, G(D) is called polynomial if all entries are polynomials, that is,
qij(D) = 1. Furthermore, if the b data bits appear unaltered among the c code
bits, the encoding matrix is called systematic and has form

G(D) =
(
Ib R(D)) , (2.5)

where Ib is a b× b identity matrix and R(D) a b× (c− b) matrix whose entries
are rational functions of D. As a convention, the systematic bits appear in the
first b positions.

Let

νi = max
1≤j≤c

{deg gij(D)} (2.6)

denote the constraint length of the ith input of an encoding matrix. Then, the
memory µ of this matrix is

µ = max
1≤i≤b

{νi}

2.1 Channel Coding 15

and the overall constraint length becomes

ν =
b∑
i=1

νi.

As an example of Equation 2.5, consider the systematic rate 2/3 encoding
matrix

G(D) =

(
1 0 D

1+D2+D3

0 1 D2

1+D2+D3

)
. (2.7)

Its memory is µ = 3 and its overall constraint length is ν = 6.
A rate Rc binary convolutional encoder is a realization of Equation 2.4 by

a linear sequential circuit with tapped delay lines. It consumes b data bits and
produces c code bits for every time step.

A convolutional encoder is realized either in controller or observer form. In
controller form, each input (row ofG(D)) is assigned to a separate shift register.
The feedback encoder for Equation 2.7 in controller canonical form is depicted
in Figure 2.2. Since g13 and g23 are rational, the encoder has feedback. Encoder
tap sets are expressed as left-justified octals (g0,g1,g2) = (54, 20, 10), where
g0 is the feedback tap set. According to Equation 2.6, ν1 = 3 and ν2 = 3. That
is, the number of delay elements in the b = 2 shift registers is 3 in both cases.
In total there are ν = ν1 + ν2 = 6 delay elements needed in this realization. It
is seen that for the controller form the number of delay elements is equal to ν.

v1
v0

v2

u2

u1

Figure 2.2: A systematic rate 2/3 code with encoding matrix from
Equation 2.7 realized in controller canonical form. ⊕ denotes a modulo-
2 addition.

16 Channel Coding and Decoding

Another equivalent realization of Equation 2.7 is the observer canonical
form, and the respective encoder is shown in Figure 2.3. It has one shift reg-
ister for every output (column of G(D)). Encoder tap sets are (h0,h1,h2) =
(15, 02, 04) (right-justified octals), where h0 is the feedback tap.† Close exam-
ination reveals that this realization only has 3 delay elements, which is equal
to the memory µ of the encoding matrix.

v2
v1

v0

u2
u1

Figure 2.3: A systematic rate 2/3 code with encoding matrix from
Equation 2.7 realized in observer canonical form.

Generally, the total number of delay elements depends on the encoder re-
alization, not the encoding matrix. As occurred in the example, systematic
rate b/b + 1 codes in observer form are always minimal, that is, the number
of delay elements is equal to µ. Minimal encoders are desirable since decoding
complexity is proportional to the number of encoder states.

Code Representation

From now on, the total number of delay (memory) elements in an encoder
realization is referred to as the encoder memorym. The contents of the memory
elements (read from left to right) define the state of an encoder, and hence the
behavior of this circuit can be described by a finite state machine (FSM). For
example, Figure 2.4 shows the state diagram of a convolutional code with rate
1/2 polynomial encoding matrix G(D) = (1 + D + D2 1 + D2) realized in
controller form. The corresponding encoder tap sets are (g1,g2) = (7, 5).

The number of states in such an FSM is N = 2m and there are 2b edges
entering and leaving each state. Drawn along these edges are the b data bits
that caused the state transition along with the corresponding c-bit code symbol,
separated by a slash, for example, “0/10”.

In order to capture the evolution of the encoder states in time, Forney [43]
introduced the trellis representation, see Figure 2.5. A trellis is one of the most
convenient ways to visualize the principle of the decoding algorithms discussed
in Section 2.2.

†To distinguish between realizations, controller form tap sets use left-justified octals and
letter g�, observer form tap sets are right-justified and use h�.

2.1 Channel Coding 17

11

0110

00

0/01

0/11

0/00

1/10

1/01

1/11

0/10

1/00

u1

v1

v2

Figure 2.4: Nonsystematic feedforward encoder with tap sets (7,5) and
its state diagram.

11

10

0 1

01

00

2

0/00 0/00 0/00 0/00

1/11 0/10

1/01
0/10

1/01

1/10

0/11

St
at
e

1/10 Time
3 4

Figure 2.5: Trellis diagram of (7,5) encoder.

18 Channel Coding and Decoding

Nodes in the trellis represent states in the FSM. After m steps, the trellis is
said to be fully extended and the branch pattern repeats indefinitely until the
data stops. Usually, states are expressed as decimals, with the least significant
bit equal to the oldest bit that entered the shift register. For example, binary
state “10” equals state “2”.

For any convolutional encoder, a trellis stage can be collapsed into N/2b

disjoint butterflies of size (radix) 2b. The most important butterflies are radix-
2 and radix-4, which correspond to an encoder with b = 1 and b = 2 inputs,
respectively. These butterflies are shown in Figure 2.6. State labels are denoted
for encoders in controller canonical form, where n ∈ [0, N/2b − 1]. Note that
state transitions are independent of the encoder tap sets, that is, transitions
solely depend on the input fed into the leftmost memory element. This is unlike
the observer canonical form, where all memory elements can be fed in parallel
by the input, depending on the tap sets; see Figure 2.3.

2n+ 1

n

n+N/2

2n

k k + 1

(a)

4n+ 3

4n n

n+N/4

n+N/2

n+ 3N/4

4n+ 1

4n+ 2

k k + 1

(b)

Figure 2.6: A radix-2 butterfly (a) and a radix-4 butterfly (b). The
radix-4 butterfly can be decomposed into four radix-2 butterflies, indi-
cated by the different line styles.

Error Performance

The Hamming weight of a code sequence v is the number of non-zero positions
in v. The Hamming distance dH between two codewords v1 and v2 is the
number of positions where the two sequences differ. Error performance of a
convolutional code is determined by the minimum Hamming distance between
any two v1 and v2 that differ in the first position. This expression, also called

2.1 Channel Coding 19

free distance of the code, becomes

df ≡ min
v1 �=v2

{dH(v1,v2)}.

Since convolutional codes are linear, df is equal to the minimum Hamming
weight of any non-zero codeword. Visualized with the trellis diagram, this is
the path with the lowest weight that merges with the all-zero path. This path
covers at least ν stages.

As a first-order estimation, df grows linearly with the code’s constraint
length ν. Now reconsider Equation 2.3. If we assume binary signaling per
dimension on the AWGN channel, the factor 2K/M becomes one and we can
basically replace dmin by df. Calculations [61] in signal space for the bit error
probability ultimately lead to

pe ≈ Q
(√

2dfRcEb/N0
)
.

That is, the error probability decreases with increasing df, This matches our
intuition that increasing the code constraint length leads to lower BER.

There are many other parameters that ultimately influence the performance
of a channel code. For example, it was found out in [3] that for the important
class of rate 1/2 codes, systematic feedback encoders perform better than non-
systematic feedforward ones under almost all circumstances.

Puncturing

Intuitively, there are two transmission scenarios to be distinguished: power-
limited and bandwidth-limited scenarios. For the former class, low rate codes
with large constraint length will do an excellent job [61]. However, the lower
the code rate, the lower the amount of data transmitted per channel use; see
Equation 2.1. To maintain the original data rate in bits/s, the symbol time
has to be decreased, which in turn increases the bandwidth of the transmitted
signal. If bandwidth were unlimited, this transmission is only bounded by the
amount of energy per symbol that has to be provided for synchronization at
the receiver [4]. From Equation 2.2, Es becomes smaller the lower the code
rate.

High-rate codes are crucial if one cannot tolerate bandwidth expansion.
However, as b increases, so does the complexity of the butterflies (Figure 2.6)
and thus the decoding. Puncturing [22,104] is a convenient way to increase the
code rate of a convolutional code without increasing trellis complexity.

The principle is best explained with the trellis diagram in Figure 2.7, which
is based on the rate 1/2 (7,5) encoder from Figure 2.5. The punctured code
is derived by deleting bits from the original code stream to be transmitted. In

20 Channel Coding and Decoding

this example, there is one code bit omitted in every other trellis stage, which
yields three code bits for two data bits, as indicated by the shaded box. The
resulting code rate is thus 2/3.

2

3

10

0

1

32

0/0×0/00 0/0×0/00

1/0×

0/1× 1/01

0/10

0/1×

1/10

1/11

4
Time1/1×

St
at
e

Figure 2.7: Trellis diagram of punctured rate 1/2 code to yield a 2/3
code. Bits denoted “×” are not transmitted.

Note that the butterfly structure has not been altered in a trellis stage.
Therefore, the decoding architecture for the mother code can be used for punc-
tured codes that are derived from it. Upon decoding, the punctured bit posi-
tions are simply neglected when calculating branch transition probabilities.

From the results in [22, 104], the free distance of these punctured codes is
not significantly altered compared to the respective best non-punctured codes
of equal rate. Thus, asymptotic error performance is only slightly degraded.
If the punctured codes are derived from the same mother code, the codes are
called rate-compatible [52]. This is a desirable feature if one wants to vary code
rate depending on the channel conditions, since encoder and decoder can be
easily reused.

2.1.2 Trellis-coded Modulation

Convolutional coding as discussed in the previous section is generally used to-
gether with Gray-mapped signal constellations. That is, code bits of signal
points that are dmin apart differ in only one bit position. Apparently, cod-
ing and modulation are treated as separated entities in this approach. The
redundancy introduced by channel coding causes bandwidth expansion.

Towards the end of the 1970’s, Ungerböck [95, 96] addressed the issue of
bandwidth expansion by combining coding and modulation. According to him,
“redundancy” is now provided by using an expanded signal set and the coding is
done directly on the signal sequences. What follows is a brief introduction into
the concept of set-partition coding to familiarize the reader with the notation.

2.1 Channel Coding 21

Apart from the original publications by Ungerböck, the textbook by Anderson
and Svensson [6] treats the topic more thoroughly.

From now on, two-dimensional orthogonal (I/Q) signal constellations, for
example, PSK or QAM, are assumed. Also, transmission rates R are now
expressed in bits per two-dimensional channel use, which means omitting the
dimensional factor J in Equation 2.1. Any such constellation has a certain
dmin, which essentially determines BER according to Equation 2.3. Recall
that increasing dmin lowers the BER. In trellis-coded modulation (TCM), this
increase is achieved by partitioning a (master) constellation into subsets. This
split is done according to Ungerböck’s rules such that the distance between
signals belonging to the same subset is maximized. As is seen from Figure 2.8,
every split of a uniform QAM constellation (here 16-QAM) increases dmin in
the subset by a factor

√
2. If the lattice at the root has distance 1 between

constellation points, the distance in the subsets at the lowest branch is 2
√
2,

denoted same-subset minimum distance dss. This distance is the ultimate limit
on how well a TCM code can perform.

z0 = 0

z1 = 0

1

1

1 1 1 1

10

00 0

{dss

z2 = 0

C0 C1 C2 C3 C4 C5 C6 C7

A0 A1

B3B2B0 B1

Figure 2.8: Set-partitioning according to Ungerböck. Picture adapted
from [6].

In general, if M denotes the size of the master constellation, there are
log2M− 1 possible splits to finally produce M/2 subsets with 2 signals. Of
course, one could split one more time to arrive at one signal per subset. This
transforms the set-partition problem back to mapping code symbols efficiently
to constellation points. However, it is not considered a set-partition code in
the traditional sense, and will not be discussed further.

22 Channel Coding and Decoding

Figure 2.9 shows a 16-QAM constellation, which is divided into 8 subsets
with 2 signal points per subset. This division stems from successive splits as
in Figure 2.8, and the bit-to-constellation point mapping is derived from these
splits. The subset number is the three rightmost bits (z2z1z0) of a constellation
point indicated by the underbrace. Then, the signal point in the subset is
distinguished by the underlined bit. Apparently, the constellation mapping is
not Gray anymore; only within a subset Gray-mapping is used.

I

Q

1000 1001

0001

10101011

0011

0000

0 010︸︷︷︸

1111

1100 1101

1110

0100 0101

01100111

Figure 2.9: 16-QAM constellation divided into 8 subsets (marked by
the different symbols) with 2 signal points each.

In order to achieve dss, only certain sequences of subsets are allowed. This
sequencing is done by a tapped shift register, a convolutional encoder. In the
context of TCM, this entity is called subset selector. Figure 2.10 shows a
complete rate-R TCM encoder. It takes in R bits per symbol time. b bits
are input to the subset selector that puts out c > b bits zi that determine the
subset to be used for that symbol time. Note that branches in a trellis diagram
now carry subsets, not code symbols as in the case of convolutional coding.

The remaining R − b bits, sometimes called “uncoded” bits, are used to
choose the signal sent in a subset. This implies that the trellis diagram has
parallel transitions. As a consequence, decoding complexity is increased since
the most likely of these subset signals has to be determined before one can
calculate the branch transition probabilities. This process is called subset de-
coding.

The inter-subset minimum distance dis is a measure similar to the Hamming
distance between two code sequences, where the two outputs are in different
subset sequences. In case of convolutional coding, the number of differing
bit positions determines df. Now, the Euclidean distance between the signal

2.2 Decoding Algorithms 23

R− b bits

selector
...

...

Subset
b bits

”uncoded” bits
Send in subset

z0
...

zc−1

Signal
points

Signal constellation
M points

log2M bits

QAM
mapper

PSK or

Figure 2.10: A generic rate-R TCM encoder.

sequences has to be evaluated. Since the performance of the TCM code is
determined by min{dis, dss}, the goal is to design a clever enough subset selector
that achieves dis ≥ dss.

Coding gain of a TCM code is measured compared to an uncoded (QAM)
transmission of equal rate R. To achieve the same transmission rate as an
uncoded system, and carrying out all subset splits, one needs a rate b/b + 1
convolutional code for subset selection. Traditionally, the encoder is of system-
atic feedback type and often realized in observer canonical form (see Figure 2.3)
since this leads to a minimal encoder.

To emphasize the importance of TCM in the high signal-to-noise ratio
(SNR) region, consider Figure 2.11. It compares rate 1, 3, and 5 transmis-
sion schemes using QPSK, 16-QAM, and 64-QAM constellations, respectively.
The TCM subset selectors are rate 1/2 for QPSK and 2/3 for the two multi-
level constellations. The competing convolutional codes are rate 1/2, 3/4, and
5/6. They use the same constellations as the TCM schemes, albeit with Gray-
mapping. Here, the higher rate codes are achieved by puncturing the rate 1/2
code. Corresponding puncturing patterns are found in [104]. In all cases, the
encoders have 8 states. For the multi-level constellations, the gain at BER of
10−5 of TCM compared to the Gray-mapped system is around 1.3 dB. However,
in the QPSK case with rate 1/2 coding, that is, for low transmission rates, the
TCM code appears to be somewhat weaker.

2.2 Decoding Algorithms

From the considerations in Section 2.1.1, the trellis created by a convolutional
encoder can be interpreted as finite-state discrete-time Markov source. Denote
by Xk ∈ [0, N − 1], k ∈ Z, a possible state of the encoder at time k. At the
receiver side, the probability of a trellis transition from state Xk to Xk+1 and

24 Channel Coding and Decoding

Eb/N0 (dB)

B
E
R

TCM
Gray

R = 1

R = 3

R = 5

1 5 9 13 17

100

10−2

10−4

10−6

Figure 2.11: Performance comparison of rate-R transmission schemes
using TCM or convolutional coding with Gray-mapped constellations.

the outcome yk is given by

p(Xk+1,yk|Xk) = p(yk|Xk,Xk+1) Pr(Xk+1|Xk). (2.8)

Here p(yk|Xk,Xk+1) is the likelihood function of the received symbol yk given
the transition (Xk,Xk+1) and Pr(Xk+1|Xk) is the transition’s a priori proba-
bility. For convolutional codes, there are c code symbols along a trellis branch
and thus yk = (y0,k · · · yc−1,k). Depending on the code rate Rc and the trans-
mission scheme, these yi,k stem from one or several i.i.d. code symbols. For
TCM codes, there are subsets along the branches. These subsets consist of
two-dimensional signals and yk is a two-dimensional signal.

When a demodulated noisy value yk is received from an AWGN channel
with variance σ2 = N0/2, the likelihood function becomes

p(yk|Xk,Xk+1) = 1√
πN0

exp
(
−|yk − ck|

2

N0

)
.

2.2 Decoding Algorithms 25

One can take the logarithm of Equation 2.8 and scale with −N0 to yield the
branch metric (BM)

λ(Xk,Xk+1) ≡ −N0 log p(Xk+1,yk|Xk)
= |yk − ck|2 −N0 log Pr(Xk+1|Xk)−N0 log 1√

πN0︸ ︷︷ ︸
constant

. (2.9)

The first term in Equation 2.9 corresponds to the squared Euclidean distance
between the received symbol yk and the expected symbol ck along the branch
(Xk,Xk+1). The second term is the weighted a priori probability of the branch.
The constant can be neglected in the calculations since it contributes equally
to all λ().

Based on the previous notations, consider a received symbol sequence y =
{yk}. Since the channel is memoryless, maximum likelihood (ML) and maxi-
mum a posteriori (MAP) sequence estimates can be expressed as finding the i
that achieves

min
i
‖y − ci‖2 (2.10)

and

min
i

{
‖y − ci‖2 −N0

∑
i

log Pr(Xi+1|Xi)
}
, (2.11)

respectively. Clearly, ML and MAP decoders would estimate the same symbol
sequence if all symbols were equally likely, that is, the a priori probability is
equal for all branches. Then, the second term in Equation 2.11 is the same
for all branches (Xi,Xi+1), and can thus be removed in calculating the branch
metrics. If there is a priori information about the transition, though, the de-
coding might give different results for ML and MAP. In any case, ML minimizes
the sequence error probability, whereas MAP can be set up so as to minimize
the bit error probability [8].

In the following, two prominent decoding algorithms, one ML and one MAP,
are discussed.

2.2.1 Viterbi Algorithm

In 1967, Andrew J. Viterbi published a means of decoding convolutional codes
with an optimum non-sequential algorithm that now carries his name [98], the
Viterbi algorithm (VA). Until that time, decoding was mainly done sequentially
[36,59,103] or with a method called threshold decoding [70]. Although the com-
plexity of these algorithms is independent of the memory of the code, there are

26 Channel Coding and Decoding

cases when they cease to work (above the computational cutoff rate) since the
number of paths in a code tree diagram increases exponentially with the length
of the sequence. This problem is avoided by the VA, whose computational
effort only increases linearly with the length of the trellis.

Omura [73] observed that the VA is a solution to dynamic programming,
for example, the shortest-route problem visually stated in [71]. Forney [45]
showed later that the VA in fact is ML and he connected Viterbi’s work to the
concept of trellises, which illustrates very well how the algorithm works.

In its most general form, the VA is a MAP sequence estimator for a finite-
state discrete-time Markov process observed in memoryless noise. The BMs to
be used are the ones from Equation 2.9. If a priori information is not available,
it is seen from Equation 2.10 and Equation 2.11 that ML and MAP estimates
become the same because Equation 2.9 simplifies to

λ(Xk,Xk+1) = |yk − ck|2, (2.12)

which is the squared Euclidean distance. Therefore, the VA does not need an
estimate of the noise in its calculations, which simplifies receiver implementa-
tion. If one uses binary antipodal transmission per signaling dimension, it will
be shown in Part I how the calculation of Equation 2.12 simplifies to additions
only.

unit
SP

unit

Γ(Xk)

y

Γ(Xk+1)

unit
Trellis

λ
BM

D û

Figure 2.12: Block diagram of a Viterbi decoder.

From a computational view, the algorithm can be described by three parts;
see Figure 2.12. The task of the BM unit was already laid out in the previous
paragraphs. The BMs λ = {λ(Xk,Xk+1)} are consumed by the trellis unit,
which discards unlikely branches from the trellis diagram. This procedure is
based on The Principle of Optimality [10]. Applied to the VA, the principle
can be recast as follows. Whenever a number of paths merge into one state,
only the most likely path (with the best metric, here the minimum accumulated
metric) has to be retained. Obviously, for all extensions to these paths, the
previous path which is currently better will always be better. The operation
just described is called an add-compare-select (ACS) recursion. For every state
Xk+1, such a recursion yields an updated state metric (SM) Γ(Xk+1) based on

2.2 Decoding Algorithms 27

the previous SMs Γ(Xk) connected to Xk+1 and the current BMs λ(Xk,Xk+1),
that is,

Γ(Xk+1) = min
(Xk,Xk+1)

{Γ(Xk) + λ(Xk,Xk+1)}. (2.13)

From Equation 2.13 it becomes apparent that the processing complexity of the
trellis unit increases both with the number of states N = 2m and branches 2b

per node that connect these states. Today’s (parallel) hardware implementa-
tions of the VA are usually restricted to moderate m, that is, smaller than 9
[26]. The algorithm’s complexity is also visualized by the butterflies in Fig-
ure 2.6. The higher the radix of the butterfly, the more transitions must be
evaluated. Note, though, that there are suboptimal algorithms [2] with reduced
complexity that only update a predefined number of states and survivor paths.

As an example, Figure 2.13 shows an ACS recursion for a trellis with two
branches merging into one state. The originating states are labeled 0 and 1.
The solid path is the survivor path and the decision D taken for state Xk+1 = 0
is D(Xk+1=0) = 0. The decision bit indicates which state the surviving branch
is connected to.

Γ(0)Γ(0)

Γ(1)

Γ(1) + λ(1, 0)

Γ(0) + λ(0, 0)

k k + 1

Figure 2.13: ACS recursion for two branches, that is, the number of
data bits per trellis stage is b = 1.

At every trellis stage N = 2m paths need to be updated. Therefore, the
trellis unit puts out a vector D = {DXk+1} of N decision symbols about sur-
viving branches. These symbols are stored in a memory that resides in the
survivor path (SP) unit in order to reconstruct the data symbols that caused
the state transitions.

Once the end of the trellis is reached, either because the data stream ended
or the trellis is terminated into a pre-defined state, the decoding of the data
symbols starts. One simply follows the survivor path linked to the (known)
ending state backwards by means of the decision symbols. At every stage, these
symbols point to the predecessor of the current state, and by this recursion
one yields the ML state sequence. Linked to this sequence is a unique data bit

28 Channel Coding and Decoding

sequence û, and the decoding is finished. Were it not for latency and/or storage
requirements for the decision symbols, which both grow linearly with the length
of the trellis, this is the most straightforward decoding method. Excessive
latency and/or storage can be avoided by terminating the trellis into a defined
state on the right. This procedure effectively transforms a convolutional code
into a block code. However, a termination sequence that contains no actual
information (zero-tail termination), causes an overall information rate loss,
which may become critical for small block lengths. These practical limitations,
may require the decoding to be carried out midstream.

Path trajectories

Final survivor path

Merge

Γ(0) = 5

k − Lc k

Decoding depth Lc

Γ(1) = 4

Γ(2) = 8

Γ(3) = 2

Figure 2.14: Evolution of N path trajectories that merge into final
survivor path. For simplicity, only 4 trellis states are drawn.

Thankfully, the trellis of the described shift register process has a useful
property. Consider Figure 2.14. At time k, the VA keeps track of N survivor
paths. When traced back over time, these paths merge into a single path,
indicated by the trajectories in the figure. The path found is the final survivor
path for trellis steps smaller than k − Lc. Here, Lc is the necessary decoding
depth for the underlying code. An estimation of Lc for convolutional codes is
given in [5]. Asymptotically, the depth follows the rule [7]

Lc ≈ df

c · h−1B (1−Rc)
, (2.14)

where h−1B () is the inverse of the binary entropy function and there are c bits on
a branch. At rate 1/2, Lc becomes approximately 4.54 df. Note that higher rate
codes, whether derived by puncturing or not, generally have a larger Lc. If the
decoder traces back at least Lc steps, one achieves the optimum ML estimate
given that �df−12 � or fewer errors have occurred. Under this assumption, all
survivor paths are guaranteed to have merged at this stage. In practice, the
required depth L for the decoder to experience negligible BER degradation is

2.2 Decoding Algorithms 29

about Lc and is found by computer simulation. With this L, the survivor paths
have merged with sufficiently high probability. As a rule of thumb, rate 1/2
codes need to be observed for about five times the constraint length, which
was experimentally shown in [57]. The decoding latency is at least L, and the
memory depth for the decision symbols decreases at best to L.

Since the starting state is not explicitly known at time k, there are in princi-
ple two methods to decide which of theN survivor paths to follow. If fixed-state
decoding is employed, the decoder always starts looking back from a predefined
state, for example, state 0 in Figure 2.14. Best-state decoding, on the other
hand, starts from the state that currently has the best (here smallest) SM,
which would be state 3 in the figure. Since all path trajectories have merged in
this example, the final survivor path found is the same in both cases. If there
occurred more than �df−12 � errors over the Lc stages shown in Figure 2.14 it is
possible that not all (in the worst case none) of the N paths have merged with
the actual ML path. In this case, the decoder produces erroneous bits. Gener-
ally, best-state decoding requires a smaller L than fixed-state decoding for the
same performance; however, best-state decoding needs extra calculations (com-
parisons) to find the most likely starting state. Algorithms and architectures
for survivor path processing are discussed in detail in Part II.

Finally, one should note that although the VA by definition provides a
“hard” data sequence, that is, a decoded bit is either “0” or “1”, the algorithm
can be augmented with a soft-output unit. “Soft” information is character-
ized by real numbers, not bits, and is an essential part in the decoding of
concatenated coding schemes. In these schemes, an outer decoding stage, for
example, a Reed-Solomon decoder, uses soft information provided by the in-
ner decoding stage to improve the overall BER of the communication system.
The soft-output VA (SOVA) is described in [9,53]. It produces bit reliabilities
by calculating the difference of the SMs along the survivor path and the next
best competing path. Note that for iterative decoding schemes [11, 12], where
soft a priori information is exchanged in turns between two component de-
coders, SOVA causes BER degradation compared to true MAP decoding. For
the setup described in [80], SOVA needs around 0.7 dB extra to achieve BER
10−4. On the other hand, SOVA requires fewer computations, and architec-
tural optimizations for the VA can be reused as is; only small modifications to
the SP unit and some extra storage for the SM differences have to be provided
[60].

2.2.2 BCJR Algorithm

Another algorithm named after its inventors, Bahl, Cocke, Jelinek, and Raviv,
is the BCJR algorithm [8]. It can be set up to provide the most likely symbol

30 Channel Coding and Decoding

at each time, equivalent to minimizing bit error probability. Contrary to the
VA, the trellis is now processed in forward and backward direction. What is
put out are “soft” bit reliabilities for every trellis stage, just as SOVA does. As
mentioned earlier, soft outputs are required for iterative decoding. From the
BCJR viewpoint, Z data symbols are encoded blockwise, and thus the trellis
has Z stages.

The following brief discussion is restricted to the application of the BCJR
algorithm in the logarithmic domain [80]. This modification (log-MAP, max-
log-MAP) circumvents multiplications and divisions, both strong operations,
which were used in the original BCJR paper. Also, binary coding is assumed
in the notations; a non-binary log-MAP algorithm is found in [81].

The log-likelihood ratio (LLR), which is a measure of bit uk being 0 or 1,
is defined as

LLR(uk) ≡ log
Pr(uk = 1|yk)
Pr(uk = 0|yk) . (2.15)

It encapsulates both hard and soft information. The sign of Equation 2.15
corresponds to the hard decision, and the magnitude is the reliability estimate.
For notational convenience, we also define

max�(x, z) ≡ log(ex + ez)

= max(x, z) + log(1 + e−|x−z|),
(2.16)

which is the Jacobi logarithm. Note that the max� operation is merely an
(A)CS operation with an added offset [21].

Suppose the encoding process is a Markov chain and the channel is memo-
ryless. Then, numerator and denominator in Equation 2.15 can be divided into
three terms each: forward and backward SMs, and the BM for the respective
state transitions. Forward SMs α are recursively calculated for k = 0, . . . , Z−2
according to

α(Xk+1) = max�
(Xk,Xk+1)

{α(Xk) + λ(Xk,Xk+1)}, (2.17)

where α(X0) = [0,−∞,−∞, . . .]. That is, at time 0, the metric for state 0 is
initialized to 0, the remaining N − 1 SMs to −∞. Equivalently, the backward
SMs for k = Z − 1, . . . , 1 are

β(Xk) = max�
(Xk,Xk+1)

{β(Xk+1) + λ(Xk,Xk+1)} (2.18)

and β(XZ) = [0,−∞,−∞, . . .]. Together with the BM λ(Xk,Xk+1) from
Equation 2.9, we get the LLR as difference between soft estimates for branches

2.2 Decoding Algorithms 31

with uk = 1 and uk = 0, respectively:

LLR(uk) = max�
(Xk,Xk+1)

uk=1

{α(Xk) + λ(Xk,Xk+1) + β(Xk+1)}

− max�
(Xk,Xk+1)

uk=0

{α(Xk) + λ(Xk,Xk+1) + β(Xk+1)}.
(2.19)

An intuitive graphical illustration of these steps is found in Figure 3.13 in
[6]. Note that if max� is exchanged with max in Equations 2.17–2.19, that
is, the additional offset in Equation 2.16 is omitted, log-MAP turns into the
suboptimal max-log-MAP algorithm.

The algorithm needs to store two complete sets of SMs, in total 2NZ values
and the complete symbol (or BM) sequence. However, there are architectural
optimizations [21,31,83] that also use the decoding depth property of the code
such that storage requirement and latency in an implementation are greatly
reduced.

2.2.3 Complexity Estimation

From a computational perspective, the “soft” bit estimates [80] of the MAP
algorithm compared to the VA come at an increased cost. The number of
operations per trellis stage of the discussed decoding algorithms are compared
in Table 2.1.

Assume a radix-2 trellis with N states. For the VA, there are N ACS
operations per trellis stage. One ACS operation requires two additions, one
comparison, and one selection. A comparison is implemented as a subtraction
(addition); see also Part I. A trace-back operation in the VA is counted as
a selection. The log-MAP algorithm has an extra addition per ACS (max�)
operation for the offset in Equation 2.16. The number of max� operations is
derived by observing that max� over N elements requires N − 1 elementary
max� operations according to Equation 2.16. Hence, for the log-MAP there
are 4N − 2 such operations in total.

Table 2.1: Complexity comparison between the discussed decoding algo-
rithms. Operations are counted per trellis stage.

VA max-log-MAP log-MAP

Addition 3N 12N + 1 17N − 1

Selection N + 1 4N − 2 4N − 2

Look-up — — 4N − 2

32 Channel Coding and Decoding

The numbers for (max-)log-MAP in Table 2.1 are based on the considera-
tions in [80] without the normalization of forward and backward SMs. There-
fore, 2N additions have vanished compared to their published numbers. Also,
BMs are precalculated and are not part of this analysis, thus lowering the
number of additions by 8 since there are 4 BMs with 2 additions each.

We can conclude that (max-)log-MAP decoding requires about 4–5 times
more basic operations such as additions and selections than the VA. If the
decoding does not rely on soft values, whose quality is especially crucial in
iterative decoding, there is no reason to prefer the MAP-based decoding over
the VA.

Chapter 3

Architecture to Implementation

This chapter focuses on two design domains from Section 1.1: architecture and
implementation. Platforms for hardware design, that is, FPGAs and ASICs,
are discussed since they leave an engineer the greatest freedom to trade de-
sign constraints for each other. Moreover, the achievable performance of these
platforms enable today’s high-speed mobile communication, whose underlying
signal processing algorithms are computation-intensive.

Usually, the choice of platform, including the programmable ones (GPP,
DSP), is made very early in the design process, that is, as soon as estimates
on required throughput, processing capacity, or energy efficiency are available.
Also, production cost and time-to-market are issues to be taken into account
in this decision. Depending on the algorithm or size of the overall system,
the platform will often be hybrid, which in turn requires hardware–software
partitioning. Then, critical parts are mapped onto dedicated hardware (accel-
erators), while remaining parts are executed in software on DSPs or GPPs.

Once a hardware platform is decided upon, there are several architectural
mapping methods, namely direct-mapping, time-multiplexing, and paralleliza-
tion, to meet other design constraints such as silicon area or fine-tuned through-
put. In the following, these methods are explained with Viterbi decoder archi-
tectures as the vehicle.

3.1 Implementation Platforms

A basic design flow, which was applied for the designs in Parts I and III, is
introduced. This flow gives a notion of the steps that have to be carried out,
and also of the complexity of designing FPGAs and ASICs.

33

34 Architecture to Implementation

3.1.1 The Prime Question: ASIC or FPGA?

To understand the difference between ASIC and FPGA, it is good to consider
the design steps that are taken for either platform. A hardware design flow can
be roughly divided into two domains, front-end and back-end design. Front-end
design is concerned with high-level algorithm evaluation to arrive at trade-offs
that lead to an efficient implementation. Architecture design according to the
methods in Section 3.2 is followed by coding in a hardware description language
(HDL) and functional simulation of the written HDL description.

So far, ASIC and FPGA design flows do not differ. At this stage in the front-
end design, the choice of platform splits the design flow into two directions. As
far as ASICs are concerned, the HDL code is translated (synthesized) to a
netlist based on standard cells. A standard cell library is a collection of several
versions of basic logic functions such as and, or, and storage elements such as
latches or flip-flops. Generally, a logic cell of a certain type comes in several
versions, that is, with different number of inputs, driving strengths, and so on.
Based on this wide variety of possible combinations, the synthesis tool searches
the design space for an efficient solution that fulfills the constraints set by the
designer. The tool can also choose from pre-defined optimized building blocks
such as arithmetic functions or memories. As an example, the different adders
in Figure 1.2 were derived with these pre-defined implementations. The total
control over the design process is the key to an ASIC’s superiority to achieve
tailored architectures with high throughput and energy efficiency. ASIC back-
end design involves the actual physical placement and connections (Place &
Route) of the standard cells, which are described by their layout based on
geometrical shapes that are abstract views of the underlying transistors. In
addition, design rule checks, circuit extraction, and post-layout simulation have
to be carried out in order to guarantee correct electrical and functional behavior
of the circuit.

Contrary to an ASIC, an FPGA has predefined logic and routing resources
that can be configured to execute the desired functionality. Clearly, the archi-
tecture’s reconfigurability inherently satisfies the need for flexibility. On the
other hand, delays due to signal routing that also lowers an FPGA’s logic den-
sity degrades its efficiency measures compared to an ASIC. In particular, there
is an overhead in power consumption because of the routing wires’ capacitance
and the memory-based programming cells. Back-end design for an FPGA only
involves the configurable logic blocks to be properly connected by configuring
the interconnection network.

The number of ASIC back-end steps is certainly larger than for FPGAs,
which is one reason for the overall longer time-to-market of an ASIC. The most
important reason, though, is the time for fabrication and possible re-spins.

3.2 Mapping Methods 35

What has not been mentioned in the previous parts is the time for verifica-
tion. When going from one design phase to another, the functional equivalence
of the current design should be verified against test vectors that were gener-
ated from a high-level reference model. This verification approach is sufficient
for prototype designs as the one presented in Part III. However, ASIC design
for large volumes requires more advanced verification techniques, for example,
formal verification or automatic test pattern generation. With these steps in
mind, it is not surprising that the time for verification is longer than the ac-
tual design phase. This trend gets even more distinct for every new process
technology. On the other hand, verification for an FPGA design is not as
time-consuming since the underlying physical hardware is already tested and
its behavior specified.

Although design time is an important economical factor, the volume cost
for an ASIC is lower if large volumes are to be fabricated. However, in the
prototyping context of this thesis, the efficiency reasons elaborated on in the
next subsection justify the use of an ASIC.

3.1.2 Comparison of Implementation Efficiencies

To support Figure 1.3, which showed the application domains of different plat-
forms, efficiency measures (area, throughput, and energy) have to be evaluated.
To get a good estimation of these measures, appropriate cost functions must
be established. Based on these, a fair comparison can be carried out. However,
due to architectural differences in the platforms, this is not an easy task. Also,
CMOS technology scaling effects [79] have to be considered to take into account
different process generations.

There are investigations of the efficiency of Viterbi decoders implemented
on several platforms. In [18, 37], the difference of an area–delay–energy cost
function between DSP implementation and a physically optimized ASIC [51] is
about 7 orders of magnitude! Even with a standard cell implementation, this
difference is still 5 orders of magnitude. According to the authors, an FPGA
lags the ASIC implementations by 2–3 orders of magnitude.

Zhang [106] carries out a similar study. His survey includes DSP archi-
tectures, datapath reconfigurable processors, FPGAs, and ASICs. The energy
efficiency and computation density of his flexible Viterbi decoder implemen-
tation is about 2–3 orders of magnitude better than commercial flexible plat-
forms. Thus, the required flexibility is efficiently provided by this so-called
function-specific hardware (= flexible ASIC). From this viewpoint, it is feasi-
ble to strive for flexibility at the function level, where an algorithm is run in
different configurations (see also Part III).

36 Architecture to Implementation

...

N − 1

0

1

...

ACS units
2-way

(a)

...

0

F − 1

...

ACS units
2-way

(b)

...

N − 1

0

1

...

ACS units
2ψ-way

(c)

Figure 3.1: Block view of the various mapping methods, (a) direct-
mapping, (b) time-multiplexing, and (c) parallelization, applied to the
VA.

3.2 Mapping Methods

In the following, the main design constraints area and throughput. There are
basically three mapping alternatives to satisfy either constraint without violat-
ing the other: direct-mapping, time-multiplexing, and parallelization; see Fig-
ure 3.1. Direct-mapping of N trellis states is shown in Figure 3.1(a), whereas
the time-multiplexed architecture in Figure 3.1(b) only uses F < N ACS units.
Parallelization in Figure 3.1(c) is based on a collapsed trellis, which has 2ψ

branches leaving and entering each node [15]. The discussion of these methods
in the following sections is supported by some examples taken from published
Viterbi decoder architectures. Note that processing speed is related to a syn-
chronous clocking strategy [79]. The delay of the longest (combinatorial) path
between two registers is called the critical path Tcrit. That is, the clock fre-
quency for the registers in a design is bound to fclk ≤ 1/Tcrit. This frequency
is the main indicator of an implementation’s achievable throughput.

3.2.1 Direct-mapping

An obvious choice is to assign one ACS unit per trellis state as in Figure 3.1(a),
and there are numerous examples, too many to list, of this straightforward ap-

3.2 Mapping Methods 37

proach in the literature. Work on these state-parallel architectures is mostly
concerned with optimizations for the implementation platform at hand or spe-
cialized parts of the decoder, such as the arithmetic in the ACS units or survivor
path processing schemes.

Since the number of trellis states grows exponentially with the encoder
memory m, a direct-mapped approach soon becomes area-inefficient for larger
m, partly due to the arithmetic requirement of the ACS recursion, and partly
due to the feedback connections of the ACS units. Usually, the feedback loop of
the ACS recursion determines throughput. However, since a multiple-pointer
trace-back architecture [30, 41] has to be employed if the number of states be-
comes large, the trace-back recursion can also become the throughput bottle-
neck. To date, however, the majority of designs rely on the de-facto standard
rate 1/2, 64-state Viterbi decoder [100] which still allows an efficient direct-
mapped implementation [67].

AW , . . . , A1, A0

BW , . . . , B1, B0 FA

SW , . . . , S1, S0

Ci+1Ci

Figure 3.2: Architecture for bit-serial addition to carry out S ← A+B
with wordlength W + 1. The bit-parallel equivalent is shown in Fig-
ure 1.1.

The largest (state-wise) published direct-mapped design in recent times is a
256-state Viterbi decoder [26]. The authors satisfy the arithmetic requirement
of the ACS units by applying a bit-serial addition scheme [76] to reduce silicon
area. Whereas one trellis stage in state-parallel architectures is usually iterated
in one clock cycle, a bit-serial approach† requires as many clock cycles as the
wordlength W to be processed; see Figure 3.2. Nevertheless, throughput of
this design is improved compared to a competing time-multiplexed decoder
implementation [32] that processes only 32 states, since the critical path of a
bit-serial addition is shorter. A cluster-based ACS placement that minimizes
the interconnection area between ACS units relaxes the tight area constraints
even further. With these techniques, the chip still performs in accordance with
the requirements of wideband code division multiple access (CDMA) systems.

†In fact, bit-serial processing is a time-multiplexed approach.

38 Architecture to Implementation

3.2.2 Time-multiplexing

Time-multiplexing, also called folding [77], is a method to minimize the silicon
area of an integrated circuit by reducing the number of functional units. For
example, several arithmetic operations such as additions or multipliers are as-
signed to one functional unit. If G operations are executed on a single unit,
a new output sample is available after G clock cycles. That is, the processing
time per sample is now GTcrit compared to Tcrit in the direct-mapped case. G
is called the folding factor. Consequently, in an area–delay design space as in
Figure 1.2, folding moves an implementation to the lower right part.

Not to be forgotten in the design of folded architectures is a controller
which sequences data at the right time to their respective functional units.
Depending on the application, the controller design is far from a trivial task
[77]. Thus, the incurred complexity has to be carefully evaluated keeping in
mind the desired area savings. Another obstacle of folded architectures is the
possible increase in number of registers, which is addressed by applying register
minimization techniques [77]. Also, from an overall system viewpoint, there
might be limitations on the maximum clock frequency of the time-multiplexed
architecture, which sets an upper limit to throughput.

There are methodologies for systematic folding of the VA in order to freely
trade throughput for area. Shung et al. [86, 87] developed a method to effi-
ciently partition, schedule, and map N trellis states to an architecture with
F < N ACS units; see Figure 3.1(b). The internal parallelism created by
this approach allows pipelining of the ACS units, which increases throughput,
and thus yields an overall favorable area–delay product. The methodology
is applicable to generic trellises that are described by the number of node-
connecting edges. However, once the mapping is decided, especially if trellises
with different numbers of edges (= radices) are to be processed on the same
architecture, a solution for a small radix cannot emulate higher radices. Boo et
al. [19] are mainly concerned with trellises based on radix-2 butterflies. Their
approach optimizes specific ACS processing elements (PEs) and the commu-
nication between them. Based on a mathematical model, data flow and the
processor mapping is derived. Contrary to the work of Shung, not only are the
ACS computations embedded in the PEs; the survivor path processing is also
adapted to the ratio of PEs and trellis states.

An actual state-sequential implementation is presented in [64]. This ap-
proach uses only two butterfly units, that is, 4 ACS units in total, to process
256 states. Hence, the folding factor G is 64. Special design techniques are
applied in order to fulfill throughput and tight power requirements. For ex-
ample, routing resources are minimized by applying a bit-flipping property of
a butterfly. The ACS unit is based on the LSB-first approach, which lowers

3.2 Mapping Methods 39

the critical path compared to the MSB-first method. The achieved data rate
is 14.4 kbit/s, which was sufficient for use in CDMA mobile terminals at that
time.

3.2.3 Parallelization

This method originally aimed at increasing the throughput of an architecture.
In times when dynamic power consumption was the dominant factor in digital
CMOS designs [25], parallelization was even applied to lower power consump-
tion. This was achieved by lowering the supply voltage, which is a quadratic
contributor to power, while maintaining throughput. Nowadays, as CMOS fea-
ture sizes shrink, static power consumption claims an ever-increasing share of
the power budget [79]. As a first order measure, static power consumption
increases with the amount of hardware. Since parallelization basically dupli-
cates hardware, it is expected that this power source surpasses dynamic power
consumption.

For forward processing algorithms, parallelization is achieved as follows. For
every level of parallelism, simply provide another set of hardware that deals
with the additional input. Algorithms with feedback, such as the VA, are not as
easily parallelized. They require lookahead techniques [77], originally applied
to infinite impulse response filters.

Ever since the VA’s appearance, the vast majority of work in trellis decoding
architectures has been devoted to the class of rate 1/c codes since these yield
the simplest trellis diagram. Two branches are entering and leaving each trellis
node; see Figure 2.5. Even with clever addition schemes, the ACS recursion has
long been the bottleneck in Viterbi architectures. To overcome this throughput
limitation, one can apply ψ levels of lookahead [38,93]. Essentially, the trellis is
collapsed into one stage, which changes the radix of a trellis segment, as shown
in Figure 3.3. It is concluded in [15] that collapsing a radix-2 into a radix-4
trellis is the most area-efficient transformation compared to even higher radices
considering the exponential cost of carrying out 2ψ-way ACS operations. In
order to achieve a speed-up compared to radix-2 processing, the 4-way ACS
recursion is the critical factor. The designed full-custom 4-way ACS datapath
in [15] has a 17% longer delay compared to its 2-way equivalent . However,
since the collapsed structure provides two bits per trellis iteration, the effective
speed-up is 2/1.17 = 1.7. Lookahead is also applied to survivor path processing
by employing a technique called pre-trace-back [16]. Several implementations
have later followed the trellis-collapsing technique [51,105].

In order to achieve unlimited concurrency and thus higher throughput,
minimized-method [40] and sliding-block Viterbi decoders [17] were proposed.
By reformulation of the VA, these block-based processing approaches run sev-

40 Architecture to Implementation

0

1

2

3

0

1

2

3 3

0 0

2

1

2

k k + 2

1

3

k k + 1 k + 2

Figure 3.3: Two-stage radix-2 trellis collapsed to one-stage radix-4 trellis.

eral decoders in parallel. Due to duplication of ACS units to compute several
trellis stages in forward and backward manner, the area requirement increases
significantly. In practice, these concepts were only applied to a 4-state trellis
[17,33], with a throughput of 1 Gbit/s.

The preceding sections gave a glimpse of the various methods that were
applied to tailor architectures and implementations of Viterbi decoders to spe-
cific application needs. However, what is missing in the presented designs is
variable-radix processing, which is required if an implementation has to cope
with decoding applications that are based on different butterfly structures.
This gap is filled by our work presented in Part III, which is best described as
a state-parallel, time-multiplexed radix-flexible trellis decoding architecture.

Part I

Simplified Trellis Computational Blocks

Abstract

Simplified branch metric and add-compare-select units are presented for use in
trellis-based decoding architectures. The simplification is based on a comple-
mentary property of best feedforward and some systematic feedback convolu-
tional encoders. As a result, one adder is saved in every other add-compare-
select unit and only half the branch metrics have to be calculated. For a
0.13 µm digital CMOS process, synthesized trellis computational blocks show
up to 17% savings in both cell area and power consumption. A competing
simplification is analyzed in terms of hardware efficiency. While the reduction
can be calculated straightforwardly for our approach, the competing method
relies on modified computational operations and hence this reduction is not
as evident. From synthesis results, we conclude that for rate 1/2 codes, our
approach is preferable for hardware implementation.

Based on: M. Kamuf, V. Öwall, and J. B. Anderson, “A hardware efficiency analysis
for simplified trellis decoding blocks,” in Proceedings of IEEE Workshop on Signal
Processing Systems, Athens, Greece, Nov. 2005, pp. 128–132.
and: ——, “Area and power efficient trellis computational blocks in 0.13 µm CMOS,”
in Proceedings of IEEE International Symposium on Circuits and Systems, Kobe,
Japan, May 2005, pp. 344–347.
and: M. Kamuf, J. B. Anderson, and V. Öwall, “A simplified computational kernel
for trellis-based decoding,” IEEE Communications Letters, vol. 8, no. 3, pp. 156–158,
Mar. 2004.

41

1 Introduction 43

1 Introduction

Trellis-based decoding is a popular method to recover encoded information
corrupted during transmission over a noisy channel. For example, the VA
and the BCJR algorithm are two schemes that work on an underlying trellis
description of the encoded sequence.

Basic computations in either algorithm involve BM calculations and ACS
operations. In case of the VA, an ACS operation successively discards branches
that cannot be part of the survivor path. In case of the BCJR in the logarith-
mic domain (log-MAP algorithm), this operation corresponds to an add-max�

operation [21] to recursively calculate forward and backward SMs. This is ba-
sically an ACS operation with an added offset (ACSO). Hence, the presented
considerations for the ACS hold for the ACSO as well considering the a priori
probabilities of the branches are equal.

In this part, rate 1/c feedforward codes and some systematic feedback codes
are considered. The best feedforward encoders of memory m are defined by c
shift register tap sets which are delay free [61]. Some best systematic feedback
encoders of rate 1/2 can be found in [3]. The trellis diagrams of these encoders
have one thing in common: code symbols along both merging and diverging
branches are always complementary. This property gives the largest growth in
Hamming distance between competing paths, which ultimately determines df
and thus BER performance. In Figure I–1, the complementary operation on
c = {ci} is defined as the complementation of its elements; that is, ci + ci = 0.

v′u′

u′′
c(u′′ → v′) = c(u′ → v′)

c(u′ → v′)

Figure I–1: Complementary code symbols along merging branches.

Based on this property, simplified architectures with reduced complexity
for BM and ACS units can be derived. Two simplifications are considered,
the Offset Approach discussed in [62, 63] and a competitor called Differential
Trellis Decoding (DTD) [48]. For the former method, it is investigated how
achieved arithmetic savings translate into area and power savings in a silicon
implementation. The savings for DTD, on the other hand, are originally only
described by (modified) arithmetic operations, and hence the predicted reduc-
tion is not as evident. In this work, a DTD architecture is developed based on
the theoretical considerations and the two schemes are compared.

44 Part I. Simplified Trellis Computational Blocks

The following section describes how channel symbols are mapped to BMs.
Based on these considerations, the simplified architectures are presented in
Section 3. A variation of the offset approach, which trades area for speed, is
also discussed. As a case study, a computational kernel for Viterbi decoding
is synthesized. The synthesis results in Section 4 confirm the benefits of the
offset approaches compared to a traditional setup. Also, power savings are
estimated at gate level. In Section 5 hardware efficiency is compared by means
of synthesized blocks for different encoder memories that show the progression
of area requirement for the simplified approaches.

2 Branch Metric Computations

We take up the thread starting at Equation 2.12 in Section 2.2.1. This was
the definition of the squared Euclidean distance, which is the optimal distance
measure in the AWGN channel. In the following, a trellis branch (Xk,Xk+1)
is indicated by small letters, for example, (u′ → v′). Where needed, time steps
appear explicitly in the argument list of a variable.

The c expected coded bits along a trellis branch are denoted bi(u′ → v′) ∈
{0, 1} for i = 0, . . . , c − 1. These bits are mapped to antipodal transmission
symbols such that

ci(u′ → v′) = 1− 2bi(u′ → v′).

The received real-numbered noisy channel values are yi.
In accordance with this notation, one can expand Equation 2.12 to yield

the BM as a superposition of the Euclidean distances in c “dimensions” as in

λ(u′ → v′) =
c−1∑
i=0

y2i − 2yici(u′ → v′) + c2i (u
′ → v′). (I–1)

In Equation I–1, y2i and c2i contribute equally to all BMs and can thus be ne-
glected. Also, the factor 2 can be taken out without altering future comparisons
[68], and the previous equation collapses to

λ(u′ → v′) = −
c−1∑
i=0

yici(u′ → v′).

Since ci ∈ {+1,−1} the BM becomes a superposition of the received channel
values as to

λ(u′ → v′) = −
c−1∑
i=0

±yi. (I–2)

2 Branch Metric Computations 45

According to Equation I–2, λ() is a signed number. In order to choose between
signed or unsigned representations, one can introduce a constant Λ in Equa-
tion I–2. Since this constant is the same for all BMs, the comparison result of
an ACS operation is not altered. That is,

λ(u′ → v′) = Λ−
c−1∑
i=0

±yi. (I–3)

Since the summation in Equation I–3 is a linear operation, complementary code
symbols along the branches translate into complementary BMs that are used
in the same butterfly. Here, λ() denotes the complementary BM to λ(). As
an example, consider a rate 1/2 code and c0 = c1 = +1. Then,

λ(u′ → v′) = Λ− y0 − y1. (I–4)

The complementary code symbols are c0 = c1 = −1 and, therefore, the com-
plementary BM becomes

λ(u′ → v′) = Λ + y0 + y1. (I–5)

Substituting Equation I–4 into Equation I–5, we can write

λ(u′ → v′) = 2Λ− λ(u′ → v′)
= λ(u′ → v′) + 2 [Λ− λ(u′ → v′)]
= λ(u′ → v′) + λ∗(u′ → v′),

(I–6)

where

λ∗(u′ → v′) ≡ 2 [Λ− λ(u′ → v′)], (I–7)

which is a signed number, is called a modified BM. Although here derived for
c = 2, Equation I–6 holds for any c.

The quantization scheme of the soft-output demodulator, together with Λ,
determines how the complementariness of code symbols translates into com-
plementary BMs. We assume demodulator outputs Q that are equidistantly
spaced and quantized with q bits, that is, in 2’s complement integer notation
Q ∈ [−2q−1, 2q−1−1]. According to Equation I–3 the minimum and maximum
BMs based on quantized channel values [yi] = Q+ δ are

minλ(u′ → v′) = Λ + c (minQ+ δ)

and

maxλ(u′ → v′) = Λ + c (maxQ+ δ),

46 Part I. Simplified Trellis Computational Blocks

1

2

[yi]

−2

−1

Q = 1

yi
δ

Q = −2

}

(a)

2

1

yi

−2

−1

Q = 1

Saturation

[yi]

Q = −2

(b)

Figure I–2: Truncation with offset δ is shown in (a), rounding in (b).
Both quantizers have q = 2 bits.

where δ depends on the used quantization scheme, see Figure I–2. In the
following, two commonly used schemes are introduced.

The scheme from Figure I–2(a) interprets a 2’s complement number in a
symmetric way. The demodulator output [yi] is actually the 2’s complement
number Q plus δ = 0.5 to achieve a decision threshold at 0. In other words,
this corresponds to truncation plus 0.5. Choosing

Λ = −c (minQ+ 0.5) =
c

2
(2q − 1)

results in nonnegative BMs in the range of [0, c (2q−1)] and unsigned arithmetic
can be used. Thus,

λ(u′ → v′) = c (2q − 1)− λ(u′ → v′).

Rounding as in Figure I–2(b) takes a 2’s complement value without any
offset (δ = 0). Choose Λ = 0 and hence

λ(u′ → v′) = −λ(u′ → v′).

By making the quantizer output range symmetrical, that is, limiting [yi] to
[−2q−1 + 1, 2q−1 − 1], the BM range covers [− c

2 (2
q − 2), c2 (2

q − 2)], which can
be represented with �log2 c2�+ q + 1 bits as in the truncation case.

3 Simplified Architectures 47

3 Simplified Architectures

In this section the two simplifications are presented. Since both methods sim-
ply reformulate the underlying ACS operation, there is no BER degradation
compared to the original algorithm.

λ(u′ → v′)

k + 1k

λ(u′ → v′)
Γ(v′′, k + 1)

Γ(v′, k + 1)Γ(u′, k)

Γ(u′′, k)

λ(u′ → v′)λ(u′ → v′)

Figure I–3: A radix-2 butterfly. For good rate 1/c codes, there are two
(complementary) BMs that belong to such a butterfly.

From Equation 2.13, the ACS operation for rate 1/c codes is derived by
noting that there are two merging branches, as shown in Figure 2.13. A but-
terfly according to Figure 2.6(a) consists of two such ACS operations. Taking
into account the complementariness of the considered codes, the corresponding
butterfly is depicted in Figure I–3. To update the SMs Γ() at time k + 1, we
can write

Γ(v′, k + 1) = min{Γ(u′, k) + λ(u′ → v′),Γ(u′′, k) + λ(u′ → v′)} (I–8)

and

Γ(v′′, k + 1) = min{Γ(u′′, k) + λ(u′ → v′),Γ(u′, k) + λ(u′ → v′)}. (I–9)

The processing units for Equation I–8 and Equation I–9 are shown in Figure I–
4. Substituting Equation I–6 into these two equations, and taking λ(u′ → v′)
out of the comparison, we get

Γ(v′, k + 1) = λ(u′ → v′) +
min{Γ(u′, k),Γ(u′′, k) + λ∗(u′ → v′)} (I–10)

and

Γ(v′′, k + 1) = λ(u′ → v′) +
min{Γ(u′′, k),Γ(u′, k) + λ∗(u′ → v′)}. (I–11)

48 Part I. Simplified Trellis Computational Blocks

Γ(u′, k)

Γ(u′′, k)

λ(u′ → v′)

Γ(v′, k + 1)

λ(u′ → v′)

sign

(a)

Γ(u′, k)

Γ(u′′, k)

λ(u′ → v′)

Γ(v′′, k + 1)

λ(u′ → v′)

sign

(b)

Figure I–4: ACS units for a radix-2 butterfly. The unit in (a) belongs
to the solid branches in Figure I–3 and the one in (b) to the dashed
branches.

3.1 Offset Approach

For convenience, we introduce Γ̃() as the new outcome of the min operation;
thus, Equation I–10 and Equation I–11 become

Γ(v′, k + 1) = λ(u′ → v′) + Γ̃(v′, k + 1)

and

Γ(v′′, k + 1) = λ(u′ → v′) + Γ̃(v′′, k + 1).

Compared to Equation I–8 and Equation I–9 there is one addition less needed
to determine the outcome of each Γ̃(). In order to retain the numerical relation

3 Simplified Architectures 49

between interconnected SMs in a trellis with different λ(u′ → v′), this term has
to be added after having determined Γ̃(); see Figure I–5. So far, the number
of additions to carry out a complete ACS operation has not been lowered.

Γ(u′, k)

Γ(u′′, k)

λ∗(u′ → v′)

Γ(v′, k + 1)

λ(u′ → v′)

sign

Γ̃(v′, k + 1)

Figure I–5: Transformed ACS unit derived from Figure I–4(a). Both
units have the same number of adders but the transformed one needs only
two adders to determine the outcome of the comparison Γ̃(v′, k + 1).

There are 2c different combinations for the c code (or transmission) symbols
along a trellis branch. According to the complementary property, there are two
BMs per butterfly, and one can be expressed by the other. Since one of these
BMs becomes the update term λ(u′ → v′) of the respective butterfly, there
exist 2c−1 distinct update terms. The total number of additions to update Γ̃()
to achieve Γ() equals the number of ACS operations 2m. By subtracting any
one distinct update term from the others,

max{2, 2m−(c−1)} (I–12)

updates (additions) are removed. The a = 2min{c,m}−1 − 1 new offset terms
∆λj for j = 1, . . . , a yield by the subtractions are generated in the BM unit as
to

∆λj = λj(u′ → v′)− λ0(u′ → v′), (I–13)

where by definition ∆λ0 = 0.
Equation I–12 is maximized for c = 2, which also gives only one offset term,

namely ∆λ1, in Equation I–13. Hence, the offset approach is most beneficial for
rate 1/2 codes. This rate plays the largest role in today’s communication sys-
tems since it is a good compromise between achievable coding gain, bandwidth
efficiency, and implementation complexity. In practice, high-rate convolutional
codes are obtained by puncturing a rate 1/2 code.

The BM λ(u′ → v′) can take four different values for a rate 1/2 code, namely
λ[c0 c1] for every possible combination of transmission symbols ci. The comple-
mentary metrics to λ[+1 + 1] and λ[−1 + 1] that are needed in a conventional

50 Part I. Simplified Trellis Computational Blocks

ACS unit are λ[−1 − 1] and λ[+1 − 1], respectively. Note that only two BMs
are needed since the other two can be calculated according to Equation I–6,
that is, λ[−1−1] is expressed in terms of λ[+1+1] and λ[+1−1] by λ[−1+1].
The term λ(u′ → v′) in Figure I–5 to be added in an ACS unit is therefore
either λ[+1 + 1] or λ[−1 + 1]. However, one can subtract either term from all
SMs and in that case half the ACS units do not need this correction, that is,
Γ() = Γ̃().

From the preceding considerations the hardware savings become apparent
by looking at an example, an ACS unit setup for decoding a (7,5) code in
Figure I–6. In this figure, the SM corrections in the two ACS units in (a)
become obsolete since λ[+1 + 1] is subtracted from all updated SMs. Using
Equation I–3 and Equation I–13, the offset term to be used in the two ACS
units (b) becomes

∆λ1 = λ[−1 + 1]− λ[+1 + 1] = 2 y0.

In the following, assume the quantizer from Figure I–2(a) and that the BMs
λ[] are nonnegative. If there are 2c distinct code sequences, a conventional BM
unit requires

∑c
i=2 2

i additions and c negations to calculate 2c BMs. Hence, for
a rate 1/2 code we need four adders and two negations to calculate four BMs
as in Figure I–7(a). The proposed BM unit shown in Figure I–7(b) requires
only two additions, one negation of a channel value, and negations to calculate
two modified BMs λ∗[] and the required offset term ∆λ1. Note that a bit-shift
operation comes at negligible cost in a hardware implementation.

To conclude, for rate 1/2 codes, Table I–1 shows the number of additions for
a BM/ACS unit setup and encoder memory m. The proposed scheme halves
the additions in the BM unit and reduces the number of additions for the ACS
units by 17%.

Note that the critical path in half the ACS units in Figure I–6 is increased by
the delay of an addition. If speed is an issue, this problem is solved by delaying
the correction into the next computation cycle and the original critical path of
the ACS unit is maintained. In this case, the additions for the correction that
are after the multiplexers in Figure I–6(b) move into the comparison path of
different ACS units instead; see the retimed ACS units in Figure I–8.

Table I–1: Number of additions for BM/ACS unit setup of a rate 1/2 code.

ACS BM

conventional 3 · 2m 4

offset 2.5 · 2m 2

3 Simplified Architectures 51

+1 + 10

1

2

3

0

1

2

3

+1 + 1

−1− 1 −1− 1
Γ(1, k)

λ∗[+1 + 1]
sign

Γ(0, k + 1)

Γ(2, k + 1)

Γ(1, k)

Γ(0, k)

λ∗[+1 + 1]
sign

Γ(0, k)

(a)

Γ(1, k + 1)

Γ(2, k)

Γ(3, k)

λ∗[−1 + 1]

∆λ1

sign

Γ(3, k)

Γ(2, k)

λ∗[−1 + 1]

∆λ1

sign

Γ(3, k + 1)+1− 1

0

1

2

3

0

1

2

3
−1 + 1

+1− 1

−1 + 1

Γ̃(1, k + 1)

Γ̃(3, k + 1)

(b)

Figure I–6: ACS setup for a (7,5) code for the offset approach. The
respective trellis nodes are shown on either side together with the ex-
pected transmission symbol labels [c0 c1] along the branches. λ[+1 + 1]
is subtracted from all updated SMs.

52 Part I. Simplified Trellis Computational Blocks

λ[+1− 1]λ[+1 + 1]

λ[−1− 1]λ[−1 + 1]

y1

y0

(a)

y1

y0

λ∗()λ∗[+1 + 1]

λ∗[−1 + 1] λ∗()

$ 1 ∆λ1

$ 1

(b)

Figure I–7: Conventional (a) and modified (b) BM unit for a rate 1/2
code. $ 1 denotes a left shift by one bit.

3 Simplified Architectures 53

+1 + 10

1

2

3

0

1

2

3

+1 + 1

−1− 1 −1− 1
Γ̃(1, k)

λ∗[+1 + 1] + ∆λ1
sign

Γ(0, k + 1)

Γ(2, k + 1)

Γ̃(1, k)

Γ(0, k)

λ∗[+1 + 1]
sign

Γ(0, k)

∆λ1

(a)

Γ(2, k)

Γ̃(3, k)

λ∗[−1 + 1] + ∆λ1
sign

Γ̃(3, k)

Γ(2, k)

λ∗[−1 + 1]
sign

+1− 1

0

1

2

3

0

1

2

3
−1 + 1

+1− 1

−1 + 1 ∆λ1

Γ̃(3, k + 1)

Γ̃(1, k + 1)

(b)

Figure I–8: Retimed ACS setup for a (7,5) code for the offset approach.
These ACS units preserve the critical path of the conventional ACS units
from Figure I–4. Note that ∆λ1 is delayed by one clock cycle in the BM
unit.

54 Part I. Simplified Trellis Computational Blocks

Besides storing ∆λ1 in the BM unit, two new correction terms λ∗[+1+1]+
∆λ1 and λ∗[−1 + 1] + ∆λ1 are needed for this architecture. These additions
are not carried out in the ACS units since this again would increase the critical
path. They are instead precalculated in the BM unit; the complexity is moved
from the ACS units to the BM unit which is instantiated only once instead of
2m times. Thus, the BM unit for the retimed setup is the one from Figure I–
7(b) appended with two additions and a register. If the extra delay introduced
by these additions cannot be tolerated, the datapath can always be pipelined
since it is purely feedforward.

3.2 Differential Trellis Decoding

Following [48], DTD can be described as follows. By extracting Γ(u′′, k) and
Γ(u′, k) from the second argument in the comparison in Equation I–10 and
Equation I–11 respectively, we get

Γ(v′, k + 1) = λ(u′ → v′) + Γ(u′′, k) +
min{Γ(u′, k)− Γ(u′′, k), λ∗(u′ → v′)} (I–14)

and
Γ(v′′, k + 1) = λ(u′ → v′) + Γ(u′, k) +

min{−[Γ(u′, k)− Γ(u′′, k)], λ∗(u′ → v′)}. (I–15)

The comparisons share the common terms ∆Γ = Γ(u′, k)−Γ(u′′, k) and λ∗(u′ →
v′) and are therefore carried out jointly by evaluating the differences and signs
of these terms.

Figure I–9 depicts the principal branch selection process based on these
common terms. This process is shaded in gray in Figure I–10, which shows a
computational unit developed by us for the DTD method from the preceding
considerations. This unit carries out the two ACS operations for the butterfly
in Figure I–3. Based on the binary result x of the absolute comparison |∆Γ| >
|λ∗(u′ → v′)| (Abs Cmp) and the signs of these two comparison terms, the sign
mapper (Sgn Map) decides which of the two SMs are chosen as survivors. Its
truth table is found in Table I–2. The resulting control signals M0 and M1 are
also used to steer which update arguments are to be chosen.

Considering a hardware implementation, 2’s complement arithmetic is of-
ten used for a Viterbi decoder. In this case, normalization of the otherwise
unbounded wordlength increase of SMs in the trellis datapath can be done on-
the-fly using the modulo normalization technique published by Hekstra [56].
Here, we restate the result for rate 1/c codes. The VA bounds the maximum
dynamic range between two SMs to

|Γ(u′′, k)− Γ(u′, k)| ≤ m · λmax, (I–16)

3 Simplified Architectures 55

Else

If ∆Γ < 0

If |∆Γ| > |λ∗(u′ → v′)|

Else Else

If |λ∗(u′ → v′)| < 0

M0 = 0

M1 = 1

M0 = 0

M1 = 0

M0 = 1

M0 = 1

M1 = 0

M1 = 1

Figure I–9: Branch selections for the butterfly from Figure I–3. Figure
adapted from [48].

Γ(v′′, k + 1)

Γ(v′, k + 1)

λ(u′ → v′)

λ(u′ → v′)

Map

Sgn

Cmp

Abs

M1

M0

λ∗(u′ → v′) x

∆Γ

sign

Γ(u′, k)

sign

Γ(u′′, k)

Figure I–10: A computational unit for a butterfly using the DTD method.

Table I–2: Truth table of Sgn Map.

x signλ∗(u′ → v′) sign∆Γ M0 M1

0 0 — 0 1

0 1 — 1 0

1 — 0 1 1

1 — 1 0 0

56 Part I. Simplified Trellis Computational Blocks

where λmax is the maximum absolute value of a BM. In the modulo approach,
the comparison of two cumulative SMs in an ACS operation is done with a
subtraction†

Γ(u′′, k) + λ(u′′ → v′)− [Γ(u′, k) + λ(u′ → v′)]. (I–17)

If the result of this subtraction lies in the range of a W -bit 2’s complement
integer, that is, in [−2W−1, 2W−1 − 1], a modulo-2W operation on Equation I–
17 does not change the result. Substitute Equation I–16 into Equation I–17,
and the range requirement is expressed as

(m+ 2) · λmax ≤ 2W−1 − 1.

Modulo arithmetic is simply implemented by ignoring the SM overflow if the
wordlength is chosen to represent twice the dynamic range of the cumulated
SMs before the compare stage. The wordlength of the SMs is thus

W = %log2{(m+ 2) · λmax}&+ 1 bits. (I–18)

Note that Equation I–18 assumes positive and negative BMs. Otherwise, the
factor in front of λmax is (m+ 1).

In Fossorier’s paper [48], the joint comparison for Equation I–14 and Equa-
tion I–15 is done according to

|∆Γ| > |λ∗(u′ → v′)|. (I–19)

However, a comparison based on absolute values is not efficient in 2’s com-
plement arithmetic. To derive an operand’s absolute value basically requires
half-additions in hardware. Although Equation I–19 would be somewhat sim-
pler to implement in sign-magnitude representation, SM normalization becomes
more complex [88], adding overhead to the design. Therefore, we use a condi-
tional addition/subtraction based on 2’s complement arithmetic to carry out
Equation I–19. The chosen operation depends on the sign bits of the operands
A = λ∗(u′ → v′) and B = ∆Γ. If both have the same sign, one is subtracted
from the other (A− B). An exclusive-or operation on this difference with the
sign of the minuend (A) yields the binary result x, which is 0 for |B| ≤ |A|.
Otherwise, both numbers are added and again the sign of A determines the
outcome of Equation I–19. The corresponding unit is shown in Figure I–11.

Retiming as in the offset approach is not applicable in DTD since this
method explicitly avoids the evaluation of cumulative SMs and rather works

†Here, we do not use the complementary property for the BMs.

4 Implementation and Synthesis Results 57

signAcarry

sign (A±B)

x

add/sub

±
A

B

sign

Figure I–11: The Abs Cmp unit for comparison of absolute val-
ues (Equation I–19). The basic building block is a conditional addi-
tion/subtraction unit (shaded in gray). For DTD, A = λ∗(u′ → v′) and
B = ∆Γ.

directly on the numerical relationship between state and branch metrics. There-
fore, delaying the SM updates into the next clock cycle does not decrease the
critical path, which basically consists of three additions and additional logic by
Sgn Map. Compared to the retimed offset approach, this is an increase by at
least one addition.

The reduction in arithmetic complexity compared to the original architec-
ture from Figure I–4 cannot be expressed as straightforwardly as in the offset
approach since modified operations, for example, conditional additions and sub-
tractions, are introduced. Therefore, synthesis results of the two simplifications
are compared in Section 5.

4 Implementation and Synthesis Results

In the next case study, computational blocks for the VA using the offset ap-
proach are implemented. Best feedforward rate 1/2 convolutional codes up to
memory m = 7 are considered. The output of an ACS unit is the decision bit
for the surviving path of the respective state and the updated SM, see Fig-
ure 2.12. Survivor path processing is neglected since this part of the decoder
does not differ between the conventional and improved architectures. The BM
and ACS units are described in a VHDL model at register-transfer level based
on generic parameters. The well-known SM normalization techniques are still
valid since differences among the SMs remain the same. Nonnegative BMs to-
gether with Equation I–16 and Equation I–18 yield the following expression for
the wordlength of the SMs:

%log2{(m+ 1) · 2 (2q − 1)}&+ 1 bits. (I–20)

58 Part I. Simplified Trellis Computational Blocks

The comparison in the ACS unit is implemented with the modified comparison
rule [88]. Channel symbol wordlength is q = 3 since this gives small degradation
in decoding performance compared to infinite precision as stated in [57].

We used a design kit from Virtual Silicon for the United Microelectronics
Company (UMC) 0.13 µm digital CMOS process. Power figures were obtained
by Synopsys Power Compiler using toggle information from a gate level simu-
lation run with state- and path-dependent cell information, and random input
stimuli. Both dynamic (switching and short-circuit power) and leakage power
are included in the results. However, the contribution from leakage power is
negligible in this study. At this design stage, it is assumed that the contribu-
tion from clock tree and interconnection, which is relevant for absolute area and
power numbers, is the same in both architectures since we are only interested
in the relative savings between architectures.

The improved versions are compared to their respective conventional setup
with regard to their application area. For applications with relaxed timing
requirements, area and power comparisons are done for the architecture in
Figure I–6 together with the respective BM units. Synthesis tests showed that
the area–delay product curve is flat down to a delay of about 3.5 ns, which is
set as a constraint for the critical path. The power simulation is carried out at
a clock frequency of fclk = 250 MHz. For the retimed architecture of Figure I–8
this delay reaches further down to about 2 ns. Here, we only synthesized the
ACS units in order to investigate the impact of the saved adder in every unit.
For the power simulation fclk = 400 MHz is assumed. In both cases, Vdd = 1.2
V.

Table I–3 lists the synthesis results of the cell area for a conventional ACS
setup with and without the BM unit from Figure I–7(a). In comparison with
it, Figure I–12 shows the possible savings in cell area and power consumption
when the improved architecture from Figure I–6 is employed. As mentioned
earlier, the arithmetic complexity is reduced by 17%, which is true for m = 2.
However, with increasing m the percent savings decrease since both area and
power overhead introduced by the registers gets bigger. At m = 4, the SM

Table I–3: Cell area in µm2 for a conventional BM/ACS setup. Timing
constraints for row BM & ACS (non-retimed) and ACS (retimed) are 3.5 ns
and 2 ns, respectively.

m 2 3 4 5 6 7

BM & ACS 3697 6876 15120 29723 58930 115974

ACS 2923 5846 13328 26657 53315 106601

5 Comparison of Hardware Efficiency 59

register wordlength is increased by one bit; refer to Equation I–20. Thereafter
the combinational power savings catch up with this initial penalty and again
reach 12% at m = 6.

Figure I–12 also shows the comparison results when the retimed setup from
Figure I–8 is used. Note that compared to the non-retimed setup, the power
figures were obtained at a higher clock frequency due to the shorter critical
path. The adders incorporating the correction terms are one bit wider than
the ones in the conventional architecture. Again, the improved setup saves
both area and power by 7% and 10%, respectively.

Encoder memory m

Sa
vi
ng
s
(%

)

Area
Power

Non-retimed, BM & ACS

Retimed, ACS only

2 3 4 5 6 7
0

5

10

15

20

Figure I–12: Area and power comparison between conventional setups
from Table I–3 and the improved setups from Figure I–6 and I–8.

If speed requirements allow use of the computational kernel in a time-
multiplexed fashion, the savings increase compared to a parallel implemen-
tation; for example, for m = 6, there are achievable savings of 10% in cell area;
however, a time-multiplexed architecture using a m = 2 kernel could gain an
extra 7%.

5 Comparison of Hardware Efficiency

In this section, a comparison between the offset approach and DTD is carried
out based on hardware savings when 2’s complement arithmetic is used. Again,
the setup for the case study is the one described in Section 4. Tests with the

60 Part I. Simplified Trellis Computational Blocks

different architectures showed that the area–delay product curve is flat down to
a delay of about 4 ns in case of DTD, which is set as a constraint to the critical
path. BM units are not included in the synthesis since their contribution is
assumed to be approximately equal for a certain m. Considering throughput,
a pipeline is assumed between BM and ACS units and thus the critical path is
determined by the ACS units.

Figure I–13 shows the synthesis results for decoding blocks for different
encoder memories m. It is seen that the offset approaches (both retimed and
non-retimed) are favorable across the whole range of m. On a percent basis,
these approaches are 24% (m = 2) to 30% (m = 6) smaller than the DTD
architecture in this case study.

Encoder memory m

C
el
l
ar
ea

(µ
m
2
)

Offset
Retimed
DTD

2 3 4 5 6
103

104

105

Figure I–13: Cell area versus encoder memory m for the simplified
decoding blocks.

Although the number of arithmetic operations appears comparable at first
glance, the sizes of the synthesized architectures differ remarkably. Gener-
ally, conditional addition/subtraction adds an overhead compared to a con-
ventional addition, which is determined by the implementation style of the
arithmetic unit. Considering the wordlengths in DTD, the initial subtraction
that yields ∆Γ requires sign extension, which increases the wordlength for the
conditional addition/subtraction in Abs Cmp by one bit. Apparently, the
increased wordlength and the selection logic turn out to be the drawback of
this approach. On the other hand, in the offset approach the subtraction of

5 Comparison of Hardware Efficiency 61

the cumulative metrics to determine the surviving metric is usually done with
an unsigned comparison, see [88], which lowers the computational cost by a
full-adder stage.

The critical path in the offset approach, which is characterized by three
additions and a multiplexer, is shorter than the one in the DTD method, where
it is determined by the delay through the initial subtraction, Abs Cmp, Sgn

Map, a multiplexer, and the final addition. This roughly translates to three
additions, a multiplexer, and the logic delays inside Sgn Map. Furthermore,
the offset approach can be retimed as indicated in Section 3.1.

Encoder memory m

E
(1
0−
4
µ
m

−
2
ns

−
1
)

Offset
Retimed
DTD

2 3 4 5 6
0

1

2

3

Figure I–14: Hardware efficiency versus encoder memory m for the
simplified decoding blocks.

Let the hardware efficiency E be expressed as

E =
1

A · T ,

where A stands for area and T is processing time per sample, that is, 1/T
denotes the achievable throughput. Based on this definition, Figure I–14 com-
pares the two simplifications in terms of E, where a higher value denotes a
better design for a certain m. Again, it is seen that the offset approaches are
preferable throughout the considered design space. Note that with increasing
m, the efficiency as defined here decreases since the hardware is duplicated,

62 Part I. Simplified Trellis Computational Blocks

whereas T stays approximately the same. Although less obvious from the fig-
ure, the percent loss in efficiency for DTD compared to the other two methods
is slightly larger for m = 2, 3. This is due to the larger deviation of the critical
paths in these cases.

6 Conclusion

We showed that the implementation of BM and ACS units in trellis-based
decoding architectures can be simplified for a certain class of convolutional
codes. By making use of the codes’ complementary symbol property, both
area requirement and power consumption of trellis computational blocks are
reduced. The offset approach applied to a rate 1/2 code saves one adder in half
the ACS units compared to a conventional implementation. Furthermore, only
two BMs have to be calculated instead of four. In a case study, area savings
vary between 17% and 9% and power savings from 17% to 7% are reported in
a 0.13 µm digital CMOS process.

The offset approach and a competing simplification named DTD, which
also uses the code symbols’ complementariness, are analyzed in terms of their
hardware efficiency. Although promising at first glance, the drawback of DTD
turns out to be the | · | calculation. Also, the “sign checks” to determine the
surviving SMs degrade the performance compared to the offset approach, which
solely relies on common arithmetic operations. Hence, for rate 1/2 codes the
offset approach is preferable to the DTD method for hardware implementation.

Part II

Hybrid Survivor Path Architectures

Abstract

A new class of hybrid VLSI architectures for survivor path processing to be
used in Viterbi decoders is proposed. The architecture combines the benefits
of register-exchange and trace-forward algorithms, that is, low memory re-
quirement and latency versus implementation efficiency. Based on a structural
comparison, it becomes evident that the architecture can be efficiently applied
to codes with a larger number of states where trace-back-based architectures,
which increase latency, are usually dominant.

Based on: M. Kamuf, V. Öwall, and J. B. Anderson, “Survivor path processing in
Viterbi decoders using register-exchange and trace-forward,” IEEE Transactions on
Circuits and Systems—Part II: Express Briefs, publication scheduled for June 2007.

63

1 Introduction 65

1 Introduction

The VA is a maximum-likelihood algorithm that can be applied to decoding of
convolutional codes. In this part, we consider convolutional codes of rate 1/c
and high-rate punctured codes that are derived from them. Their trellises have
N = 2m states, where m is the encoder memory.

A Viterbi decoder typically consists of three building blocks, as in Fig-
ure 2.12. In this setup, the ACS units (ACSUs) inside the trellis unit and
the survivor path unit (SPU) are known to be critical parts for a hardware
implementation. Whereas the feedback loop of the ACS operation often deter-
mines the throughput of the decoder, the algorithm used for the SPU affects
the overall storage requirement and latency, two important aspects in today’s
communication systems. Recall from Section 2.2.1 that SPU algorithms rely on
the fact that the survivor paths are expected to have merged with sufficiently
high probability after a certain depth L.

Traditional approaches for the SPU are register-exchange (RE) and trace-
back (TB) [41] algorithms, and they are discussed in Section 2. After a brief
review of existing hybrid SPU architectures in Section 3, a new hybrid ap-
proach based on RE and trace-forward (TF) [16] is proposed in Section 4.
Storage requirement and latency can be traded for implementation complexity.
Therefore, this architecture can be applied to a larger number of states, which
is justified by a comparison to existing hybrid approaches in Section 5.

2 Basic Algorithms

In this section, two basic algorithms for the SPU are presented. They cover
a wide range of applications. RE has the lowest memory requirement (NL
bits) and latency (L) among all SPU algorithms. As will be seen, it is limited
to a rather small number of states. TB is considered applicable to an almost
arbitrary number of states at the cost of an increase in both storage and latency.

For clarity, we want to stress that an information bit enters the encoder
and causes a state transition, and a decision bit is put out from an ACSU
upon decoding. The latter thus indicates a surviving branch in the trellis
diagram. Note that information and decision bits for a state are not the same
for feedforward codes but coincide for feedback codes.

2.1 Register-exchange

This method is the most straightforward way of survivor path processing since
the trellis structure is directly incorporated in the algorithm. Every trellis state
is linked to a register that contains the survivor path leading to that state.

66 Part II. Hybrid Survivor Path Architectures

The entire information sequences of the survivor paths are then continuously
updated based on the decisions provided by the ACSUs.

0 1

· · ·

· · ·

· · ·

· · ·

L

0

0

0

0

1

1

1

1

D0

D1

D2

D3

Figure II–1: An REU for a 4-state trellis. DX denotes the decision bit
for trellis state X. Initialization values at stage 0 apply to feedforward
codes. In this case, the first m = 2 stages become obsolete since the
start sequences are always the same due to the given trellis topology.
For feedback codes, the decision bits are fed directly to the first register
stage.

After L steps, either one reads the decoded bit from a fixed state or one
takes a majority decision among all states. This is equivalent to the principle
of fixed-state or best-state decoding discussed in Section 2.2.1. The latency of
this algorithm is simply L. In a parallel implementation, NL bits are required
which must be read and written every cycle. This high access bandwidth makes
an implementation in high-density random-access memory (RAM) impractical.
Instead, the algorithm is preferably realized by a network of multiplexers and
registers that are connected according to the trellis topology; see Figure II–1 for
the RE unit (REU). For a larger number of states, though, the low integration
density of the multiplexer-register network and the high memory bandwidth of
NL bits per cycle become the major drawbacks of this algorithm. It is used,
though, in applications where the survivor path has to be updated in one clock
cycle, or the overall latency and/or storage requirement is crucial.

2 Basic Algorithms 67

2.2 Trace-back

The TB method [30, 41] is a backward processing algorithm and requires the
decisions from the ACSUs to be stored in a memory. An L-step backward
search through a segment where all survivor paths merge into one delivers the
starting state of a decoding segment. For encoders realized in controller form,
the principle is as follows. The binary state number at time k is shifted b bits
to the left and appended on the right with the b decision bits of that state to
yield the originating state at time k− 1. Once the starting state is established,
the final surviving state sequence is reconstructed step-by-step in the described
backward fashion. The corresponding information symbols are put out time-
reversed and, therefore, a last-in-first-out (LIFO) buffer has to be introduced
to reverse the decoded bitstream.

D
ec
is
io
n

Write

path
Survivor

L1, . . . , L
Decode Merge

Starting state

ve
ct
or

Figure II–2: Organization of decision memory in a TB architecture
with two read (in gray) and one write region.

Consider an architecture with two read regions, decode and merge. The
memory partitions and their tasks are shown in Figure II–2. Tasks shift cir-
cularly among the partitions, that is, the merge segment becomes the decode
segment of the next TB cycle, which starts every Lth step. Then write segment
becomes merge segment, decode becomes write, and so on. Decode TB and
merge TB are performed concurrently, while at the same time, a new decision
history is built in the write region. Assuming that decode, merge, and write
segments are each of length L (access rates are matched), we find the storage
requirement is 3LN bits for the decision memory plus L bits for the LIFO, and
latency is 4L.

The advantage compared to RE is the storage of the decisions in a much
denser memory, typically RAMs. Only N decision bits are written every cy-
cle, thus the write access bandwidth is greatly reduced. Since TB operations
(decode and merge) are started every Lth step, only N(L + L)/L = 2N de-
cision bits have to be read per decoded output bit. It is assumed that only

68 Part II. Hybrid Survivor Path Architectures

standard memories are used, that is, a read access provides a complete N -bit
word, and the N : 1 column multiplexer is separated from the memory. Clearly,
storage requirement and latency become higher. This method is suitable for
applications where more than one clock cycle is available per trellis step.

Generally, for an n-pointer-odd architecture [41], where n > 1 is the number
of read pointers, the RAM requirement is NL(2 + 1/(n − 1)) and the LIFO
buffer is of size L/(n − 1). The overall latency becomes L(2 + 2/(n − 1)). To
reduce the increased memory size and latency, TB is mainly used in conjunction
with the TF [16] procedure, which is discussed in Section 3.2.

3 Existing Hybrid Approaches

Several attempts have been made to increase the implementation efficiency
of the SPU by combining different algorithms. Two prominent members are
discussed in the following since these are the ones our architecture is derived
from and competes with.

3.1 Register-exchange and Trace-back

A hybrid architecture combining RE and TB was first published in [75]. The
idea was also discovered in [16] and [15], and later generalized in [20] to derive a
class of so-called pre-compiled SPUs. This class also includes the TF approach,
which in [20] is called ER(ν, L) precompilation. However, except for the TF
method, these approaches require specific memories which have to be accessible
row- and columnwise, thus increasing the implementation complexity.

To reduce both latency and read accesses during the merge phase, the hy-
brid architecture, denoted RE/TB, carries out TB operations over κ bits at a
time instead of one. Let the decoding depth L be divided into blocks of size κ,
that is, L = <κ, < an integer. An REU of size Nκ is used to continuously build
segments of the survivor path for each state. These segments are then stored
every step as N -bit column vectors in a RAM. A κ-bit segment of a row vector
for a certain state contains the starting state of its survivor path κ bits earlier;
that is, this so-called block TB covers κ bits per RAM read access, instead of
one bit as in the traditional TB method. Hence, the number of TB operations
to find the starting state of a decoding segment is lowered from L to <. Since
the survivors are preprocessed in the REU, the final decoding can be carried
out in one step. Note, however, that the RAM has to be accessible both row-
and columnwise, which requires a more complex specialized memory imple-
mentation. The overall storage requirement, listed by different implementation

4 New Approach: Register-exchange and Trace-forward 69

complexity, becomes

Nκ︸︷︷︸
REU

and N(L+ (2p− 1)κ)︸ ︷︷ ︸
RAM

, (II–1)

where p is the number of κ-bit segments that are finally decoded once a starting
state is found [75].

3.2 Trace-forward and Trace-back

In agreement with its first appearance in the literature [16], we adopt the name
TF for the following procedure. An algebraic generalization is found in [39] and
real hardware effects of this approach have been recently published in [50,55].

TF is a forward-processing algorithm that estimates the starting state for
a decode TB on-the-fly such that TB operations during a merge phase, which
do not contribute to the actual decoding, can be omitted. The TF method is
applied to lower both storage requirement and latency in TB-based architec-
tures.

Every survivor path at time i+∆, i an integer, is connected to some state at
time i, called a tail state. According to the considerations about the decoding
depth Lc in Section 2.2.1, all survivor paths should stem from the same state
for ∆ > Lc, that is, their tail states should be identical. TF is basically a
selection operation, similar to the RE algorithm without the shift.

Figure II–3 shows the TF unit (TFU) for a 4-state rate 1/c convolutional
code. At time iL, each m-bit register block is initialized with the state label it
represents; that is, current states and tail states are identical, and the survivor
paths are of zero length. The decision DX for state X = 0, . . . , N − 1 selects
the tail state of its predecessor state to update the current tail state. At time
(i+ 1)L, when all survivor paths should have merged, all registers contain the
starting state for the decoding segment at time iL. For illustration, state 0 is
chosen to be read from in Figure II–3. Furthermore, it is also indicated in [16]
that a TFU can be optimized, where area-efficient ACSU topologies [19] are
applied due to the structural equivalence of TFU and ACSU.

The extension to TB architectures with < TFUs that estimate starting states
at times L/< to further reduce latency is discussed in [39]. In total the storage
requirement is

N × L(1 + 1/<)︸ ︷︷ ︸
RAM

, <Nm︸ ︷︷ ︸
TFU

, and L/<︸︷︷︸
LIFO

(II–2)

bits in this approach.

70 Part II. Hybrid Survivor Path Architectures

”00”

Read@(i+ 1)L

D0

m

D2

D1

”10”

”11”D3
Init@iL

”01”

Figure II–3: A TFU for a 4-state trellis, that is,m = 2. Figure adapted
from [16].

4 New Approach: Register-exchange and Trace-forward 71

4 New Approach: Register-exchange and Trace-forward

As stated in [39], the starting state of decoding segments can be found by means
of so-called multiplier feedback loops, which are equivalent to TFUs. According
to this observation, we estimate the starting states of length-κ segments with
TFUs in intervals of κ; see Figure II–4. Every κth step, a TFU is initialized,
and a total of < TFUs are needed to cover the complete decoding depth L; that
is, TFUj , for j = 1, . . . , <, is initialized at time (i − 1)L + jκ. Then, at time
iL+ jκ, TFUj contains the estimated starting state of this segment.

TFU1

TFU2

TFU3

Estimated starting states at

TFU4

Time
0 κ 2κ 3κ L+ κ L+ 2κ L+ 3κ

times κ, 2κ, 3κ, . . .

L

Figure II–4: Picture of TF and decode flow. Note that < = L/κ is an
integer; in this example < = 4.

Contrary to the previous hybrid approaches, the sequences in the REU are
not used for initializing a block TB operation. Instead, these partial survivor
sequences are stored every κth step in a RAM with first-in first-out (FIFO)
access that can be implemented in a much denser fashion than the original
RE network of length L. Once an estimated starting state is established, the
respective partial information sequence is directly read from the FIFO. There-
fore, time reversal upon decoding as in hybrid TB-based architectures becomes
unnecessary and the latency is not increased.

The proposed SPU architecture is depicted in Figure II–5. It consists of
three parts: an REU to continuously update the partial survivor sequences for
each state, a FIFO to store < sets of N sequences, and a bank of < TFUs that
provide the starting states of the length-κ segments.

The following considerations focus on feedforward codes, where an esti-
mated starting state is equivalent to the last m information bits that entered
the encoder. In a straightforward implementation, an REU of length κ is
needed. We note, though, that for feedforward codes the start of all partial

72 Part II. Hybrid Survivor Path Architectures

T
FU

1
T

FU
2

··
·

··
·

<:1

E
st

im
at

ed
st

ar
tin

g
st

at
e

ad
dr

R
E

U
. . .

D
−
(m

+
1)

N
×
(D
−
(m

+
1)
)

A
C

SU
s

Fr
om

··
·

ad
dr

<
×
N
(D
−
m
)

. . .

N:1 m

N
(D
−
m
)

N
(D
−
m
)

D
−
m

D

N

T
FU

�

SP
1

SP
N

−
1

D
−
m

··
·

FI
FO

SP
0

m

Figure II–5: The proposed hybrid SPU for feedforward codes. Shown
above the FIFO is the address pattern for a partial survivor sequence
word. The word consists of N sequences SPX of length κ−m. The FIFO
could be organized for (κ−m)-bit read accesses, that is, multiplexerN : 1
is incorporated in such a specialized memory.

5 Comparison and Discussion 73

survivor sequences is always the same until the trellis is fully extended, that
is, after m steps. Thus, only κ − m stages are required. Additionally, due
to the trellis topology, the last column of decision bits can be directly trans-
ferred to the FIFO without storing them in the REU. The REU’s length is thus
κ − (m + 1). Note that there is a constraint on the minimum feasible block
length, κ ≥ m.

At times iκ, for each state, a partial survivor sequence from the REU is
stored in the FIFO which is disabled otherwise. The storage scheme of these
sequences is shown above the FIFO. Here, SPX denotes an information stream
of length κ−m associated with stateX. It is seen that the sequence SPX resides
at address X of the memory word. To find the part that is linked to the actual
survivor path, the estimated starting state from a TFU is used. For example,
at time L+ κ, TFU1 contains the starting state of the surviving path at time
κ and the FIFO subword at this address is selected. These bits represent the
information sequence from time 0 to κ − m − 1. The remaining m bits are
included in the estimated starting state since it is identical to the information
sequence that entered the encoding shift register. Hence, the overall latency of
this approach is L+ κ. For feedback codes, these remaining bits are delivered
by the REU, which has to be extended to κ− 1 stages.

Both REU and TFUs are controlled by the ACSU decisions and run con-
tinuously at data rate, whereas the FIFO only runs at 1/κ times the data
rate. The FIFO and the multiplexer < : 1 both use the same address counter;
compared to TB architectures with multiple pointers that require independent
address counters, control is much simpler. The estimated starting state selects
the subword of length κ −m by accessing the N : 1 multiplexer. No reversal
of the output sequence is required since only forward processing algorithms are
used. This preserves low latency.

In summary, the total storage requirement becomes

N(κ− (m+ 1))︸ ︷︷ ︸
REU

, <×N(κ−m)︸ ︷︷ ︸
RAM

, and <Nm︸ ︷︷ ︸
TFU

. (II–3)

The architecture is scalable by varying κ, thus trading storage requirement for
implementation complexity. Different L require different partitions between
the processing blocks (FIFO, TFUj , REU) to optimize the implementation.
Moreover, an optimal partition depends on the implementation platform. Two
special cases can be pointed out for feedforward codes, namely κ = m and
κ = m + 1. In both cases, the REU becomes redundant. In the former case,
the FIFO also vanishes and the architecture solely consists of TFUs.

74 Part II. Hybrid Survivor Path Architectures

5 Comparison and Discussion

Table II–1 lists SPU architectures and their key performance features to allow
for comparison between different methods. These comparisons are concerned
with the hybrid approaches only; RE and TB algorithms are mentioned for
completeness.

Considering the RE/TB method from [75], it is seen that it lags our ap-
proach when it comes to RAM requirements. More specifically, given the same
latency (p = 1) their RAM size is larger by

N(<m+ κ) bits.

Comparing the number of register bits, their REU has m + 1 extra stages.
However, due to < TFUs in our approach, there are now an additional N((<−
1)m − 1) register bits compared to [75]. Note that this is not necessarily the
only measure for RE complexity. For example, a TF operation can be executed
sequentially in l ≤ m steps, which lowers the numbers of multiplexers and
interconnections by a factor l. This observation concurs with [39], where the
complexity of a multiplier feedback loop (= TFU) is that of one stage of RE
since they both operate sequentially on one single decision matrix at a time.
Therefore, the complexity of additional < TFUs are comparable to < stages
of RE network. That is, the κ RE stages in [75] can be set into relation to
κ− (m+ 1) + < equivalent RE stages in our approach. The RE complexity in
our architecture is reduced if

κ > κ− (m+ 1) + <. (II–4)

According to Equation 2.14, the decoding depth Lc of a convolutional code is
a function of the codes’ free distance and the code rate. Choose, for simplicity,
L = ρ(m+ 1) ≥ Lc, that is, the required depth is expressed as a multiple ρ of
the encoder constraint length m+ 1. Then, Equation II–4 holds if κ > ρ.

Apart from that, the REU from [75] has to employ a so-called “zone limit”,
which distinguishes between RE mode and shift register mode. This increases
implementation complexity due to a multiplexer in front of every register in
the REU, which thus requires Nκ additional multiplexers.

Another drawback in [75], which also applies to almost all of the pre-
compiled approaches from [20], is that the RAMs have to be accessible row- and
columnwise, which requires a specialized memory implementation and increases
complexity. Decision bits are written on a per-state basis (columns) and are
read on a per-time-instance basis (rows). This requirement could possibly be
dropped by means of a pre-buffering scheme to do the required transposition,
which on the other hand increases register complexity.

5 Comparison and Discussion 75

Table II–1: Key performance features of different SPU architectures. Mem-
ory requirement from Equations II–1–II–3 was reformulated to allow for easier
comparison. The number of read pointers for TB is n = < + 1. For RE/TB,
the REU requires Nκ additional multiplexers. Also, RAM in RE/TB must be
accessible row- and columnwise and should be organized for κ-bit read accesses.

R
E
U

R
A
M

T
F
U

L
IF
O

L
at
en
cy

R
E

N
L

—
—

—
L

T
B

—
N
L
(2

+
1/
(n
−
1)
)

—
L
/(
n
−
1)

L
(2

+
2/
(n
−
1)
)

R
E
/T

B
[7
5]

N
κ

N
L
(1

+
(2
p
−
1)
/<
)

—
—

L
(1

+
p
/<
)

T
B
/T

F
[1
6,
50
,5
5]

—
N
L
(1

+
1/
<)

<N
m

L
/<

L
(1

+
2/
<)

P
ro
po

se
d
(R

E
/T

F
)

N
(κ
−
(m

+
1)
)

N
L
(1
−
m
/κ

)
<N
m

—
L
(1

+
1/
<)

76 Part II. Hybrid Survivor Path Architectures

The comparison to TB/TF is carried out on the basis of same latency.
From Table II–1 it is seen that there are twice as many pointers < needed
in the TB/TF approach compared to our method. Let <1 and <2 denote the
number of TFUs in our approach and the TB/TF method from Section 3.2,
respectively, and hence <2 = 2<1. Now the different units can be compared
in terms of complexity. To start with the RAM, <2 partitions are necessary in
TB/TF, which increases peripheral overhead, for example, independent address
counters. This overhead is not considered in the following calculations. On the
contrary, our method needs only one single RAM block, independent of <1.
Simplifying the difference of the RAM sizes, it is seen that TB/TF requires an
additional

N

(
<1m+

1
<2

)
bits.

Since there are twice as many TFUs, there are <1Nm additional bits in TB/TF.
Since the number of bits is comparable to the ones in the REU, we can directly
subtract this overhead from the size of our REU. Furthermore, because of the
small size of the LIFO (κ2 = L/<2 bits), an implementation with registers is
favorable compared to RAM cells. Based on these observations, the register
overhead becomes

N(κ1 − [1 +m(<1 + 1)])− κ2 bits (II–5)

in our approach. Equation II–5 grows with O(N) and depending on the sign
of the expression in the parenthesis this overhead is in or against our favor.
If 1 + m(<1 + 1) > κ1, the register complexity in our approach is smaller.
Modifying this inequality gives

(<1 − ρ)(m+ 1) +m<21 > 0,

which holds for many parameter choices apart from the obvious <1 ≥ ρ. It
is clear that < and N are critical parameters when comparing implementa-
tion efficiency of RE/TF and TB/TF. One should also keep in mind that the
complexity of a TFU compared to an REU can be adjusted by means of area-
efficient approaches as mentioned in [19].

Generally, the different architectures’ feasibility depend on the choice of
implementation parameters. That is, a factor sets the cost of register and
RAM bits into relation. Such a factor would depend on the number of RAM
bits, partitions, RE interconnects, folding of TF operations, and so on.

The proposed architecture is seen as means to lower the RE complexity by
employing denser storage cells for the survivor sequences. Thus, the architec-
ture can be applied to codes with larger number of states. At the same time,
the desirable high-speed low-latency feature of RE is preserved.

6 Conclusion 77

Throughout the preceding considerations we assumed a two-port memory
for the FIFO that allows a read-before-write access on the same address, so
the old value is present at the output while the new value is written into the
chosen memory location. However, if a single-port memory is employed, the
read access has to be carried out one cycle prior to the write access to the same
address, and hence an additional RAM word is needed to temporarily store the
old value. Since the two-port constraint was also assumed in the competing
hybrid architectures, the effect of an additional storage word is cancelled out.

6 Conclusion

We presented a new class of hybrid survivor path architecture based on register-
exchange and trace-forward concepts. Latency and memory requirement can
be traded for implementation complexity. To be specific, the register-exchange
complexity is lowered by employing denser storage cells. No partitioning is
necessary for this memory, independent of the number of decoding blocks, con-
trary to combined trace-back and trace-forward architectures. Therefore, our
approach can be seen as means to extend the desirable high-speed low-latency
feature of pure register-exchange implementations even for a larger number of
states. Furthermore, contrary to some other existing hybrid architectures, this
new architecture is not bound to a specialized memory implementation and
can thus be optimized for different platforms.

Part III

Designing a Flexible Trellis Decoder

Abstract

This part discusses the impact of flexibility when designing a Viterbi decoder for
both convolutional and TCM codes. Different trade-offs have to be considered
in choosing the right architecture for the processing blocks and the resulting
hardware penalty is evaluated. We study the impact of symbol quantization
that degrades performance and affects the wordlength of the rate-flexible trellis
datapath. A radix-2-based architecture for this datapath relaxes the hardware
requirements on the branch metric and survivor path blocks substantially. The
cost of flexibility in terms of cell area and power consumption is explored by an
investigation of synthesized designs that provide different transmission rates.
Two designs were fabricated in a 0.13 µm digital CMOS process and verified
for functionality. Based on post-layout simulations, a symbol baud rate of 168
Mbaud/s is achieved in TCM mode, equivalent to a maximum throughput of
840 Mbit/s using a 64-QAM constellation.

Based on: M. Kamuf, V. Öwall, and J. B. Anderson, “Optimization and imple-
mentation of a Viterbi decoder under flexibility constraints,” IEEE Transactions on
Circuits and Systems—Part I: Regular Papers, submitted.
and: ——, “Architectural considerations for rate-flexible trellis processing blocks,”
in Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile
Radio Communication, Berlin, Germany, Sept. 2005, pp. 1076–1080.

79

1 Introduction 81

1 Introduction

With growing application diversity in mobile communication, the need for flex-
ible processing hardware has increased. Consider, for instance, high-rate wire-
less personal area networks (WPANs) [101], which provide short-range (<10
m) ad-hoc connectivity for mobile consumer electronics and communication
devices. In this environment, different transmission schemes and code rates
are required in order to adjust to varying channel conditions [34, 65]. A flexi-
ble channel decoding platform should be able to provide at least two decoding
modes, one when good error-correcting capability is required at low SNR, and
one supporting high data throughput if the channel is good. According to this
requirement, IEEE 802.15.3 [101] suggests coded modulation schemes to grad-
ually adjust data throughput. These schemes range from QPSK to 64-QAM
and are based on a symbol rate of 11 Mbaud/s.

As part of the mentioned standard, TCM [95, 96] enables transmitting in-
formation at high rates per Hertz of bandwidth. It is most efficient for higher
(quadrature) constellations beyond QPSK, which carry more than two data
symbols per two-dimensional channel use. The subset selectors of the TCM
codes are rate 1/2 for QPSK and rate 2/3 for 16-QAM, 32-CR, and 64-QAM
constellations. For QPSK, one data bit is transmitted per channel use, and
the data rate becomes 11 Mbit/s. The higher modulations cover data rates in
multiples of the symbol rate. Trellis-coded 64-QAM is the highest constellation
considered in the standard and carries five data bits per channel use. Thus,
the maximum data rate is 55 Mbit/s.

Shown in Figure III–1 are the codes’ BER in the AWGN channel. For
comparison, the Shannon limit for equivalent rate-R (bits/dimension) systems
is also drawn. The transmission rate R is derived according to Equation 2.1.
For example, since there is one coded bit per two-dimensional constellation
point, the transmission rate for 16-QAM TCM is 3 bits per two dimensions,
equivalent to R = 1.5 bits/dimension. The target BER in the standard is
around 10−5; here the transmission schemes using higher constellations are
roughly 5 dB from the Shannon limit.

The QPSK scheme is considered as a dropback mode for low SNR. In such a
scenario, Gray-mapped rate 1/2 convolutional codes are usually preferred since
they can achieve the same transmission rate R as TCM with better BER per-
formance. Simulations show that at the target BER, the best 8-state rate 1/2
convolutional code together with Gray-mapped QPSK is about 0.3 dB better
than the TCM QPSK scheme; see Figure 2.11. Therefore, BPSK or QPSK are
generally used together with rate 1/c convolutional codes, or punctured codes
derived therefrom. The trellis diagram of these codes can be decomposed into
a radix-2 (R2) butterfly state interconnect structure as in Figure 2.6(a).

82 Part III. Designing a Flexible Trellis Decoder

Eb/N0 (dB)

B
E
R

R = 0.5
QPSK
R = 1.5
16-QAM
R = 2
32-CR
R = 2.5
64-QAM

-1 3 7 11 15 19

100

10−2

10−4

10−6

Figure III–1: BER performance in AWGN of TCM codes from [101]
together with the Shannon limit of equivalent rate-R (bits/dimension)
systems.

Recall from Figure 2.11 that coding in the higher-energy region, where larger
constellations are used for transmission, is a domain of TCM. To date, the
most practical codes for TCM used together with two-dimensional modulation
schemes appear for b = 2. Puncturing, however, is not applicable if code
performance is to be fully maintained. This degradation stems from altering
the minimum inter-subset distance [6]. Thus, the trellis of the TCM subset
selectors consists of radix-4 (R4) butterflies; see Figure 2.6(b). Note, however,
that for PSK-constellations some pragmatic codes based on punctured subset
selectors were found in [99, 102]. Since PSK is a weak master constellation
because its signal points are sparsely packed, it is not further considered.

To summarize these considerations, the flexible channel decoding architec-
ture has to be tailored to efficiently process both R2 and R4 butterflies. Both
modes should use the same computational kernel to limit overhead in both area
and power consumption. A more general design objective could be stated as fol-
lows: increase flexibility with as little sacrifice as possible in area, throughput,
and power consumption.

ML decoding is provided by the VA [45,98], which was described in Chap-
ter 2. We denote by m the number of memory elements in the encoder which
is excited by b bits per time step. The number of trellis states is N = 2m and

1 Introduction 83

SP
unit

map

unit
y

Γ(S′, k) Γ(S, k + 1)

Task-flexible

Subset signal

unit

ς De-

λ
Trellis

memory
û

D
BM

Rate-flexible

Figure III–2: Block diagram of a flexible Viterbi decoder. Additional
parts needed for decoding of TCM codes are dashed.

there are 2b branches per node that connect these states. Shown in Figure III–2
is a principal architecture for a flexible Viterbi decoder. Let us revisit the three
main processing blocks of this decoder, that is, BM, trellis, and SP units, from
a flexibility perspective.

Based on the demodulated channel values y, the BM unit provides measures
of likelihood λ for the transitions in a trellis stage. This unit is strongly related
to the task the Viterbi processor is intended for. For example, apart from
calculating distances between received and expected symbols as in the case of
binary convolutional codes, TCM codes require an additional subset decoder
as discussed in Chapter 2. Extension of this architecture to cope with, for
example, Viterbi equalization would require another processing part for finding
the necessary BMs.

These BMs are consumed by the trellis unit, where ACS operations on the
SMs Γ(S′, k) at instant k form a new vector of SMs Γ(S, k + 1) at instant
k + 1. This operation is equivalent to discarding suboptimal branches in the
trellis diagram. Here, S′ denotes the vector of states in a trellis and S is its
permutation according to the given state interconnection, which is determined
by the encoder. The architecture of this unit depends on the code rate and
number of states in a trellis diagram.

The trellis unit produces an N×b matrix D of decision bits about surviving
branches. These bits are processed by the SP unit to reconstruct the data bits
that caused the transitions. Depending on the algorithm used for the SP unit,
the architecture becomes more or less related to the number of bits b and states
N per trellis stage. For example, as discussed in Part II, the register-exchange
algorithm requires the trellis to be directly mapped onto hardware, which gives
a stronger connection to b and N .

84 Part III. Designing a Flexible Trellis Decoder

Additionally, in case of TCM, the most likely transmitted signals ς for all
subsets have to be stored in the subset signal memory. These signals, together
with the reconstructed subset sequence from the SP unit, lead to the final
decoded data sequence û.

After this outline of the general technical parts, there is one major question
left. How does flexibility constrain the design process, that is, what trade-offs
arise when striving for flexibility? What is the overall hardware cost? These
are issues often overlooked in the work on other flexible trellis decoders named
in Section 2. No attempt is made to discuss design trade-offs and investigate
the cost of the provided flexibility. Therefore, after studying the main building
blocks of our flexible Viterbi decoder in Sections 3–5, a quantitative investi-
gation on the cost of flexibility is performed in Section 6. This investigation
is supported by a silicon implementation. A cost estimation of an alternative
architecture is also discussed.

2 Classification of Flexible Trellis Decoders

Several approaches have been made to incorporate flexibility in the design of
trellis decoders. We divide these attempts into the following categories: the first
two (m- and algorithm-flexible) are expected to operate in the low energy region
and therefore employ small constellations such as BPSK or QPSK. Coding is
based on rate 1/c convolutional codes, including punctured or concatenated
versions therefrom. The last category (bandwidth-flexible) inherently supports
larger constellations and different coding schemes, thus facing other design
challenges, as mentioned in the introduction for the case of TCM.

2.1 m-flexible Solutions

These approaches use one decoding algorithm and provide flexible error correc-
tion by varying the encoder memory m. For example, Chadha [24], Zhu [107],
and Hocevar [58] designed flexible VA-based architectures.

Chadha’s implementation provides a fully parallel solution (up tommax = 6)
and shuts down unnecessary parts when processing trellises with fewer states.
The extra hardware spent in the flexible designs is compared to a fixed design
with the same mmax. This overhead is at most 2.9%, which is not surprising
since it mainly accounts for shut-down logic and routing resources. What is
missing is an evaluation of the provided flexibility compared to fixed designs
with m < mmax. In this case, an increasing relative overhead should be en-
countered as m decreases. Supported code rates are 1/2 and 1/3. Code rate is
not a critical design parameter when used with antipodal constellations such
as BPSK and QPSK since the calculation of distances to the 2c code sequences

2 Classification of Flexible Trellis Decoders 85

is very simple, as shown in Part I. However, the design does not explicitly
provide puncturing resources.

Zhu’s reconfigurable decoder (Rc = 1/2, m = 6, . . . , 9) works in a folded
manner; that is, starting from a trellis unit with 8 ACS units working in paral-
lel, the processing is carried out time-multiplexed. According to the sequential
access scheme of the SMs, 5-level pipelining can be introduced in the feedback
loop of the ACS units. Reconfigurability is achieved by 4×4 switches that shuf-
fle the SMs between the ACS units and the global SM memory. These switches
are steered by a controller that provides the necessary schedule for a given m.
This controller is probably the most complex part of the implementation since
access patterns change in every iteration and for every encoder memory.

Hocevar’s design is a DSP coprocessor, which supports a variety of code
rates that are achieved by puncturing the basic 1/2, 1/3, and 1/4 convolutional
codes. m is variable from 4 to 8, and 16 states can be processed in parallel.
Generally, a processor’s flexibility is inherently larger than a tailored design
such as Chadha’s. As discussed in Chapter 3, the price for this flexibility is
paid by throughput degradation.

A different class of reconfigurability is the dynamically adaptive Viterbi
decoder investigated by Tessier [92]. It is an FPGA-based approach that can
be reconfigured externally to cope with varying channel SNR. The designs that
can be loaded range from m = 3, . . . , 13. Power is saved compared to a static
decoder by adaptively updating only a predefined portion of the trellis with
paths that have the least cumulative distance.

A flexible max-log-MAP decoder with mmax = 4 is presented in [54]. The
evaluation is carried out similar to [24], and hence the information about the
introduced overhead does not cover aspects missing in Chadha’s investigation.

2.2 Algorithm-flexible Solutions

A natural combination is the (soft-output) VA together with the (max-)log-
MAP algorithm since they share the main processing engine, the ACS opera-
tion. For example, Bickerstaff et al. [14] provide 256-state Viterbi and 8-state
log-MAP decoding. The trellis block processes 8 states in parallel, that is,
the Viterbi decoding is carried out time-multiplexed. Since this design is to
be (commercially) used in third generation mobile services, it includes several
communication interfaces and an evaluation of the cost of flexibility was not of
main interest.

In Cavalloro’s work [23] the combination of VA with an augmented soft-
output unit is investigated. Encoder memory is variable up to mmax = 8.
The approach is in principle based on the work of Chadha [24], that is, the
contribution of flexibility lies mainly in shut-down logic and routing resources.

86 Part III. Designing a Flexible Trellis Decoder

2.3 Bandwidth-flexible Solutions

A Viterbi processor for TCM codes is presented by Lou in [69]. It is widely
programmable and executes the main decoding operations sequentially. Flexi-
bility is achieved by look-up tables and some dedicated computational blocks.
32 states and both R2 and R4 processing are supported. Codes with a max-
imum of 8 subsets are allowed and two- or four-dimensional symbols can be
processed.

Miyauchi et al. [72] describe a fully integrated dedicated soft-input soft-
output processor, whose focus is on iterative decoding. It has many features
such as arbitrary coding polynomials, interleaving patterns, and constellation
configurations. Different classes of coding approaches are supported, paral-
lel/serial concatenated convolutional codes, turbo TCM [81], and serial concate-
nated TCM. The highest constellation considered is 8-PSK. Design challenges
in this approach are mainly concerned with the incorporation of R4-processing
to log-MAP decoding.

Our flexible Viterbi decoder also belongs to the bandwidth-flexible class. It
covers a wider range of transmission rates in order to adapt to both low- and
high-energy scenarios.

2.4 Performance Evaluation

In this section, the different approaches are compared in an energy–bandwidth
sense. Figure III–3 shows some implemented flexible trellis decoders and their
energy–bandwidth performance to achieve a BER of 10−5 in the AWGN chan-
nel. Transmission rates from Equation 2.1 are now related to bandwidth. It
is assumed that an AWGN channel use with J = 2 dimensions occurs every
symbol time Ts = Tb ·R. Here Tb is time per data bit. The number of data bits
is R = log2M ·Rc for convolutional and R = log2M− 1 for TCM codes. RF
bandwidth WRF = 1.3/Ts is normalized to Tb and includes excess bandwidth
introduced by 30% root-raised-cosine pulses. The Shannon AWGN capacity C
is also shown for comparison. Flexible decoders that principally support larger
constellations beyond QPSK but do not provide a (soft-output) demapper [94]
belong in a bandwidth sense to QPSK-systems.

From Figure III–3 note that m- and algorithm-flexible designs experience
throughput limitations as the channel SNR improves. They just trade required
energy for bandwidth, which is indicated by vertical lines. Throughput can
only be varied on a small scale. One solution is to employ higher constellations
together with (punctured) convolutional codes to gradually increase data rates.
However, compared to TCM, which was intended for higher constellations,
these systems are not as energy-efficient for the same BER, throughput, and
complexity. The BER curves in Figure 2.11 confirm this statement.

3 Branch Metric Unit 87

WRFTb (Hz-s/bit)

E
b
/N

0
(d
B
) C

Our work

[24]
[14]

[72]

[58]

[69]
m-/algorithm-flexible

Bandwidth-flexible

0.1 1 10
-5

0

5

10

15

20

Figure III–3: Energy–bandwidth performance of some flexible trellis
decoders for BER of 10−5. Shannon AWGN capacity C is drawn bold
for comparison.

Not surprisingly, [58] and [69] provide the highest flexibility since these are
programmable trellis processors. Realizable systems are visually bound by a
sphere. Note again that this flexibility degrades processing speed and power
consumption by several orders of magnitude compared to dedicated solutions
[37].

It is also noteworthy that systems become more complex to implement the
closer to capacity they get. Consider Miyauchi’s design [72], which apparently
provides a good energy–bandwidth trade-off with help of iterative decoding.
One must bear in mind, however, that iterative decoding schemes run multiple
times over a trellis, increasing latency and raw computational cost per decoded
bit. That is, for low-power low-cost applications as in WPAN, this design
is certainly overdesigned. The flexible Viterbi decoder described in our work
is a lower-complexity solution that adjusts to varying channel conditions by
providing several transmission rates using different constellations.

There could be many more dimensions added in Figure III–3, for example,
latency, computational complexity, energy consumption per decoded bit, and
so on. Such measures ultimately give an overall cost per decoded bit and
depending on what is crucial for a certain application, a design choice becomes
evident.

88 Part III. Designing a Flexible Trellis Decoder

3 Branch Metric Unit

The architectural discussion of the flexible Viterbi decoder starts by introduc-
ing an applicable distance measure in the context of TCM. An investigation
of symbol quantization follows. Its impact on cutoff rate as well as error per-
formance is evaluated, which ultimately leads to the required BM wordlength
that in turn determines the wordlength of the trellis datapath.

Throughout this section, consider two-dimensional quadrature modulations
that consist of two independent pulse amplitude modulations (PAMs) gener-
ated from orthogonal pulses. Dimensions i = 0, 1 relate to in-phase (I) and
quadrature-phase (Q) signal components, respectively.

To provide measures of likelihood for the state transitions, different met-
rics are appropriate for different channel models. In the AWGN channel, the
optimal distance measure is the squared Euclidean distance between received
channel value y and constellation symbol c,

1∑
i=0

(yi − ci)2, (III–1)

where ci is from the alphabet ofM -PAM. In case of binary signaling per dimen-
sion where ci ∈ {−1,+1}, recall from Section 2 in Part I that Equation III–1
simplifies to −∑i yici. For larger constellations, different c

2
i have to be taken

into account in the distance calculation. Here, possible simplifications use the
constellation’s bit mapping, commonly Gray, to determine soft bit values [94]
that can be used by the ML decoder. Due to TCM’s subset partitioning, assign-
ing such soft bit values is not meaningful since Gray mapping is only applied
to points in the same subset, not to the constellation itself. Furthermore, only
the distance to the nearest constellation point in a specific subset is considered
as BM for that subset in TCM decoding. This point has to be determined
for each subset before the BM calculations. Figure III–4 shows part of the lat-
tice Z

2, where Dmin denotes the minimum distance between lattice points. The
subset distribution is represented by circles, squares, and triangles. The largest
distance appears if the y matches a lattice point and the resulting maximum
attainable BM λmax is bound by a circle of radius 2Dmin.

For a given finite constellation (here part of 64-QAM), the situation is
slightly different. Assume that the received values are limited by the dynamic
range of the analog-to-digital (A/D) conversion. Receiving a value equal to a
corner point gives the largest distance (

√
10Dmin) to any point in the �-subset.

This is indicated by the solid quarter circle in Figure III–4. Depending on
the dynamic range, which ultimately determines the mapping of constellation
points with respect to the maximum number range, one might have to consider

3 Branch Metric Unit 89

Dmin
Q

I

√
10Dmin

2Dmin

Dynamic range of A/D conversion

{ε

y

Figure III–4: Maximum distance between a received point and con-
stellation point belonging to one of 8 subsets, which are represented by
circles, squares, and triangles.

an additional margin ε per dimension. This term will be included in the BM
calculations in the following subsection.

3.1 Quantization Issues

One method of wordlength design [74] is based on the cutoff rate R0, which is
a lower bound to capacity for any specific signaling constellation. Consider a
communication system using M -PAM at the transmitter and a receiver that
puts out noisy channel symbols quantized with q bits. This arrangement con-
stitutes a discrete memoryless channel (DMC) with M inputs and 2q outputs.
Let the M symbols be equiprobable (symmetric cutoff rate [66]). Thus

R0 = log2M − log2

 1
M

2q−1∑
i=0

M−1∑
j=0

√
P (i|j)

2

 , (III–2)

where the transition probabilities for AWGN are

P (i|j) =
∫
ri

1√
πN0

e−(y−sj)
2/N0 dy, (III–3)

and {sj} is the set of M equally spaced constellation points over the interval
[−√Es,+

√
Es]. A quantization scheme for this DMC is considered optimal for

90 Part III. Designing a Flexible Trellis Decoder

a specific choice of q and N0 if it maximizes Equation III–2. For simplicity,
assume a uniform quantization scheme with precision ∆. The thresholds that
bound the integration areas ri in Equation III–3 are located at either

0, ±∆, . . . ,±(2q−1 − 1)∆ (truncation),

or

±∆/2, . . . ,±(2q−1)∆/2 (rounding).

345

3, 4, 5

4, 5, 6

5, 6, 7

M = 4

M = 6

M = 8

0 0.1 0.2 0.3 0.4 0.5
0.8

1.4

2

2.6

∆

R
0
(b
it
)

Figure III–5: Cutoff rates for a DMC with M equally spaced inputs
(
√
Es = 1) and 2q uniformly quantized outputs. Eb/N0 is chosen for

desired quadrature BER of 10−5, see Figure III–1. Connected curves
are in increasing order of q from right to left. Vertical lines denote the
optimal ∆ for a chosen q found beside the line. The respective maximum
R0 for unquantized channel outputs is indicated by the horizontal lines.

An information theoretical approach could involve an evaluation of ∂R0/∂∆
to determine the ∆ that maximizes R0 given M , q, and N0. However, since
there is no analytical solution to the integral in Equation III–3 for ri < ∞,
numerical calculations have to be carried out to find the optimal threshold
spacing ∆, which in turn determines the dynamic range of the A/D conversion.
Figure III–5 shows the cutoff rates R0 for different M -PAM schemes. Eb/N0
is chosen to achieve a quadrature BER of 10−5. The corresponding M2-QAM

3 Branch Metric Unit 91

schemes are found in Figure III–1. Here, 36-QAM is reduced to 32-CR by
removing the four corner points. This gives a lower energy constellation, whose
number of points is a power of two. The vertical lines denote the optimal ∆
given q. The upper limit on R0 for unquantized channel outputs is indicated
by the horizontal lines. For example, given M = 4 and q = 4, the optimal ∆ is
around 0.135, which yields a dynamic range of 16×0.135 = 2.16. ∆ is based on
the estimated noise. Considering the precision of the estimation, it is already
seen from Figure III–5 that a deviation towards a slightly higher ∆ than the
optimal one is more tolerable. That is, the slope of a cutoff rate curve is rather
flat after its maximum, whereas it is comparably steep before it.

Having found a range of feasible ∆, one can evaluate the degradation in BER
due to this channel quantization. Furthermore, to lower the complexity of the
distance calculation in Equation III–1, which involves squaring, a suboptimal
metric is used for the higher constellations. It considers only the absolute
distances in either dimension and Equation III–1 is replaced by

|y0 − c0|+ |y1 − c1|. (III–4)

Table III–1 summarizes the expected loss in Eb/N0 compared to Equation III–1
and unquantized channel outputs. As expected, for a certain constellation the
loss becomes smaller as q increases, and larger constellations generally require
finer quantization. QPSK together with binary convolutional coding is not
listed in Table III–1 since it is well known that 3 bits symbol quantization is
usually sufficient for good performance [57]. Following Equation I–2, a rate 1/2
convolutional code with two 3-bit code symbols therefore requires 4 bits for the
BM.

In order to determine λmax, one can consider two approaches. First, to
guarantee negligible performance degradation for all schemes, one could choose
the q that leads to the largest tolerable degradation for the largest constel-
lation, in this case 64-QAM. Then, the overall loss in Eb/N0 is no worse in
all transmission modes. Or secondly, one could vary the wordlength of the
A/D-samples to achieve the required tolerable degradation for each mode.

Pursuing the first approach, we assume q = 7 bits to perform close to
optimal for 64-QAM; see Table III–1. This choice provides negligible degrada-
tion for the other two constellations. In case the largest q-bit number exceeds
the number assigned to the largest constellation point in either I or Q, an
additional factor ε has to be added per dimension. From Figure III–4 and
Equation III–4, the largest BM becomes

λmax = 4Dmin + 2ε. (III–5)

Choosing ∆ according to Figure III–5 both to maximize R0 and achieve equidis-
tant spacing between constellations points yields Dmin = 18. Then λmax re-

92 Part III. Designing a Flexible Trellis Decoder

Table III–1: Loss in Eb/N0 for BER of 10−5 for uniform symbol quantization
with q bits and optimum choice of ∆. Absolute distances are used according
to Equation III–4. As a reference, row q = ∞ shows the required Eb/N0 with
unquantized inputs and Euclidean distance as in Equation III–1.

q 16-QAM 32-CR 64-QAM

∞ 8.7 10.7 13.2

7 ≈ 0 ≈ 0 0.05

6 ≈ 0 0.05 0.3

5 0.15 0.31 1.15

4 0.4 0.85 n/a

3 1.4 n/a n/a

quires at least %log2 72& = 7 bits. If the A/D-conversion uses its dynamic range
efficiently, ε is small compared to the first term in Equation III–5 and the num-
ber of bits will be sufficient. Using the same ∆ also for 16-QAM and 32-CR
increases the number of quantization levels between two constellation points so
that 8 and 7 bits are now required for the BMs. That is, the lowest constel-
lation needs the largest number of bits, which means that the architecture is
overdesigned.

Considering the second approach, that is, adjusting the wordlength of the
A/D-samples, assume that 16-QAM and 32-CR employ q = 5 and q = 6 bits,
respectively. This yields a Dmin of 9 and 13, and the largest BM becomes
at least 36 and 52. λmax can now be represented by 6 bits, and the largest
BM range applies to the highest constellation. The candidate q are shaded in
Table III–1.

3.2 Subset Decoding and Signal Memory

In contrast to binary convolutional codes, which carry code symbols along trellis
branches, TCM codes carry subsets that themselves consist of signals. Before
BM calculations can be done one has to determine the most likely transmitted
signal for each subset. This process is called subset decoding. For example, the
decision boundaries for subset C0 are depicted in Figure III–6 for the different
constellations. The I and Q channel values are y0 and y1. In order to find
the most likely subset point, comparisons of y1 − y0 and y1 + y0 to boundaries
are needed. Furthermore, if there are more than two points per subset, addi-
tional comparisons are required to resolve ambiguities. Points that lie in the

3 Branch Metric Unit 93

shaded area in Figure III–6(b) yield the same comparison result if one only
considers diagonal boundaries. Hence, for 32-CR and 64-QAM, comparisons
with y1 and y0 describe the necessary horizontal and vertical boundaries. To
determine the most likely points for the other subsets, one can either translate
the input symbols relative to C0 or simply adjust the comparison values for the
boundaries.

I

Q

(a)

Q

I

(b)

Q

I

(c)

Figure III–6: Decision boundaries for subset C0 (squares) for (a) 16-
QAM, (b) 32-CR, and (c) 64-QAM constellations. For example, the
shaded part in (a) shows the region where y1 − y0 < 2/3.

To evaluate the computational effort, consider the lattice Z
2 with an M2-

point constellation that is divided into 1 < P ≤M2 subsets with M2/P points
per subset. With ω = log2M2/P , this setup requires

Ω =

{
(2ω − 1) + 2min{ω − 1, 2}, for P = 22�−1

0 + 2 (ω − 1), for P = 22�
(III–6)

slicing operations (comparisons with a constant) along the decision boundaries.
The number of comparisons in Equation III–6 is split into two terms: the first
relates to diagonal boundaries and the second to horizontal/vertical bound-
aries. For P = 22� = 4, 16, 64, . . . subsets, there are only horizontal/vertical
boundaries. The boolean comparison results are demapped to a unique point
in the subset.

The complete architecture for the BM unit is depicted in Figure III–7. In
total there are ΩP slicing operations and P BM calculations according to Equa-
tion III–1 or Equation III–4. These BMs appear as λ = {λj} for j = 0, . . . , P−1
in Figure III–2. The additional hardware due to TCM decoding is indicated in

94 Part III. Designing a Flexible Trellis Decoder

DP−1

D0

y1 − y0

y0
y1

y1 + y0

︸ ︷︷ ︸
ςj

λj
...

...

Subset decoder

(III–1)
or

(III–4)

calculation
Distance

Cmp0

CmpΩ−1

D
em

ap
pe
r

Ω
→

(M
2
/P

:1
)

y

c

ς

Figure III–7: Architecture of the BM unit for the flexible decoder. The
gray part is the additional hardware required due to the use of higher
constellations and TCM.

gray in Figure III–7. A decoder for subset Pj consists of Ω comparisons and
a demapper (look-up table) that chooses from these comparison bits one out
of M2/P constellation points. This point c is used for distance calculation to
yield the BM λj . The calculations needed for subset decoding, y1 − y0 and
y1 + y0, can be reused in case of rate 1/2 convolutional coding. These results
are equivalent to the BMs for code symbols {+1−1} and {−1−1}, respectively.
The remaining two metrics are derived from these by negation.

As already mentioned in Section 1, TCM introduces overhead in this flex-
ible architecture: the unit that stores the candidate surviving signals. These
“uncoded” bits represent subset points at each trellis stage and together with
the reconstructed survivor path form the decoded output sequence. The unit
comprises a memory that stores the log2M2/P bits ςj from the subset decoder
for all P subsets. The length of this first-in first-out (FIFO) buffer equals the
latency of the SP unit. For the implementation to be power-efficient, this part
has to be shut down when TCM is not employed.

4 Trellis Unit

The trellis unit consists of ACS units that are arranged and connected with each
other in a butterfly fashion. These units deliver updated SMs Γ(S, k + 1) and
decisions D based on previous SMs Γ(S′, k) and present BMs λ. According to
the considerations in the introduction, this unit has to cope with two different
code rates, 1/2 and 2/3, and hence both R2 and R4 butterflies are to be
processed.

The design objective is the following: given a fixed R2 feedback network for
the SMs, how can R4 butterflies be efficiently mapped onto this architecture,

4 Trellis Unit 95

so the existing interconnections can be reused? In this section, the issue of
rate-flexibility in the trellis unit is discussed and a framework is derived for
emulating R4 butterflies by means of R2 butterflies. Note that almost all
practical trellis codes are based on either R2 or R4 butterflies. Therefore, the
investigated architecture also extends to other codes.

4.1 Considered Trellises

The base architecture for the flexible trellis unit is an R2 architecture for the
systematic 8-state rate 1/2 convolutional code with tap set (g0,g1) = (54, 74)
realized in controller form, where g0 are the feedback taps. The trellis consists
of butterflies with state transitions according to Figure 2.6(a) in Chapter 2.

The systematic encoding matrix of the TCM code is the one from Equa-
tion 2.7. The TCM subset selector is realized in observer form (see Figure 2.3),
since this maintains the number of memory elements of the underlying system-
atic code if b > 1. However, state transitions in the observer form depend on
the tap set. That is, the feedback network has to be flexible if one wants to
process both R2- and R4-based codes on a single R2 architecture. This can be
done by introducing additional routing resources that modify the permutation
in R4 mode to feed back the state metrics in correct order in both process-
ing modes. In this design example, though, the state transitions of the TCM
subset selector allow the reuse of the trellis feedback connections of the binary
code. Figure III–8 shows the interconnection structure of a trellis stage for the
considered encoders. It is seen that the feedback connections for both R2 and
R4 architectures are the same, for example, Γ(2, k+1) in R4 mode is fed back
along the same connection as Γ(1, k + 1) in R2 mode.

0 00 0
2
4
6

1
3
5
7

1
2
3

4
5
6
7

1
2
3

4
1
5

4
5
6
7

2
6
3
7

R2 R4 R4 R2

Γ(S, k + 1)Γ(S′, k)

Figure III–8: Feedback connections for R2 and R4 trellis processing.

96 Part III. Designing a Flexible Trellis Decoder

4.2 Processing Framework

In the following, an R4 butterfly is considered which uses BMs λi for i =
0, . . . , 3. As in Figure 2.6, there are N/2b butterflies in a trellis, and thus, for
N = 4 and b = 2, there is only one R4 butterfly. Since n ∈ [0, N/2b − 1], we
have n = 0 and the state labels become 0, . . . , 3.

To update one state in an R4 butterfly, one can carry out all six possi-
ble partial comparisons in parallel [15]. Four such operations are needed to
calculate a complete R4 butterfly as in Figure 2.6(b). However, this leads to
inefficient hardware reuse in a rate-flexible system due to the arithmetic in the
4-way ACS units. In [37] area–delay complexity of R2- and R4-based butterfly
processing is evaluated. Two cases are considered. One where an R2-based
trellis is processed with R2 processing elements (PEs), and one where two R2
trellis stages are collapsed into one R4 stage [15], which is processed with the
6-comparator approach. For a standard cell design flow (this includes FPGA
implementations), R2 PEs are found to be the more cost-efficient, whereas a
full-custom datapath as in [15] benefits the R4 6-comparator method. Since
platform independence is an important issue, we use an architecture that con-
sists of R2 butterfly units. In Section 6.3, there is an architectural evaluation
of the R4-based approach and its implications.

Generally, a 4-way ACS can be carried out in two successive steps: in the
first step a pair of cumulative metrics (ACS) is evaluated and discarded; then
in the second step, one of the surviving metrics is discarded, which corresponds
to a compare-select (CS) operation in Figure III–9. This procedure is a decom-
position into R2 operations that are separated in both state and time. For
step (k → k�), the split into four R2 butterflies achieves the cumulation of the
SMs with all four BMs. Then, in step (k� → k + 1), the partial survivors are
compared and the final survivors selected. Here, Figure III–9(a) updates states
0 and 3, and Figure III–9(b) updates states 1 and 2.

To capture these processing steps formally we use the following notation.
The state connectivity of an R2 butterfly is defined in Figure 2.6(a). Assume
that the two states at time k are named u′ and v′ with state metrics Γ(u′, k) and
Γ(v′, k), respectively. The two ACS operations leading to two updated state
metrics for states u and v at stage k + 1 are expressed as butterfly operation
Bu′v′ . Without loss of generality, the λi are distributed as in

Bu′v′ =
(
Γ(u, k + 1)
Γ(v, k + 1)

)
=

min

(
Γ(u′, k) + λ0
Γ(v′, k) + λ1

)
min

(
Γ(v′, k) + λ2
Γ(u′, k) + λ3

)

 . (III–7)

4 Trellis Unit 97

0

1

2

3

0

1

2

3

k k + 1k�

λ0

λ0

λ3

λ1

λ1

λ2
λ2

λ3

ACS CS

B32

B01

(a)

0

1

2

3

0

1

2

3

k k + 1k�

λ1

λ0

λ3

λ2
CS

ACS

B23

B10

(b)

Figure III–9: A decomposed radix-4 butterfly and the two partial
computations leading to the updated metrics for states 0 and 3 in (a)
and 1 and 2 in (b). As an example, the necessary operations to update
state metric 0 are drawn bold in (a).

98 Part III. Designing a Flexible Trellis Decoder

It is already seen from Figure III–9 that there are four such R2 butterflies
between k and k�, so four operations as in Equation III–7 are needed. For
example, B01 is shown in Figure III–9(a), that is, u′ = 0 and v′ = 1.

Processing the R4 butterfly based on Equation III–7 preserves the com-
patibility with the base R2 architecture. The scheme for obtaining all partial
survivors is then expressed as

B′ =
(
B01 B10

)
, (III–8)

where the columns determine the instance of an iteration. So far we have only
computed half of the partial survivors needed; to complete the R4 butterfly
another unit has to carry out

B′′ =
(
B23 B32

)
. (III–9)

The operations in Equation III–8 and Equation III–9 guarantee that all state
metrics at stage k are added to all BMs, that is, 16 partial sums are reduced
to 8 partial survivors at intermediate stage k� by means of CS operations. The
final surviving state metrics at stage k + 1 are obtained by CS operations on
the hitherto surviving metric pairs. Note that the partial survivors are not
altered and therefore the final state metrics are not changed compared to a
straightforward implementation.

4.3 Architectural Issues

Consider a trellis unit that updates N states in parallel by means of N/4
PEs, each consuming and producing 4 state metrics. A PE is configured with
butterfly (Bf) units of different radices as in Figure III–10. In Figure III–10(c),
vec means the stacking of a matrix columnwise. Either two Bf2 units, two rate-
flexible Bf2/4 units, or one Bf4 unit are employed. Note that the Bf4-based
architecture can also be configured for rate-flexible processing, whereas a Bf2-
based design is solely intended for R2 processing and is not discussed further.
That is, the basic PEs are ACS units that consume 4 inputs at a time (4-way
ACS units) and thus the cumulation is done in one step.

R2-based Approach

In the rate-flexible architecture using Bf2/4, all partial survivors are calcu-
lated during two cycles, and in the third cycle the final update takes place.
As an example, the operations to update state metric 0 are drawn bold in
Figure III–9(a). The partial survivors needed for the final CS are created at
instance 0 by operation B′ and at instance 1 by B′′. These operations are
carried out in different butterfly units; that is, the partial survivors have to

4 Trellis Unit 99

Bf2

B01

Bf2

B23

(a)

Bf2/4

B′

Bf2/4

B′′

(b)

Bf4

ve
c
(B

′
B

′′

B
′′
B

′)

(c)

Figure III–10: Butterfly units that are instantiated inside a processing
element. A setup as in (a) supports only R2 processing, setups (b) and
(c) are rate-flexible.

be stored temporarily. The appropriate routing for the final CS is according
to the required ordering of the updated SMs. Here, the partial survivors are
brought together by means of I/O channels between adjacent butterfly units
as indicated in Figure III–10(b).

Figure III–11 shows the rate-flexible butterfly unit Bf2/4. Its arithmetic
components, adders and the CS units, are identical to the ones in a Bf2 unit;
that is, if the gray parts are removed, one gets a standard Bf2 unit. To cope
with a decomposed R4 butterfly, routing resources are provided to distribute
the partial survivors as dictated by the BM distribution and the state transi-
tions. The input multiplexers (MUXes) shuffle the two input SMs to guarantee
their cumulation with all four BMs. The 4 : 2 MUXes in front of the CS units
select whether the partial survivors at stage k� are to be captured into the
routing unit Perm or the final comparison at stage k + 1 is to be performed.
To carry out Equation III–8 or Equation III–9, Perm is fed during two cycles.
Then in the third and final cycle, the partial survivors are compared in the
CS units. Here, the signals I and O provide the connections to the adjacent
butterfly unit to carry out the comparison with the desired pairs of partial
survivors. For example, O0 is connected to I 0 in the adjacent butterfly unit.
The CS operations at steps (k → k�) and (k� → k + 1) in Figure III–9 are
executed by the same CS unit, thus saving hardware.

The unit Perm simply consists of two tapped delay lines. If all SMs can
be accessed in simultaneously, for example, SMs are stored in a bank of regis-
ters, these registers can be reused to temporarily store the second intermediate

100 Part III. Designing a Flexible Trellis Decoder

sel CSΓ(u′, k)

λi+2

d

λi

a
b

CS

c

CS

Γ(u, k)

I

O

λi+6

λi+4

sel SM

sel CS

Γ(v′, k)

sel SM Perm

Γ(v, k)

Figure III–11: The rate-flexible butterfly unit Bf2/4. An R4 butter-
fly is updated in three clock cycles. The shaded blocks are the overhead
compared to an R2 butterfly unit Bf2. The connections for the rout-
ing block Perm apply to one of the two pairs of Bf2/4 in the design
example.

4 Trellis Unit 101

survivors. Hence, Perm would be reduced to only two storage elements that
capture the first intermediate survivors. If it turns out that the metric in the
global register is the surviving one, the final update can be suppressed and no
switching power would be consumed. On average, 50% of the final updates are
superfluous.

In order to reuse the feedback network in Figure III–8 for the TCM code,
Perm carries out the same permutation in a pair of adjacent butterfly units.
Both code trellises have 8 states and thus there are two such pairs processing
4 states each. For pair i = 0, the partial survivors on the top rail, a and b, are
devoted to the same butterfly unit, whereas the bottom rail survivors, c and d,
are assigned to the adjacent butterfly unit. For pair i = 1, it is vice versa. Now
the design fits seamlessly into the base architecture. Furthermore, the survivor
symbols to be processed by the SP unit become equivalent to the information
symbols. It will be seen that this is beneficial for the chosen implementation
of the SP unit.

The required order of state metrics can vary for different trellises. The
butterflies Bu′v′ in Equation III–8 and Equation III–9 can be calculated in
any other order and the partial survivors needed for the updates are shuffled
accordingly. Perm allows 4! = 24 possible permutations to handle these cases.
Thus it becomes possible to cover a wider range of encoders. If the decoder
implementation has to cope with different encoders and routing requirements,
Perm has to be programmable.

It was mentioned that the permutation transforming previous states S′

into S is the same for both codes considered. This is not generally true, and
additional routing is necessary if the required permutation cannot be obtained
by the Perm units. Then, SMs have to be exchanged between PEs. Essentially,
this is done by inserting (in the worst case N) MUXes to either choose the R2
or R4 state connections. Depending on the application, this can be fixed or
programmable.

Finally, a controller is needed to provide control signals to the MUXes
(sel SM and sel CS) and clock enable signals to registers. Clocking is only
allowed when input data is valid so that no dynamic power is consumed unnec-
essarily. In R2 mode, these signals are kept constant. Neglecting the controller,
the rate-flexible butterfly unit only adds six 2 : 1 MUXes (a 4 : 2 MUX equals
two 2 : 1 MUXes) and four (two if the global registers are reused) registers on
top of a Bf2 unit, and there is no arithmetic overhead.

R4-based Approach

The presented flexible R2-based approach is now compared to an R4 archi-
tecture, which is based on Bf4 units that utilize four 4-way ACS units as in
Figure III–10(c). To account for the intended use in a rate-flexible system,

102 Part III. Designing a Flexible Trellis Decoder

similar control mechanisms have to be provided as in the R2-based approach.
Hence, a straightforward two-level-CS implementation is considered. Depend-
ing on the desired throughput, a butterfly can be updated in one or two clock
cycles, which gives the well-known area–delay trade-off. Here, a two-cycle up-
date is employed since this maintains the critical path of the R2-based approach
and one CS unit can be reused.

λi
sel CS

Γ(u′, k)

λi+2

CS
Γ(v′, k)

λi+4

CSΓ(x′, k)
Γ(w′, k)

r2/r4λi+6

fr
om

/t
o

gl
ob
al

re
gi
st
er

Figure III–12: A flexible 4-way ACS unit for use in Bf4 of Figure III–
10(c). Four such units are needed for an R4 butterfly to be updated
in two clock cycles. The shaded blocks are the overhead compared to a
2-way ACS unit.

Figure III–12 shows the flexible 4-way ACS unit. In R4 mode, two partial
survivors are captured in the first cycle. At time k�, the global SM register in
the upper path carries the temporary survivor from either state u′ or v′ and the
shaded register the one from either state w′ or x′. In the second cycle, these
survivors are compared to yield the final state metric at k+1. In R2 mode, only
the upper ACS path is utilized and to be equally power-efficient, one needs to
prevent switching activity in the lower ACS path. This is done by guarding the
inputs of the adders with AND-gates, which is illustrated by the gray shading.
The signal r2/r4, which determines the processing mode, controls whether the
addition block is enabled or not. Compared to a conventional 2-way ACS unit,
two adders, a CS unit, a register, and a 4 : 2 MUX are counted as overhead.

Table III–2 lists the necessary hardware to update an R4 butterfly for the
two approaches. The R4-PE requires twice the number of additions compared
to the R2-PE, considering that a CS unit consists of an adder and a MUX. The

4 Trellis Unit 103

number of MUXes is the same, whereas, in the worst case, twice the number of
registers are required in the R2-PE. As mentioned, this can be circumvented
by reusing the global SM registers.

Table III–2: Necessary hardware to update an R4 butterfly for the R2- and
R4-based approaches. Number of MUXes is expressed as number of equivalent
2 : 1 MUXes. A CS unit consists of an adder and a MUX.

R2 PE R4 PE

Add. 8+4 16+8

MUX 12+4 8+8

Reg. 8(4) 4

Cycles 3 2

4.4 Evaluation of Synthesized Trellis Blocks

To show the effects of the architectural considerations in an actual implemen-
tation, the trellis blocks are synthesized using a design kit from Faraday for
the United Microelectronics Company (UMC) 0.13 µm digital CMOS process.
Evaluations apply to synthesized cell area, where different throughput require-
ments are put as design constraints.

To avoid manual normalization of the otherwise unbounded wordlength
increase of SMs in the trellis datapath, the modulo normalization technique
from [56] is used. Details of this approach were discussed in Part I.

The datapath wordlengths vary due to varying symbol quantization for
the different constellations. We choose q = 7 bits, which leads to acceptable
degradation for 64-QAM according to Table III–1. The largest representable
unsigned BM is λmax = 127. From Equation I–16 and Equation I–18, we
see that 10 bits are needed to represent the SMs. This wordlength is used for
synthesis. Note that for 16-QAM and 32-CR (q = 5, 6), only 9 bits are required
for the SMs, whereas in the QPSK case (q = 3), the wordlength turns out to be
7 bits. That is, in order to be power-efficient for both convolutional and TCM
decoding, one could slice the datapath to 7 plus 3 extension bits, and prevent
the latter bits from toggling in QPSK mode.

Figure III–13 shows the required cell area for synthesized trellis blocks that
process R2 and R4 butterflies. Here, tk→k+1 denotes processing time for a
trellis stage from k to k + 1. The Bf2/4 architecture takes 3 cycles for an R4
update, whereas the Bf4-based one only needs 2 cycles. For an R2 update,
both architectures need one clock cycle. It is seen that the Bf2/4 architec-

104 Part III. Designing a Flexible Trellis Decoder

tk→k+1 (ns)

C
el
l
ar
ea

(1
04
µ
m
2
)

Bf2/4

Bf4

R4 mode

R2 mode

4880 µm2

0 2 4 6 8 10
1.2

1.5

1.8

2.1

2.4

2.7

3

Figure III–13: Cell area versus time for a decoding stage in R2 or R4
mode for architectures based on different radices.

ture becomes somewhat larger than the Bf4 approach as the requirement on
tk→k+1 in R4 mode becomes tighter, that is, less than about 4.5 ns. However,
the provided throughput at this stage is beyond the speed requirement of con-
sidered applications, for example, the high data-rate WPANs discussed in the
introduction. In the figure, this means that the actual design space to be con-
sidered is to the right hand side. Here, the Bf2/4 architecture is more suitable
due to the lower area requirement of about 27% (4880 µm2). Furthermore, this
approach already provides routing resources (Perm) to support a wider range
of codes, that is, the four state metrics belonging to an R4 butterfly can be
shuffled by Perm in any order to maintain compatibility to the feedback con-
nections of the basic R2 architecture. Considering R2 processing, the Bf2/4

architecture is better suited even down to a tk→k+1 of about 1.4 ns.

Both designs need a controller that provides control signals for MUXes and
clock enable. The controller for the Bf2/4 architecture is about three times
larger than the one needed when using Bf4 units. This is mostly due to the
more advanced clock enabling strategy in the former design. However, since a
controller is instantiated only once, it is a negligible contribution to the overall
area, especially if the state space grows larger. In the R2- and R4-based designs,
the controllers are always smaller than 3% of the total design size.

5 Survivor Path Unit 105

5 Survivor Path Unit

Some basic algorithms for SP processing, namely register-exchange (RE) and
trace-back/trace-forward (TB/TF), were already discussed in Part II. Recall
that L denotes the necessary decoding depth of a convolutional code after
which the survivor paths are expected to have merged with sufficiently high
probability. In this section, the necessary depth is determined by simulations.
Furthermore, to cope with rate flexibility, specific architectural trade-offs are
investigated for this unit.

5.1 Decoding Depth

Rate 1/2 codes need to be observed over a length of around five times the
constraint length of the code [57]. To estimate the largest necessary L for both
code rates (1/2 and 2/3), we compare TB/TF and RE approaches and their
expected performance degradation for the different transmission schemes, as
shown in Figure III–14. Eb/N0 is set to the theoretical value that gives BER
10−5. It is seen that both approaches do not need more than L = 20. The
degradation of RE compared to TB/TF for smaller decoding depths is caused
by using fixed-state decoding, where the decoded bit is always derived from a
predefined state. This is less complex than taking a majority decision among
all RE outputs and saves memory by neglecting bits connected to states that
cannot reach this predefined state at step L. If one took a majority decision,
the performance of RE and TB/TF is the same.

5.2 The Designed Rate-flexible Survivor Path Unit

For this design, the RE approach is chosen since the number of states is rather
low. From the point of view of the additional subset signal memory needed
for TCM, the least overhead is introduced since the decoding latency is by
far the lowest. If Rmax denotes the maximum rate of the TCM transmission,
L× (Rmax − b)P extra bits are required, whereas three times more are needed
for a TB/TF approach with one TF unit because its latency is three times
higher. In this design Rmax equals 5 bits per two dimensions for the 64-QAM
constellation.

Additionally, for TCM a demapper has to be employed that delivers the
most likely subset signal at a certain time. This is a MUX which chooses a
subset signal depending on the decoded subset number from the SP unit. Recall
that for convolutional decoding, b information bits are decoded every cycle. In
case of TCM decoding, however, b+ 1 must be decoded per trellis stage since
the subset number consists of b+ 1 bits. Hence, the RE algorithm must store
in total (b+ 1)NL bits.

106 Part III. Designing a Flexible Trellis Decoder

TB/TF

RE

QPSK
16-QAM
32-CR
64-QAM

L

B
E
R

12 16 20 24

10−2

10−3

10−4

10−5

Figure III–14: BER performance for RE and TB/TF algorithms and
decoding depth L. Assumed Eb/N0 for the TCM schemes that use rate
2/3 subset selectors appears in Table III–1 in row q =∞. For the Gray-
mapped QPSK scheme with rate 1/2 convolutional coding, the Eb/N0 is
5.4 dB.

5 Survivor Path Unit 107

To reduce memory, an alternative approach for TCM decoding only consid-
ers b information bits per RE stage as in the case of convolutional decoding.
Since there are 8 subsets in our case, a subset number consists of 3 bits z2, z1, z0
(Figure 2.10). The two most significant bits (MSBs) are the uncoded informa-
tion bits u2, u1 of the systematic rate 2/3 subset selector from Figure 2.3.
The RE network now provides an estimate û2, û1. Feeding these bits into the
original subset selector yields the estimated coded bit ẑ0. That is, the subset
number is complete and one can decide the most likely subset signal.

Once there is a deviation from the correct path, a distorted sequence for the
coded bits is created in the decoder, which in turn chooses wrong subset signals
during the error event. Although the error event for the uncoded bits can be
quite short, the resulting event for the decoded subset number becomes much
longer since the encoder has to be driven back into the correct state. From
examination of the encoder properties, 50% of the coded bits are expected to
be wrong during this event. Simulations show that the alternative approach is
quite sensitive to the SNR, which determines the number of unmerged paths
at depth L that cause these error events. Hence, the decoding depth has to be
increased, eventually to the point where the total number of registers is larger
than in the case where b + 1 bits were processed per RE state and stage. For
the Eb/N0 considered, however, it turned out that L is at least 24, that is, the
total number of stored bits becomes 384. This is 20% less than for the original
approach with L = 20, which gives 480 bits in total. The latter’s robustness,
on the other hand, is more beneficial for this implementation.

Which radix is most beneficial for a building block in the RE network?
Recall the decomposition approach from the trellis unit in Section 4, which
saved arithmetic units at the cost of a slight increase in storage elements. One
is tempted to apply the same approach to the R4 RE network. Again, one
wants to break the R4 structure into R2 blocks. Note that in an RE network
there is no arithmetic, and, contrary to the trellis unit, not only one but in total
L duplicates of a trellis stage are connected in series. Per trellis stage, there
are 4 additional bits to be stored per butterfly and there are N/2b butterflies
per stage. This overhead is not acceptable in this implementation. Therefore,
we will pursue a straightforward R4 implementation of the RE network.

An architecture for the R4 RE network is depicted in Figure III–15(a). The
network is visually split into three separate slices, to represent the processing of
the three survivor path bits representing a subset. Two of these slices are con-
sidered overhead for binary convolutional codes. The basic processing element
of a slice consists of a 4 : 1 MUX (equals three 2 : 1 MUXes), connected to a
1-bit register. Expressed in terms of 2 : 1 MUXes, the hardware requirement
for this approach is 9NL MUXes and 3NL registers. However, the network
can be improved by matching it to the throughput of the trellis unit. Recall

108 Part III. Designing a Flexible Trellis Decoder

. . .

. . .

...
...

...

. . .

. . .
RE2

...
...

L2/3 − L1/2

. . .

...
...

D

In
it
R
E
0

L2/3

(a)

...

. . .

...
. . .

. . .

D

...
...

L2/3 − L1/2

In
it
R
E
0

L2/3

In
it
R
E
2

In
it
R
E
1

(b)

Figure III–15: Two RE architectures to suit the combined convolu-
tional and TCM decoder. (a) shows the straightforward approach. The
second architecture in (b) is matched to the throughput of the trellis
unit.

6 Hardware Evaluation and Discussion 109

that R4 processing takes 3 clock cycles and thus the RE update can also be
carried out sequentially; that is, the registers can be placed in series such that
three cycles are needed to update the complete survivor sequence, as in Fig-
ure III–15(b). The hardware requirement is dramatically lowered since 66%
of the MUXes and interconnections become obsolete. At the same time, the
utilization for both modes is effectively increased.

Were it only for R4 processing, the sequential elements could be simply re-
alized as edge-triggered master-slave flip-flops. However, R2 processing, which
allows only one cycle for the survivor path update, requires the first two reg-
isters to be bypassed. There are two solutions to the problem: either one
introduces another 2 : 1 MUX in front of the third register in a stage, or the
first two sequential elements in a stage are latches that are held in transparent
mode. Since flip-flop-based designs have easier timing and testability, the first
approach is applied.

Parts of the RE network can often be disabled since the decoding depth L of
the rate 1/2 code is expected to be less than for the 2/3 code. This is indicated
by the shaded parts in Figure III–15. However, following the simulations in
Figure III–14, we choose L = 24 for both code rates to have some extra margin
for varying SNR. The initial values fed into the network (Init REi) are derived
from the decision bits D and, in case of R4 processing, state numbers.

6 Hardware Evaluation and Discussion

In this section, it is first studied how and in which parts an increased flexibility
impacts the design. Then a chip implementation is presented.

Consider designs that provide up to three settings to adapt to varying chan-
nel conditions. For low SNR, rate R = 1 (data bits per two-dimensional channel
use) is employed, which uses a rate 1/2 convolutional code together with Gray-
mapped QPSK. A rate R = 3 mode is incorporated in the design in case there
is higher SNR. In addition to the previous setup, TCM with a rate 2/3 subset
selector and 16-QAM as master constellation is provided. On top of this, the
third mode uses TCM with 64-QAM, thus adding R = 5. In the following, the
different designs are named by their maximum transmission rate. Note that
design one is fixed since it only provides R = 1, whereas three and five are
flexible. Note that five includes three includes one, that is, there is no extra
hardware needed to run a design at a lower transmission rate.

Recall from Section 4 that the architecture of the trellis unit consists of R2
PEs. Thus, the processing for the convolutional code in system one is one
symbol per cycle. However, the other two systems need to support R2 and
R4 processing. The trellis unit determines the computation rate of the whole
system, which becomes one symbol per three cycles for R4 processing. Having

110 Part III. Designing a Flexible Trellis Decoder

already discussed implementation aspects for trellis and SP units, we now turn
to trade-offs in the BM unit.

In Section 3 it was shown that the BM unit requires additional resources
for designs three and five because of TCM’s subset decoding in combination
with larger constellations. Additional hardware resources due to flexibility can
be minimized by matching the rates of the processing units in the designs. This
is done by interleaving the BM calculations and reusing the subset decoding
units for the other subsets.

Subset decoding for 16-QAM is simply an MSB check of y1 ± y0. This
comparison unit is reused for 64-QAM, where the maximum number of bound-
aries is 9 according to Equation III–6 and Figure III–6(c).† Simulations show
that removing the 4 extra horizontal/vertical comparisons needed to resolve
ambiguities in 64-QAM has no noticeable effect on the overall BER.

With the given subset distribution, some slicing operations can be reused
for a pair of subsets; for example, for C4 and C6 in Figure 2.8, the comparison
y1 − y0 < 0 is used in both cases. For 64-QAM, there are up to three joint
comparison results for the diagonal boundaries y1−y0 (see Figure 175 in [101]).
It is therefore beneficial to process such subset pairs together in one cycle.
Subset decoding units are reused by translating the input symbols, here only y0,
for the subset pair in question. Two operations are required to form y0±Dmin;
in the first cycle y0 +Dmin is processed and in the second y0 −Dmin. Thus, in
total it takes three cycles to decode ςj and calculate λj for all subsets. Now the
computation rate is matched to the trellis unit. Note that a latency of three
cycles is introduced by this hardware sharing, which has to be accounted for
in the depth of the subset signal memory.

Since the processing in the BM unit is purely feedforward, it can be easily
pipelined such that the throughput of the design is determined by the feedback
loop of the trellis unit. Therefore, two additional pipeline stages were intro-
duced and the depth of the subset signal memory was adjusted accordingly.
This memory could be partitioned in order to efficiently support 16-QAM and
64-QAM, which use 1 and 3 bits to specify a subset signal, respectively. The
required memory width is the number of subsets times the maximum number
of subset signal bits, that is, 8×3. Based on area estimates from custom mem-
ory macros, a single 24 bit wide implementation gives less overhead than three
separate 8 bit wide blocks. Nevertheless, memory words are partitioned into 8
bit segments that can be accessed separately and shut down to save power. To
account for all latency in the flexible designs (4 pipeline stages), a single-port

†From Figure III–6 it is also seen that 32-CR would need an additional two slicers, which
are not used by the other two constellations, causing an overhead of 18% for the slicers.
To lower the already high complexity of the BM unit, 32-CR is thus omitted in the flexible
designs.

6 Hardware Evaluation and Discussion 111

memory of size 28×24 is used. Since simultaneous read and write accesses are
not allowed in single-port architectures, an additional buffer stage is required.

6.1 Impact of Flexibility

The cost of the flexible processing blocks was characterized in Sections 3–
Section 5 at the architecture level. Now, three flexible designs are considered
and their most important characteristics are shown in Table III–3. The num-
bers for the cell area in this table apply to synthesized blocks at gate level.
Design constraints are chosen such that the implementation is still in the flat
part of the area–delay curve, see Figure III–13 for an example of such a curve,
and the resulting critical path for the designs lies in the trellis unit.

Table III–3: Three designs with different transmission rates. Power consump-
tion for different R estimated at Vdd = 1.2 V and fclk = 250 MHz.

one three five

R

1 1 1

— 3 3

— — 5

Highest mod. QPSK Gray 16-QAM TCM 64-QAM TCM

Area (µm2) 16289 67205 76922

BM unit 3.9% 12.6% 17.8%

Trellis unit 46.8% 19.3% 18.7%

SP unit 49.3% 52.0% 42.8%

Subset memory — 14.6% 18.5%

Demapper — 1.5% 2.2%

Power
(mW)

4.9 9.9 10.3

— 13.4 14.7

— — 15.2

As flexibility is introduced, for example, from design one to three, the
BM unit gets a larger share of the total area. In design one, it is negligible,
whereas in design three, it is approaching the size of the trellis unit; in design
one the trellis unit took half of the total size, declining to about a fifth in
three. The growth of the BM unit is not only due to TCM; it is mainly due
to the required slicing operations, which stem from larger QAM constellations

112 Part III. Designing a Flexible Trellis Decoder

and would have to be considered even for a Gray-mapped convolutional code.
The higher code rate of the subset selector for design three and five

impacts the trellis and SP units. It is seen that the dramatic decrease of the
share of the trellis unit certainly justifies the R4 emulation by R2 elements.
Recall that this emulation would not have made sense for the SP unit, where
one has to accept the R4 processing character. Furthermore, although trellis
and SP units are in theory independent of the code details, the size of the
SP unit is partially influenced by TCM; the b+ 1 bits that represent a subset
number are processed per RE stage and state, instead of b bits in the case of
conventional convolutional decoding. Thus, contrary to the trellis unit, the SP
unit becomes a larger part at the transition from one to three, which is due
to the unit’s R4 processing character.

For design five, the BM share grows further, while the relative cost of the
trellis unit decreases slightly, despite the additional transmission rate. Task
flexibility has a larger impact on the size of an implementation than rate flex-
ibility. That is, the underlying trellis structure of a code is much easier to
reuse than BM calculations that are specialized for a certain task. The ob-
served trend should continue for larger constellations. The BM unit takes even
larger portions, whereas trellis and SP units, which are principally fixed except
for the growth of the wordlength, see Equation I–18, drop in percent. The
parts exclusive of the TCM, subset memory and demapper, consume roughly
a fifth of the cell area. Higher TCM rates (larger constellations) are expected
to increase this share since more “uncoded” bits have to be stored.

Power estimation in Table III–3 is carried out with Synopsys Power Com-
piler on the synthesized netlists, which are back-annotated with state- and
path-dependent toggle information obtained from a simulation run. There are
in principle two comparison scenarios that need to be distinguished: first, con-
volutional decoding using either a fixed (one) or one of the flexible designs
(three or five) to find out how much power one has to sacrifice for a certain
flexibility; and second, a comparison between designs three and five to see
how much more power has to be spent for additional transmission rates. These
comparisons yield a measure of the cost of flexibility.

Not surprisingly, power consumption is sacrificed for flexibility. Scenario
one indicates that from design one to three, there is twice the power spent to
run the flexible design with transmission rate 1. For design five, the number
is slightly higher but still roughly twice the amount of power for rate 1. Com-
paring designs three and five, there is a 4% and a 9.7% increase in power
consumption, respectively, over rate 1 and 3 configurations. Furthermore, rate
5 mode in design five only requires an extra 3.4% power, a low number con-
sidering the additional rate provided.

6 Hardware Evaluation and Discussion 113

Figure III–16: Layout of the routed chip. Designs one and five

are shown on the left and right side, respectively. Row utilization is
approximately 80% in both implementations.

To conclude, having accepted the initial impact of task flexibility in the
TCM-designs, it makes sense to strive for more transmission rates. Therefore,
the two designs one and five will be implemented on a chip. If QPSK is used
often and power consumption is a critical factor for the application at hand,
it makes sense to accept the additional fixed design. Otherwise, one flexible
design that covers all transmission rates, here five, is sufficient.

6.2 Silicon Implementation

The complete design was modeled in VHDL at register-transfer level (RTL)
and then taken through a design flow that includes Synopsys Design Compiler
for synthesis and Cadence Encounter for routing. A high-speed standard cell
library from Faraday for the 0.13 µm digital CMOS process from UMC is
used. The RTL and gate level netlists are all verified against test vectors
generated from a MATLAB fixed-point model. Post-layout timing is verified
using Synopsys Prime Time with net and cell delays back-annotated in standard
delay format.

Figure III–16 shows the routed chip. It is pad-limited due to test purposes
and measures 1.44 mm2. Designs one and five are placed on the same die

114 Part III. Designing a Flexible Trellis Decoder

with separate Vdd to measure their power consumption independently. In TCM
mode, design five achieves a symbol rate of 168 Mbaud/s, a throughput of 504
Mbit/s and 840 Mbit/s using R = 3 and R = 5 configurations. Design one

achieves a throughput of 606 Mbit/s; flexibility causes a speed penalty in that
five provides 504 Mbit/s in R = 1 mode. If WPANs are the application, all
these throughputs are higher than specified in [101]. Thus, the supply voltage
can be lowered to save energy. Further measurements on the fabricated chip
(Figure III–17), which to date only has been functionally verified, will show
how much speed has to be traded for each energy reduction.

Figure III–17: The fabricated flexible Viterbi decoder chip. Its func-
tionality was verified in the shown test environment.

6.3 An Alternative Approach

As far as throughput is concerned, the presented design is originally limited by
the trellis unit, which processes an R4 butterfly in three clock cycles. It was
already mentioned in Section 4 that an R4 butterfly can also be updated in
one clock cycle. In the following, the implications on throughput and size of
this alternative approach are estimated.

To begin with, throughput is not only improved for R4 processing but also
in R2 mode since two R2 stages can be collapsed into one R4 stage (Figure 3.3),

7 Conclusion 115

that is, two decoded bits per stage are put out. A reported speed-up for such
an architecture compared to R2 processing is 1.7 [15]. This implementation is
based on full-custom datapaths. A standard cell implementation only achieved
a speed-up of 1.26 [37]. Hence, mode R = 1 provides a throughput of at
least 767 Mbit/s, working at a symbol rate of 383 Mbaud/s. For R = 3, 5, a
throughput of 1.1 and 1.9 Gbit/s is estimated, respectively.

The size of the R2 trellis unit from design one grows by a factor of 3.8 using
the straightforward (not full-custom) 6-comparator approach for a 4-way ACS
operation [37]. This trellis unit is now utilized in all designs, both fixed and
flexible. However, the trellis collapsing implies that feedback connections are
not directly reusable anymore. The inherent flexibility provided by Perm in
Bf2/4 is achieved by an additional routing stage instead, which slightly lowers
the previously estimated throughputs.

To take advantage of the improved processing speed, the BM unit in the
flexible (TCM) designs has to carry out subset decoding in one clock cycle, too.
That is, 8 subset decoders must work in parallel, instead of 4 that work in an
interleaved manner such that only half the constellation points must be stored.
This is not possible in the alternative approach, and thus there is a more than
twofold area increase. For the SP unit, the update also has to be carried out
in parallel as in Figure III–15(a) and the size of this unit increases by roughly
2.5 times.

Based on the preceding considerations, the sizes of the different processing
units can be scaled by the mentioned factors: the size of design one is expected
to grow by a factor of 2.5, whereas the size of flexible design five increases by
about 2.2 times.

Recall, though, that throughput is not the major design issue our work. The
envisioned applications never utilize the provided processing power. Further-
more, considering power consumption of shrinking process technologies, where
static power consumption surpasses dynamic power consumption, this alterna-
tive approach becomes even less feasible compared to an R2-based architecture.

7 Conclusion

A design for a Viterbi decoder that decodes both convolutional and TCM codes
to cope with varying channel conditions is presented. Sacrifices in the speed,
which is not actually required, of the trellis unit result in large hardware sav-
ings for the other processing blocks by applying computation rate matching.
Synthesized designs that provide different transmission rate combinations show
that task flexibility inherent in the BM unit impacts the design size far more
than rate flexibility of trellis and SP units. Furthermore, power estimation fig-
ures at gate-level indicate that the flexible designs become more cost-effective

116 Part III. Designing a Flexible Trellis Decoder

if provided with more than two transmission rates. To yield a quantitative
cost on flexibility, a silicon implementation is crucial. The implementation was
carried out in a 0.13 µm digital CMOS process, and the fabricated chip was
verified for functionality. Thus, the performance of two designs, one fixed, one
flexible, can be compared. For good channel SNRs, the flexible design enables
a 28% higher throughput than the fixed, while it only lags by 17% when run
in low SNR configuration.

Conclusion and Outlook

This thesis explores flexible architectures for VLSI implementation of channel
decoding algorithms. As flexibility becomes an increasingly important perfor-
mance measure in VLSI design, quantitative numbers of its cost are needed. An
architecture that implements a decoder for bandwidth-efficient codes is taken
as a vehicle to investigate the impact of flexibility on area, throughput, and
power consumption. Time-multiplexing the trellis engine, which copes with
different radices, lowered the area requirement in all parts of the design. It was
concluded that one should strive for more than two transmission rates once
the price for rate flexibility in the trellis unit has been paid. As a proof of
concept, a VLSI circuit was implemented, fabricated, and successfully verified
for functionality.

Further results obtained in this thesis concern simplifications and hybrid
approaches that tackle two key parts in a Viterbi decoder. An algorithmic sim-
plification was derived that reduces the arithmetic complexity by 17% without
degrading decoding performance. In an actual implementation, this saving
varied with the number of trellis states. Also, a new survivor path process-
ing architecture is proposed, which is based on two formerly not connected
approaches. This hybrid architecture shows a better latency–complexity be-
havior compared to competing approaches.

Much future work is needed on flexible VLSI design. A specific project
for the case of trellis decoding could involve further improvements for trellis
and survivor path processing blocks, which solely depend on the radix of the
trellis. In particular, the survivor path unit is likely to be based on a different
algorithm. Other tasks for such a generic trellis processor need to be evaluated,
too. Examples could be Viterbi equalization or space–time trellis decoding.
Since the branch metric calculations are highly dependent on the actual task,
it is crucial to find a suitable subset of tasks which can be efficiently mapped
onto hardware.

117

Bibliography

[1] S. M. Alamouti. A simple transmit diversity technique for wireless
communications. IEEE Journal on Selected Areas in Communications,
16(8):1451–1458, Oct. 1998.

[2] J. B. Anderson. Limited search trellis decoding of convolutional codes.
IEEE Transactions on Information Theory, 35(5):944–955, Sept. 1989.

[3] J. B. Anderson. Best short rate 1/2 tailbiting codes for the bit-error rate
criterion. IEEE Transactions on Communications, 48(4):597–610, Apr.
2000.

[4] J. B. Anderson. Digital Transmission Engineering. IEEE Press, Piscat-
away, NJ, 2nd edition, 2005.

[5] J. B. Anderson and K. Balachandran. Decision depths of convolutional
codes. IEEE Transactions on Information Theory, 35(2):455–459, Mar.
1989.

[6] J. B. Anderson and A. Svensson. Coded Modulation Systems. Plenum,
New York, 2003.

[7] J. B. Anderson and K. E. Tepe. Properties of the tailbiting BCJR de-
coder. In Codes, Systems, and Graphical Models, IMA Volumes in Math-
ematics and Its Applications. Springer, Heidelberg, 2000.

[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of
linear codes for minimizing symbol error rate. IEEE Transactions on
Information Theory, 20(2):284–287, Mar. 1974.

[9] G. Battail. Pondération des symboles décodés par l’algorithme de Viterbi.
Annales des Télécommunications, 42(1–2):31–38, Jan./Feb. 1987.

[10] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Prince-
ton University Press, Princeton, NJ, 1962.

119

[11] C. Berrou and A. Glavieux. Near optimum error-correcting coding
and decoding: Turbo-codes. IEEE Transactions on Communications,
44(10):1261–1271, Oct. 1996.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding and decoding: Turbo-codes. In Proceedings of
IEEE International Conference on Communications, pages 1064–1070,
Geneva, Switzerland, May 1993.

[13] V. Betz. FPGAs and structured ASICs: Overview and research chal-
lenges. [Online]. http://www.iic.umanitoba.ca/docs/vaughn-betz.ppt,
Oct. 2006.

[14] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup,
G. Zhou, L. M. Davis, G. Woodward, C. Nicol, and R.-H. Yan. A uni-
fied turbo/Viterbi channel decoder for 3GPP mobile wireless in 0.18-µm
CMOS. IEEE Journal of Solid-State Circuits, 37(11):1555–1564, Nov.
2002.

[15] P. J. Black and T. H.-Y. Meng. A 140-Mb/s, 32-state, radix-4 Viterbi
decoder. IEEE Journal of Solid-State Circuits, 27(12):1877–1885, Dec.
1992.

[16] P. J. Black and T. H.-Y. Meng. Hybrid survivor path architectures for
Viterbi decoders. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 433–436, Minneapolis,
MN, Apr. 1993.

[17] P. J. Black and T. H.-Y. Meng. A 1-Gb/s, four-state, sliding block Viterbi
decoder. IEEE Journal of Solid-State Circuits, 32(6):797–805, June 1997.

[18] H. Blume, H. T. Feldkämper, and T. G. Noll. Model-based exploration
of the design space for heterogeneous systems on chip. The Journal of
VLSI Signal Processing, 40(1):19–34, May 2005.

[19] M. Bóo, F. Argüello, J. D. Bruguera, R. Doallo, and E. L. Zapata. High-
performance VLSI architecture for the Viterbi algorithm. IEEE Trans-
actions on Communications, 45(2):168–176, Feb. 1997.

[20] E. Boutillon and N. Demassieux. A generalized precompiling scheme for
surviving path memory management in Viterbi decoders. In Proceedings
of IEEE International Symposium on Circuits and Systems, pages 1579–
1582, Chicago, IL, May 1993.

120

[21] E. Boutillon, W. J. Gross, and P. G. Gulak. VLSI architectures for the
MAP algorithm. IEEE Transactions on Communications, 51(2):175–185,
Feb. 2003.

[22] J. B. Cain, G. C. Clark, Jr., and J. M. Geist. Punctured convolutional
codes of rate (n − 1)/n and simplified maximum likelihood decoding.
IEEE Transactions on Information Theory, 25(1):97–100, Jan. 1979.

[23] J. R. Cavallaro and M. Vaya. Viturbo: A reconfigurable architecture
for Viterbi and turbo decoding. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages 497–500,
Hong Kong, Apr. 2003.

[24] K. Chadha and J. R. Cavallaro. A reconfigurable Viterbi decoder archi-
tecture. In Proceedings of Asilomar Conference on Signals, Systems, and
Computers, pages 66–71, Pacific Grove, CA, Nov. 2001.

[25] A. P. Chandrakasan and R. W. Brodersen. Minimizing power consump-
tion in digital CMOS circuits. Proceedings of the IEEE, 83(4):498–523,
Apr. 1995.

[26] Y.-N. Chang, H. Suzuki, and K. K. Parhi. A 2-Mb/s 256-state 10-
mW rate-1/3 Viterbi decoder. IEEE Journal of Solid-State Circuits,
35(6):826–834, June 2000.

[27] J. Chen and R. M. Tanner. A hybrid coding scheme for the Gilbert–Elliott
channel. IEEE Transactions on Communications, 54(10):1787–1796, Oct.
2006.

[28] H.-M. Choi, J.-H. Kim, and I.-C. Park. Low-power hybrid turbo decod-
ing based on reverse calculation. In Proceedings of IEEE International
Symposium on Circuits and Systems, pages 2053–2056, Island of Kos,
Greece, May 2006.

[29] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker. Applica-
tions of error-control coding. IEEE Transactions on Information Theory,
44(6):2531–2560, Oct. 1998.

[30] R. Cypher and C. B. Shung. Generalized trace back techniques for sur-
vivor memory management in the Viterbi algorithm. In Proceedings
of IEEE Global Telecommunications Conference, pages 1318–1322, San
Diego, CA, Dec. 1990.

[31] H. Dawid. Algorithmen und Schaltungsarchitekturen zur Maximum a Pos-
teriori Faltungsdecodierung. PhD thesis, RWTH Aachen, Mar. 1996.

121

[32] H. Dawid, S. Bitterlich, and H. Meyr. Trellis pipeline-interleaving: A
novel method for efficient Viterbi decoder implementation. In Proceedings
of IEEE International Symposium on Circuits and Systems, pages 1875–
1878, San Diego, CA, May 1992.

[33] H. Dawid, G. Fettweis, and H. Meyr. A CMOS IC for Gb/s Viterbi
decoding: System design and VLSI implementation. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 4(1):17–31, Mar. 1996.

[34] Z. Ding and S. Lin. Channel equalization and error correction for high
rate Wireless Personal Area Networks. Technical Report MICRO 01-
029, Dept. Electrical and Computer Engineering, University of California,
Davis, 2001.

[35] P. Elias. Coding for noisy channels. IRE Convention Record, 2, pt. 4:37–
47, Mar. 1955.

[36] R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE
Transactions on Information Theory, 9(2):64–76, Apr. 1963.

[37] H. T. Feldkämper, H. Blume, and T. G. Noll. Study of heterogeneous
and reconfigurable architectures in the communication domain. Advances
in Radio Science—Kleinheubacher Berichte, 1:165–169, May 2003.

[38] G. Fettweis. Parallel Viterbi algorithm implementation: Breaking the
ACS bottleneck. IEEE Transactions on Communications, 37(8):785–790,
Aug. 1989.

[39] G. Fettweis. Algebraic survivor memory management for Viterbi detec-
tors. IEEE Transactions on Communications, 43(9):2458–2463, Sept.
1995.

[40] G. Fettweis and H. Meyr. High-speed parallel Viterbi decoding: Al-
gorithm and VLSI-architecture. IEEE Communications Magazine,
29(5):46–55, May 1991.

[41] G. Feygin and P. G. Gulak. Architectural tradeoffs for survivor sequence
memory management in Viterbi decoders. IEEE Transactions on Com-
munications, 41(3):425–429, Mar. 1993.

[42] U. Fincke and M. Pohst. Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis. Mathematics
of Computation, 44(170):463–471, Apr. 1985.

122

[43] G. D. Forney, Jr. Review of random tree codes. Final Report Appendix
A Contract NAS2-3737, NASA CR 73176, NASA Ames Research Center,
Dec. 1967.

[44] G. D. Forney, Jr. Convolutional codes I: Algebraic structure. IEEE
Transactions on Information Theory, 16(6):720–738, Nov. 1970.

[45] G. D. Forney, Jr. The Viterbi algorithm. Proceedings of the IEEE,
61(3):268–278, Mar. 1973.

[46] G. D. Forney, Jr. and G. Ungerböck. Modulation and coding for lin-
ear Gaussian channels. IEEE Transactions on Information Theory,
44(6):2384–2415, Oct. 1998.

[47] G. J. Foschini. Layered space-time architecture for wireless communica-
tion in a fading environment when using multi-element antennas. Bell
Labs Technical Journal, 1(2):41–59, Autumn 1996.

[48] M. P. Fossorier and S. Lin. Differential trellis decoding of convolutional
codes. IEEE Transactions on Information Theory, 46(3):1046–1053, May
2000.

[49] R. Gallager. Low-density parity-check codes. IEEE Transactions on
Information Theory, 8(1):21–28, Jan. 1962.

[50] Y. Gang, A. T. Erdogan, and T. Arslan. An efficient pre-traceback ar-
chitecture for the Viterbi decoder targeting wireless communication ap-
plications. IEEE Transactions on Circuits and Systems—Part I: Regular
Papers, 53(9):1918–1927, Sept. 2006.

[51] T. Gemmeke, M. Gansen, and T. G. Noll. Implementation of scalable
power and area efficient high-throughput Viterbi decoders. IEEE Journal
of Solid-State Circuits, 37(7):941–948, July 2002.

[52] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC
codes) and their applications. IEEE Transactions on Communications,
36(4):389–400, Apr. 1988.

[53] J. Hagenauer and P. Höher. A Viterbi algorithm with soft-decision out-
puts and its applications. In Proceedings of IEEE Global Telecommuni-
cations Conference, pages 1680–1686, Dallas, TX, Nov. 1989.

[54] J. H. Han, A. T. Erdogan, and T. Arslan. A power efficient reconfigurable
max-log-MAP turbo decoder for wireless communication systems. In
Proceedings of IEEE International Symposium on System-on-Chip, pages
247–250, Tampere, Finland, Nov. 2005.

123

[55] J.-S. Han, T.-J. Kim, and C. Lee. High performance Viterbi decoder
using modified register-exchange methods. In Proceedings of IEEE Inter-
national Symposium on Circuits and Systems, pages 553–556, Vancouver,
Canada, May 2004.

[56] A. P. Hekstra. An alternative to metric rescaling in Viterbi decoders.
IEEE Transactions on Communications, 37(11):1220–1222, Nov. 1989.

[57] J. A. Heller and I. M. Jacobs. Viterbi decoding for satellite and space
communication. IEEE Transactions on Communications, 19(5):835–848,
Oct. 1971.

[58] D. E. Hocevar and A. Gatherer. Achieving flexibility in a Viterbi de-
coder DSP coprocessor. In Proceedings of IEEE Vehicular Technology
Conference, pages 2257–2264, Boston, MA, Sept. 2000.

[59] F. Jelinek. A fast sequential decoding algorithm using a stack. IBM
Journal of Research and Development, 13(3):675–685, Nov. 1969.

[60] O. Joeressen, M. Vaupel, and H. Meyr. High-speed VLSI architectures for
soft-output Viterbi decoding. In Proceedings of IEEE International Con-
ference on Application-Specific Array Processors, pages 373–384, Berke-
ley, CA, Aug. 1992.

[61] R. Johannesson and K. S. Zigangirov. Fundamentals of Convolutional
Coding. IEEE Press, Piscataway, NJ, 1999.

[62] M. Kamuf, J. B. Anderson, and V. Öwall. A simplified computational ker-
nel for trellis-based decoding. IEEE Communications Letters, 8(3):156–
158, Mar. 2004.

[63] M. Kamuf, V. Öwall, and J. B. Anderson. Area and power efficient
trellis computational blocks in 0.13 µm CMOS. In Proceedings of IEEE
International Symposium on Circuits and Systems, pages 344–347, Kobe,
Japan, May 2005.

[64] I. Kang and A. N. Willson, Jr. Low-power Viterbi decoder for CDMA
mobile terminals. IEEE Journal of Solid-State Circuits, 33(3):473–482,
Mar. 1998.

[65] J. Karaoğuz. High-rate wireless personal area networks. IEEE Commu-
nications Magazine, 39(12):96–102, Dec. 2001.

[66] L.-N. Lee. On optimal soft-decision demodulation. IEEE Transactions
on Information Theory, 22(4):437–444, July 1976.

124

[67] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee. Design of a power-
reduction Viterbi decoder for WLAN applications. IEEE Transactions
on Circuits and Systems—Part I: Regular Papers, 52(6):1148–1156, June
2005.

[68] H.-L. Lou. Implementing the Viterbi algorithm. IEEE Signal Processing
Magazine, 12(5):42–52, Sept. 1995.

[69] H.-L. Lou, P. Tong, and J. M. Cioffi. A programmable codec design for
trellis coded modulation. In Proceedings of IEEE Global Telecommuni-
cations Conference, pages 944–947, Phoenix, TX, Nov. 1997.

[70] J. L. Massey. Threshold Decoding. MIT Press, Cambridge, MA, 1963.

[71] G. J. Minty. A comment on the shortest-route problem. Operations
Research, 5(5):724, Oct. 1957.

[72] T. Miyauchi, K. Yamamoto, T. Yokokawa, M. Kan, Y. Mizutani, and
M. Hattori. High-performance programmable SISO decoder VLSI im-
plementation for decoding turbo codes. In Proceedings of IEEE Global
Telecommunications Conference, pages 305–309, San Antonio, TX, Nov.
2001.

[73] J. K. Omura. On the Viterbi decoding algorithm. IEEE Transactions on
Information Theory, 15(1):177–179, Jan. 1969.

[74] I. M. Onyszchuk, K.-M. Cheung, and O. Collins. Quantization loss in con-
volutional decoding. IEEE Transactions on Communications, 41(2):261–
265, Feb. 1993.

[75] E. Paaske, S. Pedersen, and J. Sparsø. An area-efficient path memory
structure for VLSI implementation of high speed Viterbi decoders. IN-
TEGRATION, the VLSI journal, 12(1):79–91, Nov. 1991.

[76] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, New York, 2000.

[77] K. K. Parhi. VLSI Digital Signal Processing Systems. Wiley, New York,
1999.

[78] J. G. Proakis. Digital Communications. McGraw-Hill, New York, 4th
edition, 2001.

[79] J. M. Rabaey, A. Chandrakasan, and B. Nikolić. Digital Integrated Cir-
cuits. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2003.

125

[80] P. Robertson, E. Villebrun, and P. Höher. A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain.
In Proceedings of IEEE International Conference on Communications,
pages 1009–1013, Seattle, WA, June 1995.

[81] P. Robertson and T. Wörz. Bandwidth-efficient turbo trellis-coded mod-
ulation using punctured component codes. IEEE Journal on Selected
Areas in Communications, 16(2):206–218, Feb. 1998.

[82] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems. Mathematical Program-
ming: Series A and B, 66(2):181–199, Sept. 1994.

[83] C. Schurgers, F. Catthoor, and M. Engels. Memory optimization of MAP
turbo decoder algorithms. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 9(2):305–312, Apr. 2001.

[84] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423 & 623–656, July & Oct. 1948.

[85] C. E. Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10–21, Jan. 1949.

[86] C. B. Shung, H.-D. Lin, R. Cypher, P. H. Siegel, and H. K. Thapar. Area-
efficient architectures for the Viterbi algorithm—Part I: Theory. IEEE
Transactions on Communications, 41(4):636–644, Apr. 1993.

[87] C. B. Shung, H.-D. Lin, R. Cypher, P. H. Siegel, and H. K. Thapar. Area-
efficient architectures for the Viterbi algorithm—Part II: Applications.
IEEE Transactions on Communications, 41(5):802–807, May 1993.

[88] C. B. Shung, P. H. Siegel, G. Ungerböck, and H. K. Thapar. VLSI archi-
tectures for metric normalization in the Viterbi algorithm. In Proceedings
of IEEE International Conference on Communications, pages 1723–1728,
Atlanta, GA, Apr. 1990.

[89] J. Simpson and E. Weiner, editors. The Oxford English Dictionary.
Clarendon Press, Oxford, 2nd edition, 1989.

[90] Software defined radio forum. [Online]. http://www.sdrforum.org, Feb.
2007.

[91] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time codes for
high data rate wireless communication: Performance criterion and code
construction. IEEE Transactions on Information Theory, 44(2):744–765,
Mar. 1998.

126

[92] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Göckel, andW. Burleson.
A reconfigurable, power-efficient adaptive Viterbi decoder. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 13(4):484–488,
Apr. 2005.

[93] H. K. Thapar and J. M. Cioffi. A block processing method for designing
high-speed Viterbi detectors. In Proceedings of IEEE International Con-
ference on Communications, pages 1096–1100, Atlanta, GA, Apr. 1990.

[94] F. Tosato and P. Bisaglia. Simplified soft-output demapper for binary
interleaved COFDM with application to HIPERLAN/2. In Proceedings
of IEEE International Conference on Communications, pages 664–668,
New York, Apr./May 2002.

[95] G. Ungerböck. Channel coding with multilevel/phase signals. IEEE
Transactions on Information Theory, 28(1):55–67, Jan. 1982.

[96] G. Ungerböck. Trellis-coded modulation with redundant signal sets.
IEEE Communications Magazine, 25(2):5–21, Feb. 1987.

[97] L. Van der Perre, B. Bougard, J. Craninckx, W. Dehaene, L. Hollevoet,
M. Jayapala, P. Marchal, M. Miranda, P. Raghavan, T. Schuster,
P. Wambacq, F. Catthoor, and P. Vanbekbergen. Architectures and cir-
cuits for software-defined radios: Scaling and scalability for low cost and
low energy. In Digest of Technical Papers IEEE International Solid-State
Circuits Conference, pages 568–569, San Francisco, Feb. 2007.

[98] A. J. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269, Apr. 1967.

[99] A. J. Viterbi. A pragmatic approach to trellis-coded modulation. IEEE
Communications Magazine, 27(7):11–19, July 1989.

[100] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Standard 802.11a, 1999.

[101] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for High Rate Wireless Personal Area Networks (WPANs).
IEEE Standard 802.15.3, 2003.

[102] J. K. Wolf and E. Zehavi. P2 codes: Pragmatic trellis codes utiliz-
ing punctured convolutional codes. IEEE Communications Magazine,
33(2):94–99, Feb. 1995.

127

[103] J. M. Wozencraft. Sequential decoding for reliable communication. IRE
Convention Record, 5, pt. 2:11–25, Jan. 1957.

[104] Y. Yasuda, K. Kashiki, and Y. Hirata. High-rate punctured convolu-
tional codes for soft decision Viterbi decoding. IEEE Transactions on
Communications, 32(3):315–319, Mar. 1984.

[105] A. K. Yeung and J. M. Rabaey. A 210-Mb/s radix-4 bit-level pipelined
Viterbi decoder. In Digest of Technical Papers IEEE International Solid-
State Circuits Conference, pages 88–92, San Francisco, CA, Feb. 1995.

[106] N. Zhang and R. W. Brodersen. Architectural evaluation of flexible dig-
ital signal processing for wireless receivers. In Proceedings of Asilomar
Conference on Signals, Systems, and Computers, pages 78–83, Pacific
Grove, CA, Oct./Nov. 2000.

[107] Y. Zhu and M. Benaissa. Reconfigurable Viterbi decoding using a new
ACS pipelining technique. In Proceedings of IEEE International Con-
ference on Application-Specific Systems, Architectures, and Processors,
pages 360–368, The Hague, The Netherlands, June 2003.

128

