
Image Processing Architectures for Binary

Morphology and Labeling

Hugo Hedberg

Lund 2008

The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt,
with the LATEX Documentation System
using Pontus Åströms thesis template.

Series of licentiate and doctoral thesis
No. 2
ISSN 1654-790X

c© Hugo Hedberg 2008
Printed in Sweden by Tryckeriet E-huset, Lund.
March 2008

Abstract

Conventional surveillance systems are omnipresent and most are still based on
analog techniques. Migrating to the digital domain grants access to the world
of digital image processing enabling automation of such systems, which means
extracting information from the image stream without human interaction. The
resolution, frame rates, and functionality in these systems are continuously in-
creasing alongside the number of video streams to be processed. The sum of
all these parameters imposes high data rates and memory bandwidths which
are impossible to handle in pure software solutions. Therefore, accelerating
key operations and complex repetitive calculations in dedicated hardware ar-
chitectures is crucial to sustain real-time performance in future advanced high
resolution and frame rate systems.

To achieve this goal, this thesis presents four architectures of hardware acceler-
ators to be used in real-time embedded image processing systems, implemented
as an FPGA or ASIC. Two morphological architectures performing binary ero-
sion or dilation, with low complexity and low memory requirement, have been
developed. One supports static, and the other locally adaptive flat rectan-
gular structuring elements of arbitrary size. Furthermore, a high-throughput
architecture calculating the distance transform has also been developed. This
architecture supports either the city-block or chessboard distance metric and
is based on adding the result of parallel erosions. The fourth architecture per-
forms connected component labeling based on contour tracing and supports
feature extraction. A modified version of the morphological architecture sup-
porting static structuring elements, as well as the labeling architecture, has
been successfully integrated into a prototype of an automated digital surveil-
lance system for which implementation aspects are presented. The system has
been implemented and is running on an FPGA based development board using
a CMOS sensor for image acquisition. The prototype currently has segmen-
tation, filtering, and labeling accelerated in hardware, and additional image
processing performed in software running on an embedded processor.

iii

In loving memory of my father

Contents

Abstract iii

Acknowledgment xi

Preface xiii

List of Acronyms xv

List of Definitions and Mathematical Operators xvii

1 Introduction 1

1.1 Research Project . 2

1.2 Main Contribution and Thesis Statement 3

1.3 Thesis Overview . 3

2 Digital System Design 9

2.1 Implementation Platform . 9

2.2 Design Flow . 12

2.3 Real-time Processing . 15

2.4 Low Power Circuit Design . 16

2.5 Low Power FPGA Design . 17

3 Digital Image Processing 19

3.1 Digital Image Acquisition . 19

3.1.1 Human Vision . 20

vii

3.1.2 Sensor Techniques . 21

3.1.3 CCD versus CMOS Sensors 22

3.1.4 Raster Scan Order . 24

3.2 Fundamental Pixel to Pixel Based Relationships 24

3.2.1 Neighborhood . 24

3.2.2 Connectivity . 25

3.2.3 Clusters . 25

3.2.4 Spatial Filters . 26

3.3 Basic Set Theory Definitions . 27

3.3.1 Reflection . 28

3.3.2 Translation . 28

3.3.3 Minkowski Addition and Subtraction 29

4 Morphology 31

4.1 Structuring Element . 31

4.2 Erosion and Dilation . 33

4.2.1 Erosion . 33

4.2.2 Dilation . 34

4.3 Opening and Closing . 36

4.4 Structuring Element Decomposition 37

4.5 Duality with Respect to Complementation 38

4.6 Handling the Borders . 39

5 Labeling 41

5.1 Algorithms . 41

5.2 Sequential Local Operation Based Algorithms 42

5.3 Resolving Label Collisions . 43

5.4 Contour Tracing Based Algorithms 45

I Low-Complexity Binary Morphology with Flat Rectangular Structur-

ing Elements 51

1 Introduction . 53

1.1 Previous Research . 53

2 Architecture . 54

2.1 Delay-line Architecture . 54

2.2 Low Complexity Architecture 56

2.3 Stall-Free Low Complexity Architecture 60

2.4 Extended Morphological Operations 62

3 Implementation . 64

3.1 Memory Architecture . 65

4 Results and Performance . 65

4.1 Computational Complexity 66

4.2 Execution Time . 66

4.3 Memory Requirement . 67

5 Conclusion . 70

II Binary Morphology with Locally Adaptive Structuring Elements: Al-

gorithm and Architecture 71

1 Introduction . 73

1.1 Previous Research . 74

2 Algorithmic Issues . 75

3 Algorithm Description . 78

4 Architecture . 82

4.1 Handling the Borders . 84

4.2 Coding the Structuring Element Size 85

4.3 Memory Requirements . 85

5 Implementation Results and Performance 87

6 Conclusion . 89

III An Architecture for Calculation of the Distance Transform Based on

Mathematical Morphology 91

1 Introduction . 93

2 Geometry Metrics . 94

2.1 Previous Research . 96

3 Architecture . 96

3.1 Execution Time . 98

3.2 Memory Requirement . 98

4 Implementation Results and Performance 100

5 Conclusion . 101

IV Implementation of Labeling Algorithm Based on Contour Tracing

with Feature Extraction 103

1 Introduction . 105

2 Hardware Aspects of Labeling Algorithms 105

2.1 Complexity . 105

2.2 Memory Requirements . 106

2.3 Memory Accesses . 108

2.4 Execution Time . 110

2.5 Feature Extraction . 110

3 Algorithm Evaluation . 113

4 Implementation . 114

5 Results and Performance . 116

6 Conclusion . 118

V An Embedded Real-Time Surveillance System: Implementation and

Evaluation 119

1 Introduction . 121

1.1 Systems of Today . 123

2 Segmentation . 125

2.1 Algorithm Formulation . 126

2.2 Color Space Transformation 127

2.3 Segmentation Architecture 128

2.4 Wordlength Reduction . 129

2.5 Pixel Locality . 131

3 Morphology . 132

3.1 Morphology Architecture 134

4 Labeling . 137

4.1 Labeling Architecture . 140

5 Tracking . 141

6 System Implementation and Performance 145

6.1 Bottlenecks . 150

7 Conclusions . 151

Conclusion 153

Acknowledgment

I would like to express my gratitude to all the people who have inspired me
and contributed to the writing of this thesis. What a journey this has been!
From nightswimming in the crystal-clear waters of lake Geneva, to strolling the
beaches of sunny California, and experiencing the beautiful Fiji islands, I feel
privileged to have been given the possibility of gathering an amazing collection
of memories from all the traveling, the discussions, and hard work, that has
taken place during these years.

First of all, I would like to express my deepest gratitude to my supervisor asso-
ciate professor PhD Viktor Öwall. Your guidance and helping hand throughout
my years at the department made it all possible. Not to forget, thank you for
all the constructive criticism regarding this thesis and for keeping calm when
receiving messages during late nights and weekends.

The second person I owe a great deal of gratitude to is PhD Fredrik Kristensen.
Thank you for providing valuable input to my work, for being a constant sup-
port, and a good friend. You even spent some of your spare time reading parts
of this thesis though you left the group some time ago.

I would like to thank PhD Petr Dokladal at the Center of Mathematical Mor-
phology in France for your guidance and support. My research visit to you in
Fontainebleau during fall’06 was one of the most exiting experiances during my
entire PhD studies.

My gratitude goes to all my colleagues in the whole Electroscience depart-
ment, nowadays the department of Electrical and an Information Technology;
you have all contributed to my work in various ways. I am especially grateful
to the past and present members of the DASIC group: Thomas Lenart, Hen-
rik Svensson, and Joachim Neves Rodrigues, for reading parts of this thesis,
Johan Lövgren, Mattias Kamuf, Deepak Dasalukunte, and Jiang Hongtu, for
all the interesting discussions about all and nothing. Thank you all for your
profound knowledge in our field of research, and for being good friends, taking
care of more socially related events, which made my time at the department
a pleasant journey. I am also very grateful for the work of Elsbieta Szybicka,
Erik Jonsson, Pia Bruhn, and Lars Hedenstjerna, who have been taking care of
administrative, practical and computer related issues for me during these years.

xi

I would like to thank the other persons involved in this research project, espe-
cially associate professor PhD Peter Nilsson. I would also like to thank Anders
Olsson, and Daniel Elvin from AXIS Communications AB for their valuable
input and professional perspective, setting the pace in this research project.

This work has been financed by the Competence Center for Circuit Design
(CCCD) and sponsored by the Xilinx University Program by donating devel-
opment platforms and software.

To my family, Christina, Björn, and Jonatan, thank you for all the joy, help,
and support you have given me so far along the way. Christina, thank you for
helping me to straighten out some of the tricky formulations in this thesis.

Last but certainly not least, I would like to say a few words to my love, Tove.
From the bottom of my heart, thank you for being who you are, constantly
re-energizing my batteries, and complementing the perspective of developing
hardware architectures with other things in life. So, let us begin a new journey...

March, Lund, 2008

Hugo Hedberg

Preface

This thesis summarizes the author’s academic work in the digital ASIC group
at the Department of Electrical and Information Technology for the PhD degree
in circuit design. The main contributions to the thesis are derived from the
following journal publications:

H. Hedberg, P. Dokladal, and V. Öwall, “Binary Morphology with Locally
Adaptive Structuring Elements: Algorithm and Architecture,” first round
of revision for publication in IEEE Transactions on Image Processing.

H. Hedberg, F. Kristensen, and V. Öwall, “Low Complexity Binary Mor-
phology Architectures with Flat Rectangular Structure Elements,” ac-
cepted for publication in IEEE Transactions on Circuits and Systems I.

F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “An
Embedded Real-Time Surveillance System: Implementation and Eval-
uation,” accepted for publication in Journal of VLSI Signal Processing
Systems, Springer.

And the following peer-reviewed international conference contributions:

H. Hedberg, and V. Öwall, “An Architecture for Calculation of the Dis-
tance Transform Based on Mathematical Morphology,” to be submitted
for publication, 2008.

H. Hedberg, F. Kristensen, and V. Öwall, “Implementation of Labeling
Algorithm Based on Contour Tracing with Feature Extraction,” in Proc.
of IEEE International Symposium on Circuits and Systems (ISCAS’07),
New Orleans, USA, May 2007.

F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “Hardware
Aspects of a Real-Time Surveillance System,” in Proc. of IEEE Interna-
tional Workshop on Visual Surveillance held at European Conference on
Computer Vision (ECCV’06), Graz, Austria, May 2006.

H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall, “A Low Complexity
Architecture for Binary Image Erosion and Dilation using Structuring
Element Decomposition,” in Proc. of IEEE International Symposium on
Circuits and Systems (ISCAS’05), Kobe, Japan, May 2005.

xiii

The papers “Hardware Aspects of a Real-time Surveillance System” and “An
Embedded Real-Time Surveillance System: Implementation and Evaluation”
are common efforts, the first focusing on the outline of the research project
and the second on the details of a prototype of a complete automated digital
surveillance system. The author’s main contributions in both these publications
are the parts addressing morphology and labeling. However, the author has
also been involved in the integration of the system and, therefore, system level
results are included in the thesis.

The following papers concerning education are also published but not con-
sidered part of this thesis:

H. Hedberg, J. N. Rodrigues, F. Kristensen, H. Svensson, M. Kamuf,
and Viktor Öwall, “Teaching Digital ASIC Design to Students with Het-
erogeneous Previous Knowledge,” in Proc. of Microelectronic Systems
Education, MSE’05, pp. 15–16, Anaheim, California, USA, June 12-13,
2005.

J. N. Rodrigues, M. Kamuf, H. Hedberg, and Viktor Öwall, “A Manual
on ASIC Front to Back end Design Flow,” in Proc. of Microelectronic
Systems Education, MSE’05, pp. 75–76, Anaheim, California, USA, June
12-13, 2005.

H. Hedberg, T. Lenart, and H. Svensson, “A Complete MP3 Decoder on
a Chip,” in Proc. of Microelectronic Systems Education, MSE’05, pp.
103–104, Anaheim, California, USA, June 12-13, 2005.

H. Hedberg, T. Lenart, H. Svensson, P. Nilsson and V. Öwall, “Teaching
Digital HW-Design by Implementing a Complete MP3 Decoder,” in Proc.
of Microelectronic Systems Education, MSE’03, pp. 31–32, Anaheim,
California, USA, June 1-2, 2003.

List of Acronyms

ASIC Application-Specific Integrated Circuit

ADC Analog-to-Digital Converter

BW Bandwidth

CC Clock Cycle

CCD Charge-Coupled Device

CCTV Closed Circuit Television

CoG Center of Gravity

CMOS Complementary Metal Oxide Semiconductor

DDR Double Data Rate

EDA Electronic Design Automation

DSP Digital Signal Processor

FIFO First In, First Out

FPGA Field Programmable Gate Array

fps frames per second

FSM Finite State Machine

GMM Gaussian Mixture background Model

GPP General Purpose Processor

HDL Hardware Description Language

HW Hardware

LUT Lookup Table

MAC Multiply-Accumulate

MM Mathematical Morphology

PCB Printed Circuit Board

xv

PPC PowerPC

P&R Place and Route

RAM Random-Access Memory

SE Structuring Element

SDRAM Synchronous Dynamic Random Access Memory

SW Software

VGA Video Graphics Array

VHDL Very high-speed integrated circuit Hardware Description Language

WL Word-Length

WLAN Wireless Local Area Network

List of Definitions and Mathematical Operators

All definitions listed here are taken from [1] and [2].

Z 1-D integer space

Z
+ Positive integer space

Z
2 2-D integer space

R 1-D real (continuous) space

⌊i⌋ Floor function, rounds i to nearest lower integer towards minus infinity

⌈i⌉ Ceiling function, rounds i to the nearest upper integer towards infinity

∃x There exists an x such that...

∀x For all x,...

x ∈ A The element x belongs to the set A

x /∈ A The element x does not belong to the set A

B Structuring element

⊖ Erosion

⊕ Dilation

◦ Opening

• Closing

∅ Empty set

A′ = Ac Complementation or inverse

Â Reflection, i.e. geometric inverse

(A)z The translation of A by z

A ⊆ B A is a subset of B

A ∩ B Intersection of set A and B

A ∪ B Union of set A and B

xvii

Chapter 1

Introduction

Ever since the introduction of television, real-time monitoring has been a grow-
ing market. Adding a video recorder opened up a new world for the security
industry. Video surveillance soon made its way into the court rooms and be-
came convicting evidence. Today, video surveillance systems are omnipresent
and part of everyday life and can be found in department stores, banks, bus
terminals, etc. They are not only used for crime prevention purposes but also
play their role in more social and industry related applications, e.g. traffic
monitoring, processing monitoring, and customer statistics. With continuously
increasing fields of application and integration into our lives, at least two seri-
ous questions arise: What about personal integrity? How will this information
be used? Naturally, none of these questions will be answered in this thesis, but
the author is aware of the possible link between the presented technology and
social interests that are attached to this field of research. The only conclu-
sion that can be drawn is that some of these applications are easier to accept
than others but the boundary for acceptance is, of course, subjective. Without
knowing what the future of automated surveillance will bring, as technology
advances, the applicability of such systems is continuously increasing and is
nowadays part of everyday life.

Conventional real-time surveillance systems are known as Closed Circuit
Television (CCTV) systems. A typical system is traditionally controlled by
a human operator, and supports multiple cameras, event recording, Pan-Tilt-
Zoom (PTZ), auto-focusing etc. Automating such a system would not only
reduce the time spent on monitoring the system itself, but can also increase
the number of attached cameras in the system, thus increasing surveillance effi-
ciency. Stepping into the digital domain and applying digital image processing

1

2 CHAPTER 1. INTRODUCTION

is a natural evolution, since it enables the possibility to extract information
from the image stream without human interaction. The extracted information
can be used as decision support in an effort to reduce the number of errors
or false alarms caused by human operators. For those concerned with the
personal integrity in such automated systems, some argue that this will even
increase, since the image processing gives the possibility of hiding the identities
of the objects present in the scene, e.g. by blurring faces or even replacing the
complete object with a synthetic model.

However, the ever increasing demands on higher resolutions and function-
ality within the automated systems impose a high bandwidth requirement that
is not possible to handle in software running only on a general purpose pro-
cessor which attempts to achieve real-time performance. Therefore, a design
challenge in any automated surveillance system is to handle or reduce the band-
width. In this thesis, to be able to address the high bandwidth, the system
is implemented as an embedded system in which the main idea is to have key
operations and repetitive calculations placed in dedicated hardware accelera-
tors which efficiently reduces the amount of data needed to be processed in
the software. This is identified as crucial to sustain real-time performance and
simultaneously have a high resolution and frame rate. Therefore, the need for
such dedicated hardware accelerators that can be deployed in an embedded
system environment becomes evident.

1.1 Research Project

The research presented in this thesis is part of the development and imple-
mentation of a complete automated surveillance system based on a single self
contained network camera in hardware. The aim of the system is to be able
to detect, track and classify objects in consecutive frames. Such a system not
only competes in terms of a higher frame rate and higher system resolution
compared to other general processor solutions, but also with a reduced power
dissipation due to higher hardware resource utilization. Integrating the sin-
gle camera system with more cameras, or sound, would certainly increase the
accuracy of the system but is beyond the scope of the project. Furthermore,
although the system resolution, i.e. 320 × 240, is low compared to commercial
products, this resolution is sufficient for development purposes, and is therefore
often used when developing the hardware accelerators.

Three PhD students have been involved in developing different parts of the
system. The author of this thesis is responsible for morphology and labeling,
J. Hongtu for implementation of the sensor interface and segmentation [3], and
F. Kristensen for feature extraction and tracking Software (SW). He is also
responsible for implementation of additional Hardware (HW) units, e.g. the

1.2. MAIN CONTRIBUTION AND THESIS STATEMENT 3

PowerPC (PPC) interface. Furthermore, F. Kristensen also performed an in-
vestigation of the impact different color spaces have on shadows [4]. All three
are involved in developing the system architecture and integration. The work
is carried out in close collaboration with Axis Communication AB [5] thought
the Competence Center for Circuit Design (CCCD).

1.2 Main Contribution and Thesis Statement

The main contribution of this thesis is to present four hardware architectures
together with their corresponding implementation results. The architectures
are to be used as hardware accelerators in embedded image processing systems,
and are compiled in the following list:

• Two low complexity morphological architectures performing binary ero-
sion or dilation with flat rectangular structuring elements, where one of
them supports locally adaptive structuring elements,

• an architecture calculating the city-block and chessboard distance trans-
form on binary images, and

• an architecture for connected component labeling based on contour trac-
ing.

A general overview of a complete embedded automated surveillance system
will be presented, outlining and setting the goals for this research project.
Additional implementation aspects of a prototype of such a system will also be
presented, but is not considered to be a part of this thesis’ main contribution.
Furthermore, incorporating two of the hardware accelerators in the prototype,
means that the following thesis statement can be derived:

• Accelerating key operations in hardware is crucial to achieve real-time
performance in an automated digital surveillance system.

1.3 Thesis Overview

This thesis consists of five chapters and five parts. The chapters comprise intro-
ductions, backgrounds, overlapping definitions and commonly shared concepts
from the parts, while the main contributions of this thesis, as described in Sec-
tion 1.2, are placed in the five parts. The research project has resulted in a
number of articles and conference contributions, of which the most important
constitute the foundation of this thesis. In order to highlight the correlation
between the publications and in which part they are placed, an overview of the

4 CHAPTER 1. INTRODUCTION

content in the form of a compilation of the abstracts from these publications
are compiled below:

Part I - Low Complexity Binary Morphology With Flat Rectangular Structuring

Elements

This part describes and evaluates three hardware architectures for binary mor-
phological erosion and dilation. Since the architectures are intended to be
used as hardware accelerators in real-time embedded system applications, the
objective is to minimize the number of operations, memory requirement, and
memory accesses per pixel. Therefore, a fast stall-free low complexity archi-
tecture is proposed that takes advantage of the morphological duality principle
and structuring element decomposition. The main advantage of this architec-
ture is that for the common class of flat and rectangular structuring elements,
complexity and number of memory accesses per pixel is independent of both
image and structuring element size. Furthermore, by exploring paralleliza-
tion, the memory requirement can be minimized. An evaluation of the three
architectures is presented in terms of complexity, memory requirements and
execution time, both for an actual implementation, and as a function of image
resolution and structuring element size. The architecture is implemented in the
UMC 0.13 µm CMOS process using a resolution of 640 × 480 and supporting
a maximum structuring element of 63 × 63.

The content in this part are modified versions of the following publications:

• H. Hedberg, F. Kristensen, and V. Öwall, “Low Complexity Binary Mor-
phology Architectures with Flat Rectangular Structuring Elements,” ac-
cepted for publication in IEEE Transactions on Circuits and Systems I.

• H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall, “A Low Complexity
Architecture for Binary Image Erosion and Dilation using Structuring
Element Decomposition,” in Proc. of IEEE International Symposium on
Circuits and Systems (ISCAS’05), Kobe, Japan, May 2005.

The main contribution of these publications has been developed in close coop-
eration with PhD colleague F. Kristensen.

Part II - Binary Morphology with Locally Adaptive Structuring Elements: Algorithm

and Architecture

This part describes a novel algorithm with a corresponding architecture which
supports a locally adaptive structuring. Allowing locally adaptive structuring
elements is advantageous whenever one can let the structuring element locally
adapt to certain high-level information, e.g. apparent size of the objects, tex-
ture, or direction. For example, in real-time automated video surveillance

1.3. THESIS OVERVIEW 5

applications, letting the structuring element locally adapt to the apparent size
of the objects, i.e. explore the depth information, makes processing of the bi-
nary segmentation result more efficient and accurate. Therefore, in an effort
to enhance performance, this paper presents a novel algorithm for binary mor-
phological erosion with a flexible structuring element, together with a corre-
sponding hardware architecture. The algorithm supports resizable rectangular
structuring elements, and has a linear computational complexity and memory
requirement. In order to achieve high throughput, the proposed architecture
maintains the important raster-scan pixel processing order, and requires no
intermediate storage for the image data. The paper concludes with implemen-
tation results of the architecture when targeted for both FPGA and ASIC.

The content in this part is a modified version of what has been submitted
for publication in:

• H. Hedberg, P. Dokladal, and V. Öwall, “Binary Morphology with Locally
Adaptive Structuring Elements: Algorithm and Architecture,” first round
of revision for publication in IEEE Transactions on Image Processing.

The foundation of this publication was initiated during a research visit to the
Center of Mathematical Morphology (CMM) in Fontainebleu, France. The
work has been carried out in close cooperation with PhD P. Dokladal, and the
author’s main responsibility in this publication concerns the hardware archi-
tecture and its implementation result.

Part III - An Architecture for Calculation of the Distance Transform Based on

Mathematical Morphology

This part presents a hardware architecture for calculating the city-block and
chessboard distance transform on binary images. It is based on applying par-
allel morphological erosions and adding the result, enabling preservation of the
raster pixel scan order and having a well defined execution time. The low
memory requirement makes the architecture applicable in any streaming data
real-time embedded system environment with hard timing constraints, e.g. set
by the frame rate. Depending on the application, if a priori knowledge of the
image content is known, i.e. the maximum size of the clusters, this informa-
tion can be explored reducing execution time and memory requirement even
further. An implementation of the architecture has been verified on an FPGA
in an embedded system environment with an image resolution of 320 × 240
at a frame rate of 25 fps running at 100 MHz. Implementation results when
targeted for ASIC are also included.

6 CHAPTER 1. INTRODUCTION

• H. Hedberg, and V. Öwall, “An Architecture for Calculation of the Dis-
tance Transform Based on Mathematical Morphology,” to be submitted
for publication, 2008.

Part IV - Implementation of Labeling Algorithm Based on Contour Tracing with

Feature Extraction

This paper describes an architecture of a connected-cluster labeling algorithm
for binary images based on contour tracing with feature extraction. The imple-
mentation is intended as a hardware accelerator in a self contained real-time
digital surveillance system. The algorithm has lower memory requirements
compared to other labeling techniques and can guarantee labeling of a pre-
defined number of clusters independent of their shape. In addition, features
especially important in this particular application are extracted during the con-
tour tracing with little increase in hardware complexity. The implementation is
verified on an FPGA in an embedded system environment with an image reso-
lution of 320× 240 at a frame rate of 25 fps. The implementation supports the
labeling of 61 independent clusters, extracting their location, size and center
of gravity.

The content in this part is a modified version of the following publication:

• H. Hedberg, F. Kristensen, and V. Öwall, “Implementation of Labeling
Algorithm Based on Contour Tracing with Feature Extraction,” in Proc.
of IEEE International Symposium on Circuits and Systems (ISCAS’07),
New Orleans, USA, May 2007.

Part V - An Embedded Real-Time Surveillance System: Implementation and Eval-

uation

This part describes an HW implementation of an embedded automated digital
video surveillance system with tracking capability. The system is partitioned so
that it has key operations implemented as dedicated HW accelerators, e.g. video
segmentation, morphological filtering and labeling, while tracking is handled
in software running on an embedded processor. By implementing a complete
embedded system, bottlenecks in computational complexity and memory re-
quirements can be identified and addressed. Accordingly, a memory bandwidth
reduction scheme for the video segmentation unit is deployed together with the
development of efficient low memory requirement architectures for morpho-
logical and labeling operations. Furthermore, system level optimizations are
also explored and applied, e.g. the application does not require unique labels
which reduce the memory requirement in the labeling unit and thereby also the
total memory requirement in the system. The hardware accelerators provide

1.3. THESIS OVERVIEW 7

the tracking software with object properties, i.e. metadata, resulting in the
complete decoupling of the tracking algorithm from the image stream, which
is crucial to achieve and sustain real-time performance. A simplified system
prototype is running on an FPGA development board using a resolution of
320 × 240 and a frame rate of 25 fps. Furthermore, the impact on the sys-
tem’s resource utilization (scalability) when increasing the resolution is also
investigated.

The content in this part is mainly a reprint of the following publication:

• F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “An
Embedded Real-Time Surveillance System: Implementation and Eval-
uation,” accepted for publication in Journal of VLSI Signal Processing
Systems, Springer.

Despite earlier efforts to avoid repetition and overlap, since the content in this
part is mainly an unmodified reprint, overlapping definitions, figures, tables,
and results regarding morphology and labeling are obvious. The author’s main
responsibility in this contribution are the parts concerning morphology and
labeling.

Chapter 2

Digital System Design

Designing digital processing systems is a complex task that involves many ab-
straction levels of digital circuit design. A traditional overview of the abstrac-
tion levels used in digital circuit design is illustrated in Figure 2.1 [6]. The major
part of work presented in this thesis is located at the system- and architecture-
levels. Furthermore, there are many design specific parameters to consider,
e.g. design time, cost, throughput (speed), power, area, and flexibility. Many
of these parameters depend on each other, e.g. increasing the throughput may
result in an increased power dissipation and area, making the design process
even more difficult. The subsequent sections will describe some of the design
parameters considered during the development of the architectures presented
in this thesis.

2.1 Implementation Platform

One of the most important decisions to make when developing a digital signal
processing system is the choice of implementation platform. Here, the imple-
mentation platform is used as the designation for the hardware on which the
actual processing is performed. The choice involves a trade-off between design
time, development cost, flexibility, and performance in terms of throughput
and energy efficiency, i.e. energy consumed per operation. There are mainly
four implementation platforms to choose from:

GPP – General Purpose Processor,

DSP – Digital Signal Processor,

9

10 CHAPTER 2. DIGITAL SYSTEM DESIGN

���
���
���
���

in out

Gate

System

Circuit
in

S

G

D

n+n+

Device

out

This thesis

out

in1

in2

Architecture

Figure 2.1: An overview of typical abstraction levels used in the field
of digital circuit design, where the arrows indicate increasing level of
abstraction. The figure also shows on which level the main part of the
work in this thesis has been carried out, i.e. architecture and system
level.

FPGA – Field Programmable Gate Array, and

ASIC – Application-Specific Integrated Circuit,

which are categorized and placed in Figure 2.2(a) depending on the degree
of specialized architecture they are based upon. The more specialized the
architecture, the more optimized it is for a specific application. This makes the
categorization stretch from a GPP being the most general, to a dedicated full
custom ASIC being the most optimized. Note that since the categorization is
based on the architecture, a GPP implemented as an ASIC still falls under the
category of GPP, a DSP implemented on an FPGA is still a DSP, and so on.
There are also hybrids that can be placed in several categories, e.g. structured
ASICs being a combination of an FPGA and an ASIC. However, since these
hybrids do not add anything to the conceptual discussion conducted here, they
are simply omitted.

A GPP is found in common desktop computers, typically having a generic
instruction set that is not optimized for any particular application [7]. Since
a GPP offers the possibility of running practically any code, thus supporting
both floating point and fix-point operations, there are several issues limiting
their applicability in real-time processing systems. The main reason for this
limitation is due to the fact that a GPP does not offer any type of specialized
hardware support for specific or repetitive operations found in digital processing
algorithms. As a consequence, this type of implementation platform has a
throughput and an energy efficiency among the lowest of all four categories.

The second category is the DSP, which is a type of processor specialized for
digital signal processing applications [8]. A DSP has a specialized instruction

2.1. IMPLEMENTATION PLATFORM 11

GPP

architecture

Implementation platform

ASICFPGA

DSP

FPGA

GPP

F
le

xi
bi

lit
y

Performance: throughput and energy efficiencyDevelopment time and cost

General Dedicated

DSP ASIC

(a) (b)

Figure 2.2: (a) The four categories divided by their architectural prop-
erties. (b) Flexibility as a function of performance for the four major
categories of implementation platforms.

set with dedicated hardware support for operations commonly used in digital
signal processing algorithms, e.g. Multiply-Accumulate (MAC), and extended
memory support [9]. Having these extensions, this type of processor has both
higher throughput and a better power efficiency. Regarding the supported
number representation, there are DSPs that support floating point operations,
but the majority only supports fix-point operations [10].

An FPGA is a reconfigurable implementation platform which typically con-
sists of logic blocks, interconnects (routing), and I/O blocks [11]. Their re-
configurability comes from the fact that the logic blocks and routing can be
programmed. Therefore, an FPGA offers the possibility of exploiting paral-
lelism, resulting in an increased performance compared to GPPs and DSPs.
Nowadays, most FPGAs come with embedded on-chip macro blocks (dedi-
cated HW blocks), e.g. multipliers, memory, and in some cases even embedded
GPPs. In addition, the vendors may provide the user with software tools to
generate common arithmetic components, increasing their applicability in dig-
ital processing systems even further. However, one major drawback of this
implementation platform is the limited support of floating point-arithmetic op-
erations. Another drawback is the increased development time of an FPGA
solution compared to the one based on a GPP or a DSP, somewhat taking
the focus from the actual algorithmic development. However, the support for
floating-point operations is continuously increasing as well as the ease-of-use of
the Electronic Design Automation (EDA) tools from the FPGA vendors. From
a power perspective, the configurability comes at the cost of a high power dis-
sipation, e.g. due to the over dimensioned interconnect structure and the use of

12 CHAPTER 2. DIGITAL SYSTEM DESIGN

Lookup Tables (LUT) instead of dedicated gates, making this implementation
platform less applicable in low power applications.

The last category is the ASIC, which offers the highest performance in
terms of throughput and power efficiency, but has the longest development
time of all categories. ASICs and FPGAs have many properties in common,
e.g. the possibility of exploiting parallelism, but with the main difference that
the architecture in ASICs can not be altered. Hence, all algorithmic flexibil-
ity and reconfigurability must be supported and included in the design before
fabrication. The increased performance in terms of throughput and power
consumption in an ASIC over an FPGA is due to optimized arithmetic opera-
tions, design structures, and routing, together with the possibility of being able
to apply more refined low power techniques, discussed further in Section 2.4
and 2.5. Furthermore, if the implementation is to be mass produced, imple-
menting an ASIC may be more cost effective (even if maximum performance
is not required) since the production cost per chip will decrease. This leads
to the conclusion that if flexibility may be traded for high throughput and
low power consumption together with the fact that the budget may cover the
increased design time associated with developing an ASIC, this is the best im-
plementation platform for the job. In fact, the superior performance makes this
implementation platform the only choice in certain applications, e.g. medical
applications [12].

Traditionally, the four categories are shown as a function of flexibility and
performance. Performance is relatively easy to measure and the horizontal axis
in Figure 2.2(b) very well corresponds to reality. However, since flexibility is
not easy to measure, the placement of the categories on the vertical axis may be
argued. As an example, an FPGA with a hard embedded GPP macro block is
more flexible than a single GPP core, since it gives access to both the strengths
of the GPP and offers the possibility of placing key operations in dedicated
hardware accelerators (architectures). Again, by omitting the hybrids and by
letting the vertical axis correspond to the applicability of a system solution
based on this category to various applications, stating that the GPP is the
most flexible and an ASIC is the least, is not that far from the truth.

To summarize: No matter how fast a GPP or DSP will become in the future,
having a dedicated hardware accelerator placed in an FPGA or an ASIC will
always be advantageous in terms of throughput, due to the ability to exploit
parallelism [9]. Although the FPGAs of today are not really targeted for low
power applications, the continuous development of new low power techniques
incorporated in every new FPGA generation is closing the gap between FPGAs
and ASICs in terms of low power consumption.

2.2. DESIGN FLOW 13

verification

verificationarchitecture

algorithm

constraints

Synthesis

Specification

Idea

PLS

PSS

timing information

timing information

netlist

netlist

ASIC track

test vector generation

evaluation

Peripherals

Software modeling

Hardware modeling

P&R

FabricationConfiguration

FPGA track

Constraints

Figure 2.3: An overview of the design flow used when developing the
architectures presented in this thesis.

2.2 Design Flow

A digital hardware design flow defines the steps when transforming a specifica-
tion into a reproducible implementation, e.g. an embedded system running on
an FPGA or an ASIC. A well defined design flow not only ensures the quality
of the outcome but also reduces design time, since the time spent in each step
can be estimated and measured, so resources may be allocated accordingly.
Figure 2.3 illustrates details of a simplified design flow for hardware design
using a Hardware Description Language (HDL) targeted for an FPGA or an
ASIC, that covers the main development process used in this research project.
Naturally, a design flow is application dependent, and so is the time spent in
each step, which is dependent on several factors, e.g. algorithmic complexity,
size of the design, and speed constraints.

The design process starts with an idea about what is to be developed, e.g. a
hardware accelerator or a complete embedded system, which is turned into a
specification. Starting at the top of Figure 2.3, the main steps in a hardware
design flow are:

14 CHAPTER 2. DIGITAL SYSTEM DESIGN

Specification - contains detailed information of what is to be developed with
available resources, e.g. design time, budget, technology, interfaces, and
peripherals.

Software modeling - is used to identify and model key components, typi-
cally performed using a high level description language, e.g. C, C++, or
Matlab. Software modeling is a fundamental step in the design flow since
it includes algorithm selection, software/hardware partitioning, timing
evaluation, deciding arithmetic precision, evaluation of parameter set-
tings, and complexity analysis of the components. In addition, test vec-
tors to and from the components are generated to be used for verification
of succeeding steps.

Hardware modeling - describes the hardware components’ behavior on a
bit-level, typically described in VHDL or Verilog. This step determines
the actual hardware architecture of the components.

Synthesis - transforms the hardware model into a netlist. A netlist is a
description of the hardware model in terms of physical gates, which are
selected from a standard cell library, and their relative interconnection.

Place and route (P&R) - physically places the gates, and routes the inter-
connections of the netlist on the FPGA or the die (in case of an ASIC
implementation).

Configuration/Fabrication - depending on the target implementation plat-
form, the FPGA track ends in a programming file that configures the
FPGA, and the ASIC track ends by sending the design for fabrication.

When designing an ASIC, a good strategy to verify the functionality of the
design is to extract timing information for the netlist and to perform a Post
Synthesis Simulation (PSS) or Post Layout Simulation (PLS) before manufac-
turing the design, illustrated in Figure 2.3. Rapid prototyping may also be
performed using an FPGA to test the functionality and interfaces between the
processing units. Naturally, there are practical situations when functional ver-
ification on an FPGA is superfluous or even not feasible, e.g. when the design
is too large, or when full custom blocks on a circuit level are being developed.
This is due to the fact that full custom blocks may consist of gates, transis-
tors, or have a routing that is not possible to achieve in an FPGA. However,
if possible, performing PSS, PLS or prototyping on an FPGA, minimizes the
risk of sending erroneous designs for fabrication and should therefore always
be considered. Note that the netlists may also be used to simulate the power

2.3. REAL-TIME PROCESSING 15

consumption of the design, which gives an indication of how much power will
be dissipated in the design.

2.3 Real-time Processing

In a general real-time processing system, the system is required to respond
to an input event within a predestined time using given resources so that it
keeps up with an external process [7]. In an image sensor based processing
system, the outside process is the image acquisition step. The speed of the
image acquisition step is equivalent to the frame rate frate and is measured
in frames per second (fps) or Hz. The frame rate is a critical parameter for
system performance since it affects the timing budget by putting an overall
constraint on the system processing time tp, i.e. the total time it takes for
the system to process a complete frame. System latency is also an important
property which corresponds to the delay between an event and the system’s
response to this event. In practice, the latency corresponds to the delay between
input and output data, and should be kept as low as possible. Assuming a
single processing block, regardless of latency and other system parameters and
settings, e.g. resolution, the following relation must hold

tp ≤ 1

frate

. (2.1)

The frame rate depends on the system resolution and may have limited de-
grees of freedom, as they are sensor specific. This means that a particular sensor
supports certain modes of operation, i.e. a certain resolution results in a given
frate. The higher the frate, the shorter the time which has elapsed between two
consecutive frames, and the more “similar” or more quasi-stationary the two
images become. This may be important in certain applications, e.g. automated
surveillance, since object motion predictions become more accurate resulting
in a more robust tracking. However, a high frame rate imposes a high band-
width or bit rate to and from the hardware blocks, e.g. memories, which is a
major bottleneck in many image processing systems [13]. A high bandwidth
also consumes more power, which is always an issue in any system design and
may be critical in battery operated devices. From a system perspective, frate

should be kept as low as possible while still being able to process the fastest
event in the scene.

Deciding a frame rate is more than just a question of processing speed and
algorithmic robustness, particularly if the output is a video sequence that is to
be viewed by humans. In general, humans perceive a motion as continuous if
frate ≥ 20 [14], but this figure depends to a large extent on the image content.
However, many people still experience discontinuities in the motion at this

16 CHAPTER 2. DIGITAL SYSTEM DESIGN

frame rate, and as a consequence, common television standards use frate ≥ 25,
e.g. PAL=25 and NTSC=30 fps [15](PAL=50 and NTSC=60 fps interlaced).
Based on this discussion, in this thesis, real-time video performance is defined
as frate ≥ 25 fps and as presenting the result within a latency of a few frames.

2.4 Low Power Circuit Design

The total power dissipation Ptot in a digital integrated circuit consists of three
components [6]: static power Pstat, dynamic power Pdyn, and direct-path power
Pdp. Pstat is due to leakage currents, Ileak, which are both temperature and
technology dependent: increasing as temperature rises, and as the threshold
voltage in the transistors is lowered, which occurs when technology is scaled
down. Pdyn is due to the charging and discharging of capacitive loads Cl of a
transistor. Pdp is due to the nature of the Complementary Metal Oxide Semi-
conductor (CMOS) design in which a direct-path between the supply voltage
and ground is present during the switching phase of the gates. This direct path
results in a short circuit current Is, present during a short period of time ts,
when both transistors are conducting.

All power contributions, Pstat, Pdyn, and Pdp, are dependent on the supply
voltage Vdd, but only Pdyn and Pdp are proportional to the clock frequency f .
The total power dissipation in a design is defined as

Ptot = Pstat + Pdyn + Pdp = Vdd · (Ileak + f · (Cl · Vdd + Is · ts)), (2.2)

where Pdp may be neglected since it is small compared to the other two compo-
nents. Traditional low power design techniques and tools focus on minimizing
the dynamic power since it is traditionally the largest component in (2.2). Typ-
ical low power design techniques are: voltage scaling, power-gating, multiple
threshold cell libraries, and clock-gating, among which voltage scaling is popu-
lar due to the square relationship in (2.2). Furthermore, the propagation delay
tp of a given gate depends on the threshold voltage Vt, and the supply voltage
according to

tp ∝ Vdd

(Vdd − Vt)2
, (2.3)

which shows that power is traded for speed [16]. Both increasing Vt, which
reduces the static power, and decreasing Vdd, which reduces the dynamic power
dissipation in (2.2), result in a longer propagation delay, and hence slower
circuitry. In practice, (2.3) is the basis of lowering the supply voltage so that
the tp of the design matches the timing constraint imposed by the application,
e.g. resolution and frame rate. To further refine this technique, (2.3) may be

2.5. LOW POWER FPGA DESIGN 17

applied on specific regions of the chip, resulting in multiple power domains with
an optimal supply voltage within that region [17]. Based on this reasoning, any
time slack in the timing model may be used to decrease the dynamic power
consumption by lowering the supply voltage.

2.5 Low Power FPGA Design

In FPGA design, the power contribution principles discussed in Section 2.4
still holds but the freedom of applying various low power techniques is lim-
ited to what is supported by the specific FPGA model, e.g. voltage scaling
and power-gating [18]. Due to the recent power awareness among the FPGA
vendors, nowadays, low power techniques are also included in the EDA tools,
e.g. power driven placement [19]. The power saving when applying these tech-
niques is highly application dependent, but their applicability to the design
should always be explored. In addition, there are also other less FPGA model
and vendor dependent low power techniques that may be applied to the design:

• System level - manipulates the switching activity, e.g. multiple clock
domains each operating at the lowest possible frequency and clock-gating.

• Architectural level - reduces the number of memory accesses and com-
putational complexity.

A typical system level power saving technique is to optimize the throughput
frequency balance. This means minimizing the operating frequency of the in-
dividual blocks but keeping the throughput constraint (assuming a fixed Vdd).
This technique will save power since the clock distribution network has high
switching activity together with large capacitances, f and Cl in (2.2). This
may be achieved since the FPGA typically supports multiple clock domains.
Clock-gating may effectively reduce the switching activity in the clock tree by
not letting the clock toggle inside unused blocks. If a block is unused, gating
the clock to the registers prohibits unnecessary switching activity in the combi-
natorial parts and signals to further propagate through the system, dissipating
unnecessary power. However, the power savings when applying clock-gating
in an FPGA are not as high as in the ASIC counterpart, which is due to the
high static power consumption in an FPGA [20]. Furthermore, clock-gating is
not applicable when the blocks are continuously executing, limiting the power
savings in certain applications even further, e.g. the system described in Part V.

On the architectural level, memories and memory accesses are power con-
suming since they typically have high switching activity and large capacitances
on the bit-lines. This is especially true for off-chip memories which have ad-
ditional capacitances on the I/O-ports. Thus, much effort should be spent on

18 CHAPTER 2. DIGITAL SYSTEM DESIGN

developing algorithms with a minimized memory requirement. Furthermore,
another strategy to save power is to reduce the computational complexity. As
an example, a(b + c) is preferred over ab + ac, since one multiplier less is used
and will therefore consume less power [21].

Chapter 3

Digital Image Processing

This chapter presents basic digital image processing concepts and definitions
relevant to this thesis. The intention is that it should supply the reader with
a theoretical background which is used and referenced in subsequent chapters.

3.1 Digital Image Acquisition

A first step in any digital image processing system is to capture an input im-
age or frame I, typically performed by an image sensor. The sensor produces
a frame by spatially dividing a light sensitive region into an ordered array of
picture elements referred to as pixels, which are aligned to a grid or lattice,
with Ih = M rows and Iw = N columns. This spatially ordered light capturing
procedure is referred to as spatial sampling. The lattice constitutes the domain
D of I and is typically a subset of Z

2 for image sensors. Image resolution is
defined as the number of pixels per frame, i.e. M ×N . Although M < N holds
for most commercial resolutions, for the sake of simplicity when describing al-
gorithmic properties, e.g. memory requirement, an image is sometimes assumed
to be a square with a resolution of N2 pixels. Inferring a coordinate system
on the array, the origin with coordinates (0, 0) is often defined to be located
in the upper left corner, as depicted in Figure 3.1. Having the origin defined,
each pixel p has corresponding coordinates (i, j), where i = {0, . . . , M − 1}
and j = {0, . . . , N − 1}, defining the pixel’s spatial position in the grid. Fur-
thermore, each pixel is mapped onto a set of discrete values corresponding to
the light intensity level. This value is quantized and taken from a set of dis-
crete values V = {vmin, . . . , vmax}, where vmin and vmax are the minimum and
maximum possible intensity values. Mathematically, I can now be described

19

20 CHAPTER 3. DIGITAL IMAGE PROCESSING

I

image width:Iw = N

im
ag

e
he

ig
ht

:I h
=

M

j

i

Figure 3.1: A digital image and the coordinate convention used in this
thesis, where the pixels are shown in gray and the origin is marked in
black.

as a function that maps a certain spatial domain onto this set of values V ,
and may be written as I : D → V . Without color processing, the cardinality
of V corresponds to the number of gray levels in the frame, typically a power
of two, i.e. 21 = 2 or 28 = 256. Typically, vmin = 0 which makes the binary
representation of vmax determine the number of bits in hardware required to
represent the maximum pixel value and thereby also the dynamic range for this
frame. As an example, to represent and store a binary image I in a memory,
since V = {0, 1} which implies |V | = 2, only one bit per pixel is required.

3.1.1 Human Vision

A color is a light source with a certain wavelength distribution, where the wave-
lengths that stretch from about 400 to 700 nm lies within the human visual
spectrum [22]. A light source with a uniform wavelength distribution within the
visual spectrum is referred to as white, and a light source containing only one
wavelength is monochromatic (dirac distribution). The sum of the wavelength
distribution is equal to the intensity. Furthermore, since a sensor only measures
spatial light intensity, it becomes gray scale by nature. However, to be able to
keep the wavelength distribution information, a color space is inferred, splitting
the intensity into different and separate wavelength contributions: each color
pixel is represented as a point in the color space with each color component
contribution as the projection onto each respective axis. A common technique
to create a multi-dimensional color space, e.g. RGB, is to separate the wave-
lengths of the incoming light by inferring a color filter on top of the pixel grid.
The filter, called a Color Filter Array (CFA), is periodic and the actual colors
in the filter corresponds to the desired color component. As an example, a

3.1. DIGITAL IMAGE ACQUISITION 21

p(0,0) = (R0,
G0+G1

2
, B0)

p(0,1) = (R1,
G2+G3

2
, B1)

p(1,0) = (R2,
G4+G5

2
, B2)

p(1,1) = (R3,
G6+G7

2
, B3)

p(0,1) = (R1,
G0+G3

2
, B0)

p(1,0) = (R2,
G1+G4

2
, B0)

p(0,0) = (R0,
G0+G1

2
, B0)

p(1,1) = (R3,
G3+G4

2
, B0)

G5 B2

R3

G7 B3

G6R2

B0

R0

B0G1

G0 R1

B1

G2

G3

R2 G4

G5 B2

R3

G7

G6

B3

R0

G1

G0 R1

B1

G2

G3

G4

(a) (b)

Figure 3.2: An illustration of a Bayer mask together with examples of
two pixel setups. (a) is the one used in the system described in Part V.

CFA with one red, two green, and one blue filter component will produce the
RGB color space. This filter, depicted in Figure 3.2, is of special interest since
it is commonly used by sensor manufacturers and is named as the Bayer filter
after its inventor [23]. After the RGB color intensities have been measured,
the sensor output pixels are created as a set of three color components. Since
there are four color components in the CFA and only three in a pixel, a deci-
sion on how to create the three output values has to be made. When using the
Bayer CFA, this is usually done by manipulating the green components with
various techniques, e.g. calculating the mean of two green values, illustrated
in Figure 3.2(a), or by using each color value in multiple pixels, illustrated in
Figure 3.2(b).

The human eye has two types of receptors [24]: rods and cones. Rods are
only sensitive to incoming light intensity and cones only to color information.
Furthermore, cones are divided into three subtypes each sensitive to a specific
color: blue, green, and red. The reason for choosing two green pixels in the
CFA is that the human eye is more sensitive to green than to red or blue.
This is due to the fact that the sum of the probability of the color receptors
absorbing a light quantum with a certain wavelength has its maximum around
≈ 550 nm, which corresponds to a greenish color, illustrated in Figure 3.3.

3.1.2 Sensor Techniques

There are two major sensor techniques: Charge Coupled Device (CCD), and
CMOS. Both techniques were developed in the late 60’s and early 70’s. First,

22 CHAPTER 3. DIGITAL IMAGE PROCESSING

400 500 700600

Wavelength / nm

P
ro

ba
bl

ili
ty

of
lig

ht
ab

so
rb

tio
n

max

Figure 3.3: Normalized spectrum sensitivity of the human eye for each of
the three cone receptor subtypes versus wavelength [14]. The sensitivity
is proportional to the probability of a receptor absorbing a light quantum
with a specific wavelength.

CCDs became dominant due to superior image quality, and not until the 90’s
could the fabrication methods deliver the dimensions and uniformity needed
when using the CMOS technology. As a consequence, CCDs were found in high-
end cameras and CMOS sensors in budget models. However, nowadays this
distinction is not valid anymore, since CMOS sensors are also placed in high-
end models [25]. The subsequent section presents a brief comparison between
the two techniques [26] [27]. However, before going into details, some important
parameters are presented that may be used to compare the two techniques and
which are of special interest in automated digital surveillance systems:

• Dynamic range - The ratio between a pixel’s saturation level and its
signal threshold, i.e. the ratio between maximum and minimum signal
level which should be kept as high as possible.

• Uniformity - Consistency in pixel response for different spatial locations
under identical illumination conditions, i.e. the same light intensity at
different locations of the sensor should result in the same output pixel
value. The uniformity may vary at different illumination intensities.

• Speed - The data rate of the sensor output pixel stream, measured in
MHz.

3.1.3 CCD versus CMOS Sensors

Both CCD and CMOS techniques are Metal Oxide Semiconductors (MOS) and
function as spatial light samplers; they both have a light sensitive region that

3.1. DIGITAL IMAGE ACQUISITION 23

pc

pcpc

pc

pc

pc

cv

pc

cv

pc

cv

pc

cv

pc

cv

pc

cv

pc

cv

pc

cv

pc

cv

pc

Column decoder

R
ow

de
co

de
r

PCB

charge-to-voltage
converter (cv)

photon-to-charge
converter (pc)

ADC ADC

digital output digital output

On-chip

im
ag

e
se

ns
or

cv

timing &
control control

timing &

cv

pc

cv

pc

cv

pc

charge-to-voltage
converter (cv)

photon-to-charge
converter (pc)

pc

pc

pc

pc

pc

pc

pc

pc

pc

(a) (b)

Figure 3.4: (a) A typical CCD sensor, where the photon-to-charge con-
verter is placed inside the pixel array and the charge-to-voltage converter
is placed outside of the pixel array. (b) A typical CMOS sensor, where
both the photon-to-charge and charge-to-voltage converters are placed
directly in the pixels.

converts photon quantums into charge at each location in the pixel grid. The
electrical charge is converted into a voltage and finally sent to the output.
However, it is the read-out procedure of the charge that is the major difference
between the two techniques.

A CCD sensor transfers the charge quantum sequentially from one photon-
to-charge converter to another towards the output charge-to-voltage converter.
A typical CCD sensor with some required circuitry and logic blocks is depicted
in Figure 3.4(a).

In a CMOS sensor, illustrated in Figure 3.4(b), the photon-to-charge and
charge-to-voltage conversions takes place directly in the pixel. Therefore, signal
routing to each pixel is required, reducing the pixel density to some extent.

Comparing the dynamic range between the sensor techniques, the CCD has
an advantage due to less noise in the substrate. Traditionally, the uniformity
was problematic in CMOS sensors, but the gap is continuously decreasing. The
image pixel output speed is one of the most important parameters since at a
given frame rate, a faster pixel output speed results in a longer processing time
per frame for the system. In general, CMOS sensors have a slight advantage
over CCDs in terms of speed. Another important issue is the amount of required
post-processing. CMOS sensors typically have more post-processing integrated
on-chip, e.g. timing generation, Analog-to-Digital Conversation (ADC), and
noise reduction, as opposed to the CCD which has most post-processing on the

24 CHAPTER 3. DIGITAL IMAGE PROCESSING

Table 3.1: A comparison of important parameters between the CCD and the
CMOS sensor techniques.

Sensor property CCD CMOS
Dynamic range Better Good
Uniformity Better Good
Speed Fast Faster
Power Higher Lower
Cost More Less

camera Printed Circuit Board (PCB). This, together with the fact that CMOS
sensors can be manufactured in standard MOS processes, makes the cost per
sensor less for CMOS than for CCDs. Based on this brief evaluation, summa-
rized in Table 3.1, together with the fact that the CMOS sensor consumes less
power, this type of sensor is more suitable in our application.

3.1.4 Raster Scan Order

An important concept in real-time processing is the data pattern of the input
stream. This is important since it has a large impact on several aspects of
hardware design, e.g. the required amount of hardware resources, the timing
model, and type of memory. In many digital real-time image processing ap-
plications, the data pattern is a stream of sequential pixels starting in the top
left and ending in the bottom right corner of the image, which is referred to as
the raster scan order. This is a typical read-out pattern from a sensor or when
multiple pixels are burst read from a memory source. To avoid intermediate
data storage and random memory accesses during the pixel processing, and
to achieve minimal system latency, the pixel processing chain should maintain
the raster scan property as long as possible. In practice, this means sequential
input and sequential output, to and from the included HW blocks.

3.2 Fundamental Pixel to Pixel Based Relationships

3.2.1 Neighborhood

A commonly used spatial pixel neighborhood defined on a square lattice can be
formed by taking a square of size 3 × 3, centered around a pixel p at location
(i, j). This pixel has two horizontal and two vertical neighboring pixels at
coordinates

(i, j + 1), (i + 1, j), (i, j − 1), (i − 1, j), (3.1)

3.2. FUNDAMENTAL PIXEL TO PIXEL BASED RELATIONSHIPS 25

n n n

n

n n n

n

n n n

n

n n

n

n n n

n

n n n

npp p

n

(a) (b) (c)

Figure 3.5: (a) A pixel p and its 4-neighbors (N4(p)), (b) D-neighbors
(ND(p)), (c) and 8-neighbors (N8(p)).

defined as the 4-neighbors of p(i, j) and denoted N4(p), depicted in Figure 3.5(a).
Furthermore, p(i, j) also has four diagonal neighbors at coordinates

(i − 1, j + 1), (i + 1, j + 1), (i + 1, j − 1), (i − 1, j − 1), (3.2)

denoted ND(p), depicted in Figure 3.5(b). These pixels, together with N4(p),
are defined as the 8-neighbors denoted N8(p) ∈ N4(p) ∪ ND(p) [28]. In words,
a pixel and its closest neighboring pixels in all directions, are often referred to
as nearest neighbors, illustrated in Figure 3.5(c).

3.2.2 Connectivity

The relationship between two or more pixels is called connectivity [29]. For two
pixels p1 and p2 to be connected, they must both fulfill the adjacency criterion
and be in the same neighborhood. The adjacency criterion or adjacency con-
siders the pixels’ intensity value. Given the intensity values of two pixels p1

and p2 taken from a discrete set V , defined in 3.1, the adjacency criterion is
fulfilled if a predefined condition is met, e.g. |p1 − p2| < Tthreshold or p1 = p2,
where the latter is typical in binary images.

Two pixels p1 and p2, in a binary image are

• 4-connected – if p1 ∈ N4(p2)

• 8-connected – if p1 ∈ N8(p2)

if they simultaneously fulfill the adjacency criterion. Connectivity is a funda-
mental concept in digital image processing from which other important con-
cepts are derived, e.g. contours, regions, and distance measures. An example
of how 4- and 8-connectivity affects clustering is illustrated Figure 3.6(a)-(c).
Notice how the 4-connectivity rule misses diagonal transitions as opposed to
the 8-connectivity rule, resulting in three clusters instead of one.

26 CHAPTER 3. DIGITAL IMAGE PROCESSING

0

0

1

1

0

0

1

1

1

1

0

0

1

0

0

0

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1C1

C1C1C1

C1

C3

C1

C1

C3

C1

C1

C1

C1

C1

C3

C2

C2

C2

C2C3

C1

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1C1

1

1

1

0

0

1

0

0 0

1

1

0

(a) (b) (c) (d)

Figure 3.6: (a) An arbitrary binary image, (b) corresponding 4-connected
clusters, i.e. C1, C2, and C3, (c) corresponding 8-connected cluster C1,
(d) and corresponding 8-connected contour pixels marked in black.

3.2.3 Clusters

A cluster C is a set of pixels defined by their connectivity, typically 4- or 8-
connected. Each cluster has a contour P , which consists of contour pixels p
and is defined as

P = {p | p ∈ C, ∃q ∈ N4(p), q /∈ C}, (3.3)

which means that a contour pixel p has at least one 4-connected neighboring
pixel outside of C. An example of 8-connected contour pixels of an arbitrary-
shaped cluster is illustrated in Figure 3.6(d).

3.2.4 Spatial Filters

A spatial filter is a mathematical function that typically applies to the center
pixel of the sliding window taking input data from the pixels that are currently
coinciding with the window in the input frame [30]. A general spatial operator
is defined as

g(i, j) = T [f(i, j)], (3.4)

where f(i, j) is the input pixel, T is the filter operation, and g(i, j) is the output
at position (i, j) in the resulting image. The filters are defined as linear if the
following condition is fulfilled

T [af(i, j) + bg(i, j)] = aT [f(i, j)] + bT [g(i, j)], (3.5)

where a and b are any two scalars, and nonlinear if not. Image convolution is
an example of a typical linear spatial filter which may be used in a variety of

3.3. BASIC SET THEORY DEFINITIONS 27

applications depending on the coefficients in the kernel, e.g. image smoothing
and sharpening [31]. Let I be a grayscale image in Z

2 of size M ×N , then the
2-D image convolution in the spatial domain can be defined as

g(i, j) = I(i, j) ∗ b(i, j) =

⌊S
2 ⌋∑

s=−⌊S
2 ⌋

⌊T
2 ⌋∑

t=−⌊T
2 ⌋

b[s, t]I[i + s, j + t] (3.6)

where i = 0, 1, . . . , M − 1 and j = 0, 1, . . . , N − 1 and b(s, t) is the convolution
kernel of size S × T containing the coefficients [30] (S and T are assumed to
be odd numbers). Examining (3.6), two key arithmetic operations may be dis-
tinguished: multiplication and summation. These two operations characterize
image convolution, since each value in the input image that is covered by the
superimposed convolution kernel is first multiplied with the coinciding coef-
ficient which then are all accumulated, forming the result. When the kernel
reaches outside the borders, i.e. when 0 > i+s > M −1 and 0 > j + t > N −1,
these values are set in such a way that they do not affect the result.

Rank filters are based on internally ordering or ranking the intensity values
in the input image currently covered by the superimposed kernel, and then
performing a nonlinear operation on these values, i.e. which does not fulfill
the criterion in (3.5). Typical nonlinear rank filters are formed by taking the
median, average, minimum, and maximum, of these values, where the median
is particularly important, since it is widely used for noise suppression [30].

3.3 Basic Set Theory Definitions

A general set is a cluster of objects or members, referenced as a whole. The
members are grouped by certain rules certifying their membership in the set.
In image processing, the sets are collections of pixels that are grouped by their
connectivity and/or by fulfilling the adjacency criterion (refer to Section 3.2.2)
and are mapped onto a certain lattice, e.g. Z

2 in the 2-D case. Each pixel is
associated with a n-tuple of values where n is the smallest integer required to
describe the properties of this particular pixel, e.g. its coordinates and intensity
[32]. As an example, let A be a set in Z

2 describing foreground pixels in a binary
image, i.e. pixels with intensity value 1, then n is equal to 2 since only a pair
of coordinates, i.e. i and j, are required to describe the pixels in the set (the
intensity is omitted). Throughout this thesis, sets are referenced with capitals
and their corresponding elements with the same lower case letter, i.e. A is the
set and a its elements.

Let A, B be sets in Z
2, then there are some basic concepts defined on these

sets relevant to this thesis, which are

28 CHAPTER 3. DIGITAL IMAGE PROCESSING

A ∪ B A ∩ B
A′

B ⊆ A

A B AA B A B

(a) (b) (c) (d)

Figure 3.7: Venn Diagram illustrations of basic set theory concepts. (a)
Union, (b) intersection, (c) subset, (d) and complement of A.

• union, (∪)

• intersection (∩)

• subset (⊂ or ⊆)

• complement (c or ’)

The union of A and B is formed by merging the two sets and removing duplicate
elements, and is denoted A ∪ B. The union corresponds to a logical OR-
operation and is illustrated in Figure 3.7(a). The intersection of A and B,
denoted A ∩ B, is a set constituting the elements that are shared in common
by the sets. This corresponds to a logical AND-operation and is illustrated in
Figure 3.7(b). Note that the result of the intersection between two disjoint sets
is an empty set ∅. B is as a subset of A, if and only if ∀b ∈ B together with
b ∈ A, and is denoted B ⊂ A, illustrated in Figure 3.7(c). This implies that
every pixel in B is also contained in the set A, but A 6= B since ⊂ is analogous to
< and ⊆ to ≤. The complement of a set A is denoted Ac or A′ and constitutes
elements that are not in the set, i.e. a /∈ A, shown in Figure 3.7(d).

3.3.1 Reflection

An important concept is the reflection of a set B, denoted B̂, and this is defined
as

B̂ = {b̂ | b̂ = −b, ∀b ∈ B},
which implies that B̂ constitutes elements b̂ which are equal to all elements
b ∈ B multiplied by −1, resulting in its geometric inverse about its origin,
depicted in Figure 3.8(a). A special case is when B is reflection invariant,
which is denoted B = B̂. This occurs when the reflection is symmetric in both
the i and j direction, e.g. a square or a circle. An example of a reflection
invariant set B is depicted in Figure 3.8(b).

3.3. BASIC SET THEORY DEFINITIONS 29

j1

i

j

i1

B̂

B

i i

j
j

i1 + zi

j1 + zj

B̂

B A

(A)z

(a) (b) (c)

Figure 3.8: (a) A set B and its reflection, where the pixel located at
the origin is marked in black, (b) a rectangular set B and its reflection,
i.e. B = B̂, (c) and a set A translated by z, i.e. Az.

3.3.2 Translation

A set A, translated by a point z = (zi, zj), denoted Az , is defined as

Az = {az | az = a + z, ∀a ∈ A}, (3.7)

which means that Az constitutes elements az that are equal to the elements
a ∈ A translated by z, depicted in Figure 3.8(c).

3.3.3 Minkowski Addition and Subtraction

Having basic set theoretic operations defined, an important aspect of set theory
is that arithmetic operations are defined on the sets where the Minkowski
addition and subtraction are relevant to this thesis [33] [34] [35]. The Minkowski
addition is defined as

A ⊕ B = {a + b | a ∈ A, b ∈ B} =
⋃

b∈B

Ab, (3.8)

where the result is formed by taking the union of the elements after adding
every element in B to every element in A. In other words, this can be seen
as taking the union of all sets when A is translated ∀b ∈ B. The Minkowski
subtraction is defined as

A ⊖ B = {x | x − b ∈ A, b ∈ B} =
⋂

b∈B

Ab, (3.9)

which implies that the result is every element in B, subtracted from every
element in A. This can be seen as taking the intersection of all sets when A is
translated ∀b ∈ B.

Chapter 4

Morphology

The word morphology is a combination of morphe, Greek for “form” or “shape”,
and the suffix -ology, which means “the study of”. Consequently, the word mor-
phology means the study of shapes. In digital image processing, Mathematical
Morphology (MM) is used as the designation for the nonlinear mathematical
tools used to manipulate the shape or understand the structure of functions or
objects (clusters of pixels). The technique was originally developed by Math-
eron and Serra [36] at the Ecole des Mines in Paris in the late sixties. Morphol-
ogy is based on set theory and provides a quantitative description of geometrical
structures and plays a key role in many digital image processing applications.
Furthermore, morphology was originally developed for binary images, i.e. the
2-D integer space Z

2, but was later extended and now applies to several image
representations, e.g. 2-D gray scale integer space, 3-D gray scale and color in-
teger space [37] [38] [39]. However, in this thesis, the scope has been limited to
binary morphology with flat structuring elements if nothing else is stated.

There are numerous applications using different binary morphological op-
erations reported in literature, e.g. noise filtering, boundary detection, and
region filling [35]. The binary image representation can emerge not only due
to the nature of the application, e.g. performing character recognition on a
black and white document, but also as output from an image processing step,
e.g. intensity thresholding, segmentation, or thresholded convolution [40] [41].

4.1 Structuring Element

All morphological operators are based on evaluating subsets, or local neighbor-
hoods, with a limited geometric area in I. The subsets are extracted by probing

31

32 CHAPTER 4. MORPHOLOGY

NB = max(Bw)

B = 5 × 5 B = 5 × 5

2

1

3

N
B

=
m

a
x
(B

h
)

B = Bh × Bw

0

0

0

1

0

1

0

1

2

0

0

0

0

1

0

0

1

1

2

0

1

1

1

1

1

1

1

1

11

1

1

0

0

1

1

0

1

0

1

0

1

1

0

1

1

1

0

0

0

1

0

0

1

1

1

0

1

1

2

(a) (b) (c)

Figure 4.1: (a) An example of a flat SE where Bi,j = 1 for all i =
{0, .., max(Bh) − 1} and j = {0, .., max(Bw) − 1}. (b) An example of a
flat diamond shaped SE. (c) An example of a non-flat SE. All positions
in the SEs where Bi,j 6= 0 are active and the origins are marked as the
shaded regions.

a sliding window (kernel) on I, which is referred to as the Structuring Element
(SE) using morphological nomenclature. The SE determines the actual size and
geometrical shape of the subsets by selecting the pixels in I to include in the
current calculation. The SEs range from fully arbitrary to classes with limited
shape, resulting in a reduced complexity e.g. lines, circles, diamonds, and rect-
angles. As a consequence, the shape of the SE affects the shape of the output
and is therefore strongly application dependent [42]. There are no theoretical
bounds or limitations on the choice of SE shape. However, a rule of thumb is
to use a shape that resembles the shape that is searched for or that is to be
distinguished, e.g. if you want to extract high and thin objects, the use of high
and thin SEs are preferable. Naturally, algorithms supporting arbitrary SEs
are also the most computationally and memory demanding. Therefore, the al-
gorithmically supported shape is a trade-off between computational complexity
and what is required in the application.

Mathematically, the SE is a set with an upper limit in size, typically
max(Bh)×max(Bw) pixels, with elements mapped onto the same lattice config-
uration as the input image, e.g. B ∈ Z

2. Regarding the numerical properties of
the elements in SE, if the SE is binary, B is said to be flat, i.e. b = {0, 1}, ∀b ∈ B,
illustrated in Figure 4.1(a). If an element is equal to b = 0, the pixel that coin-
cides with this element in I is omitted from the evaluation, i.e. marking don’t
care positions. A diamond shaped SE containing zeros is depicted in Fig-
ure 4.1(b). Although flat SEs are the most common case and used to filter
various image representations, e.g. binary, gray scale, and color images [43],
morphology is defined for non-flat SEs as well. The logical operation is then
performed on the result after having added the value of each b to the coinciding

4.2. EROSION AND DILATION 33

value in I. A non-flat structuring element is shown in Figure 4.1(c).
Another important task assigned to the SE is to determine the position of

the evaluation result in the output frame, which is determined by the origin ∈
B. Usually, the origin is located at the center of B, which implies that both
max(Bh) and max(Bw) are odd integers. Each pixel evaluation around the
origin in I, generates an output value with the same coordinates in the output
image.

Let I be a binary input image and B a flat and rectangular SE, i.e. b =
1 ∀b ∈ B. Then B slides over I so that the superimposed origin visits each
coordinate in I once. This results in an output image with the same dimension
as I and a content based on the evaluation of the subsets determined by B.

4.2 Erosion and Dilation

A morphological operation is an image to image transformation similar to im-
age convolution and rank filters since they are all sliding window operations,
as discussed in Section 3.2.4. Furthermore, erosion (ε) and dilation (δ) are two
fundamental morphological operations from which many others are derived,
e.g. opening (erosion followed by dilation), closing (dilation followed by ero-
sion), and hit-or-miss transformation [36] [30]. Therefore, developing efficient
erosion and dilation algorithms and architectures for HW implementation is of
the highest interest since it will implicitly make a collection of operations more
applicable in the field of embedded image processing.

4.2.1 Erosion

Let I, B ∈ Z2 represent a binary input image and a structuring element re-
spectively. Erosion is defined as

I ⊖ B = {x | (B)x ⊆ I}, (4.1)

which means that the erosion of I by B is a set that contains elements x such
that B translated by x is a subset of I [44]. For an arbitrary SE, this means
that the output pixel with the same coordinates in the pixel grid as the origin
in the SE becomes one, if and only if all the pixels in the input image that
coincides with a one in the SE are equal to one. In other words, a binary
ε produces a one at every position where the superimposed B has the same
geometrical shape as I. It can be compared to a logical AND operation, or taking
the minimum of the pixels in the input image at the coordinates where the SE
is equal to one. An alternative definition of a binary erosion can be written as

εB(I) =
⋂

b∈B

I−b, (4.2)

34 CHAPTER 4. MORPHOLOGY

(-1,-1)

(0,0) (0,1)

(1,1)(1,0)

(0,-1)

(1,-1)

(-1,0) (-1,1)

B=3×3

0

0

0

0

0

0

0

inputI

output

011

011

000

1

1

0

0

011 0

0

0

0

000

1

0

Ib=(0,0) Ib=(−1,−1)

111

111

111

0

0

0

0

0

00 0

0

0

0

0000

0

111

111

111

0

0

0

0

0

00 0

0

0

0

0000

0

110

110

0

0

0

0

0

110 1

00

1

1

0000

00

Ib=(−1,1)

000

0

0

0

0

0

000

110

1 10

110

0

0

1

1

1

1

1

11

00

000

0

0

0

0

0

1

1

1

1

1

00

0

0

0

0

Ib=(1,1)Ib=(0,1)

0

0

0

0

0

011

0

1

1 011

11

0

0

0

0

00

0

00

000

1

0

Ib=(0,−1)

000

0

0

1 011

11

0

0

0

0

00

0

11

000

1

1

Ib=(1,−1)

000

0

0

0

0

0

111

11

0

0

0

0

01

1

11

000

Ib=(1,0)

0

0

0

0

0

111

0

0

0

0

0

111

000

111

0 00

Ib=(−1,0)

0

0

0

0

0

0

0

0

0

0

0

0

1

Figure 4.2: A fragment of the partial result images when translating I by
the elements in B, in this case a square of size 3×3 with the origin marked
in black. By taking the intersection of each translation I, the only pixel
present in all images is marked in white, which therefore corresponds to
the output of this fragment of I.

which can be seen as taking the intersection of I when translated according
to the elements of the reflected B, illustrated in Figure 4.2. By comparing
(4.2) with (3.9), it becomes evident that erosion is nothing but a Minkowski
subtraction with a reflected SE.

An example of binary erosion using an SE of 3 × 3 is illustrated in Fig-
ure 4.3. Sliding the SE over the image, and shifting the origin over I, the first
input pixels resulting in an output equal to one with corresponding output
are depicted in Figure 4.3(a) (pixels marked as ”-” have not been processed).
Continuing the scan, the last pixel to produce an output equal to one with
corresponding output is illustrated in Figure 4.3(b). The final output for this
particular example can be envisioned by replacing ”-” by zeros in Figure 4.3(b).

4.2.2 Dilation

Let I, B ∈ Z2 represent a binary input image and a structuring element, re-
spectively. Binary dilation is defined as

4.2. EROSION AND DILATION 35

0

0

0

-

0

0

output output

output

input input

input

1

0

1

11

0

1

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

0

0

0

0

1

0

1

1-

0

0

-

0

-

0

0

-

1

-

0

0

-

-

-

0

0

-

-

0

0

0

-

-

0

0

-

-

- -

0

0

-

0

-

0

0

-

1

-

0

0

-

1

-

0

0

-

-

0

0

-

-

-

0

0

0

-

-

0

0

-

-

0

0

0

0

0

0

0

1

0

0

0

0

-

-

0

0

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

0 0

0

-

-

- -

0

1

-

-

-

0

-

-

-

-

0

-

-

-

-

0

-

-

-

0

-

-

-

-

0

-

-

-

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

input output

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

- -

0

1

1

1

-

0

1

1

1

-

0

1

1

1

-

0

1

1

1

0

0

0

-

-

(a) (b)

(c) (d)

Figure 4.3: (a) - (b) An example of a fragment of the input and output
to a binary erosion using a 3 × 3 SE. The origin is marked in black,
and foreground pixels covered by the SE are shaded in gray. (c) - (d)
An example of a binary dilation dilation using the same settings. Pixels
marked as ”-” have not been processed.

I ⊕ B = {x | (B̂)x ∩ I 6= ∅}, (4.3)

which means that the dilation of I by B is a set that contains elements x such
that the intersection between the I and B when translated by x is not an empty
set ∅. For arbitrary SEs, this means that the output with the same coordinates
as the center pixel in the SE becomes one if there exists and intersection of
at least one pixel of the input image and the SE. This can be compared to
performing a logical OR operation, or taking the maximum of the pixels in the
grid that are currently being covered by a one in the SE. As for erosion, an
alternative definition for dilation can be written as

δB(I) =
⋃

b∈B

Ib, (4.4)

where the dilation is formed by taking the union of I when translated according
to each of the elements in B. By comparing (4.4) with (3.8), it becomes evident
that a dilation is equal to a Minkowski addition.

An example of binary dilation using an SE of 3×3 is illustrated in Figure 4.3.
The first and last position in the input image resulting in a one is depicted in
Figure 4.3(c) and (d), respectively. Completing the scan, the final output for

36 CHAPTER 4. MORPHOLOGY

this particular input is can be envisioned by replacing the ”-” with zeros in the
lower part of Figure 4.3(d).

4.3 Opening and Closing

When combining erosion and dilation, one followed by the other, it is possible
to form other important morphological operations, i.e. opening and closing.
Opening is an erosion followed by a dilation and closing is a dilation followed
by an erosion. An opening of I by B is defined as

I ◦ B = (I ⊖ B) ⊕ B,

commonly used to filter noise. The filtering is achieved by first eroding the
image, resulting in isolated clusters smaller than the SE being removed, followed
by a dilation which restores the remaining clusters to their original size. Note
that pixels deviating in shape from the SE in the input image are also removed,
illustrated in Figure 4.3. An example of a typical noisy image containing three
human silhouettes together with the result after an opening has been performed
using a flat quadratic SE of size 3 × 3 containing only ones, are illustrated in
Figure 4.4(a) and (b), respectively.

A closing of I by B is defined as

I • B = (I ⊕ B) ⊖ B,

which can be used to reconnect split objects. Assuming a flat rectangular SE
of size Bh×Bw with a centered origin, I is first dilated, expanding the clusters
in all directions, which results in clusters closer than Bh − 1 and Bw − 1 pixels
apart being merged. The dilation is followed by an erosion, resulting in the
clusters being restored to their original size but leaving the connections from
the dilation intact.

Combining an opening with a closing can improve the filtered result, since
noise may be filtered out and remaining objects can be reconnected. Further-
more, applying a sequence of erosions and dilations, e.g. (((I⊖B1)⊕B2)⊖B3),
and allowing the SE size to change between these operations can improve the
result even further. As an example, the result after an opening has been applied
is shown in Figure 4.4(b), which has many isolated clusters of pixels, especially
for the human silhouette in the middle. However, by first applying an erosion
with a small SE of size 3 × 3, noise is removed. Applying a dilation on the
results with an elongated SE, reconnects vertically placed objects. Applying a
final erosion shrinks the objects, removing extensive pixels that are not part
of the objects. The output of applying such a sequence is illustrated in Fig-
ure 4.4(c) which is superimposed on the color input frame in (d). Notice how

4.4. STRUCTURING ELEMENT DECOMPOSITION 37

(a) (b)

(c) (d)

Figure 4.4: (a) A typical binary input, (b) corresponding output after an
opening has been performed, (c) corresponding output after an opening
followed by a closing, (d) and corresponding output after masking the
sensor output with the result obtained in (c).

the number of small isolated clusters are reduced in Figure 4.4 (c) compared
to (b).

4.4 Structuring Element Decomposition

Erosion and dilation are associative, which means that if the SE can be decom-
posed into smaller SEs according to

B = B1 ⊕ B2, (4.5)

illustrated for a rectangular SE of size 3× 5 in Figure 4.5, then dilating I with
B, results in the same output as first dilating I with B1 and then dilating the
result with B2 according to

38 CHAPTER 4. MORPHOLOGY

B2

1 1 11 1 1 1

1

1

1

B1

Bw = 7

B = 3 × 7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

B
h

=
3

1

Figure 4.5: Decomposition of a 5 × 3 structuring element B into B1 and B2.

- - - -

- - - -

- - - --- - -

- - - --- - -

- - - --- - -

- - - --- - -

- - - --- - -

0

0

0

0

1

1

0

0

1

1

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

0

0

0

0

final outputpartial resultinput

0

1

1

1

1

0

1

1

0

0

1

0

0

0

1

0

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

01

B1

B2

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

0

0

0 0 00

0

0

0

0

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

0

0

0

0

0

0

0 0

1

0

0

0

0

0

0

0

0

0 11 11 11

11

1

00 1

1

1

1

Figure 4.6: Input and output of an erosion using an SE of 5 × 3 decom-
posed into B1 = 1 × 5 and B2 = 3 × 1. Foreground pixels are shown
in white, the origin of the SEs are shown in black, and pixels currently
covered by the SEs are shown in gray. Note that the SEs are placed on
the first location in the input generating a one in the output, shown as
the partial result. Pixels marked as ”-” have not been processed.

I ⊕ B = I ⊕ (B1 ⊕ B2) = (I ⊕ B1) ⊕ B2. (4.6)

With a decomposed SE, the number of comparisons per output is decreased
from the number of ones in B to the number of ones in B1 plus B2. For
the example shown in Figure 4.5, the number of bit operations per output is
decreased from 15 to 8. An example of an erosion using SE decomposition is
illustrated in Figure 4.6. First, the input is eroded with B1. The output of
this erosion is then eroded using B2 resulting in the final output.

Finding decompositions to an arbitrary-shaped SE is not a trivial problem
[45] [46]. However, one common class of SEs that is reflection invariant and
easy to decompose, are rectangles of ones. This type of SE is well suited for
the opening and closing operations needed in our application, since the noise
is uniformly distributed in the input image and allows reconnection of possibly
split objects.

4.6. HANDLING THE BORDERS 39

4.5 Duality with Respect to Complementation

An important property of both erosion and dilation is that one is the dual of
the other according to

I ⊕ B = (I ′ ⊖ B̂)′ (4.7)

I ⊖ B = (I ′ ⊕ B̂)′, (4.8)

where ′ is bit inversion [42]. It is assumed that the height and width of B
are odd numbers and that the origin is located in the center. Furthermore, if
the SE is both reflection invariant, defined in Section 3.3.1, and decomposable,
i.e. B = B̂ and B = B1 ⊕ B2, and by combining (4.5), (4.6), (4.7), and (4.8),
the following two equations can be derived

I ⊕ B = (I ⊕ B1) ⊕ B2 = (I ′ ⊖ B1)
′ ⊕ B2

= ((I ′ ⊖ B1)
′′ ⊖ B2)

′ = ((I ′ ⊖ B1) ⊖ B2)
′ (4.9)

I ⊖ B = I ⊖ (B1 ⊕ B2) = (I ′ ⊕ (B1 ⊕ B2))
′

= ((I ′ ⊕ B1) ⊕ B2)
′ = ((I ′′ ⊖ B1)

′ ⊕ B2)
′

= ((I ⊖ B1)
′′ ⊖ B2)

′′ = (I ⊖ B1) ⊖ B2,

(4.10)

which implies that both erosion and dilation can be expressed as an erosion.
This means that the same hardware can be used to perform both erosion and
dilation using a decomposed SE, further discussed in Parts I and II.

4.6 Handling the Borders

Sliding window operations are prone to boundary problems. These occur when
the B reaches outside of the boundaries of I, as shown in Figure 4.7(a). There
are two straightforward methods to address this issue, where one of them is to
simply omit these values from the calculation. This strategy can be managed
by a controller keeping track of the current position of the SE and thereby
masking out pixels outside the borders, i.e. adapting the active region of the
SE to the borders. This results in a more complex controller, but may in many
cases enable the architecture and data stream to share the same clock domain
(inferring only latency). The other strategy is to insert extra pixels outside the
image, which is called padding. This can be seen as temporarily increasing the
resolution until a well defined output is obtained, as shown in Figure 4.7(b). In
case of binary ε and δ, the padding values should not affect the output result
and the inferred bits are therefore defined as ones and zeros for ε and δ [42],

40 CHAPTER 4. MORPHOLOGY

P
ad

di
ng

PaddingB

Padding

P
adding

B

II

(a) (b)

Figure 4.7: (a) An illustration of the boundary problem where B stretches
outside of the image borders. Only pixels covered by the shaded region
of the SE are included in the calculation. (b) An example of a temporary
resolution increase by inserting padding values.

respectively. With these definitions, information around the boundaries of I
will not be corrupt, since the output only depends on the image content.

Chapter 5

Labeling

Connected component labeling, or simply labeling, is an operation used to
group clusters of pixels with a common denominator in order to separate and
distinguish between different clusters in a frame. This is accomplished by
assigning a unique label to each cluster. Each label l is taken from a set of
discrete values L ⊂ N, which thereby transforms the frame into a symbolic
object mask S, that is the output of the operation. From a set theoretic view,
labeling means adding an integer to all elements of a specific set. Let I ∈ Z

2 be
a binary input image with pixels p ∈ I, Fb = 0 the set of all background pixels,
and Ff = 1 the set of all foreground pixels which consists of disjoint clusters
Ck, where 1 ≤ k ≤ K, for this particular frame. Then without considering
relative cluster order, labeling of I can be written as g : I 7→ Z

+, where g(i, j)
is described by

g(i, j) =

{
Fb, if I(i, j) = Fb,
lk, if p(i, j) ∈ Ck.

(5.1)

By this procedure, the labeling process not only counts the number of clusters in
each frame, i.e. as the value of K, but also gives the possibility of tying certain
features to a specific cluster (label), since each cluster can be referenced by its
label. A feature reveals a property of the cluster, e.g. position (coordinates)
and size. Thus, labeling can be seen as the link between the clusters and
their corresponding features, and is therefore a fundamental operation as a
pre- or post processing step in a sequence of algorithms in many applications,
e.g. pattern recognition systems and medical image processing applications [47].

41

42 CHAPTER 5. LABELING

5.1 Algorithms

Labeling dates back to the early days of image processing [48] and is considered
a fundamental operation [49]. Although the most common case is labeling
of a binary image in raster scan order containing 4- or 8-connected clusters
mapped on a cartesian lattice, the labeling operation is not limited to specific
image representations but is dependent on the ability to form sets of connected
pixels, i.e. clusters. As an example, in a gray scale image, clusters (sets) can
be formed by selecting a specific, or a range of, intensity values which fulfill
the connectivity and adjacency criterion; hence, labeling can be applied to this
type of image.

Various algorithms have been proposed over the years and the majority can
be placed in one of two categories depending on which technique they are based
upon, namely

• Sequential Local Operations (SLOs), or

• Contour Tracing (CT).

The first category utilizes label propagation from local neighboring pixels and
therefore requires multiple image scans to solve ambiguities and uniform the
labels. Algorithms from the second category trace the contour of the clusters,
requiring random memory accesses, assigning these pixels a label directly. The
remaining cluster pixels are then assigned the correct label when encountered.
A sound survey and performance evaluation of algorithms from both categories
in terms of execution time versus number of clusters per frame can be found
in [50]. Although the two categories differ in the way they assign the labels,
a common property for all labeling algorithms is that they have large memory
requirements in terms of both size and bandwidth. As a result, complexity in
the algorithms can sometimes favorably be traded for memory resources, e.g. a
more complex controller requiring less overall memory can still be advanta-
geous.

5.2 Sequential Local Operation Based Algorithms

In SLO-based algorithms, a pixel is labeled based on its value combined with
locally propagating labels from previously labeled pixels. Assuming raster scan
order, the previously labeled pixels are extracted from a local pixel neighbor-
hood which is determined by superimposing a scan mask Ms, on the labeled
result S. A typical forward scan mask Mf is illustrated in Figure 5.1(a) and
a corresponding backward scan mask Mb is illustrated in Figure 5.1(b). The
forward scan mask extracts pixels above and to the left of the current pixel in
the labeled output, which comes naturally when streaming data in raster scan

5.3. RESOLVING LABEL COLLISIONS 43

Forward scan mask Backward scan mask

0 0

1 110

0

1

I

S05

5

055

1 0 1 110 10

1 1 1 11 10 10 0

5

5

5

5

0 0

6 6

5 55

6

0

6

S

00 0 60 6

005

5555

5555

6 66 6

666 65 05

555

05 0 0 10 155 5

5

0

0 00

60

00

5

1

0

1

(a) (b)

Figure 5.1: (a) A typical forward scan mask Mf used in raster scan order,
where the location of the pixel to be labeled is marked in black and the
pixels currently covered by the scan mask are shown in gray. In this
case, the pixel is assigned the label 5, based on evaluating the labels
currently covered by the scan mask. (b) A typical backward scan mask
Mb used in anti-raster scan order, where the pixel is assigned the label
6. Labeled pixels in S are shown in black, while unlabeled pixels in I
are shown in gray. The arrows indicate the direction of masks.

order. However, due to the nature of the label propagation, all SLO-based
labeling algorithms have to address the same obstacle: label collisions. In a
binary image, a typical label collision occurs if a u shaped object is encoun-
tered, illustrated in Figure 5.2(a). Scanning the image, the first encountered
pixel from this cluster is p1, which is assigned the label l1. Proceeding the
scan, when reaching p2 in Figure 5.2(b), a new label l2 will be assigned to this
pixel since there is no momentary information that p1 and p2 are part of the
same cluster, hence that they should have the same label. Reaching pixel p3 in
Figure 5.2(c), a label collision occurs since there is an ambiguity in regard to
which label to assign to this pixel (l1 or l2). How to address these ambiguities
is further discussed in Section 5.3. Naturally, the number of label collisions per
cluster depends on the complexity of the contour. A synthetic example of a
cluster with multiple label collisions occupying several labels is illustrated in
Figure 5.3. The impact that these collisions have on certain hardware resources,
e.g. the memory requirement, is addressed in detail in Section 2.2.

5.3 Resolving Label Collisions

In its simplest form, SLO-based algorithms handle label collisions by multiple
scans of the image in raster- and anti-raster until the labels reach stability [51].
A first forward scan can be completed on the fly as the incoming frame I is
written into memory, assigning every cluster pixel a preliminary label according
to

44 CHAPTER 5. LABELING

p3

p1
p2

(a) (b) (c)

Figure 5.2: An example of a typical label collision during the initial
scan, (a) the first upper and leftmost pixel of a cluster is reached p1,
and labeled with l1. (b) Continuing the scan, another part of the same
cluster is reached p2, and is labeled with l2. (c) Reaching p3, a label
collision will occur since pixels in the same row are labeled using l1 and
pixels above right are labeled with l2.

g(i, j) =

Fb if I(i, j) = Fb,
lk, (k = k + 1) if g(i + s, j + t) = Fb ∀(s, t) ∈ Mf ,
gmin(i, j) otherwise,

(5.2)

where

gmin(i, j) = min[{g(i + s, j + t)|(s, t) ∈ Ms}], (5.3)

and k is initialized to 1, and (k = k + 1) indicates the increment of k and
Ms = Mf . This initial scan is followed by multiple scans of the labeled image
back and forth in raster and anti-raster scan order to propagate labels in all
directions, alternating the scan mask in (5.3), i.e. Ms = Mf and Ms = Mb

during the forward and backward scan, respectively. During these succeeding
scans, the pixels are labeled according to

g(i, j) =

{
Fb, if g(i, j) = Fb,
gmin(i, j), otherwise,

(5.4)

until all possible label ambiguities have been resolved for every pixel cluster,
i.e. until S is stable. Although having a regular scanning pattern which allows
burst reads from memory, since the number of image scans depends on the
complexity of the clusters, this type of algorithm is not suitable in real-time
processing systems.

Using the same procedure but adding an equivalence table, to administrate
label collisions, the number of required image scans is reduced to two. As for the

5.4. CONTOUR TRACING BASED ALGORITHMS 45

1

1

0

0

0

1

1

0

1

1

1

0

0

1

1

1

0

0

1

1

1

0

0

0

0

0

0

l1
l1
0

0

0

0

0

0

l1

0

0

l1
l1
0

0

0

0

l1

l1

0

0

l1
l1

0

0

l3
l1
l1

0

0

l2
l1
l1

0

0

l4
l1
l1

0

0

0

0

0

0

0

l1
l1
0

0

0

0

0

0

l1

0

0

l1
l1
0

0

0

0

l1

l1

0

0

l1
l1

0

0

l1
l1
l1

0

0

l1
l1
l1

0

0

l1
l1
l1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

1

0

0

0

0 0

(a) (b) (c)

Figure 5.3: (a) An example of a cluster containing multiple label colli-
sions, (b) with corresponding labels after the initial scan, where the label
collisions are marked in black. (c) The final label result after the second
image scan, where the label collisions have been resolved.

simpler version of the algorithm, the first image scan can be completed on the
fly as the incoming frame is written into the label memory. However, during this
initial scan, as the preliminary labeled image is written into the label memory,
possible label ambiguities are simultaneously written into the equivalence table.
Using the information in this table, label ambiguities can be resolved during
a second scan assigning the final label to the clusters, e.g. replaced by the
equivalent label with the lowest number. This approach is often referred to as
the two-scan process, and will function as reference design in the sense that
competing algorithms must achieve better or have major advantages. Many
algorithms are based on this approach but with improved data administration
[48] [52] [53] [54].

Assuming that the data is stored, or is going to be written into a memory,
the second scan can, under certain circumstances, be omitted. By placing
control circuitry at the output to administrate the label collisions on the fly
during read-out of the labeled data for further processing, a single scan together
with the equivalence table is enough to label an image. However, although this
labeling procedure is highly application dependent, if throughput is the main
constraint and the post-processing this technique requires is applicable, this is
an interesting alternative.

5.4 Contour Tracing Based Algorithms

As the name implies, CT-based algorithms is a technique that traces the con-
tour of each cluster assigning these pixels a label. The approach was developed
by Chang et al. [55] [56]. Assuming that the image to be labeled is stored in
a memory, then by tracing the contour of the clusters immediately when en-
countered during a global raster scan, label collisions are avoided. Continuing
the scan, intermediate pixels, i.e. pixels in between two contour pixels with the
same label, are regarded as part of the same cluster and therefore assigned the

46 CHAPTER 5. LABELING

p1

p2

p4

p3

(a) (b) (c)

Figure 5.4: (a) The scan starts at the previously marked start point p1,
i.e. the first cluster pixel equal to 1, and the contour of this cluster is
traced and labeled. Continuing the scan, when reaching p2, no label
collision can occur since this pixel has been previously labeled. (b) An-
other cluster is encountered, which is contour traced and labeled. (c)
The labeling is complete when reaching p4, i.e. the previously marked
end point, and the image is now the final labeled output.

same label.

In its original form, the algorithm labels the exterior contours together with
the intermediate pixels with the same label. The CT phase of an exterior con-
tour is initialized if the algorithm encounters an unlabeled foreground pixel
p(i, j) = Ff , and the pixel directly to the left or above is part of the back-
ground, i.e. p(i, j − 1) = Fb or p(i − 1, j) = Fb. The intermediate pixels are
labeled during the ongoing global scan, i.e. if an unlabeled pixel is encountered
and the criterion to start either CT phase is not fulfilled. When a cluster with
a previously labeled contour is encountered, the scan proceeds without modifi-
cation. As an example, in Figure 5.4(a), no label collision will occur since when
reaching p2, this pixel has already been labeled during the prior contour trac-
ing and the scan proceeds without modification. If another unlabeled cluster
is reached, the contour tracing procedure restarts, illustrated in Figure 5.4(b).
When the last pixel is reached, the labeling of this particular frame is complete
and the final labeled output is illustrated in Figure 5.4(c).

In detail, the algorithm requires two global memory scans together with
additional random accesses for the CT procedure in order to label a frame.
The algorithm starts with writing the incoming frame into the label memory
marking the first and last pixel equal to one as global start and end point,
respectively, corresponding to p1 and p4 in Figure 5.4. Assuming that the
input image is not empty, a second memory scan starts from the previously
marked global start pixel p1. This pixel is now marked as the local start pixel

5.4. CONTOUR TRACING BASED ALGORITHMS 47

write image

CT-phase
assign label

Jump to global start pointNext frame
into label mem

Reset

Label+1

No

Yes

No

from label mem
Read next pixel

Unlabeled
Cluster?

Yes

End point?

Figure 5.5: A simplified block diagram of a CT-based labeling algorithm.

and the contour of this cluster is traced, writing the label at every contour
pixel into the label memory. A local start point corresponds to the first pixel
of an unlabeled contour. The CT phase of this cluster is completed when the
local start pixel is reached a second time, and when this occurs, the label is
increased by 1 and the global scan continues in raster scan order. Continuing
the memory scan, one out of several pixel values for pi,j will be encountered:

• pi,j = 0 - a background pixel. The scan continues without modification.

• pi,j = 1 - an unlabeled foreground pixel. The contour of this clusters is
traced and labeled.

• pi,j > 1 - a previously labeled pixel. The global scan continues without
modification since intermediate pixels are regarded as part of the same
cluster.

• A border pixel (i = Ih − 1 or j = Iw − 1). If a border pixel on the right
side is reached, the scan continues on the left side on the next scan line.

• The previously marked end pixel. If the marked end pixel is reached, p3

in Figure 5.4(b), the labeling of this particular frame is completed and
the algorithm can proceed with the next frame.

A block diagram of the algorithm with the described steps is depicted in Fig-
ure 5.5. Note that starting a second scan in the start and end pixel is an
optimization that is valid for SLO-based algorithms as well.

A cluster has one exterior contour but can also have multiple interior con-
tours around holes, e.g. as the cluster illustrated in Figure 5.6(a). The original

48 CHAPTER 5. LABELING

0 000

1

0

lr

lk

lk

lr

lr

lk lk lk lk

lk lk lk

lr

lk lk lr lr

lk lk lk lklr

lr

lr lr lr

lr

lr

lr lr lr

lk lk lk

lr

lr lk lk

0

0

00

0

00

0

lk lk

lr

lr

lr

lr

lk

lk lk

lk

lk

0

lr

lkp4

lr

lr

lk

00

p3lk 0

0

0

0

0

0

0

0

0lk lk lk

lk

lk

lk

lk

lk lk lk

lk

lk

lk

lk lk

lk lk lk lk

lk

lk lk

lk

lk

lk lk lk

lr

lk

0lr

0

0

lk

lk

0

0

0

0

p5

lr

lr

lr

0

1

1

1

1 lr

0

1 1

0 0

0 0

p2

lk

lk

p1

0

1

0

00

0

0

0

1

1

1

1 1 0

0

0

0

0

0

0

0

0

0

0

00 0 0 0 00

0 0 00 0

0 0 000 0

00 0 0 0 00

lk

lk

lk lk lk

lk

lk

lk

lk lk

lk lklk

lklk

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 00

0 00

0 0 0 0 0 0 00

0

0

(a) (b) (c)

Figure 5.6: (a) An example of an arbitrary non-solid cluster of which the
exterior contour is traced and assigned the label lk when p1 is reached
the first time. Continuing the scan, when reaching p2, which represents
unlabeled intermediate pixels, these pixels are assigned the same label as
the one to the left, i.e. lk. (b) When reaching p3, the interior contour is
traced and assigned the same label. (c) To avoid restarting the interior
CT phase when reaching certain pixels, e.g. p4 and p5, a reserved label lr
is written on the outside of the exterior and on the inside of the interior
contour, respectively. This is the final labeled result of this particular
cluster using the original CT algorithm.

algorithm labels both the exterior and interior contours together with assigning
intermediate pixels with the same label. The CT phase of an interior contour
is initialized if the algorithm encounters and unlabeled foreground pixel and
the pixel directly below it is part of the background, e.g. when reaching p3 in
Figure 5.6(b). To avoid pitfalls like tracing the same contour multiple times,
as would be the case when reaching p4 in Figure 5.6(c), Chang et al. proposed
that a reserved label lr, should be written on both the outer and inner side of
the exterior and interior contours, respectively, as illustrated in Figure 5.6(c).
By this procedure, when the algorithm encounters an unlabeled pixel, the value
of the pixel above and below this pixel is checked to determine if the current
pixel is part of a labeled contour, or not. If lr is found, this contour has been
previously labeled and the scan continues without modification.

If the read-out pattern is also performed in raster scan order, both tracing
interior contours and writing lr on its inside becomes redundant, which only
results in excessive memory accesses. The excessive memory can be removed by
adding some simple modifications to the original algorithm. The CT phase of an
exterior contour is initialized as before, i.e. whenever the condition p(i, j) = Ff

and p(i, j − 1) is fulfilled. However, due to the nature of the raster scan order,

5.4. CONTOUR TRACING BASED ALGORITHMS 49

0 00

1

11

lk

0

11

0 0

lk

lk lk lk

lr

lk

lklr

lr

lr

lr

lk

lr

lr lk

0

0

0 lr

lr

lk

lr lr

lk

lr

0

0

lk

lk lr

lr

lr

lr

0 000

00 0 000 0 00

0

lk

1

1

0

0

0

0

0

1

0

0

0

lk lk

lk lk

1

111

1

1

(a) (b)

Figure 5.7: (a) An example of the output from the modified CT-algorithm
when applied on the input from Figure 5.6. (b) An example of the input
and output from the modified CT-labeling algorithm. Each contour is
labeled with a unique color and intermediate pixels are shown in gray.
Notice the reserved label written on each side of the contour.

a cluster will always be entered from the left and exited to the right. This
results in lr not being required to be written on all sides of the contour so that
it completely encapsulates the cluster, but rather only on the left and right
side of the cluster to avoid falsely restarting the CT phase. Furthermore, by
adding a boolean variable Vbool, the algorithm can keep track of whether the
global scan is currently inside a cluster or not, which makes the tracing of all
interior contours superfluous. Hence, having the exterior contour traced and
assigned the label lk and lr written on both sides of a cluster Ck, as illustrated
in Figure 5.7(a), entering a slice of n pixels of Ck on a specific row must occur
in the following order:

1. p0 = lr – The first reserved label (if the contour is not aligned to the left
border of the frame).

2. p1 = lk – The first contour pixel. The inside cluster flag is raised Vbool = 1.

3. Intermediate pixels which can be either contour pixels p = lk, cluster
pixels p = 1, or holes p = 0.

4. pn−2 = lk – The second contour pixel on the other side of the slice.

50 CHAPTER 5. LABELING

5. pn−1 = lr – The second encountered reserved label (if the contour is not
aligned to the right border of the frame). The inside cluster flag is lowered
Vbool = 0.

Based on the status of Vbool, intermediate pixels can be assigned the correct
label during the global scan. This means that intermediate pixels equal to one

are assigned the same label as the neighboring pixel to the left, while pixels
equal to 0 (hole) are either labeled or left unchanged. This procedure offers the
possibility of filling holes inside clusters which can be useful in certain appli-
cations, e.g. in automated surveillance when detecting solid objects (humans).
However, if labeled intermediate pixels are not required by the application,
assigning these pixels the correct label can be omitted or administrated by a
control unit located at the output during read-out, which would reduce the
number of write operations even further. If the contour of the cluster is aligned
with the boundaries of the frame, no reserved label will be encountered and
this results in some exceptions in the control logic. The scan continues row
by row until the end pixel is reached and the algorithm can start over with
labeling of the next frame. An example of the output from the algorithm after
having added all these modification is illustrated in 5.7(b).

Part I

Low-Complexity Binary Morphology with Flat

Rectangular Structuring Elements

Abstract

This part describes and evaluates hardware architectures for binary morpho-
logical erosion and dilation. In particular, a fast, stall-free, low-complexity
architecture is proposed, one that takes advantage of the morphological dual-
ity principle and of structuring element decomposition. The design is intended
to be used as a hardware accelerator in real-time embedded processing appli-
cations. Hence, the aim is to minimize the number of operations, memory
requirement, and memory accesses per pixel. The main advantage of the pro-
posed architecture is that for the common class of flat and rectangular struc-
turing elements, the complexity and number of memory accesses per pixel is
low and independent of both the image and structuring element size. The pro-
posed design is compared to the more common delay-line architecture in terms
of complexity, memory requirements and execution time, both for an actual
implementation and as a function of image resolution and structuring element
size. The architecture is synthesized for the UMC 0.13 µm CMOS process us-
ing a resolution of 640 × 480. A maximum structuring element of 63 × 63 is
supported at an estimated clock frequency of 333 MHz.

Based on: H. Hedberg, F. Kristensen, and V. Öwall “Low Complexity Binary Mor-

phology With Flat Rectangular Structuring Elements,” accepted for publication in

IEEE Transactions on Circuits and Systems I. and

H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall“A Low Complexity Architecture

for Binary Image Erosion and Dilation using Structuring Element Decomposition,”

in Proc. of IEEE International Symposium on Circuits and Systems, Japan, 2005.

51

1. INTRODUCTION 53

1 Introduction

When designing a morphological hardware unit, there are many application-
specific questions and issues that need to be addressed, e.g. the required class of
supported SEs as well as issues related to the imposed bandwidth. Depending
on the answers, certain trade-offs can be made in the architecture. However,
there are some properties, apart from the obvious ones such as low complexity
and fast execution time, that are advantageous and should be taken into consid-
eration under any circumstance. First, most images are acquired and stored in
raster scan order, as discussed in Section 3.1.4. Therefore, to easily incorporate
the units into this type of system environment while simultaneously avoiding
intermediate data storage and random memory accesses during pixel process-
ing, the architecture should use the input and produce the output in raster scan
order. This permits burst reads from memory and the possibility of placing
several units sequentially without intermediate storage. Secondly, extracting
and performing calculations on large neighborhoods can become particularly
computationally intensive. Therefore, the main obstacle when designing a mor-
phological hardware architecture is to extract this neighborhood and perform
the calculation with minimal hardware resource utilization while still preserv-
ing raster scan order. To increase the flexibility and thereby the applicability
of the architecture, it is desirable that the size of the B can be changed during
run-time. As an example, in the automated surveillance application outlined
in [57], a flexible B size can be utilized to compensate for different types of
noise and to sort out certain types of objects in the mask, e.g. high and thin
objects (standing humans) or wide and low objects (the side view of cars).

1.1 Previous Research

Mathematical morphology is and has been a subject of extensive study resulting
in numerous books and articles, covering both the theoretical and hardware
aspects of this field. However, to gain some perspective on this work, only
other important hardware architectures performing binary erosion and dilation
are discussed here.

Fejes and Vajda [37] and Velten and Kummert [58] propose a delay-line ar-
chitecture for 2-D binary erosion or dilation. This classical approach supports
arbitrary-shaped Bs, but the hardware complexity is proportional to NB

2,
where NB = max(Bh) = max(Bw), defined in Section 4.1. The pixels that
are to be reused are stored in delay-lines, resulting in a memory requirement
proportional to NBN , where N is the image width. Therefore, this type of
implementation becomes unsuitable for large SEs and high resolution applica-
tions. In [59], an architecture using the same type of delay-lines is proposed,
thus having the same memory requirement. However, based on the observation

54 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

that many calculations between two adjacent pixels are redundant and that
partial results can be reused, the architecture is given its name, Partial-Result-
Reuse (PRR). With this procedure, the number of comparators per output
value can be reduced to 2⌈log2(NB)⌉ for certain B shapes, e.g. rectangles.

Źarandy et al. propose a cellular neural network approach to perform binary
erosion and dilation in [60]. It is shown that binary morphology applies to this
type of structure but, as for the delay-line architecture, the computational
complexity is proportional to NB

2. This is due to the fact that the SE is
mapped onto the array of cells, where each element requires a separate cell. In
addition, since the pixels needs to be reused, they need to be stored, which is
preferably in delay-lines, once more resulting in with a memory requirement
proportional to NBN . However, this approach opens up other possibilities,
with regard to the learning feature of such networks to control the size and
shape of the SE; this is not further addressed in this thesis.

Malamas et al. present a fast systolic architecture performing a 1-D binary
erosion or dilation (or a combination of these) in [61]. The architecture can
be extended to 2-D by parallel processing of the 1-D units. Processing each
row in parallel makes it faster, but the drawback of this architecture is that
the complexity of each 1-D branch is proportional to the SE width, making it
unsuitable for applications requiring large SEs.

In [62], a Low Complexity (LC) and low memory requirement architecture
performing a 2-D binary erosion or dilation that takes advantage of the mor-
phological duality and SE decomposition is proposed. The main characteristic
of this architecture is that it has constant computational complexity, i.e. each
output value is calculated with only four operations per pixel independent of
the B size, and a memory requirement proportional to N log2(NB). The class of
supported Bs is limited to flat rectangles of arbitrary size. The main drawback
of this architecture is that the input stream has to be stalled during padding,
which requires additional memory in the form of a First In, First Out (FIFO)
located at the input. However, through parallel processing, the stall cycles
during padding can be avoided, so that no additional memory is required. This
modification results in an architecture that uses a single clock domain and is
superior both in terms of computational complexity and memory requirement,
hereafter referred to as stall-free architecture.

2 Architecture

2.1 Delay-line Architecture

The delay-line architecture is a direct mapping of the ε or δ operation [37] [63].
The main idea is to store pixels to the left and right of the B as long as they

2. ARCHITECTURE 55

delay

B

lines

B

FIFO2

FIFO1

b1,2

input ffff

b2,2

ff

b1,1

ff ff

r1,Bw

r2,1

r1,1

r2,Bw
b2,Bw

Or

OrOr

Or

OrOr

Or

Or

r1,2

rBh,Bw
bBh,Bw

rBh,2bBh,2

Or

bBh,1

b2,1

b1,Bw

r2,2

direction

rBh,1

pixels stored in memory

new pixels

old pixels

AND-operation
output

r1,1

pixels stored in memory

ff

rBh,Bw

(a)

(b)

Figure 1: (a) An illustration of the incoming pixel stream and pixels
stored in memory in a direct mapped implementation.(b) A delay-line
architecture of a morphological erosion block. The grey dash indicates
the pixels covered by B. Bh and Bw is the height and width of B.
Control logic is omitted for clarity.

are to be used in future output calculations, i.e. all consecutive pixels from
the upper-left corner to the lower-right corner of the SE are stored in one long
memory chain, as shown in Figure 1(a). As an incoming pixel is shifted in,
the oldest pixel currently in the architecture is shifted out in raster scan order,
discussed in Section 3.1.4. An example of an architecture that implements this
functionality for erosion is shown in Figure 1(b), and is used as a reference
throughout the thesis. All pixels covered by B are stored in flip-flops and are
thus individually accessible; all pixels in between two rows of B are stored in
FIFOs (First In First Out). This allows B to be moved to the next position
by reading a new input and moving all other pixels one step forward in the
memory chain, achieved either by shifting data or changing memory pointers.

56 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

The major benefit of this architecture is its ability to support streaming input
data and arbitrary-shaped Bs. Control logic to manage the enable signals for
each element in the structuring element bi,j and to change the morphological
operation to dilation is omitted in Figure 1(b).

In addition, to handle the boundary issue discussed in Section 4.6, the
ability to control each position in B is used. The parts of B that extend outside
the image are forced to one in accordance with the definition, see Section 4.6.
In the architecture in Figure 1(b), the control signals bi,j are set to one for the
parts of B that extend beyond the image border.

2.2 Low Complexity Architecture

A common class of Bs that is both decomposable and reflection invariant is flat
rectangles [64], which are well-suited to perform operations such as the opening
or closing required in the real-time application described in Part V. With a
decomposed B, the number of comparisons per output pixel is decreased from
the number of ones in B to the number of ones in B1 plus B2, as discussed in
4.4. The input is first eroded by B1 and then by B2, or the other way around.

When using flat rectangular Bs containing only ones, ε can be performed
as a summation followed by a comparison. The summation consists of keeping
track of the number of bits in I that are currently covered by B; this number
is compared to the number of ones in B. If they are equal, output a one,
otherwise output a zero. In decomposing B, the summation can be broken
up into two stages. The first stage compares the number of consecutive ones

in I to the width of B1. The second stage sums the result from the first stage
for each column and compares it to the height of B2. If both these conditions
are fulfilled, the output at the coordinate of the SE origin is set to one, zero

otherwise.

2
.

A
R
C
H

IT
E
C
T

U
R
E

5
7

M

M
0

1 M
0

1

1

0
M

M
0

1

M
1

0
0

1
M

’1’

’1’

M
1

0
0

1
M

1

0

Stage-1:WL= ⌈log2(Bw − 1)⌉

out2

fin fop

WL= ⌈log2(Bh − 1)⌉

’0’

’1’

Er/Dil

’0’
Er/Dil

N-Boundary

Padd. N
W-Boundary

Padd. W

E or S-Boundary

ff

N-Boundary

Padd. N

W-Boundary

Padd. W

E or S-Boundary

Er/Dil

Stage-0: Stage-3:

Asynchronous
FIFO

Ih

Iw

Bh

Bw

Operation

out1in

WL= 1 WL= 1Stage-2:

Comparator

mrow

Bw

Comparator
Bh

C
on

tr
ol

le
r

Figure 2: Architecture of the erosion and dilation unit. Multiplexors are
marked with M , the flip-flop with ff and the row memory with mrow. Ih

and Iw corresponds to the height and width of the input image and thick
lines indicate buses with the corresponding WL shown in each stage.

58 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

2

2

2

2

3 3

W
es

t

1 1

1 1

1 1

South

North 3

E
as

t

1

1

1

1

3 3

1 1

11

11

11

1

3

1

1

1

1

⋆

I

2

2

1

Figure 3: An example of padding values when B = 7× 5. The ⋆ marks a
don’t care position. Padding to the east and south is inserted in the data
stream which is shown by the gray arrow. The west and north padding
are not part of the data stream and is only used as initial values for the
memory.

The proposed architecture is based on the observations above and is shown
in Figure 2 with the corresponding Word-Length (WL) in each stage. Taking
advantage of the duality property, discussed in Section 4.5, the same inner
kernel is used for both δ and ε; to perform dilation on an erosion-unit, simply
invert the input I and the output. This function is performed in Stage-0 and
stage-3.

To handle the boundary, the padding is split into four parts: north, east,
south, and west, illustrated in Figure 3. Assuming a centered origin, the east
and west padding extend ⌊Bw/2⌋ columns and the north and south padding
extend ⌊Bh/2⌋ rows outside I, where Bh and Bw correspond to the height and
width of B, respectively. Since δ is transformed into ε by inverting the input
(I ′), the padding will be one regardless of the executed operation. In the pro-
posed architecture, the padding to the west and north are pre-calculated values
and inserted as the initial values of the sums in stage-1 and stage-2, respectively.
The east and south padding are handled differently since the padding has to
be inserted as extra pixels in the data stream, the east padding in between the
rows of I and the south padding after the last pixel has been processed from I.
Figure 3 shows an example of both the pre-calculated padding and the inserted
extra bits for each corresponding side of I when B consists of seven rows and
five columns of ones.

Using this architecture, each pixel in I is used once to update the sum
stored in the flip-flop in stage-1, that records the number of consecutive ones

to the left of the currently processed pixel. When the input is one, the sum
is increased, otherwise it is reset to zero. Each time the sum plus the input
equals the width of B1, stage-1 outputs one to stage-2 and the previous sum

2. ARCHITECTURE 59

1 11

1

1

0

2
2
2
2
0
1

1

2
2
0
1
2
2
2
2

2

0
1
2

0

0

0

0
0

2

1
0
1
1

0
0
1
1

0

0
1
1
1
1

1 2 3

0

5

6 7 8 9 10

11 12

4

14 15

2019181716

13

Padded image 1 1

0 0

0 0

0

0 0 0 0

out2

- - - - -
mrow out2

-
-
-
-
-
-
0 0

0
0

0
0
0
0

1
1
0
0

-

-

2210
2211

0002

1002
1102
1102
1100

2100
2200
2200
2200

2200
2200

- - - -

0

N.U.

N.U.

0- - -
00- -
000-

ffin
0

0
1

0
1

0
1
1
1
1
1
1

1
1
1

1
1
1
1

N.U.

out1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

-

-

-

CC

output image

1

0

1 1

0

0

0

0

0

0

0

0

0

1

1 1

1

0

1

1

1

0

0

1

Input image

16

11

0

2 3 4 5

6 7 8 9 10

12 13 14 15

20191817

1 1 11 1⋆

1 1 0

0 1

1

0

1

1

1 1 0

1

1

1

1

1

1

1

Figure 4: A Clock Cycle (CC) true example of an erosion using a 3×3 SE.
ff shows the content of the flip-flop in stage-1, mrow the row memory in
stage-2, and out1 and out2 show the output from each respective stage.
N.U. indicates that the row memory is not updated in that clock cycle;
’-’ represents invalid data.

is kept. The same principle is used in stage-2, but instead of a flip-flop, a
row memory is used to store the number of ones from stage-1 in the vertical
direction for each column in I. In addition, a controller is required to handle
the padding and to determine the operation to be performed, i.e. ε or δ. An
example of the values in the main blocks in the architecture after each clock
cycle when performing an erosion is shown in Figure 4. The input image is
padded in the same manner, shown in Figure 4.7(b) and all signals can be
found in Figure 2. Since an erosion is performed, stage-0 and stage-3 are only
bypassing the input and output signals.

The input and output of this architecture is binary; hence the WL in stage-
0 and stage-3 only has to be one bit. However, in stage-1 and stage-2 sums are
recorded and the WL has to be wide enough to hold the maximum values. In
stage-1 the maximum sum is equal to Bw − 1 and the corresponding WL to
⌈log2(Bw − 1)⌉. In stage-2 the maximum sum depends on the height of B and
WL= ⌈log2(Bh − 1)⌉.

When padding is inserted in the data stream, this means that the input data
have to be stalled for the duration of the padding. The effect of this is twofold:
additional memory is required and the operating frequency of the data-path
has to be higher than the input frequency. Hence, an asynchronous FIFO,

60 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

1 1 0 0

1 1 0 0 1 1

1 1

1 1

1

1 1 1

1 1 1

0 0

0

0 0

1 1

1

0 0

0

0 0

1 1

1

1 1

1

1 1

1 1 1

1 1 1

1 1 0 0

1

1

0 0

0 0 0 1

0

0 0 0 1

1

0

1

0 1

2

2

2

0 0

0 0

0 1

2

2

2

0 0

0

t + 1

stage-2

stage-2stage-1

t stage-1

1

11

11

1

1

1

Figure 5: An example of parallel processing of the padding in stage-1
and stage-2 at time t and t + 1 if the B is of size 1 × 5. The two east
padding pixels from the previous row are processed in parallel with the
first two pixels in the current row.

located at the input in Figure 2, is needed to store input data and separate the
two different clock domains.

2.3 Stall-Free Low Complexity Architecture

In order to improve the memory requirements, an extension of the architecture
described in Section 2.2 is proposed. The result is an architecture that shares
the same principles and explores the same morphological properties, achieving
the same computational complexity. However, the major difference lies in how
the padding is addressed. Adding hardware support for processing padding
in parallel instead of serially, e.g. the east and west padding, omits the need
to stall the input. Hence, no FIFO is required at the input and the memory
requirements are reduced even further.

Assuming that the input is streaming back-to-back images, two cases of
independent consecutive pixels can be recognized: the transition from one row
to the next and the transition from one image to the next. In the case of the
row-to-row transition, the last pixels in a row are predefined padding pixels
and the first pixels in the next row can only increase the stored sum in stage-1;
they do not produce an output to stage-2. Hence, a modified version of stage-1,
which only handles the padding, can be added to process the last pixels in a
row corresponding to the east padding, thus freeing the regular stage-1 to start
processing the first input pixels of the next row concurrently. The procedure
is illustrated in Figure 5, which shows an example of which padding pixels are
processed in parallel during a transition between two consecutive rows in a

2. ARCHITECTURE 61

FIFO
outputinput

input output

outputinput

stage-1

stage-2

stage-1

stage-1∗

stage-3

stage-1∗

stage-3

stage-2

stage-2

stage-1

stage-2∗

stage-0

stage-3

stage-0

stage-0

(a)

(b)

(c)

Figure 6: (a) A block diagram of the low complexity algorithm. (b)–(c)
Block diagrams of the dataflow during a row-break and an image-break,
respectively, in the stall-free algorithm. * indicates modified blocks.

frame at time t and t + 1. The block diagram of the regular low complexity
and the stall-free architecture during a row-break is shown Figures 6(a) and
(b), respectively. In the image-to-image case, the same principle can be used,
since the last pixels in an image are the south padding and the first pixels of
the next image cannot produce an output from stage-2. The only difference is
that a second stage-2 is added and the dataflow is as shown in Figure 6(c).

A continuous data stream constituted of back-to-back images is the worst-
case scenario. This type of input pattern characteristic can be found when the
input source is burst read from memory, e.g. when processing images from a
video sequence. However, when using a sensor in the image acquisition step
in a real-time environment, the timing model can be relaxed somewhat. This
is because for most sensors, there are typically tens of extra cycles in between
the rows and images in the sensor output pattern. These extra cycles can
be utilized to perform the east padding found in between rows and thereby
reduce the size requirement of the input FIFO needed in the low complexity
architecture. However, the number of extra cycles in the output pattern will,
in most cases, not exceed the number of the required stall cycles during the
south padding, which is mainly proportional to ⌊Bh/2⌋ · Iw, where Iw is the
width of the input image. Therefore, in applications where the input source is
a stream of multiple images requiring an Bh > 1, the FIFO is still needed in
the low complexity architecture, making the stall-free architecture superior to
the others in terms of memory requirements.

With these modifications, streaming back-to-back images can be processed

62 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

without stalling input data. Even though the amount of hardware is increased
inside the data-path, Section 4 shows that this amount is far less than the
FIFO requirement. Another benefit derived from this property is that only one
clock domain is required, i.e. the architecture can run at the same speed as the
incoming data, which facilitates incorporating the unit in an embedded system
environment.

2.4 Extended Morphological Operations

Due to its low complexity, the stall-free architecture allows several units to
be connected to form extended morphological operations, which increases the
flexibility and thereby the applicability of the architecture. As an example,
contour extraction is performed by subtracting I − ε(I, B = 3 × 3), which is
accomplished with an adder and a FIFO to compensate for the latency imposed
by the architecture [30]. A boundary extraction unit using the proposed archi-
tecture together with examples of input and output is shown in Figure 7(a).

Granulometry based on parallel openings is a morphological operation which
is used to estimate cluster sizes in images [44]. This is an example of an ad-
vanced operation in which the benefits of the proposed architecture are sub-
stantial both in terms of speed and memory requirements. The operation is
based on the difference between the remaining number of pixels after parallel
openings with an increasing B size, i.e. a square with a side NB ∈ {1, 3, 5, . . .}.
Let Ai be the sum of the remaining pixels p equal to one after the ith opening,
calculated as

Ai =
∑

∀p=1

I ◦ Bi,

referred to as the size distribution. The difference between adjacent size dis-
tributions is defined as the granulometric function and is calculated according
to

Gi = Ai−1 − Ai, where i = {1, 2, .., n},

which is also referred to as the pattern spectrum. The granulometric function
is sensitive to changes in the number of removed pixels, which means that an
impulse in the pattern spectrum at a certain B size indicates that this is a
typical cluster size. The hardware unit used to calculate the pattern spectrum
based on the proposed architecture is illustrated in Figure 7(b), where Acc are
accumulators that sums and store the number of remaining foreground pixels.

2. ARCHITECTURE 63

0 5 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

1
1

1
1
1

1
1
1

1

FIFO

SEn
An

A0

A1

A2 G2

G1

Gn

output

input

Pattern spectrum

SE1

SE2

Acc

Acc

Accδ

δ

δ

ε

ε

ε

Acc

ε
input

(a)

(b)

SE size

N
u
m

b
er

o
f
re

m
ov

ed
p
ix

el
s

Figure 7: Examples of extended morphological operations based on the
low complexity architecture. (a) A boundary extraction unit with the
required B (shaded origin) is shown together with an example of input
and output. Note that the input is unsegmented. (b) A hardware unit
for pattern spectrum extraction. The pattern spectrum has three main
peaks indicating the size of the clusters, i.e. approximately 3 × 3 = 9,
33 × 33 = 1089 and 39 × 39 = 1521 pixels.

When all openings are finished, G1 to Gn are calculated as the difference be-
tween the sums A0 to An. To determine the number of opening branches, some
a priori knowledge of the image content is required. This is application-specific
and depends on the relation between the size of B and the resolution. However,
even with a large number of branches, e.g. a quarter of the image height, the
memory requirement of the unit is still low due to the use of the proposed ar-
chitecture, i.e. it is mainly proportional to Ih/4(⌈log2(Bh)⌉Iw), where Ih is the
height of the input image. Furthermore, since the unit preserves the raster scan
order, it can run at the same speed as the incoming pixels, but with a latency
proportional to the largest B size. Examples of applications where granulom-
etry can be useful include process monitoring and medical applications [65].

64 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

Table 1: Synthesis results in the UMC 0.13µm CMOS process, using an image
resolution of 640 × 480 and supporting a maximum B size of 63 × 63 pixels.

Design Delay-line Low complexity Stall-free

Memory [kB] 4.97 3.08 0.96

memfifo area [mm2] 0.20 0.18 0

memdp area [mm2] 0.10 0.04 0.08

Total area [mm2] 0.69 0.22 0.09

Memory area 43% 98% 88%

Normalized area 7.7 2.5 1

Gate count [k] 135 43 18

Max speed [MHz] 333 190 333

To be able to perform other important and more computationally expensive
multi-pass morphological operations such as the hit-and-miss, skeletonization,
and convex hull transformation [66], additional intermediate storage as well as
an extension to the definition of B is required.

3 Implementation

The architectures have been implemented in VHDL and synthesized for the
UMC 0.13 µm CMOS process, supporting an image resolution of 640×480 and
a maximum B size of 63×63 pixels (not limited by the architecture). All three
architectures can perform either ε or δ, controlled by a single bit, and support
changing the B size in between images during run-time, i.e. height and width.
Table 1 compiles the most important resource requirements and characteristics
of the architectures. Memory area is divided into memfifo and memdp; the
former is the amount of memory used to stall or align input data and the latter
the required memory to calculate the output.

Table 1 shows that memory is a significant part of all three implementa-
tions. The delay-line architecture has a lower memory-area percentage than the
other two, since this architecture has a more complex controller which handles
the padding. For both the low complexity and the stall-free architecture, mem-
ory is equal to or greater than 88% of the total area when the row memories
are implemented as single-port high-density SRAMs, as further discussed in
Section 3.1. In order to distinguish the area requirement relationship between
the designs, the normalized area is inferred. This figure shows that the delay-

4. RESULTS AND PERFORMANCE 65

m
ux

controller

FF
FF

input

mrow

output

Figure 8: A row memory implemented with one double-width single-port
memory, which performs read and write every other clock cycle.

line and low complexity architecture requires a factor of 7.7 and 2.5 more area
than the stall-free architecture. Furthermore, it can be noticed that the low
complexity architecture has a lower operating speed compared to the others.
This is due to the fact that the asynchronous FIFO located at the input of this
architecture is replaced by a dual-port memory. The gate count is based on a
2-input NAND-gate (5.12 µm2) and includes all memory blocks.

3.1 Memory Architecture

In a low complexity and stall-free architecture, memory is by far the single
largest component, putting constraints on maximum operating speed as well
as a lower limit on the area. Therefore, optimizing the memory requirement
is of particular concern. Ideally, a value in the row memory (mrow) should be
read, updated, and written back to the memory in a single cycle. This requires
a simultaneous read- and write-operation that normally is implemented using a
dual-port memory. However, this type of memory introduces an area overhead
mainly due to the dual address decoders, which especially large if the memory
is small. Another observation is that the row memories have the memory
content access pattern of a FIFO, resulting in the trivialization of the address
generation; it can be implemented as a simple modulo-counter. Based on these
facts, all row memories can be advantageously implemented using a single-
port, double width memory that reads and writes two samples every other
clock cycle. The memory architecture is illustrated in Figure 8 along with the
simple controller that manages the memory, FFs, and the multiplexer. As an
example, using a memory with a depth and width of 320×12 bits and two 12 bit
flip-flops, the memory area may be reduced by approximately 30% compared
to when a standard dual-port memory is used for this particular process (UMC
0.13µm).

66 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

4 Results and Performance

This section discusses and compares the performance of each architecture. The
comparison is performed in terms of computational complexity, execution time,
and memory requirements.

4.1 Computational Complexity

Computational complexity for the presented architectures is measured in the
number of operations per output, i.e. the number of times an input sample is
used. Typically, the delay-line architecture uses each input as many times as the
number of elements in B in order to support arbitrary-shaped Bs, but can be
reduced to 2⌈log(NB)⌉ when using a rectangular B (discussed in Section 1.1).
Both the low complexity and the stall-free architecture have a constant compu-
tational complexity of 4 operations per pixel, i.e. each operation is accomplished
with only two summations and two comparisons and each input is used only
once, independent of the B size. This is due to the fact that they are based on
the same principle which trades the freedom of choosing an arbitrary B shape
for reduced complexity.

4.2 Execution Time

In a typical morphological operation, the execution time Texe is the time be-
tween the processing of the first input and the production of the last output.
It consists of two contributions: pixel processing time, Tpp, and padding time,
Tpadd. Tpp is the time it takes for the architecture to process all the pixels in
the input image and is thus proportional to the resolution and, in some cases,
to the B size, depending on wether time multiplexing is used in the imple-
mentation. Tpadd includes all extra clock cycles due to padding and is hence
dependent on both the resolution and the size of B, as shown in Figure 4.7.

The execution times, measured in clock cycles, of the delay-line and stall-
free architectures are equal to the image resolution, since no padding is inserted
into the data stream, and can be written as

Texe = Tpp = Ih · Iw clock cycles. (1)

The low complexity architecture, on the other hand, needs to insert padding
on two sides, resulting in an execution time of

Texe = Tpp + Tpadd = Ih · Iw + ⌊Bw

2
⌋Ih + ⌊Bh

2
⌋(Iw + ⌊Bw

2
⌋) clock cycles,

(2)

4. RESULTS AND PERFORMANCE 67

where the second and third terms correspond to the time it takes to insert the
east and south padding.

Comparing (1) and (2) for an input image of 640× 480 and a B = 63× 63,
it is found that the low complexity architecture requires approximately an 11%
longer execution time due to the inserted padding. With an increasing resolu-
tion compared to the B size, this penalty will become smaller and eventually
insignificant. However, this architecture still requires multiple clock domains,
one for the pixel stream and one for the operating frequency of the architecture.

4.3 Memory Requirement

The required amount of memory for the delay-line architecture can be seen in
Figure 1(b) and is calculated as

memdl = (Bh − 1)(Iw − Bw + 1) + Bh(Bw − 1) bits, (3)

where the first term accounts for the FIFOs and the second term for the flip-
flops used to store the pixels currently covered by the SE.

The memory requirement for the low complexity architecture is proportional
to the word-length in each stage, illustrated in Figure 2. The word-lengths in
stage-1 and stage-2 depend on the maximum supported B size and are equal to
⌈log2(Bw−1)⌉ and ⌈log2(Bh−1)⌉, respectively. In addition, a FIFO is required
at the input since the incoming pixel stream needs to be stalled during the
processing of the padding pixels. Thus, the total amount of required memory
is

memlc = FIFO + ⌈log2(Bw)⌉ + ⌈log2(Bh)⌉Iw bits, (4)

where the second and third term corresponds to the flip-flop in stage-1 and
to the row memory in stage-2, respectively. The size of the FIFO not only
depends on the padding and resolution but also on the operating and input
frequency, fop and fin; the higher fop is in comparison to fin, the smaller the
FIFO. If fop is lowered as much as possible while still supporting back-to-back

images, i.e. fop =
N2+Np

N2 fin, the size of the FIFO can be approximated as

FIFO ≈ Nsp
fin

fop
= Nsp

N2

N2 + Np

≈ Nsp bits, (5)

where Nsp is the size of the south padding pixels, Np is the sum of all padding
pixels, and N2 is the input image in pixels. This means that since the sum of

68 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

Delay-line
Low complexity
Stall-free

NB

T
o
ta

l
m

e
m

o
ry

[k
b
it

]

0
20 40

50

60 80

100

100 120

150

Figure 9: The vertical axis shows the total memory requirement in kbit
as a function of NB for each implementation. The image resolution is
1280× 1024 and NB

2 is the size in pixels of a quadratic B.

all padding pixels is small compared to the resolution, i.e. Np ≪ N2, the input
FIFO must be able to store as many pixels as the number of south padding
pixels, when operating at the lowest possible frequency.

The memory requirements of the stall-free architecture follows the principles
of (4) but without the FIFO. The resulting total memory requirement can be
written as

memsf = 2(⌈log2(Bw)⌉ + ⌈log2(Bh)⌉Iw) bits, (6)

where factor 2 is due to the parallel processing during padding. However,
removing the FIFO at the input still has a significant impact on the memory
requirements, as shown in Table 1. Equation (6) indicates that the memory
area of the data-path in the stall-free architecture should be twice the size of
the low complexity memory, but this is not the case when comparing memdp in
Table 1. The explanation is that instead of using two separate row memories,
one single row memory of double width is used, as discussed in Section 3.1.

Hardware requirements for implementations supporting higher resolutions
and Bs can be estimated accurately using the required memory size since this is
the main source, as shown in Table 1. The memory requirements for the three

4. RESULTS AND PERFORMANCE 69

Table 2: The most important properties of the architectures, where N2 and
NB

2 is the size in pixels of a quadratic input image and B.

Design Delay-line Low complexity Stall-free

Complexity 2⌈log2(NB)⌉ 4 4

mem accesses 2NB 2 + α 2 + α

mem [bits] N NB N log2(NB) N log2(NB)

Texe N2 N2+NB N N2

SE support Arbitrary Rectangular Rectangular

architectures as a function of B size using an image resolution of 1280×1024 is
shown in Figure 9. As an example, the total memory requirement of a stall-free
architecture supporting a maximum B size of 63 × 63 is about 15 kbits. With
the same settings, the delay-line implementations would require approximately
79 kbits of memory, which is more than 5 times as much. Table 2 summarizes
the most important properties of the different architectures as functions of
image resolution and B size. The table clearly indicates that for applications
in which a rectangular B is sufficient to fulfill the specifications, the stall-
free architecture reduces computational complexity and memory requirements
without sacrificing execution time.

From a power perspective, it is advantageous to have a low arithmetic com-
plexity and to minimize the number of memory accesses since both contribute
to the dynamic power budget. The actual number of memory accesses per pixel
for the delay-line implementation is mainly proportional to 2 · (Bh − 1), since
each value is shifted downward one row in Figure 1 each time it is to be used in
a calculation (the factor two is for reading and writing). For the low complexity
and the stall-free architectures, this number is reduced to 2 + α, where α is
the additional 2⌊Bh

2 ⌋(Iw) accesses required during the south padding (neglect-
ing the input FIFO read- and write-operations required in the low complexity
architecture). As an example, using a resolution of 640 × 480 and supporting
a maximum B size of 63 × 63, these additional memory accesses only consti-
tute ≈ 6.5% of the total number memory access per frame or an additional
α = 0.13 accesses per pixel. The conclusion is that both the low complexity
and the stall-free architectures mainly require one read and one write operation
per pixel. Furthermore, since static power consumption is becoming increas-
ingly important in modern CMOS technologies due to leakage, it is beneficial
to reduce the overall area [6]. For the designs in this article, area mainly con-
stitutes of memory. A reduced memory requirement will therefore not only

70 PART I. LOW COMPLEXITY BINARY MORPHOLOGY WITH FLAT . . .

have a large impact on the static but also the dynamic power since accessing
smaller memories requires less power than larger ones. Based on these facts
and the results in Table 2, it is seen that stall-free architecture has the lowest
complexity and the lowest memory requirements both in terms of bits and ac-
cesses, and hence has better dynamic and static power dissipation properties
than the other designs.

5 Conclusion

An evaluation of three architectures for binary erosion and dilation intended to
be used as hardware accelerators in real-time applications is presented. In par-
ticular, the architecture of a fast, stall-free, low complexity architecture based
on B decomposition is proposed. The most important features and properties
are that it requires no extra clock cycles due to padding and has a memory
requirement proportional to B height and input image width. The architec-
ture supports flat arbitrary sized rectangular Bs and the number of operations
and memory accesses per pixel is constant, independent of both B and im-
age size. Furthermore, due to its low complexity and memory requirements,
multiple units can be connected without any intermediate storage to perform
other morphological operations. In order to verify and evaluate the results,
the architecture has been implemented in VHDL and synthesized for a UMC
0.13 µm CMOS process using a resolution of 640× 480 and supporting a max-
imum B of 63 × 63. In comparison to implementations of the delay-line and
the low complexity architecture using the same parameter setting, the area is
decreased by a factor of 7.7 and 2.5, respectively, while achieving the same or
an improved execution time.

Part II

Binary Morphology with Locally Adaptive Struc-

turing Elements: Algorithm and Architecture

Abstract

Mathematical morphology is parameterized using the structuring element which
is usually constant throughout the processing of the entire image. However,
allowing locally adaptive structuring elements is advantageous in many situ-
ations whenever one can let the structuring element locally adapt to certain
high-level information, e.g. apparent size of the objects, granularity, texture, or
direction. In an effort to achieve this performance increase, this part presents
a novel algorithm for binary morphological erosion and dilation with a flexi-
ble structuring element, together with a corresponding hardware architecture.
The algorithm supports resizable rectangular structuring elements, and has a
linear computational complexity and memory requirement. In order to achieve
high throughput, the proposed architecture maintains the important raster-
scan pixel processing order, and requires no intermediate storage for the image
data. This part concludes with implementation results of the architecture when
targeted for both FPGA and ASIC.

Based on: H. Hedberg, P. Dokladal, and V. Öwall, “Binary Morphology with Locally

Adaptive Structuring Elements: Algorithm and Architecture,” first round of revision

for publication in IEEE Transactions on Image Processing.

71

1. INTRODUCTION 73

1 Introduction

Although a structuring element with fixed shape and size may be sufficient in
some cases, locally adaptive, flexible-shaped structuring elements, called amoe-
bas, may outperform the static ones in many applications. Within the frame-
work of mathematical morphology, they have been proposed for noise filtering
in [67]. The amoebas, which take into account the image contour variations to
adapt their shape, outperform classical morphological operations with a fixed,
space-invariant structuring element. Other applications where locally adaptive
structuring elements are useful are those using a zoom camera or where one
has to take into account the perspective deformations. As an example of an ap-
plication where noise filtering with a flexible structuring element outperforms
a static one - a typical road surveillance - is shown in Figure 1(a) with the
corresponding segmentation result shown in b. Using the depth information in
the scene to control the structuring element size (increasing towards the lower
part of the image) can significantly reduce over-segmentation. The difference
can be distinguished when comparing the output from when using a static
and a flexible structuring element, shown in Figure 1(c) and (d), respectively.
The performance improvement can be seen as correctly separated and more
homogenous objects.

Structuring elements are also used for object detection. Objects deformed
by the perspective - having different sizes in different parts of the image -
have to be detected in several passes with correspondingly scaled structuring
elements. Using flexible structuring elements allow detection of such objects in
only one pass.

The conclusion is that most real-time image processing based system with
non-stationary or constant scene content requiring MM can benefit from using
a flexible structuring element.

This work represents the first step towards arbitrary-shaped flexible struc-
turing elements in efficient hardware implementations. The main contribution
of this part is threefold:

1) A new algorithm is presented supporting flexible rectangular structuring
elements for binary mathematical morphology with low computational com-
plexity and memory requirement. These properties make the algorithm ap-
plicable also for software implementations. Note that such a software imple-
mentation can run in-place, meaning that the result can overwrite the input
data.

2) A corresponding hardware architecture of the algorithm is proposed suit-
able for embedded or mobile applications. The architecture has several impor-
tant properties from a hardware perspective, i.e. sequential pixel processing,
low computational complexity, and low memory requirement.

74 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

BB

(a) (b)

(c) (d)

Figure 1: (a) An example of a typical road surveillance application where
using a flexible structuring element is useful. (b) Binary motion mask
from the segmentation algorithm. (c) Filtered motion mask using a
constant structuring element. (d) Filtered motion mask using a flexible
structuring element, increasing in size towards the lower part of the
image where vehicles appear larger.

3) Implementation results of the proposed architecture are presented in
terms of resource utilization when targeted for both FPGA and ASIC.

1.1 Previous Research

In direct mapped implementations of mathematical morphology operations,
to output a pixel value one needs to examine the pixel’s entire neighborhood
defined by the structuring element in the input image, e.g. the delay-line ar-
chitecture discussed in Part I. As a consequence, using large neighborhoods
becomes particularly computationally intensive and efforts have been made to
make these operations more efficient.

The implementations by Van Herk [68] and by Lemonier and Klein [69]
support large linear structuring elements but need two scans to complete each
operation, thus requiring intermediate storage. Furthermore, the computa-
tional complexity is proportional to NB and memory requirement NBN and
they are more targeted for gray scale applications, where NB is the structuring
element width and N the side in a square image.

Van Droogenbroeck and Talbot [70] propose an algorithm based on a his-

2. ALGORITHMIC ISSUES 75

togram. The histogram is updated as the structuring element slides over the
image. The respective value for the needed rank filter (dilation, erosion or
median) is taken from the histogram. However, this algorithm is not suitable
for adaptive structuring elements, and also computing the histogram requires
additional resources.

Another approach is found in [71], where algorithmic support for structur-
ing elements with a fixed shape but with a locally adaptable size is achieved
by using the distance transform [72]. However, the distance transform is a
multi-scan operation with a high memory requirement since it requires a large
intermediate storage for partial results in between the scans. In [72], no hard-
ware architecture or implementation results are presented.

The proposed architecture is a development from the ones presented in
Part I, which is from now on referenced as the Low Complexity architecture
(LC). The new architecture allows for changing the size of the rectangle within
an image from pixel to pixel, and can thereby locally adapt its size. Although
having mainly the same memory requirement, the structuring element flexibil-
ity comes at the cost: the computational complexity is increased from being
constant to being proportional to NB.

2 Algorithmic Issues

The structuring element defines which pixel values in the input image I to
include in the calculation of the output value located at the current position of
the origin, as discussed in Section 4.1. Whereas for a static structuring element,
the geometric shape is constant throughout the input image, the shape of a
flexible structuring element can change from pixel to pixel within the frame.

The local shape adaptation of the structuring element replaces in (4.2) and
(4.4), the fixed set B translations x+b given by all b ∈ B by a flexible set given
by B : D → P(D) with D = supp{I}, and P denoting the set of subsets. This
means that B(i, j) ⊂ D, becomes a function B : Z

2 → C, where for every pair
of coordinates i, j, the function B(i, j) chooses an element from the class C of
allowed shapes.

In order to avoid unexpected morphological results and maintain the raster
scan order discussed in Section 3.1.4, both morphological and algorithmic spe-
cific restrictions have to be inferred, each addressed in consecutive order:

1) Morphological restrictions concern the continuity of the function
describing the shape of structuring elements used at different coordinates.

For the sake of simplicity, consider first a binary object X in the 1-D space R,
i.e. X : R

+ → {0, 1}, as illustrated in Figure 2(a). In the same space, consider
also a one-sided line structuring element B(x) ⊂ R

+, ∀x ∈ R
+, equipped with

the origin at x, encoded by its length β : R → R
+. Figure 2(b) shows an

76 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

0

1

0

x

x

1

j

εBX

ji

i

εBX

B1(i)

B2(i)

B1(j)

ji

B2(j)

x

1

0

X

(a)

(b)

(c)

Figure 2: (a) A 1-D binary object X . (b) Erosion εBX with a flexible
structuring element B(x). (c) Example of a discontinuous result εBX
with B varying “too fast”.

example of an erosion of a 1-D object X by a function B1, illustrated at i
and j (the origin of B1(i) is given by the black dot above i). The eroded
object εB1X(x) = 0, for x = i, j, note that B1(j) may be different from B1(i).
Figure 2(c) shows the same X eroded by a different function B2. The eroded
object εB2X(i) = 0 but εB2X(j) = 1 since B2(j) does not extend outside X as
does B1(j) in Figure 2(b). Eroding by B2 has created a hole in X at i instead
of ’eroding’ X on the surface.

In the following, only the case illustrated in Figure 2(b) is considered, where
the function B(x) preserves the continuity of X , by eroding only on its surface,
i.e. X(i) = X(j) = 1, and i < j, then εBX(i) = 0 implies εBX(j) = 0. The
continuity of εBX is ensured if j−i ≥ β(j)−β(i), or |(β(j) − β(i)) /(j − i)| ≤ 1,
or if β is differentiable,

∣∣∣∣
∂β(x)

∂x

∣∣∣∣ ≤ 1. (1)

Recall that β(i) is the length of B(i). The conclusion is that erosion by B does
not create holes if the size of the structuring element B(x) does not change
“too fast”.

In Z
2, ∂ is obviously replaced by ∆, and the continuous distance β(x) is

replaced by the quantized offset Nu, Nl, Nd and Nr in directions discretized at

2. ALGORITHMIC ISSUES 77

90◦, 180◦, 270◦ and 360◦ for up, left, down and right, noted by:

∣∣∣∣
∆Nq

∆i, ∆j

∣∣∣∣ ≤ 1, for q = u, l, d, and r. (2)

2) Algorithmic restrictions: In order to preserve the raster scan order
and still support arbitrary-shaped structuring elements in low complexity and
memory requirement architectures with no intermediate storage, some restric-
tions have to be inferred. Since the input pixels arrive in a stream, pixels above
and to the left from the origin are already known, while the pixels below and
to the right are to be read. However, one cannot output the current pixel
(i, j) until its entire neighborhood has been processed. Indeed, the latency L
between the input and the output stream for any pixel (i, j) is given by

L(i, j) = Nd(i, j)Iw + Nr(i, j), (3)

where Iw is the width of the image I, Nd and Nr are the coordinates of the
origin offset from the bottom-right corner (d=down and r=right), illustrated
in Figure 3.

When using a static structuring element for the entire image, i.e. B(i, j) =
B, ∀i, j, the latency is constant; the raster scan order is maintained and the
algorithm can be implemented without intermediate storage. However, if the
structuring element changes from pixel to pixel, the latency varies. Conse-
quently, the output pixels can arrive in a different order and there is a need to
store them in an intermediate memory to retain raster scan order.

The algorithmic restrictions on the flexibility of B introduced above (see
(2)), impose that |∆Ni| ≤ 1 for all four directions i = u, l, d and r (up,
left, down and right). From (3), we have ∆L/∆Nr = 1, and ∆L/∆Nu =
∆L/∆Nl = 0, meaning that increasing/decreasing the size of the structur-
ing element by one pixel to the right will increase/decrease the latency by
one. Adding above and to the left has no impact on the latency since these
pixels have already been read. Hence, unitary changes of L from pixel to
pixel, i.e. |∆L/∆i, j| = ±1, may be handled with no additional memory by
stalling the input or output. Indeed, if Nr increases/decreases, the latency
L increases/decreases, and the output/input is stalled. Stalling the output
means that two input pixels are read before the next output value is calcu-
lated, whereas stalling the input means that two pixels are produced before
the next input pixel is read.

Henceforth, for the rest of the paper, we put a restriction on the class C of
allowed shapes, to be a class of rectangles, not necessarily symmetric around
the origin. Therefore, B(i, j) becomes a function B : Z

+2 → Z
+4, i.e. for every

pair of coordinates (i, j), the function B(i, j) yields a quadruple (Nu, Nl, Nd,

78 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

Bw(i, j)

B
h
(i

,
j
)

(2,2) (2,2)

(1,2) (1,2)
Nu

max(Bh)

Bi,j = (Nu, Nl, Nd, Nr)

Nl Nr

Ndm
ax

(B
w

)

(0,0)

Figure 3: Example of a 4× 5 (Bh ×Bw) rectangular structuring element
with B(i, j) = (Nu, Nl, Nd, Nr) = (1, 2, 2, 2).

Nr) defining the position of the origin with respect to the upper, left, down
and right edge of the rectangle. These parameters are tied to its width and
height by Bw = Nl + Nr + 1, and Bh = Nu + Nd + 1. The maximum width
and height found in the collection of B(i, j), ∀i, j, are denoted max(Bw) and
max(Bh), respectively. Figure 3 shows an example of a structuring element
B(i, j) = (1, 2, 2, 2), being a 4 by 5 rectangle with the origin offset by 2 rows
and 2 columns from the lower-right corner.

From (3), ∆L/∆Nd = Iw means that increasing the size of the structuring
element by adding one bottom row to it will increase the latency L by the
entire width Iw of the image. This substantial change of latency cannot be
handled without using additional buffer memory. This means that from pixel
to pixel, the rectangle can grow/diminish by one at all sides, except when
adding/deleting one bottom row, authorized only between image rows. The
conditions given by (2) become stronger:

∣∣∣∣
∆Nu,l,r

∆i, ∆j

∣∣∣∣ ≤ 1,

∣∣∣∣
∆Nd

∆i

∣∣∣∣ ≤ 1 and

∣∣∣∣
∆Nd

∆j

∣∣∣∣ = 0. (4)

An example of synthetic test data (640×480 pixels) is illustrated in Figure 4(a).
The image contains a set of black spots (on a uniform grid 60 pixels). A
dilation applied to this input image will enlarge the black spots. Figure 4(b)
gives a dilation obtained with a rectangular structuring element progressively
increasing in size from left-up right-downwards of the image: B(i, j) = (Nu,
Nl, Nd, Nr) = (i/20, j/20, i/20, j/20).

3. ALGORITHM DESCRIPTION 79

input output

(a) (b)

Figure 4: (a) A synthetic test image containing black dots on a grid,
corresponding to the foreground. (b) Dilation obtained with similar
structuring element as in Figure 1, i.e. a rectangle increasing in size
from the top left corner of the image downwards to the right.

3 Algorithm Description

The algorithm reads the input image I and writes the output image O sequen-
tially in the raster scan order. Let (k, l) denote the current reading and (i, j)
current writing position. Figure 5(a) gives a synthetic example image I(M, N)
containing one object - a car. The object contains 1, and the background 0.
Obviously, by causality, reading position (k, l) proceeds writing position (i, j).
The latency L between reading and writing the data depends of the size of the
currently used structuring element B(i, j) (3). Since B(i, j) differs for different
coordinates, also the latency L varies.

The structuring element shape function B is a parameter of the morpho-
logical operation and is also read in raster scan order at the same rate and
position as the output image O.

Reading (k, l) and writing (i, j) positions are bound by

i = max (1, min(k + Nd(i, j), M)) and

j = max (1, min(l + Nr(i, j), N)) . (5)

Suppose the currently processed pixel is located at coordinates (i, j). The
corresponding structuring element B(i, j) - placed by its origin at (i, j) - has
just been read. Recall its current size B(i, j) is coded by (Nu, Nl, Nd, Nr),
equal in the Figure 5 example to (2, 2, 3, 5). The input data need to be read
up to the bottom right position of B(i, j), indicated as (k, l).

The algorithm proceeds by decomposing the erosion into columns. In each
column 1, . . . , N of the input image I, the algorithm keeps track of the dis-
tance d(1, . . . , N) from the currently processed line to the closest upwards zero

80 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

i

j l

Nl

M

Nd

N1
1

j

2

l

3

52

Nu

3 43 6 75 8 88
7 7

8k

i

k

Nr

B(i, j)

B(i, j)

(a)

(b)

Figure 5: (a) A synthetic input image when processing a pixel at location
(k, l) with B(k, l). (b) A zoom in of when processing the same pixel using
B(k, l) = (2, 2, 3, 5) as structuring element. The numbers in bottom row
of B(k, l) show the current distance values, which saturates at the value
8.

(background). For each column, the distance is updated as I is sequentially
read row by row:

d(l) =

{
0 : d(l) = 0

1 : d(l) = d(l) + 1
(6)

Figure 5(a) indicates by × where the known distances are currently located.
Notice that for the currently processed pixel O(i, j), situated on the row i,
the distances are calculated on a different row k. The corresponding distance
values for this particular example are shown in Figure 5(b).

These distances are then compared, column by column, to the height of
the currently used structuring element B(i, j), given by Nu + Nd + 1. This
evaluation, at position O(i, j) in the output image, can be formalized as if the

3. ALGORITHM DESCRIPTION 81

comparison

d(l) ≥ Nu + Nd + 1, (7)

yields TRUE, for all l ∈ [max(1, j−Nl), min(j+Nr, N)], then at position O(i, j)
write 1, else write 0. The whole algorithm can be written as:

Algorithm:
for i=1 ..M

for j=1..N

read B(i,j)

read I up to (k,l) (Eq.6)

update d up to l (Eq.7)

O(i,j)=AND(d(l) ≥ Nu+Nd+1) (Eq.8)

write O(i,j)

end

end,

where AND means 1 if comparisons for all used l yield TRUE, else 0 (see 7). In
the example shown in Figure 5, for the pixel (i, j), the distances d(j − 2) = 4
and d(j − 1) = 5 are smaller than the height Nu + Nd + 1 = 6, therefore the
output written at O(i, j) is 0.

The distance calculation is an independent process of the morphological
operation being performed; the memory content is unrelated to the dimensions
and origin of B(i, j). It is this algorithmic property that allows an adaptable
structuring element different for each individual pixel, since no information
about a former B propagates through the architecture.

A block diagram of the algorithm is illustrated in Figure 6. A controller
is needed to stall the input and output depending on how the parameters for
the structuring element change. Based on these control signals, the distances
stored in the row memory in the update stage are either updated with a new
pixel value (if B is the same as for the previous pixel or increased) or left
unchanged (if B is decreased). However, the output value from the update
stage is always equal to the last calculated distance for the column of the
current pixel. This distance is used as input to both the compare stage and
to the serially connected Flip-Flops (FF-chain), in order to let the distances
propagate to be used in multiple calculations. The distances stored in the FF-
chain (for the previous columns) are all used as inputs to the compare stage.
The controller selects which of these distances to include in the calculation,
which are compared to the height given by the current B; if all are greater
or equal to this height, output 1 else 0. The result from the compare stage is
sent together with the generated control signals for the current B to an output

82 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

0

1 1

1

0

1

0

1

1 1

input image

1
1 1 0

1
1 11

input

Bi,j

dk,max(Bw)

FF-chain

output

valid

compare stage

memrow

update stage

d(l)

controller

603 7 35

Figure 6: Block diagram of the proposed algorithm.

controller unit which synchronizes the output with a valid signal.

4 Architecture

A more detailed hardware architecture of the proposed algorithm is illustrated
in Figure 7. As in Figure 6, the architecture is divided into three stages: update,
FF-chain, and compare. In the update stage, the row memory (memrow) stores
the distances for each column in the input image, which are updated according
to (6). This is implemented as an incrementer and a multiplexer (placed in
the middle of this stage in the figure), where the input from the FIFO is the
control signal to the multiplexer, which outputs the reset or the increased sum
for further processing. If the distance is equal to the maximum supported
structuring element height max(Bh), the sum saturates at this value, which
also is the initial value in order to leave the result unaffected at the image
borders.

The FF-chain stage contains the delay elements to stall the distance dk,max(Bw)

to dl which are included in the current calculation, i.e. to be evaluated against
the columns in the current Bi,j . This is implemented as a series of FFs. The
block also includes multiplexers for initialization when encountering a new row
in the input image.

The compare stage compares the stored distances to the height of the struc-
turing element. The number of comparators equals the maximum supported
structuring element width, max(Bw). The results from the comparators serve
as input to the logic AND-operation. Notice that the fan-in to this unit in-
creases linearly with max(Bw), thus affects the critical path and is the major

4. ARCHITECTURE 83

m
ux

m
ux

m
ux

m
ux

m
ux

m
ux

m
ux

m
ux

’0’

FF

> >>

FF

output

validε/δ

ε/δ

FIFO
input

1 bit

q bits

FF-chain

d0

dj

compare stage

controller

CTR

max(Bh)

max(Bh)

enable

left-padd

’1’
’1’

bottom-padd update stage

memrow

right-paddtop-padd

left-padd

B(i, j)

max(Bh)

Logic operation (&)

Figure 7: Overview of the implemented architecture. Note that the data
valid signal is not included in figure but is generated by the CTR block.

bottleneck of the architecture. Hence, for large structuring elements or high
speed applications, a pipeline can be inferred. Using pipelining, one or several
additional delays are required to synchronize the output with the data valid
signal.

The CTR block in Figure 7 is implemented as an Finite State Machine
(FSM) and manages all control signals in the architecture based on B(i, j).
This includes not only padding but also the enable signal to decide the number
of active comparators (enable), and which operation to perform (operation),
i.e. ε or δ. By default, the architecture performs a logic AND-operation (mini-
mum) on the compared distances, i.e. dk,max(Bw) to dl, which in mathematical
morphology corresponds to an erosion. Due to the duality principle discussed
in Section 4.5, to perform a dilation by default, simply calculate the distances
to closest upward one for each column and perform a logical OR-operation
(maximum). However, another way to obtain a dilation and still use the de-
fault operation is to simply invert the input and the output, accomplished in

84 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

image border

m
ax

(B
h

)

distances stored

in the FF-chain
Padding

P
ad

di
ng

Padding

B

P
adding

Bi,1

I

(a) (b)

Figure 8: (a) An illustration of where the structuring element may stretch
outside the image border and where padding may be required. (b) An
illustration of the left padding for a linear structuring element with a
centered origin.

HW by placing a multiplexer and an inverter at the input and the output of
the architecture, shown in Figure 7.

4.1 Handling the Borders

The architecture needs to address the boundary problem, as discussed in Sec-
tion 4.6 and illustrated in Figure 8(a). Supporting a locally adaptive struc-
turing element requires the possibility to stall the input data stream since the
latency can vary from one side of the image to the other (3), resulting in the
need for two separate clock domains and a FIFO located at the input. There-
fore, handling the padding pixels on a controller level is not feasible. Instead,
the padding pixels are handled by the architecture in one of two ways: pre-
calculated initial values (top and left padding) or pixels inserted into the data
stream (right and bottom padding). The result is a less complex controller
but with the drawbacks of requiring two clock domains and an input FIFO.
Padding control is included in CTR in Figure 7 with corresponding control
signals, i.e. top-, left-, right, and bottom-padding.

Processing the first row in an image, initial values equal to the maximum
supported structuring element height max(Bh), are inserted into the adders
through the leftmost multiplexer in the update stage in Figure 7. This is due
to the fact that the distance to the closest upward zero for this preceding row is
assumed to be infinite and should not affect the calculation. The initial values
are updated with the pixel value in the input image and the result is sent to
both the compare stage and written into the memory.

4. ARCHITECTURE 85

Assuming a linear structuring element, e.g. Bi,j = 0, 2, 0, 2, calculating the
first output pixel of a new row is an example requiring left padding, Figure 8(b).
When starting at a new row i, each distance to the left of the first pixel located
at (i, 1) are set to the initial value max(Bh) simultaneously by using the mul-
tiplexers in the FF-chain stage. This procedure causes the distances located
beyond the image borders not to affect the calculation. When reaching and
extending the structuring element beyond the right image border, the same
initial value is inserted into the data stream and sent to the compare stage
through the rightmost multiplexer in the update stage.

Reaching the bottom segment of the input image, the structuring element
can stretch outside the bottom border. Depending on the actual height of

Bi,j , additional ones are inserted in the pixel stream, at most ⌊max(Bh)
2 ⌋(Iw +

⌊max(Bw)
2 ⌋), through the lower multiplexer in the update stage. This insertion

is necessary to handle the different latency that will occur in a video stream if
different sizes of the structuring element are used at the end of one image to
the beginning of the next. During the insertion of these extra pixels, the input
data stream is stalled (requiring the FIFO on the input). Once the last pixel
has been processed, the erosion operation is complete and starts over with the
next frame.

4.2 Coding the Structuring Element Size

The structuring element size is controlled by the function B for each pixel (i, j)
through the parameters Nu, Nl, Nd, Nr, defined in Section 2. The parameters
are generated outside the architecture and are sent as input in parallel with
the input pixel stream to the controller in Figure 7. Formally, B(i, j) becomes
B(i, j, t) with I(t) for video sequences and it is the user’s responsibility to design
the application-dependent B(i, j, t) generation process, which must fulfill the
conditions in (4). In order to reduce the bandwidth of the generation process,
an efficient coding of B is required.

Given these conditions, instead of coding the size Nu,l,d,r(i, j) directly, one
can code the difference ∆Nu,l,d,r between two adjacent pixels. Limiting the
difference to |∆Nu,l,r/(∆i, ∆j)| ≤ 1, the coding can be represented by using
two bits, i.e. increase (”01”), decrease (”11”), no-change (”00”), and reset
(”10”), corresponding to a simple ∆-code (or difference-code). The reset value
can be used to restore B to an initial setting at the beginning of each row.
Thus, coding B(i, j, t) will require 3 × 2 = 6 bits between two adjacent pixels
in the same row (since Nd is not allowed to change in the middle of a row), and
2 more bits in between two consecutive lines to represent Nd, ending up with
a total number of 8 bits to code B(i, j, t).

86 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

4.3 Memory Requirements

The row memory located in the update stage stores the distances for each col-
umn and is the largest single internal component in the architecture (excluding
the input FIFO). The requirement is linearly proportional to the resolution
according to

memrow = ⌈log2(max(Bh))⌉ · Iw bits, (8)

where max(Bh) is the maximum supported structuring element height which
determines the number of bits per stored value according to q = ⌈log2(max(Bh))⌉.
Additional registers in the FF-chain are needed to delay the stored distances
(memrow content) serving as input to the comparators, Figure 7. The number
of registers is proportional to the maximum allowed structuring element width.
Since their content should be compared to the maximum structuring element
height, the number of bits in these registers is

FFchain = q · max(Bw) bits. (9)

Combining (8) and (9), the total memory requirement for the algorithm is of
O(max(Bw)) and is equal to

memtot = memrow + FFchain = k(Iw + max(Bw)) bits. (10)

As for the row memory in the low complexity architecture discussed in
Part I, Section 3.1, a value in memrow in the update stage, should be read,
updated, and written back to this memory in a single cycle. Using a resolution
of 640 × 480 together with supporting a maximum structuring element of size
63 × 63, a memory of size a 6 × 64 with dual-port functionality is required
according to (8). However, due to the memory access pattern, the same memory
architecture can be used as the LC-architecture, i.e. implemented using a single-
port memory of double width (12 × 320), two registers, a multiplexer, and a
controller, running on the same clock domain as the input data, that reads and
writes two samples every other clock cycle.

Due to the stall cycles discussed in Section 4.1, the architecture requires an
asynchronous FIFO at the input. The size of this FIFO is a trade-off between
operating frequency and memory resources and is set by many parameters,
e.g. input data speed, operating speed, resolution, and maximum supported
structuring element; the higher operating frequency, the smaller FIFO. Let
fin be the speed of the incoming pixels, the critical time for the architecture
to process a frame can be written as tin = 1

fin
· Ih · Iw , which includes the

padding cycles. The number of additional clock cycles is determined by two
factors: the size of the structuring element and the location of the origin. In

5. IMPLEMENTATION RESULTS AND PERFORMANCE 87

the worst case, the origin is located in the top left corner of a large structuring
element requiring max(Bh)(Iw + max(Bw)) additional cycles since none of the
distance values located outside the image border can be precalculated (left and
top padding). Using a centered origin, the number of padding cycles is reduced

to ⌊max(Bh)
2 ⌋(Iw + max(Bw)

2) since half of the values can be inserted as initial
values in the FF-chain, recall Section 4.1. However, assuming the worst case,
the total time top, it takes for the architecture to process complete frame is
equal to top = 1

fop
(Ih + max(Bh))(Iw + max(Bw)), which includes all extra

cycles due to padding. Using these two expressions, a timing constraint for the
architecture can be written as tin ≥ top, or expressed in the operating frequency
as

fop ≥ fin

(Ih + max(Bh))(Iw + max(Bw))

Ih · Iw

MHz. (11)

Assuming that the maximum supported structuring element is small compared
to the resolution, i.e. max(Bh) ≪ Ih and max(Bw) ≪ Iw, then fop ≈ fin.
Using this approximation and assuming a centered origin, the architecture must

at most stall ⌊max(Bh)
2 ⌋(Iw + ⌊max(Bw)

2 ⌋) pixels during padding at the lower
boundary of the image, as discussed in Section 4.1. With fop=10 MHz, a
resolution of 640× 480, a maximum supported structuring element of 63× 63,
and a frame rate of 25 fps (fin=7.68 MHz), the required FIFO capacity is 21
kb. With these settings and using (10), the total amount of memory for the
complete architecture is ≈ 25 kb. Calculating the memory requirement when
increasing fop to 100 MHz, the architecture requires a FIFO with a capacity
of ≈2 kb, reducing the total amount of memory to ≈ 6 kb.

Determining the FIFO size is not a trivial problem since it impacts both the
dynamic power consumption according to Pdyn ∝ fop [6], and the static power
dissipation (area dependent). In practice, if minimizing the dynamic power is
of high priority, this means operating at the lowest possible speed (for a given
supply voltage), i.e. minimizing fop, resulting in a large FIFO. To summarize,
the memory requirement is dependent on the operating speed fop and memory
resources can be traded for low power properties.

A possibility to reduce the memory requirements on an architectural level is
to connect two architectures in parallel, multiplexing the processing of consec-
utive frames between the two. The FIFO can be substantially smaller or even
removed, reducing the memory requirements to approximately 8 kb. However,
this is highly application dependent, putting additional constraints on the SE
flexibility when processing the two frames in parallel.

88 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

Table 1: Implementation resource utilization characteristics of a Xilinx Virtex
II-PRO FPGA and in the UMC 0.13 µm CMOS process using a resolution of
640 × 480 and supporting a flexible SE up to 63 × 63.

FPGA used available ASIC used

Slices 807 13696 Area [mm2] 0.24

Block RAM 3 136 Memtot [kb] 24.6

LUTs 1365 27392 Gate count [k] 47

Speed [MHz] 80 — Speed [MHz] 260

5 Implementation Results and Performance

The architecture has been implemented in VHDL using a resolution of 640×480
and supporting a flexible structuring element of up to 63 × 63. This choice is
obviously application specific. Indeed, in order to correctly filter the largest
objects found in the image, we have chosen the largest B to be approximately
1/10 of the image width. In general, there are no algorithmic restrictions
on the largest supported structuring element size, but q in (10) will increase
accordingly.

The implementation has been targeted for both FPGA and ASIC: verified
on a Xilinx Virtex-II PRO FPGA (XC2VP30-7FF896) and synthesized for the
UMC 0.13 µm CMOS process, respectively. The most important implementa-
tion results and properties for both technologies are compiled in Table 1, where
the area is reported with all memory blocks. This includes an asynchronous
input FIFO of 21 kb, as discussed in Section 4.3 (replaced by a dual-port mem-
ory of the same size in the ASIC implementation to support multiple clock
domains), resulting in that memory constitutes 86% of the total area in this
particular implementation. The gate count is based on a 2-input NAND-gate
(5.12 µm2).

As mentioned in Section 4, the combinatorial critical path passes through
the logical operation performed in the compare stage. Pipelining this opera-
tion will not necessarily increase the speed figures found in Table 1 since the
bandwidth to the memory is the limiting factor.

In order to compare this work to the PRR and LC architecture discussed
in Section 1.1 and Part I, important properties are compiled in Table 2 as a
function of the resolution and the maximum supported structuring element. SE
support refers to the class of supported structuring elements and SE flexibility
to the ability to change it between two adjacent pixels. Naturally, this should
be distinguished from the ability to change the structuring element in between

6. CONCLUSION 89

Table 2: Important properties of various architectures, where N and NB is the
side in pixels of a quadratic input image and structuring element, respectively.

Design PRR [59] LC [62] This work

SE support Arbitrary Rectangular Rectangular

SE flexibility No No Yes

Complexity 2⌈log2(NB)⌉ 4 NB

mem [bits] (NB − 1)N N log2(NB) N log2(NB) + NB

Texe [CC] N2 N2+NB N N2

frames which is supported by most architectures. The complexity refers to the
number of operations per pixel (calculation), e.g. in the case of PRR, number
of comparators; and in the case of LC, two summations and two additions. The
memory requirement is basically the same as for the LC architecture but for
the additional NB delay elements found in the FF-chain. Texe is reported in
the number of clock cycles to process a complete frame but does not include the
latency, which is present in all architectures. Table 2 indicates that while still
maintaining a low memory requirement, the ability to support locally adaptive
structuring elements comes at the cost of the complexity increase from 4 to
NB, found in the compare stage as an increased number of comparators, and
multiplexers, making the architecture proportional to the maximum supported
structuring element width max(Bw).

6 Conclusion

A novel algorithm for binary ε and δ supporting a locally adaptive structuring
element is presented. The memory data is decoupled from the structuring
element size, i.e. no data based on the geometrical shape of a former B is
stored in memory, which is the property that enables the structuring element
flexibility. In order to preserve the raster scan property and avoid unwanted
results, algorithmic restrictions on the flexibility is applied.

This part also presents a corresponding hardware architecture, intended to
be used as an accelerator in embedded systems. The memory requirement of
the architecture is mainly proportional to the Iw while the computational com-
plexity is proportional to the maximum supported structuring element width.
The image data is processed in raster scan order without storing the image
in memory, especially useful for processing large images. The architecture has
been successfully verified on a Xilinx Virtex-II PRO FPGA and implemented

90 PART II. BINARY MORPHOLOGY WITH LOCALLY ADAPTIVE STRUCTURING . . .

as an ASIC in the UMC 0.13 µm CMOS process using a resolution of 640×480
and supporting a maximum structuring element of 63 × 63. Due to its linear
behavior when processing large images, the algorithm is very useful in software
applications.

Part III

An Architecture for Calculation of the Distance

Transform Based on Mathematical Morphology

Abstract

This part presents a hardware architecture for calculating the city-block and
chessboard distance transform on binary images. It is based on applying paral-
lel morphological erosions and adding the results, enabling preservation of the
raster pixel scan order and having a well defined execution time. Furthermore,
the distance metric to be calculated is controlled by the shape of the structuring
element, i.e. diamonds for the city-block and squares for the chessboard. These
properties together with a low memory requirement make the architecture ap-
plicable in any streaming data real-time embedded system environment with
hard timing constraints, e.g. set by the frame rate. Depending on the appli-
cation, if a priori knowledge of the image content is known, i.e. the maximum
size of the clusters, this information can be explored reducing execution time
and memory requirement even further. An implementation of the architecture
has been verified on an FPGA in an embedded system environment with an
image resolution of 320 × 240 at a frame rate of 25 fps running at 100 MHz.
Implementation results when targeted for an ASIC are also included.

Based on: H. Hedberg, and V. Öwall, “An Architecture for Calculation of the

Distance Transform Based on Mathematical Morphology,” to be submitted for pub-

lication, 2008.

91

1. INTRODUCTION 93

1 Introduction

A typical binary image consists of sets of connected pixels corresponding to
foreground and background, i.e. the objects (clusters) of interest and the rest
of the image. Taking such a binary image as input, the Distance Transform
(DT) calculates the distance from every foreground pixel equal to one to the
closest background pixel (equal to zero), thus transforming the binary image
into a gray level image, which can be seen as a topographical surface.

Calculating the DT using morphology was first introduced in [73] and is
accomplished by adding the result of multiple erosions and the input image.
To calculate the chessboard DT, a flat quadratic B of size 3× 3 is used with a
binary image I as input, such as the one shown in Figure 1(a). By subtracting
the result of an ε using B from the input image, i.e., I − ε(I, B), the contour
of the objects is extracted, as described in Part I, Section 2.4. The clusters’
contours correspond to the pixels that are removed in each ε-operation, and
an example is illustrated in Figure 1(b). Hence, applying multiple ε-operations
using the same B and taking the output from one operation as input to the next
according to ε(. . . ε(ε(I, B), B) . . . , B), will iteratively remove contour pixels
until there are no pixels left. As an example, the input image in Figure 1(a)
requires 20 erosions for all pixels to be removed. By adding the original image
I with the partial result from each operation, the DT can be calculated as

DT = I + ε(I, B) + ε(ε(I, B), B) + . . . + ε(. . . ε(ε(I, B), B) . . . , B). (1)

By using this procedure, a grayscale image Ig ∈ Z
2 is created where only

the foreground pixels have contributed to the intensity, which directly corre-
sponds to the chessboard DT. For the example in (a), the resulting chessboard
DT is illustrated in 2-D in Figure 1(c) and in 3-D in Figure 1(d), where the
peaks correspond to pixels with the longest distance to the background. No-
tice the non-solid object in the middle section that mainly consists of relatively
thin parts; this will result in low DT values and hence low intensity values in
Figure 1(c) and (d). In order to calculate the city-block metric, simply use
diamonds as the shape of the Bs instead of squares in (1).

The DT is present and plays an important role in many digital image pro-
cessing applications, such as robotics and automation [74]. It can also be used
in segmentation applications when calculating the watershed algorithm [75].
The watershed algorithm gets its name from its analogy to a basin after topo-
graphic flooding. First, a binary image is created, for instance by thresholding,
for which the DT is calculated. The DT result serves as input to the watershed
algorithm marking starting points of the flooding, meaning, where the inverted
DT has local minimums. When flooding this image, small isolated basins will

94 PART III. AN ARCHITECTURE FOR CALCULATION OF THE DISTANCE . . .

(a) (b)

(c) (d)

Figure 1: (a) A typical binary image I in which the foreground is rep-
resented in white and the background in black. (b) An example of ex-
tracted contour pixels when applying a single ε-operation. (c) The chess-
board DT for I shown in 2-D. (d) The same DT shown in 3-D slightly
rotated clockwise.

form that are spread out over the image; these will eventually merge and be-
come one large basin covering the complete image. The watershed algorithm
detects when two or more basins merge and it marks these as regions, creating
a regional mask image. Superimposing this mask image on the original binary
image, an accurate segmentation result is achieved, which is especially effective
when segmenting partially overlapping objects.

The actual distance is measured in units defined by the geometry metric,
e.g. Euclidian, chessboard, and city-block, which will be addressed further in
Section 2. The choice of distance metric can affect the result and in [75], the
impact of using the different metrics when calculating the watershed algorithm
is investigated. The conclusion is that the chessboard metric outperforms both
the Euclidean and the city-block metric, and has the least erroneous segmen-
tation result. Therefore, the need for efficient algorithms with corresponding
hardware architectures calculating the chessboard DT with high-throughput,
low memory requirement, and thereby low power properties becomes evident.

2. GEOMETRY METRICS 95

1
1

1
1

1

1

1
1

1
1

1

1

1
1

1
1

1

1

p1

1
1

1
0

1

1

1 1
1

0
1

1

1

1
1
0

1

1

0

0

p1

p2

p3

1

0
1

1

1

1
0

1

1

0

0

1
1

1
1

1

1

1
1

1
0

1

1

1
1

1
1

1

1

1
1

1
1

1

1 p3

p2

p1

1

0
1

1

1

1
0

1

1

0

0

1
1

1
1

1

1

1
1

1
0

1

1

1
1

1
1

1

1

1
1

1
1

1

1

p2

p3

(a) (b) (c)

Figure 2: Examples of different geometric distance metrics between two
pixel pairs p1, p2 and p1, p3 all ∈ Z2. (a) Euclidian, (b) city-block, (c)
and chessboard. Notice the dashed lines, which are alternative paths of
the same length.

2 Geometry Metrics

For every pair of pixels p1(i1, j1), p2(i2, j2) ∈ I, there exists at least one shortest
path. Naturally, the length of the path depends on the level of freedom of
allowed directions when moving from one pixel to another, and in any case, the
length of this path is equal to the sum of the individual parts. A denominator
for all the sets of allowed transitions is that they are geometry metrics. There
are basically three geometric metrics (or approximations of these):

• Euclidian,

• City-block, and

• Chessboard.

The Euclidian distance metric is the most intuitive to humans of the three
since it corresponds to the distance you measure using a ruler. Mathematically,
the Euclidian distance between two pixels p1, p2 ∈ Z2, can be expressed as

dE =
√

(i1 − i2)2 + (j1 − j2)2. (2)

The city-block metric measures the distance as the shortest path between
two points through a square lattice in which only orthogonal path transitions
are allowed, i.e. no diagonal transitions (4-connected). The path consists of
one or several orthogonal line segments which correspond to its projection onto
the lattice. Mathematically, the city-block distance between p1 and p2 can be
expressed as

d4 = |i1 − i2| + |j1 − j2|. (3)

96 PART III. AN ARCHITECTURE FOR CALCULATION OF THE DISTANCE . . .

As for the city-block metric, the chessboard distance is measured as the
sum of the line segments of a projected path with the addition that diagonal
transitions are allowed (8-connected, counted as 1). The chessboard distance
between p1 and p2 can be expressed as

d8 = max(|i1 − i2|, |j1 − j2|). (4)

An illustration of how the three metrics maps onto a square grid is shown
in Figure 2.

2.1 Previous Research

Assuming raster scan order, the city-block and chessboard DT can be accom-
plished in two image scans based on Sequential Local Operations (SLO) [76].
A partial result is first propagated in a forward direction (towards the lower
right corner of the image), and then in the opposite direction. The final result
is obtained by taking the minimum of the forward and backward scans. During
the forward scan, the partial result needs to be stored resulting in a large in-
termediate storage, which is equal to Iw × Ih times the number of bits required
to represent the maximum supported object size in hardware.

The Euclidean DT (EDT) is essentially a global operation, which means
that an extensive search has to be performed for every pair of pixels in the
image, for every calculated distance. One way to overcome this obstacle and
thereby avoid computational complexity is to calculate a less expensive ap-
proximation. This is often accomplished by propagating local distances us-
ing a sliding window of a particular size, which increases with the accuracy.
This procedure is referred to as the chamfer distance and is optimized in [77].
Several hardware implementations of such an approximation can be found in
literature [78] [79]. In [80], Takala et al. presents a hardware architecture for
calculating a variant of such approximation. Due to the well-defined execution
time, the architecture is applicable in embedded system environments with
raster scan order.

3 Architecture

An illustration of an architecture supporting a single arbitrary B is shown
in Figure 3 [81], equivalent to the delay-line architecture discussed in Part I
Section 2.1. The architecture mainly consists of four parts: pixel kernel, delay-
lines, calculation unit, and a controller. The pixel kernel gives parallel access
to the pixels to be included in the current calculation (thus supporting an
arbitrary B), implemented with as many flip-flops (ff) as elements in the B.
As the B slides over the input image, the pixels are stored waiting to be reused,

3. ARCHITECTURE 97

pixel kernel

delay
lines

FIFO1

ff

ff

B1,1 B1,2 B1,j

ff

ff

output

Bi,jBi,1 Bi,2

ff

B2,2 B2,j FIFO2

input

AND-operation

B2,1

ff

calculation unit

Figure 3: The proposed architecture when supporting a single B. The
controller with corresponding signals is omitted for clarity.

accomplished by using delay lines (FIFOs). A logic AND-operation is performed
on the pixels in the calculation unit, corresponding to an ε, which generates
the actual result (to perform a δ, perform a logic OR-operation). A controller is
required to manage the pixel kernel and the FIFOs as well as the padding; for
instance, the controller decides which pixels to exclude from the calculation, as
discussed in Section 4.6.

The primary formula to use for calculating the DT is intuitive (discussed
in Section 1): apply multiple parallel morphological ε-operations and add the
result. This will generate the DT and still preserve the raster scan order. In
order to accomplish this, the architecture described in Figure 3 can be utilized
but with an extended calculation unit, which requires additional arithmetic,
i.e. adders. This is based on the observation that the result of a smaller B1 is
contained in a larger B2, i.e., if B1 ∈ B2, thus partial results can be reused. As
an example, the result when using a quadratic B of size 3 × 3 is contained in
the result when using a quadratic B of size 5 × 5, and can be logically AND:ed
with the result of the contour pixels of the larger B. Furthermore, since the
pixel kernel extracts a certain maximum quadratic pixel neighborhood, all B
permutations contained in this neighborhood can be calculated simultaneously.
Therefore, the result is the same as having multiple stand-alone units in parallel.
The extended calculation unit is shown in Figure 4 where the partial result from
each SE size is accumulated in the adders. The depth of the calculation unit

98 PART III. AN ARCHITECTURE FOR CALCULATION OF THE DISTANCE . . .

SE of size n=5 and m=5

SE1,5SE1,4SE1,3SE1,2SE1,1

SE2,5SE2,4SE2,3SE2,2SE2,1

SE3,5SE3,4SE3,3SE3,2SE3,1

SE4,5SE4,4SE4,3SE4,2SE4,1

SE5,5SE5,4SE5,3SE5,2SE5,1

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

output
&

&
&

&

&

SE1,1
SE1,2

SE1,3
SE1,4

SE1,5
SE2,1

SE3,1

&

SE4,1

SE4,5
SE5,1

SE5,2
SE5,3

SE5,4
SE5,5

SE3,3

SE2,2
SE2,3

SE3,5

SE3,2

SE3,4
SE4,2

SE4,3
SE4,4

SE2,5

&

& &

SE2,4

Figure 4: An example of the extended calculation unit when supporting
a maximum B of 5 × 5.

is proportional to the size of the B, i.e. the critical path. In order to avoid a
long critical path, pipelining can be explored inferring only latency. Since the
logic operations are performed in parallel, a high-throughput is achieved.

Calculating the DT based on the city-block or the chessboard metric is
controlled by the shape of the B, as discussed in Section 1. The result is
produced directly at the output of the calculation unit, and no further pro-
cessing is required. However, to produce an approximation of the Euclidean
distance metric, the result from the chessboard and the city-block DT can be
combined [73], but this operation requires additional arithmetic.

3.1 Execution Time

In the proposed architecture, since the padding is managed by the controller by
excluding pixels from the calculation, no stall cycles are required, the result of
which is that the architecture operates on the same frequency as the incoming
pixels and only latency is inferred. Since each ε operation is calculated in
parallel when the entire neighborhood of the maximum supported B has been
extracted, the latency is proportional to ⌊NB

2 ⌋. This is a major improvement
over the SLO-based architecture, which has an execution time of two times the
resolution due to the forward and backward scans.

3. ARCHITECTURE 99

[M
B

]
[M

B
]

Resolution

Resolution

SLO

The proposed architecture

100%

100%

50%

50%

25%

25%

10%

10%

320

320

640

640

960

960

1280

1280

2

1.5

1

0.5

0

0

0.2

0.15

0.1

0.05

Figure 5: Memory requirement versus resolution (a square) for the SLO
and the proposed architecture.

3.2 Memory Requirement

The memory requirement for storing the pixels that are to be reused in future
calculations, i.e. the delay lines, is proportional to both the resolution and the
B according to

memdl = (Bh − 1)(Iw − Bw). (5)

The number of flip-flops in the pixel kernel that holds the current values is
proportional dependent of the B size according to

mempk = Bh · Bw. (6)

Therefore, by combining (5) and (6), the total memory requirement for the
architecture can be written as memtot = memdl + mempk.

100 PART III. AN ARCHITECTURE FOR CALCULATION OF THE DISTANCE . . .

(a) (b)

mem: 51%

clk: 17%

reg: < 1%

comb: 25%

seq: 5%

mem = 2.7
clk = 0.9
reg = 0.03
comb = 1.3
seq = 0.3

Figure 6: (a) A screen shot of the final layout. (b) The power distribution
in the different parts of the design when running at maximum speed,
i.e. ≈ 450 MHz. The total power dissipated in the design is 5.2 mW.

The worst case input is an object covering the entire image, the result of
which is that the maximum supported B must be equal to the max(Ih, Iw).
However, in many applications a priori knowledge of the image content is
known, which can be utilized to reduce the memory requirement. Figure 5
shows the memory requirement versus resolution for the SLO and the proposed
architecture. Taken from the graph, using worst case scenario input, the pro-
posed architecture requires ≈ 10% of the memory required by the SLO (since
only binary values need to be stored). However, allowing a maximum object
size of 50%, 25% and 10% of the image resolution, the memory requirement is
reduced even further, which is also illustrated in the graph.

4 Implementation Results and Performance

The proposed architecture has been implemented in VHDL and successfully
verified on a Xilinx Virtex II-pro FPGA, using a resolution of 320 × 240, a
frame rate of 25 fps, and supporting a maximum B size of 31 × 31, which
is ≈ Iw

10 . If the input image contains objects larger than Iw

10 , the distance
values become saturated. The architecture has also been implemented in the
UMC 0.13 ASIC technology and results in the form of resource utilization
characteristics for both technologies are compiled in Table 1, where the area
is reported excluding IO-pads (Input Output), and the gate count is based

5. CONCLUSION 101

Table 1: Implementation resource utilization characteristics of a Xilinx Virtex
II-PRO FPGA and in the UMC 0.13 µm CMOS process using a resolution of
320 × 240 and supporting a flexible SE up to 31 × 31.

FPGA used available ASIC used

Slices 2150 13696 Area [mm2] 0.20

LUTs 2706 27392 Gate count [k] 39

Block RAM 1 136 memtot [kb] 9.63

Speed [MHz] 100 — Speed [MHz] 454

on a 2-input NAND-gate (5.12 µm2) and includes all memory blocks. The final
layout of the architecture is illustrated in Figure 6(a). Note that the primary
use of the architecture is not as a stand-alone ASIC but rather as a hardware
accelerator in an embedded real-time image processing system.

The architectures in [80] [81], report a similar hardware resource utilization
in terms of memory requirement, since they both use delay lines to extract
the neighborhood. However, [80] is not based on morphology and calculates
an approximation of the EDT, and [81] only supports calculation of a single
erosion per extracted neighborhood.

The result of a post-layout power simulation, using Primetime provided
by Synopsys [82], is shown in Figure 6(b). The total power Ptot, defined in
Section 2.4, dissipated in the architecture is 5.2 mW, when running at maxi-
mum speed. As can be seen in the power distribution chart, the major part is
consumed in the memory followed by the part that is dissipated in the combi-
natorial logic, mainly corresponding to the calculation unit.

5 Conclusion

A flexible HW architecture for calculating the DT based on mathematical mor-
phology is presented. The geometry metric to be calculated, i.e. city-block or
chessboard, is controlled by using either diamonds or squares as structuring
elements, thus still preserving the important raster scan order. Comparing
the architecture with a reference design (two-scan SLO), a speed increase of
a factor of two is gained together with a reduced memory requirement mak-
ing the architecture applicable in any real-time streaming data environment.
Implementation results of the architecture in the form of resource utilization
characteristics when targeted for both FPGA and ASIC are also included.

Part IV

Implementation of Labeling Algorithm Based on

Contour Tracing with Feature Extraction

Abstract

An evaluation from a hardware perspective of the two types of connected-
component labeling algorithms introduced in Chapter 5 is presented. Based on
this evaluation, the CT-based algorithm was found most suitable in the target
application and therefore chosen for implementation. The implementation is
intended as a hardware accelerator in a self-contained, real-time digital surveil-
lance system. The algorithm has lower memory requirements as compared to
other labeling techniques and can guarantee labeling of a predefined number
of clusters independent of their shape. In addition, features especially impor-
tant for this particular application are extracted during the contour tracing
with little increase in hardware complexity. The implementation is verified on
an FPGA in an embedded system environment with an image resolution of
320 × 240 at a frame rate of 25 fps. The implementation supports labeling of
61 independent clusters, extracting their location, size, and center of gravity.

Based on: H. Hedberg, F. Kristensen, and V. Öwall, “Implementation of Labeling

Algorithm Based on Contour Tracing with Feature Extraction,” in Proc. ISCAS 2007,

New Orleans, USA, May 28-31 2007.

103

1. INTRODUCTION 105

1 Introduction

In an automated surveillance system, the aim is to track and classify objects
present in the scene, and to do so without human interaction. One of the first
steps in such a system is to detect the objects of interest, which is performed by
segmentation [3]. After segmentation, a binary frame is produced containing
clusters of pixels that represent different objects present in the scene. These
pixels are referred to as foreground and the remaining are background. Assum-
ing that noise has been removed by some pre-processing step (morphological
filter), the frame only contains clusters of interest that are to be tracked and
classified. However, before any tracking and classification are possible, the sys-
tem has to be able to separate and extract features of the clusters, which is
accomplished by labeling. The goal is to label the clusters and to separate
them in memory for further processing. This procedure gives the possibility to
tie features to each cluster (label). A feature is a figure that reveals a property
of the cluster on which tracking and classification are based. Thus, labeling
can be seen as the link between the clusters and their features. During the
labeling process, as many cluster features as possible are extracted based on
the binary representation of the objects, e.g. position (coordinates) and size. In
addition, the labeled mask is used to extract color features. By superimposing
the mask on the color video stream, valid pixels can be cut out and used to
calculate the color features, such as color mean value, and color histogram. The
extracted features are then used by the system to monitor many object proper-
ties revelent in surveillance applications: object trajectories, appearances, and
disappearances.

2 Hardware Aspects of Labeling Algorithms

To choose one of the two types of algorithms introduced in Chapter 5 for imple-
mentation, i.e. SLO- and CT-based algorithms, important properties relevant
to our application needs to be compared and evaluated; these properties are
complexity, throughput, memory requirements, and extracted features. The
evaluation of the two types of algorithms is compiled in the subsequent sec-
tions.

2.1 Complexity

Regarding the algorithmic complexity of SLO-based and CT-based algorithms,
neither of them require any advanced arithmetic operations to perform the
actual labeling. The main part of the complexity in both algorithms is due
to memory handling. In the case of two-scan SLO, the controller extracting
the pixels covered by the scan mask is simple due to the regular memory ac-

106 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

Table 1: Simulations on three independent sequences showing the number of
clusters and corresponding label collisions.

Sequence Seq. 1 Seq. 2 Seq. 3

Mean clusters per frame 4.19 6.98 6.56

Mean labelcol per frame 13.1 6.72 14.3

Max clusters in a frame (cmax) 14 20 20

Max labelcol in a frame(lc,max) 27 21 50

Resolution 320 × 240 352 × 288 768 × 576

Nbr. of frames in the seq. 700 900 2500

cess pattern. However, a more complex controller is required to manage label
ambiguities due to label collisions. The controller needs to support a merge
and search operation, which may be implemented using the union-find algo-
rithm [50]. In CT-based algorithms, the most complex block controls the CT
phase which manages the search process for contour pixels. No major advantage
in terms of computational complexity can be seen in any of the two algorithms.

2.2 Memory Requirements

Both types of algorithms need a memory to store the labeled image result
memlabel. Due to the physical limitations of this memory, an upper bound is
placed on the number of clusters that can be labeled in a frame cmax. In SLO-
based algorithms, each label collision will occupy a temporary label during the
initial scan. Thus, the memory size is determined by a combination of cmax

and the maximum number of label collisions lc,max. This results in a memory
overhead in the form of additional required bits per stored pixel. Assuming
that the memory required to manage the label collisions is small compared
to memlabel and can therefore be neglected, the memory requirement for the
SLO-based algorithms may be approximated as

memSLO = ⌈log2(cmax + lc,max + 1)⌉ · N2 bits, (1)

where N2 = (Ih × Iw) is the number of pixels in an image and the +1 comes
from the fact that 0 is a preoccupied label representing the space in between
clusters or holes inside clusters. In CT-based algorithms, the memory size is
directly proportional to the image resolution and cmax since no label collisions
occur. Therefore, the memory requirement can be written as

2. HARDWARE ASPECTS OF LABELING ALGORITHMS 107

(a) (b) (c)

Figure 1: (a) A frame from sequence 1, taken in our research laboratory,
(b) a frame from sequence 2, covering a traffic crossing, (c) and a frame
from sequence 3, taken from the PETS database [83], covering a parking
lot.

memCT = ⌈log2(cmax + 3)⌉ · N2 bits, (2)

where +3 comes from the fact that 0, 1, and 2 are preoccupied labels; 0 is used
to represent the space in between clusters or holes inside clusters, 1 is used
to represent the pixels within a cluster (intermediate), and 2 is used for the
reserved label lr.

To decide how much memory to assign to the algorithm for a certain ap-
plication, a good strategy is to run a simulation on typical input, e.g. a se-
quence from the surveilled scene. A simulation reveals important cluster data,
e.g. mean/maximum number of clusters and label collisions per frame. This
data may be used to support the decision of setting cmax and lc,max to actual
values. Table 1 compiles three simulations of such sequences that show the
number of clusters with corresponding label collisions per frame. Sequence 1
is captured in our research laboratory, Sequence 2 is captured outdoors cover-
ing a traffic crossing, and sequence 3 is taken from the PETS database [83].
A typical frame from each of the three sequences is shown in Figure 1. The
figures in Table 1 show that SLO-based algorithms would require 6, 6, 7 bits
per pixel compared to CT-based algorithms, which would require 5, 5, 5 to
handle the worst case scenario in all three sequences. Having identified and
set these values, the memory requirement for both types of algorithms can be
compared using (1) and (2). This shows that SLO-based algorithms requires
at least additional N2 bits of memory for every extra bit per pixel compared
to the CT-based algorithm. As an example, with a resolution of 320× 240 and
supporting sequence 2 in Table 1, cmax is set to ≈ 64. “Approximately” is used
instead of “equal” due to preoccupied labels as well as the width of the label
memory being adjusted to the closest power of two. Using these settings, CT-
based algorithms requires ≈ 14% less memory than the SLO-based algorithm

108 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

Table 2: Simulation results of the number of memory accesses required by an
SLO-based algorithm.

Sequence Seq. 1 Seq. 2 Seq. 3

Mean
∑

sizei per frame 349 363 802

Max
∑

sizei clusters in a frame 2959 2325 5403

Mean nbr of memaccess,SLO per frame [k] 154 203 886

Max nbr of memaccess,SLO in a frame [k] 157 205 890

Nbr. of frames in the seq. 700 900 2500

according to

memCT

memSLO

= 1 − ⌈log2(cmax + 3)⌉
⌈log2(cmax + lc,max + 1)⌉) = 1 − 6

7
≈ 0.14.

In general, as shown in the example sequences in Table 1, CT-based algorithms
require less memory as compared to SLO-based algorithms to be able to label
the same number of clusters.

2.3 Memory Accesses

The required number of memory accesses for the two-scan SLO-based algo-
rithm to complete the labeling procedure consists of several parts. Assuming
raster scan order, the input data is first written into memlabel and assigned the
preliminary labels during the initial scan, resulting in N2 write operations. In
addition, possible label ambiguities have to be written into an equivalence ta-
ble. However, the memory operations needed to maintain the equivalence table
may be neglected since they are ≪ N2. The initial scan is followed by a second
read scan with an additional N2 read operations and possible write operations
to resolve the label ambiguities. Let sizei be the remainder of a cluster in pix-
els that need to be relabeled. This results in additional sizei write operations
for this particular cluster. The total number of memory accesses for a frame
containing K clusters, each with sizei pixels that needs to be relabeled, can be
written as

memaccess,SLO = 2 · N2 +

K∑

i=1

sizei. (3)

Simulation results are compiled in Table 2, which shows the number of memory
accesses for each of the previously described sequences. As can be seen from

2. HARDWARE ASPECTS OF LABELING ALGORITHMS 109

Table 3: Simulation results of the required number of memory accesses for a
CT-based algorithm.

Sequence Seq. 1 Seq. 2 Seq. 3

Mean
∑

pi per frame 754 372 694

Max
∑

pi clusters in a frame 1364 939 1479

Mean
∑

lj per frame 574 204 404

Max
∑

lj clusters in a frame 1026 570 949

Mean nbr of memaccess,CT per frame [k] 156 204 887

Max nbr of memaccess,CT in a frame [k] 158 205 889

Nbr. of frames in the seq. 700 900 2500

these figures, the total number of pixels that needs to relabeled
∑

sizei is small
compared to the number of memory accesses due to the two global scans. This
is typically the case since the objects present in the scene are usually small
compared to the resolution (otherwise the camera is too close). Note that each
sequence is captured in a different resolution.

Concerning the number of required memory accesses for the CT-based al-
gorithm: first, the input stream is written into memlabel resulting in N2 write
operations. This is followed by a second scan during which the CT takes place,
which has an upper limit of N2 read operations. For every cluster, tracing
the contour and writing the reserved label on both sides of the cluster requires
additional read and write operations. If a frame contains K clusters, each with
pi contour pixels and the need to write lj reserved labels along each side, the
total number of memory accesses can be written as

memaccess,CT = 2 · N2 + α

K∑

i=1

pi +

K∑

j=1

lj . (4)

where α is the average number of memory accesses needed in the CT phase to
find the next contour pixel and

∑
pi and

∑
lj are the total number of contour

pixels and reserved labels in a frame. Table 3 compiles simulation results of
the CT-based algorithm for each of the three sequences. Using these figures
and α ≈ 2.2 (simulated value), the mean and maximum number of accesses per
frame can be calculated using (4). Taken from the figures, sequence 1 contains
larger objects which can be seen as a larger number of contour pixels

∑
pi

compared to the other two. However, as for the simulation in Table 2, the
main part of the memory accesses are due to the two global scans. Note that

110 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

neither the holes nor the intermediate pixels are filled or assigned the correct
label in any of the simulations.

Comparing the results in Tables 2 and 3, no major performance advantage
may be distinguished between the software models in terms of memory access
requirements (for these three sequences). Note that the optimization marking
the start and end pixels discussed in Section 5.4, is not included in either of
the simulations compiled in Tables 2 and 3, but would affect the first part of
(3) and (4) equally in both types of algorithms.

2.4 Execution Time

The total execution time texe (number of clock cycles), for both SLO- and CT-
based algorithms is determined by the number of memory accesses, which in
turn are proportional to the complexity of the input clusters; a complex con-
tour results in more read and write operations, i.e. affects sizei in (3) and both
pi and lj in (4). To be able to determine an upper limit on texe, clusters with
worst case contours have to be constructed, which can be hard to prove theo-
retically. However, for SLO-based algorithms, one of the worst case scenarios
is a cluster covering the complete frame with a label collision in the upper left
corner. This means that almost the complete cluster needs to be relabeled,
resulting in an upper limit of the latter part of (3), i.e.

∑K
k=1 sizei ≤ N2. An

upper limit on the total amount of required memory accesses per frame can
therefore be written as ≤ 3 · N2. Creating an image causing the maximum
number of memory accesses in the CT is even harder and is most likely to be
artificial, e.g. elongated horizontal clusters covering the whole frame. Instead
of evaluating such synthetic input frames, the latter part of (4) is left with
the assumption that the maximum number of memory accesses needed by the
CT phase cannot exceed the image size, i.e.

∑K

i=i pi +
∑K

j=1 lj ≤ N2. Hence,
when comparing the upper limit on the total execution time for the two types
of algorithms, both can be written as texe ≤ 3 · N2.

2.5 Feature Extraction

From a system perspective, it is desirable to extract features where they have
low requirements in terms of execution time and hardware complexity, since
extracting them during post-processing can strain the timing budget. There
are several features of binary clusters that are advantageously extracted in a la-
beling unit since all foreground pixels are visited at least once and since it has
information pertaining to which cluster each pixel belongs to. Furthermore,
many of these features can be extracted in a similar manner for both SLO-
and CT-based labeling algorithms, e.g. maximum / minimum coordinates and
area, which can be done by updating or sequentially incrementing registers.

2. HARDWARE ASPECTS OF LABELING ALGORITHMS 111

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

00

0

0

0

Features

1

1

1

1

1

1

1

1

0

1

1 1

0

0

0

0

0

0

0

0

0

0

0

00 0

00

01

1

0

0

1

1

1

1

1

1

1

0

1

1

1

1

0 0 001

0 0 0 000

0

0

0

0

0

0

0

00 0

n

m

(0, 0)

Area: 26

max(m, n): (9,7)

min (m, n): (1,1)

CoG: (5,4)

Figure 2: An example of an arbitrary cluster for which cluster features
have been extracted. The center of gravity is marked in black and a
bounding box encapsulates the cluster base on the maximum and mini-
mum coordinates.

For example, the maximum and minimum coordinates can be used to draw a
bounding box around each object, which is often used in surveillance applica-
tions, as illustrated in Figure 2. To extract more advanced features such as
Center of Gravity (CoG), which is an important feature in a surveillance appli-
cation, used by the tracking unit to match clusters in consecutive frames and
to handle occlusion, more complex arithmetic is required, such as multipliers
and dividers. In SLO-based algorithms, a straightforward method to extract
CoG for a cluster Ck, is to store both the total number of pixels in this cluster
Ck,a, and the sum of the coordinates in each direction, i.e. Ck,m and Ck,n. If
a cluster consists of several clusters (contains label collisions), simply merge
each respective sum. Using this notation, calculating CoG in each direction,
i.e. mk,CoG and nk,CoG, can be expressed as

mk,CoG =
Ck,m

Ck,a

, and nk,CoG =
Ck,n

Ck,a

.

An example is illustrated in Figure 2, in which Ck,m = 129 and Ck,n = 108,
resulting in a CoG located in (mk,CoG, nk,CoG) = (5, 4).

CT-based algorithms offer a more refined way to calculate CoG since they
have the possibility to add discrete Green’s theorem to the CT phase. Green’s
theorem gives the relationship between a closed contour (curve) and a double in-
tegral over this cluster (plane region), enabling calculation of the moments [84].
The moments can in turn be used to calculate the CoG (and be an alterna-
tive way to calculate the area). In order to calculate moments, background to
foreground transitions (pi = 1, pj = 0, pj ∈ N8(pi) have to be determined for

112 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

south

c

(1)

(1)

(1)

(1)

(3) (3)

(3)

(3)

(3)(3)(1)

(1)

(1)

west

c

east

c

north

c

(1) (2)

(3)(0)

(3)

(a) (b)

Figure 3: (a) The four possible pixel-to-cluster transitions, (b) and an
example of a cluster with corresponding west and east background-to-
foreground transitions. Note that vertical transitions entering pixels
from the top and bottom are omitted from the figure since they do not
contribute in (5).

each cluster. There are four possible background to foreground transitions to a
contour pixel: south, west, north, and east, as illustrated in Figure 3(a). Each
transition is associated with a triplet (m, n, ∆m), where (m, n) are the contour
pixel coordinates and ∆m gives directional information, and is defined as -1
and 1 for the west and east transition, and 0 for the remaining two [84]. The
triplets are used to compute the monomial in the sum

ui,j =
∑

contour

ni+1mj∆m, (5)

in order to calculate u00, u10, and u01, which are updated for every contour
pixel. Note that u11 is omitted since it is not required in any further calcu-
lations. Since ∆m = 0 for both the south and north transitions, they do not
contribute in (5), and the transitions are reduced to only west and east, as
illustrated in figure Figure 3(b). The sums are used to calculate the moments
according to

m00 = u00, m10 =
u00

2
+

u10

2
, m01 = u01. (6)

After the moments have been calculated, they are transformed into area and
CoG according to

Ck,a = m00, nk,CoG =
m10

m00
, mk,CoG =

m01

m00
. (7)

A division is needed to calculate CoG, which is the most complex arithmetic
operation in this unit. However, this is not a major disadvantage since a divider
is required for SLO-based algorithms to calculate CoG as well; refer to (5).

3. ALGORITHM EVALUATION 113

Applying (5) on the example illustrated in Figure 2, starting on the left side
of the top pixel and tracing the contour clockwise generates a transition se-
quence of 133333333311111111, using the definition in Figure 3. This sequence
is translated into a ∆ sequence equal to (−1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,
−1,−1,−1,−1). The ∆ sequence is used together with the coordinates for each
∆ in each direction in (5), generating u00 = 26, u10 = 180, and u01 = 130. Us-
ing this result in (6), gives the moments m00 = 26 m10 = 103 and m01 = 130,
which when applied to (7), generates a CoG equal to (mk,CoG, mk,CoG) = (5, 4).

Higher order moments can be used to extract the axis of orientation. How-
ever, this feature is currently not used by our tracking algorithm and is therefore
not considered.

3 Algorithm Evaluation

The preceding evaluation can be compiled into the following:

Memory requirement: The CT-based algorithms can guarantee the label-
ing of a specific number of clusters cmax, and therefore they require less
memory.

Memory accesses and Execution time: In their original forms, both type
of algorithms have the same upper bound on the total execution time,
i.e. texe ≤ 3 ·N2. However, modifying the read-out scheme for SLO-based
algorithms, this type of algorithm will have an advantage over CT-based
algorithms.

Features: Both types of algorithms can extract the same features, e.g., max-
imum and minimum coordinates, area, and CoG.

As it becomes evident in the list, both types of algorithms have pros and cons.
To summarize: SLO-based algorithms are fast, and the regular data access
patterns permits burst reads from memory but have the drawback of label
collisions making the number of labeled clusters per frame undefined. A major
advantage of CT-based algorithms is that they can guarantee labeling of a
specific number of clusters but have the drawback of random memory accesses.

Some applications do not require unique labels to be assigned to each cluster
but rather have the restriction that each cluster may be visited only once; for
instance, when counting the clusters. In other applications it can be sufficient
to extract correct binary feature extraction for each cluster assuming that all
pixels within the same bounding box are part of the same object. This can be
explored in an automated surveillance system and is discussed further in Part V
of this thesis. In such applications, the CT-based algorithms are superior in

114 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

pixel stream

1 bit

bus

CTR

pixel control

memory pipeline

CTFSMFIFO

mem control

mem data

memory control
FSM

CT

M
ux

M
ux

M
ux

M
ux

memlabel

memfeat.

output
FFArea/COG

Coordinates

features

Figure 4: Overview of the implemented architecture.

terms of memory requirement over SLO-based algorithms. This comes from
the fact that in CT-based algorithms, the label memory can be reduced to 2
bits per pixel, still being able to mark each cluster as visited and correctly
extract their binary features and place them in separate entries in the feature
memory. On the other hand, in SLO-based algorithms, the memory cannot be
reduced since this type of algorithm still faces the problem of label collisions.

4 Implementation

Based on the Due to the lower memory requirements, the CT-based algorithm
was chosen for implementation and an overview of the architecture is shown in
Figure 4. A FIFO is needed at the input as the data stream is stalled when a
frame is being labeled. The CTFSM is the main block in which the actual con-
tour tracing takes place, and its functionality is illustrated as a block diagram
in Figure 5.5. Assuming labeling of 8-connected clusters, for the CTFSM to be
able to find the next contour pixel, a matrix is inferred marking the direction
from a pixel p to its eight neighbors, N8(p), as shown in Figure 5(a), similar
to what is used in a chain code [2]. A variable d gives the direction from the
last visited to the current contour pixel. Since the global memory scan is per-
formed in raster scan order, the default direction is right, i.e. 1 in the matrix.
d is used as input to a LUT, containing the direction to start the search for the
next consecutive contour pixel; hence it is referred to as the initial search LUT
and is illustrated in Figure 5(b). The second LUT contains the number to add
to the current coordinates to reach a pixel for each direction; this is referred
to as the address LUT and is illustrated in Figure 5(c). If the next contour

4. IMPLEMENTATION 115

3

7

6

5

4

3

1

0

2

6

0

0

2

2

4

4

6 7

6

5

4

1

0

2

(1,−1)

(−1,−1)

(0,−1)

(−1, 0)

(1, 0)

(1, 1)

(0, 1)

(−1, 1)

6 7 0

p5

24

1
3

(a) (b) (c)

Figure 5: (a) Definition of the direction matrix, (b) the LUT containing
the start direction to search for the next contour pixel, (c) and the LUT
containing the number to add to the current coordinates (address) for
each direction in (a). The connectors between (b) and (c) indicate that
the output from the initial search LUT is used as an index to the address
LUT.

pixel is found, the current label is written into memlabel at this coordinate,
d is updated, and the search starts over in the direction given by the initial
search LUT with d as the index. If there is a miss, the direction is incremented
clockwise and then used as the index in the address LUT. The output from the
address LUT is added to the current coordinates, which now point to the next
possible contour pixel, which repeats until the next contour pixel is reached.
When the local starting pixel is reached a second time, it means that the con-
tour of this cluster is completely traced and the global scan continues. Note
that the index to the address LUT is increased in a modulo-8 fashion, which
means that when the index reaches 8, it starts over at zero.

An illustration of the contour tracing of a small cluster with corresponding
search directions is shown in Figure 6(a). In (b), the pixel is marked as the
local start pixel and assigned the current label, l1. Since the default direction
is 1, a lookup is made in the initial search LUT, which outputs a 0. This 0 is
used as the index in the address LUT, which outputs (−1, 1), which is added
to the current address to start searching for the next contour pixel. Since the
next contour pixel is not located at this address, the index to the address LUT
is increased by 1, and the next number to add to the current address is (0, 1),
which is now pointing to the left of the current pixel. Since the next contour
pixel is found on this address, the current address is updated to this pixel
together with that it is assigned the appropriate label. To start the search
for the next consecutive contour pixel, since the current pixel was found in a
direction equal to 1, a new lookup in the initial search LUT is made, again
receiving a 0 which is used to make a new lookup in the address LUT. If a

116 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

0

0

0

1

0

1

0

0

0

0

0

00

0

0

0

0

l1

0

0

l1

0

0

0

0

0

00

0

0

0

0

l1

0

1

0

0

0

0

0

0

00

0

0

0

0

l1

0

0

l1

0

0

0

0

0

00

0

0

0

0

1

0

1

0

1

0

0

0

0

0

00

0

0

0

0

l1

0

1

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

l1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

01

0

0

0

00

0

0

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a) A small cluster that is to be contour traced, (b) the start
pixel is marked and assigned a label, l1. The arrow indicates the initial
search direction for the next contour pixel which is found in (c). (d)
The current address is updated and the arrow indicates the new initial
search direction for the next contour pixel. (e) The search direction
is increased, until a new contour pixel is found in (f). (g) Again, the
address is updated, the pixel is labeled, and the search starts in the
direction indicated by the arrow. (h) The search direction is increased
until the last contour pixel is found, ending the contour tracing of this
cluster. Note that the gray dashed arrows indicate search misses.

new contour pixel is not found on the current search address, the index to the
address LUT is increased by 1. This process repeats until the start pixel is
reached, indicating that all contour pixels of this particular cluster have been
labeled and the image scan continues searching for the next unlabeled cluster.

During the CT phase, the CTFSM produces a triplet of control signals for
every contour pixel, i.e. (m, n, ∆m). The triplet is sent as input to the feature
extraction blocks which calculate maximum / minimum coordinates, size, and
CoG, for every cluster. In turn, the features are sent to the control block
(CTR) which aligns, concatenates, and writes them into memfeat., in which each
address corresponds to a specific label. The output of the unit is the memory
content, and to maximize the time the embedded tracking SW can access this
result, a memory pipeline is inferred. The memory pipeline is implemented
with multiplexors and duplicated memories as shown in Figure 4. Hence, as
the algorithm is labeling one frame, i.e. accessing one memory pair, the unit
gives access to the other through an HW-interface consisting of SW addressable
registers from the embedded Power PC.

5. RESULTS AND PERFORMANCE 117

Table 4: Implementation and resource utilization characteristics.

Resolution 320 × 240 Nbr. clusters 61

Memtot[kbit] 446 Frame rate 25

LUTs 2229 (8.1%) Speed [MHz] 67

5 Results and Performance

Based on the simulations in Section 2 and due to memory limitations in the
FPGA, cmax is set to 61 (plus three preoccupied labels), resulting in 6 bits per
pixel in memlabel. Using (2) and a resolution of 320 × 240, the total size of a
single memlabel is 461 kb. Furthermore, cmax, the resolution, and number of
cluster features determines the size of memfeat., since cmax determines the depth
and each word consists of the maximum and minimum coordinates, cluster
area, and CoG. Using these settings, the total size of the cluster memory can
be written as

memfeat. = (cmax + 3) · (⌈log2(Ih)⌉ + ⌈log2(Iw)⌉ + ⌈log2(Ih)⌉+
+⌈log2(Iw)⌉ + ⌈log2(Ih)⌉ + ⌈log2(Iw)⌉ + ⌈log2(Ih)⌉

+⌈log2(Iw)⌉) ≈ 4.3 kb.

(8)

Based on (2) and the fact that the input FIFO is set to be ≈ 76.8 kb to store
a complete frame at the current frame rate, the total memory requirement is

memtot = FIFO + 2 · (memlabel + memfeat.) ≈ 1.01 Mb,

where the factor 2 is the memory pipeline. Note that the actual size of input
FIFO is set to ≈ 130 kb, due to limited size support in the EDA tool, i.e. Core
Generator provided by Xilinx [85].

As mentioned in Section 3, the target application of this unit does not
require unique labels to be assigned to the clusters but rather only that the
clusters have separate entries in memfeat.. This means that a single label may
be used without system performance degradation, since this does not affect
cluster or color feature extraction; cluster features are extracted during contour
tracing, and color features are extracted on single objects even before the BB
of another object overlap. In either case, label ambiguities are avoided. The
result is that the label memory only uses two bits per pixel, and the complete
label unit requires 446 kbit instead of 1.01 Mbit.

118 PART IV. IMPLEMENTATION OF LABELING ALGORITHM BASED ON . . .

l1lr lrl1

(a) (b)

Figure 7: (a) A fragment of a typical binary input frame to the label
unit, (b) corresponding labeled output. Notice the gray pixels on each
side of the contour which corresponds to the reserved label, and the hole
in the middle cluster.

The architecture is implemented in VHDL on a Xilinx Virtex-II pro FPGA
(XC2VP30-7FF896), and the most important implementation results are sum-
marized in Table 4. An example of a typical binary input frame taken from
sequence 1 in Table 1 containing two human silhouettes is shown in Figure 7(a),
with corresponding labeled output from the implemented architecture shown
in (b).

6 Conclusion

An evaluation of SLO-based and CT-based algorithms for connected-cluster
labeling in binary images from a hardware perspective is presented. Due to
the lower memory requirements in our target application, the CT-based type
of algorithm is chosen for implementation. Therefore, implementation results
of such a hardware accelerator to be used in an automated surveillance system
are also included. The unit labels 61 clusters, and extracts their coordinates,
size, and CoG. The algorithm introduces no memory overhead, as opposed
to SLO-based approaches, and can guarantee labeling of a specific number of
clusters. The memory requirement is 446 kbit, which is less than SLO-based
algorithms and is proportional to the image size and the maximum number
of individual clusters that can be labeled per frame. The design has been
successfully implemented and verified on an FPGA running at 67 MHz in a
system environment with an image resolution of 320× 240 and a frame rate of
25 fps.

Part V

An Embedded Real-Time Surveillance System:

Implementation and Evaluation

Abstract

This part presents the design of an embedded automated digital video surveil-
lance system with real-time performance. Hardware accelerators for video
segmentation, morphological operations, labeling and feature extraction are
required to achieve real-time performance, while tracking will be handled in
software running on an embedded processor. By implementing a complete
embedded system, bottlenecks in computational complexity and memory re-
quirements can be identified and addressed. Accordingly, a memory reduction
scheme for the video segmentation unit, reducing bandwidth by more than 70%
and a low complexity morphology architecture that only requires memory pro-
portional to the input image width, have been developed. On a system level,
it is shown that a labeling unit based on a contour tracing technique does not
require unique labels, resulting in a memory reduction greater than 50%. The
hardware accelerators provide the tracking software with image objects prop-
erties, i.e. features, thereby decoupling the tracking algorithm from the image
stream. A prototype of the embedded system is running in real-time, 25 fps, on
an FPGA development board. Furthermore, the system scalability for higher
image resolution is evaluated.

Based on: F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “An Em-

bedded Real-Time Surveillance System: Implementation and Evaluation,” accepted

for publication in Journal of VLSI Signal Processing Systems, Springer.

119

1. INTRODUCTION 121

1 Introduction

The demands on video surveillance systems are rapidly increasing regarding
parameters such as frame rate and resolution. Furthermore, with an ever in-
creasing data rate and number of video streams, an automated process for ex-
tracting relevant information is required. Due to the large amount of input data
and the computational complexity of the algorithms, software implementations
are not sufficient to sustain real-time performance for reasonable resolution. In
this part, an automated digital surveillance system running on an embedded
platform in real-time is presented. Algorithms that are well suited for hardware
implementation with streamlined dataflow are chosen and dedicated hardware
accelerators have been developed. The presented hardware platform has been
developed with the goal of presenting a proof of concept for the surveillance
system and to identify computational and memory bottlenecks. Furthermore,
when proposing modifications to the original algorithms, extensive simulations
are needed, especially if long-term effects in the video sequences can be en-
visioned. Utilizing a reconfigurable platform based on an FPGA reduces the
simulation and development time considerably.

122 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

CAM Segmentation

Tracking

&

Morphology

Labeling

Raw data

Binary data
Feature

Extraction

Cluster features

Color features

Cluster 1

Object 1

SIZE

POS

HIST

CoG

C1

C2
...

...

(a) (b) (c)

(d) (e)

(f) (g)

Figure 1: Surveillance system, (a) original image, (b) binary motion
mask, (c) morphologically filtered motion mask, (d)-(e) Labeled clus-
ters and cluster features, (f) detected objects and color features, and (g)
tracking results. All tracked objects are marked with a uniquely colored
frame as long as the objects are present in the scene.

1. INTRODUCTION 123

A conceptual overview of the surveillance system is shown in Figure 1. The
camera feeds the image processing system with a real-time image stream of
25 fps, Figure 1(a). A segmentation algorithm, in this case based on a Gaus-
sian Mixture background Model (GMM), preprocesses the image stream and
produces a binary mask in which background and foreground are separated,
Figure 1(b). In theory, only the moving parts of an image should be distin-
guished as independent objects in the binary mask. However, in reality the
mask will be distorted with noise and single objects are shattered. In order
to remove noise and reconnect split objects, morphological operations are per-
formed on the mask, Figure 1(c). These morphological operations will produce
a frame of connected clusters which have to be identified, i.e. labeled. The
labeled clusters together with extracted cluster features, e.g. size and position,
are seen in Figure 1(d) and (e). Foreground objects, which have been cut out
from the original frame, with corresponding color features are shown in Fig-
ure 1(f). In the final image, tracked objects are identified by uniquely colored
bounding boxes, Figure 1(g).

The main bottleneck in image processing algorithms is the high memory re-
quirements that are imposed on the hardware system, both in terms of size and
bandwidth. In this work, bandwidth reduction has primarily been addressed
in the segmentation unit, using wordlength reduction and by identifying and
removing redundant information. The goal with the morphological unit has
been to create a data path unit that does not require any intermediate stor-
age of the image. Both decomposition and simple structuring elements have
been explored to reach this goal. In the labeling unit, the main issue has been
to decrease the amount of data stored on-chip. Here, carefully choosing the
algorithm and contemplating system level considerations have resulted in a
reduced memory size. Finally, the dependency between image resolution and
memory requirements for all parts of the system has been investigated in order
to identify the constraints of a future higher resolution system.

Sections 2 to 5 present the individual blocks of the system, as outlined
in Figure 1. Each block has been implemented as a stand-alone block, but
has been verified using a software simulation model of the complete system.
Section 6 discusses how the individual blocks have been integrated on an FPGA
board. Hardware utilization, system optimizations and system bottlenecks are
also discussed in this section. Finally, our conclusions are drawn in Section 7.

1.1 Systems of Today

Intelligent surveillance is an expansive field as can be seen from the increasing
number of products commercially available on the market today. Both surveil-
lance cameras and larger systems with advanced image analysis capabilities are

124 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

emerging. Three of the largest actors in the market are AXIS Communications,
Sony and IBM.

AXIS Communications is one of the global market leaders in network video
products who have specialized in professional network video solutions for re-
mote monitoring and security surveillance [5]. Features of AXIS surveillance
cameras include built-in motion detectors and Wireless Local Area Network
(WLAN) modules. Several subsections of a scene can be specified for motion
detection, each with an individual sensitivity level. However, the detection is
as for most embedded video motion detection algorithms, very basic and based
on frame difference.

One of the most advanced surveillance cameras on the market today is
Sony’s SNC-CS50 [86]. According to the specification, the camera can perform
both advanced motion detection and unattended object detection, but not si-
multaneously. The unattended object detector reacts if an object is left in one
place for more than a specified duration and the motion detection is based
on the last fifteen frames in order to reduce noise sensitivity. However, a live
demonstration showed that the camera reacts slowly to motion and is sensitive
to light changes.

IBM has recently released the Smart Surveillance System (S3) release-1
to end customers on a pilot basis. Compared to the previously mentioned
products, S3 is by far the most advanced. However, S3 is not designed to
be used in an embedded camera but as a separate software system to which
several cameras are connected. According to the website [87], the system is
capable of object detection that is insensible to light, weather changes, and
camera vibrations. Detected objects can be both tracked and classified. Typical
classification labels include, person, group, and vehicle. In addition to real-time
tracking and classification, all detected events are stored alongside the original
data stream for fast event-based searching in the captured videos. Since no live
demonstrator is available and the current release is limited to a small number
of test users, it is not possible to evaluate the claimed capability of the system.

From the above overview, it is seen that there is a huge gap between the ca-
pabilities of the embedded surveillance cameras produced by AXIS and Sony,
and IBM’s large scale surveillance system. A similar trend can be seen in
academia. Either research about large systems implemented in software or
research about isolated algorithms implemented in dedicated hardware is pub-
lished. For example, W4 [88] is a system that, in addition to motion de-
tection and tracking of multiple people on monocular gray-scale video, tries
to detect actions such as persons carrying objects and different body postures.
Other surveillance systems that both track and classify objects are found in [89]
and [90]. The former focus on classifying events such as people and cars arriv-
ing and leaving through a co-occurrence matrix and the latter both describe an

2. SEGMENTATION 125

attempt to monitor a complex area using a distributed network of cameras. A
more recent system that tracks multiple humans in complex situations is [91],
were people are tracked in 3D using an ellipsoid shape model. In addition,
motion modes, e.g. walking, running, and standing, and body posture are es-
timated. For a more extensive survey of visual surveillance we refer to [92].
Common to all of these systems is that they are, or need to be, executed on
one or more general purpose computers in order to reach real-time performance
with an image resolution of 320×240 or greater. Most published hardware im-
plementations deal with smaller parts of a surveillance system, e.g. implemen-
tation of motion segmentation, image filtering, or video codec. Some examples
are [93] and [94] which describe the implementation of a motion segmentation
algorithm and a high speed median filter, respectively. FPGA implementations
of video codecs for MPEG-4 and H.264 are found in [95] and [96].

The proposed system, tries to bridge this gap by taking some of the func-
tionality from the software system and putting it in the camera. To have the
functionality inside the camera instead of running it on a separate computer
has some obvious benefits. Most importantly, the amount of data that has
to be transmitted over the network can be reduced, especially important if a
wireless scenario is considered. For larger installations this could be critical,
e.g. at airports where hundreds of cameras are installed and the aggregated
bandwidth becomes substantial. The output from each of these cameras has
to be routed to a security central. A reduced bandwidth could then be the dif-
ference between using the existing network or installing a completely new one.
To move all functionality of a stand-alone software system into the camera will
probably never be feasible. However, if some of the functionality is moved, the
software system could be redesigned to use the output from the smart cameras
instead of the raw image stream that is used today. In larger security systems
all cameras would then be connected through a system backbone to a central
unit with a coordinating functionality, whereas in smaller systems it could be
sufficient to install only smart cameras. Recently, another embedded image
system has been presented by Philips Research labs. The system is based on
two processors, one for low level image operations and one for higher level
applications, connected through a dual-port memory [97] [98] [99]. However,
surveillance applications have yet to be demonstrated on it and the amount of
available memory limits the possibility of processing scolor images.

The proposed system is an early attempt to move a complete hardware
accelerated surveillance system onto a stand-alone embedded system, consisting
of an image sensor, an FPGA with an embedded processor, and some external
memory.

126 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

2 Segmentation

Over the years, various video segmentation algorithms have been proposed,
e.g. frame difference, median filters [100] and linear predictive filters [101].
However, to achieve robustness in multi-modal background scenarios, an al-
gorithm based on the GMM proposed in [102] [103] is chosen. A GMM is
required for modeling repetitive background object motion, e.g. swaying trees,
reflections on a lake surface or a flickering monitor. A pixel located in the region
where repetitive motion occurs will generally consist of two or more background
colors, i.e. the RGB value of a specific pixel toggles over time. This would re-
sult in false foreground object detection with most other adaptive background
estimation approaches.

The advantage of the GMM is achieved by using several Gaussian distribu-
tions for each pixel. The drawback is the imposed computational complexity
and high memory bandwidth that prohibit real-time performance using a gen-
eral purpose computer. In our simulations, a frame rate of only 4-6 fps is
achieved for video sequences with a 320 × 240 resolution, on an AMD 4400+
dual core processor. For a real-time video surveillance system with higher res-
olution, hardware acceleration is required. The rest of this section will present
how the GMM can be improved and efficiently implemented [104].

2.1 Algorithm Formulation

The algorithm is briefly formulated as follows: In a sequence of consecutive
video frames, the values of any pixel can be regarded as a Gaussian distribution.
Characterized by a mean and a variance value, the distribution represents a
location centered at its mean values in the RGB color space. A pixel containing
several background object colors, e.g. a swaying leaf on a tree in front of a
road, can be modeled with a mixture of Gaussian distributions with different
weights. The weight of each distribution indicates the probability of matching
a new incoming pixel. A match is defined as the incoming pixel within a certain
deviation from the center. In this work, J times the standard deviation of the
distribution is used as the threshold [102]. The higher the weight, the more
likely the distribution belongs to the background. Mathematically, the portion
of the Gaussian distributions belonging to the background is determined by

B = argminb

(
b∑

k=1

ωk > H

)
, (1)

where b is the number of Gaussian distributions per pixel, H is a predefined
parameter and ω is the weight. The mean, variance and weight factors are
updated frame by frame. If a match is found, the parameters of the matched

2. SEGMENTATION 127

distribution are updated according to:

ωk,t = (1 − α)ωk,t−1 + α, µt = (1 − ρ)µt−1 + ρXt (2)

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt), (3)

where µ and σ2 are the mean and variance, α and ρ are learning factors, and
Xt is the pixel value. For those unmatched, the weight is updated according to

ωk,t = (1 − α)ωk,t−1, (4)

while the mean and the variance remain the same. If none of the distributions
match, the one with the lowest weight is replaced by a distribution with the
incoming pixel value as its mean, a low weight and a large variance.

2.2 Color Space Transformation

In theory, multi-modal situations only occur when repetitive background ob-
jects are present in the scene. However, this is not always true in practice.
Consider an indoor environment where the illumination comes from a fluores-
cence lamp. A video sequence of such an environment was taken from our lab
from which 5 pixels were measured over time. Their RGB value distributions
are drawn in Figure 2(a) and it can be seen that instead of 5 sphere-like pixel
distributions, the shapes of the pixel clusters are rather cylindrical. Pixel val-
ues tend to jump around more in one direction than another in the presence
of illumination variations caused by the fluorescence lamp and camera jitter.
This should be distinguished from the situation where one sphere distribution
is moving slowly towards one direction due to slight daylight changes. Such
a case is handled by updating the corresponding mean values in the original
background model. Without an upper bound for the variance, the sphere de-
scribing the distribution will grow until it covers nearly every pixel in the most
distributed direction, thus taking up a large space such that most of it does not
belong to the distribution (A in Figure 2(b)). A simple solution to work around
this problem is to set an upper limit for the variance, e.g. the maximum value
of the variance in the least distributed direction. The result is multi-modal dis-
tributions represented as a series of smaller spheres (B-E also in Figure 2(b)).
Although a background pixel distribution is modeled more precisely by such a
method, several Gaussian distributions are inferred, which are costly in terms
of hardware because of the extra parameter updating and storage.

To be able to model background pixels using a single distribution without
much hardware overhead, color space transformation is employed. Both HSV
and YCbCr space have been investigated and their corresponding distributions
are shown in Figure 2(c)-(d). Transforming RGB into YCbCr space results

128 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

80
85

90
95

100
105

60

70

80

90

100
40

50

60

70

80

90

80
90

100
110

120

60

80

100

120

60

80

100

120

140

80

100

120
110

120

130

140
120

125

130

135

140

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
B

C
D

E

R RG G
B B

Y
Cb

C
r

HS
V

(a) (b)

(c) (d)

Figure 2: (a) 5 distributions in the RGB color space. (b) A closer look at
the 2 Gaussian distributions on the bottom in (a). (c) Sphere distribu-
tions in the YCbCr space. (d) Unpredictable distributions in the HSV
space.

in nearly independent color components. Accordingly, in a varying illumina-
tion environment, only the Y component (intensity) varies, leaving Cb and Cr

components (chromaticity) more or less independent. In [105], this feature is
utilized for shadow reduction. Consequently, values of the three independent
components in the YCbCr color space tend to spread equally and as shown in
Figure 2(c), most pixel distributions are transformed from cylinders back to
spheres, capable of being modeled with a single distribution. The transforma-
tion from RGB to YCbCr is linear, and can be calculated with a low increase in
computational complexity (see Section 6). On the other hand, HSV color space
is no better than RGB color space, if not worse. Unpredictable pixel clusters
appeared occasionally, which is hard to model using Gaussian distributions, as
shown in Figure 2(d).

2. SEGMENTATION 129

codingsensor
decoding

memory

CMOS
motion mask

binary

RGB7→YCbCr
parameter

update

foreground

detection

matching

logic
sorting

parameter

Figure 3: The architecture of the segmentation unit.

2.3 Segmentation Architecture

Maintaining a mixture of Gaussian distributions for each pixel is costly in
terms of both calculation capacity and memory storage, especially at high
resolution. To manage the RGB data from a video camera in real time, a
dedicated hardware architecture is developed with a streaming data flow. The
hardware architecture, as shown in Figure 3, is presented in [104] and briefly
explained as follows: a pixel value is read into the matching logic block from the
sensor together with all the parameters for the mixture of Gaussian distribution
from an off-chip memory. A match is then calculated. In case an incoming
pixel matches several Gaussian distributions, only the one with highest weight
is selected as the matching one.

After the updated Gaussian parameters have been sorted, foreground de-
tection is achieved by simply summing up the weights of all the Gaussian dis-
tributions that have a higher likelihood than the updated one. By comparing
the sum with a predefined parameter H, a sequence of binary data indicating
background and foreground is streamed out to the morphology block. The main
bottleneck of the architecture is the high bandwidth to the off-chip memory,
which will be addressed in the following secation.

2.4 Wordlength Reduction

Slow background updating requires a large dynamic range for each parameter in
the distributions, since parameter values are changed slightly between frames
but could accumulate over time. According to (2) and (3), the mean and
variance of a Gaussian distribution is updated using a learning factor ρ. The
difference of mean and variance between current and previous frame is derived
from the equation as

130 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

120 140 160 180 200 220 240 260 280 300

45

50

55

60

65

70

75

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

180 200 220 240 260 280

44

46

48

50

52

54

56

58

60

62

64

zoom in area zoom in area

(a) (b)

(c) (d)

Figure 4: A comparison of parameter updating schemes in a fast light
changing environment. One color value (solid line) of an RGB pixel is
drawn over the frames together with the updated Gaussian RGB mean
value (blue diamond line). The zoomed in area of (a) and (b) is shown
in (c) and (d), respectively.

∆µ = µt − µt−1 = ρ(Xt − µt−1) and (5)

∆σ2 = σ2
t − σ2

t−1 = ρ((Xt − µt)
T (Xt − µt) − σ2

t−1).

Given a small value of ρ, e.g. 0.0001, a unit difference between the incoming
pixel and the current mean value results in a value of 0.0001 for ∆µ. To
be able to record this slight change, 22 bits have to be used for the mean
value, where 14 bits account for the fractional part. Empirical results have
shown that the Gaussian distributions usually are spheres with a diameter
less than 10 and in this study, as well as in [102], J = 2.5. Therefore, an
upper bound for the variance is set to 16 and a maximum value of ∆µ becomes
ρ × J × σ = 0.0001 × 2.5 ×

√
16 = 0.001, which can be represented by 10

bits. If a wordlength lower than that was to be used, no changes would ever
be recorded. In practice, the bits for the fractional parts should be somewhere
between 10-14 bits and 7-14 for the mean and variance, respectively. Together
with 16 bits weight and integer parts of the mean and the variance, 81-100

2. SEGMENTATION 131

bits are needed for a single Gaussian distribution. To reduce this number, a
wordlength reduction scheme was proposed in [104]. From (5), a small positive
or negative number is derived depending on whether the incoming pixel is above
or below the current mean. Instead of adding a small positive or negative
fractional number to the current mean, a value of 1 or −1 is added. The
overshooting caused by such coarse adjustment could be compensated for by
the update in the next frame. The result is that without illumination variation,
the mean value will fluctuate by a magnitude of one, which is negligible since
the diameter of the Gaussian distribution is usually more than 10.

In a relatively fast illumination varying environment, fast adaptation to new
lighting conditions is also enabled by adding or subtracting ones in consecutive
frames. Figure 4(a) shows the experimental results of the coarse updating
in a room with varying lighting conditions. The parameter updating scheme
specified in the original algorithm is also drawn in Figure 4(b) for comparison.
A closer look at the two schemes is shown in Figures 4(c) and (d). From
Figures 4(b) and (d), it is seen that parameter updating (diamond line in
the figure) of the original algorithm does not work well in the presence of
fast light changes. The Gaussian distribution will not keep track of the pixel
value changes and Gaussian distribution replacement takes place instead of
parameter updating. On the other hand, the coarse updating scheme handles
such situations with only parameter updating.

With coarse updating, only integers are needed for mean specification,
which effectively reduce the wordlength from 18-22 down to 8 bits. A simi-
lar approach can be applied to the variance, resulting in a wordlength of 6 bits,
with 2 fractional ones. Together with the weight, the wordlength of a single
Gaussian distribution can be reduced from 81-100 to only 44 bits, resulting in a
reduction greater than 45%. In addition, less hardware complexity is required
since multiplication with the learning factor of ρ is no longer needed.

2.5 Pixel Locality

In addition to wordlength reduction, a data compression scheme for further
bandwidth reduction is proposed by utilizing pixel locality for Gaussian dis-
tributions in adjacent areas. Consecutive pixels often have similar colors and
hence have similar distribution. We classify “similar” Gaussian distributions
in the following way: using the definition of a matching process, each Gaussian
distribution can be simplified as a cube, where the center is the Y CbCr mean
value and the border of the center is specified as J times the variance. One way
to measure the similarity between two distributions is to check the overlap of
the two cubes. If the overlap takes up a certain percentage of both Gaussian
cubes, they are regarded as “similar”. The overlap is a threshold parameter

132 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

Frame Threshold

M
em

o
ry

B
W

re
d
u
ct

io
n

M
em

o
ry

B
W

re
d
u
ct

io
n

0.450.45

0.5

0.5

0.5

0.5

0.55

0.55

0.6

0.6

0.6

0.6

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.8

0.8

0.8

0.85

0.9

0.9

0.9

0.95

0 500 1000

Figure 5: Memory Bandwidth (BW) reduction over frames for different
thresholds is shown to the left and memory bandwidth reduction versus
threshold is shown to the right.

that can be set to different values for different scenarios.

In the architecture, two similar distributions are treated as equivalent and
by only saving non overlapping distributions together with the number of equiv-
alent succeeding distributions, memory bandwidth is reduced. Various thresh-
old values are selected to evaluate the efficiency for memory bandwidth reduc-
tion. With a low threshold value, greater savings could be achieved, but at the
same time more noise is generated due to increasing mismatches. Fortunately,
such noise is found to be non-accumulating and can therefore be reduced by
morphological filtering, as presented in Section 3. Figure 5 shows the memory
bandwidth savings over frames with various threshold values. It can be seen
that memory bandwidth savings tends to stabilize (around 50% - 75% depend-
ing on threshold value) after initialization. The quality of segmentation results
before and after morphology is shown in Figure 6, where it is clear that mem-
ory reduction comes at the cost of segmentation quality. Too low a threshold
value results in clustered noise that would not be filtered out by morphological
filtering, as shown in Figure 6(c).

3. MORPHOLOGY 133

(a) (b) (c)

Figure 6: The result before and after morphological filtering for different
thresholds, (a) original result, (b) with 0.8, and (c) with 0.4 threshold.

3 Morphology

As seen in the previous section, the generated binary mask needs to be filtered
to reduce noise and reconnect split objects. This is accomplished by applying
mathematical morphology. Erosion (ε) and dilation (δ) are the two foundations
in mathematical morphology, from which many other extended operations are
derived [106], e.g. opening, closing, and gradient. Mathematical morphology
applies to many image representations [68], but only binary ε and δ are required
in our system.

In an effort to make the binary morphological processing effective, a low
complexity and low memory requirement architecture was proposed in [107].
This architecture has several properties and benefits which are of special inter-
est for our application in order to easily incorporate the unit into the system.
First, pixels are processed sequentially from first to last pixel. Since each op-
eration is completed in a single image scan, a short execution time is ensured
and no extra memory handling is invoked. This allows for several ε and δ units
to be placed in series or parallel with only a small FIFO in between the blocks,
to account for stall-cycles due to inserted boundary pixels (padding). Another
property of the architecture is that the size of the Structuring Element (SE)
can be changed for each frame during run time. With a flexible SE size comes
the ability to compensate for different types of noise and to sort out certain

134 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

0

1

1

1

1

0

1

1

0

0

1

0

0

0

1

0

0

1

1

0

1

1

0

1

1

0

1

1

1

0

0

1

1

1

B1

1

0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0

0

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Input

0

0

0

0

0

0

0

0

0

0

1

01

B2

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Output

0

0

0

0

0

0

0 0

1

0

0

0

0

0

0

0 0 0 0 0

11111

0 1

1

0

1

1

11

Figure 7: Input and output to an erosion were a SE of size 3 × 5 is
decomposed into B1 = 1 × 5 and B2 = 3 × 1.

types of clusters, e.g. high and thin objects (standing humans) or wide and low
objects (side view of cars).

Let I represent the binary input image and B the structuring element. If
B is both reflection invariant and decomposable, i.e. B = B̂ and B = B1 ⊕B2,
the following two equations for ε and δ can be derived

ε(I, B) = I ⊖ (B1 ⊕ B2) = (I ⊖ B1) ⊖ B2, (6)

δ(I, B) = (I ⊕ B1) ⊕ B2 = ((I ′ ⊖ B1) ⊖ B2)
′, (7)

where ′ is bit inversion. Comparing (6) and (7), it can be seen that both ε and
δ can be expressed as an erosion (or as a dilation). This property is known
as the duality principle. With a decomposed SE, the number of comparisons
per output is decreased from the number of ones in the B to the number of
ones in B1 plus B2. However, finding decompositions of an arbitrary SE is
difficult and not always possible [45] [46]. In addition, for a SE to be reflection
invariant it has to be symmetric in respect to both i and j axes, e.g. an ellipse.
However, a common class of SEs that is both decomposable and reflection
invariant are rectangles of ones. This type of SE is well suited for operations
such as opening and closing, which are needed in this system. An example of
ε with a decomposed SE is shown in Figure 7, were the SE is decomposed into
B1 and B2, see (6). The input is first eroded by B1 and then by B2 and the
number of comparisons per output is reduced from 15 to 8.

3. MORPHOLOGY 135

3.1 Morphology Architecture

By using a rectangular SE containing only ones, ε can be performed as a
summation followed by a comparison. The ε is performed by keeping track of
the bits in I that are currently covered by the B and are compared to its size
in both the i and j direction. By decomposing the SE, the summation can be
broken into two stages. The first stage compares the number of consecutive
ones in I to the width B1 and outputs a one if this condition is fulfilled. The
second stage sums the result from the first stage for each column and compares
it to the height of B2. If both these conditions are fulfilled, the output at the
coordinate of the SE origin is set to one, else zero.

1
3
6

P
A
R
T

V
.

A
N

E
M

B
E
D

D
E
D

R
E
A
L
-T

IM
E

S
U

R
V
E
IL

L
A
N

C
E

S
Y
S
T

E
M

.
.
.

M

M
0

1 M
0

1

1

0
M

M
0

1

M
1

0
0

1
M

’1’

’1’

M
1

0
0

1
M

1

0

Stage-1:WL= ⌈log2(Bw − 1)⌉

out2

fin fop

WL= ⌈log2(Bh − 1)⌉

’0’

’1’

Er/Dil

’0’
Er/Dil

N-Boundary

Padd. N
W-Boundary

Padd. W

E or S-Boundary

ff

N-Boundary

Padd. N

W-Boundary

Padd. W

E or S-Boundary

Er/Dil

Stage-0: Stage-3:

Asynchronous
FIFO

Ih

Iw

Bh

Bw

Operation

out1in

WL= 1 WL= 1Stage-2:

Comparator

mrow

Bw

Comparator
Bh

C
on

tr
ol

le
r

Figure 8: Architecture of the datapath in the erosion and dilation unit
with corresponding wordlength in each stage.

4. LABELING 137

The proposed architecture is based on the observations above and is shown
in Figure 8 with corresponding wordlength in each stage. Taking advantage of
the duality property, the same inner kernel is used for both δ and ε; to perform
δ on a ε unit simply invert the input I and the result, performed in Stage-0 and
3. Each pixel in I is used once to update the sum. The sum is stored in the
flip-flop in stage-1, which records the number of consecutive ones to the left of
the currently processed pixel. When the input is one, the sum is increased, else
reset to zero. Each time the sum plus the input equals the width of B1, stage-1
outputs a one to stage-2 and the previous sum is kept. The same principle is
used in stage-2 but instead of a flip-flop, a row memory is used to store the
number of ones from stage-1 in the vertical direction for each column in I. In
addition, omitted from the figure, a controller is required to handle padding
and to determine the operation to be performed, i.e. ε or δ. How, and why,
padding is inserted around the boundary of an image is discussed in [107].

The wordlength in Stage-0 and 3 is a single bit whereas the wordlengths
in stage-1 and 2 are proportional to the maximum supported size of the B,
i.e. ⌈log2(Bw)⌉ and ⌈log2(Bh)⌉, respectively. Thus, the total amount of required
memory to perform ε or δ is

memtot = ⌈log2(Bw)⌉ + ⌈log2(Bh)⌉Iw bits,

where the first part is the flip-flop in stage-1 and the second part is the row
memory in stage-2. As an example, with a resolution of 320×240 and a B size
of 15×15, the required amount of memory is ⌈log2(15)⌉+⌈log2(15)⌉·320 = 1.28
kbits. The delay line implementations in [37] and [58], with the same resolution
and SE size, would require Bw + (Bh − 1)Iw = 4.50 kb of memory, which is ≈
3.5 times more.

The morphological operations used in this system are an ε followed by a
δ. Due to the pipelined nature of the architecture, the two operations can be
performed directly on the output stream from the segmentation by placing two
units in series. This will not increase the execution time but only add a latency
of a few clock cycles. Examples of filtered segmentation results are shown in
Figure 6. The image is first eroded with an SE size of 5x3 and then dilated
with a 7x5 SE.

4 Labeling

After the morphological operation, the binary frame contains connected clusters
of pixels that represent different objects of interest which should be tracked and
classified. However, the system needs to be able to separate and distinguish
between these clusters. Labeling has the goal of assigning a unique label to
each cluster, transforming the frame into a symbolic object mask with the

138 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

possibility of tying features to each cluster. Thus, labeling can be seen as the
link between the clusters and their corresponding features. Labeling algorithms
dates back to the early days of image processing [48] and applies to many image
representations [49]. Various algorithms have been proposed over the years and
a survey can be found in [50]. The algorithms can be placed into two major
categories, namely

• Sequential Local Operations (SLO), and

• Contour Tracing (CT).

The remainder of this section describes a comparison between these two types
of algorithms in terms of memory requirements and which features they can
extract.

In SLO-based algorithms [108], a label is assigned based upon the pixels
above and to the left of the current pixel which comes naturally when working
on streaming data. However, this type of algorithm have to solve possible label
collisions. A typical label collision occurs if a u-shaped object is encountered.
Scanning the image, the pillars will be assigned different labels since there is no
momentary information advising they are part of the same cluster. Reaching
the lower middle part of the u, an ambiguity about which label to assign will
occur, referred to as a label collision. A common way to solve this is to write
the label collisions into an equivalence table during an initial scan and resolve
them during a second. The number of label collisions per frame depends on
the complexity of the cluster contours.

CT-based algorithms trace and label the contour of each cluster [55]. Label-
ing the contour will avoid label collisions since, if a previously labeled cluster
(contour) is encountered, the scan proceeds without modification. The algo-
rithm requires a global memory scan together with additional random accesses
for the CT procedure in order to label all clusters in a frame. In order to avoid
pitfalls such as tracing contours of possible holes inside clusters, a reserved
label is written on each side of the cluster. Based on this reserved label, the
algorithm keeps track of whether it is currently inside a cluster or not. In the
same manner, when reading the labeled result, pixels between two reserved
labels can be considered part of the same cluster regardless of the pixel value.
Thus, holes inside clusters can be filled, which is beneficial in our application.

Both types of algorithms need a memory to store the labeled image result,
memlabel. Due to the physical limitations of this memory, an upper bound is
placed on the number of clusters that can be labeled in a frame cmax. In SLO-
based algorithms, each label collision will occupy a temporary label during the
initial scan. The memory size is determined by a combination of cmax and
the maximum number of label collisions lc,max. Thus, a memory overhead is

4. LABELING 139

Table 1: Three simulations on independent sequences showing the number of
clusters and corresponding label collisions.

Sequence Seq. 1 Seq. 2 Seq. 3

Mean clusters per frame 4.20 6.98 6.56

Mean labelcol per frame 13.1 6.72 14.3

Max clusters in a frame (cmax) 14 20 20

Max labelcol in a frame(lc,max) 27 21 50

Nbr. of frames in the seq. 700 900 2500

introduced. In CT-based algorithms, the memory size is directly proportional
to the image resolution and cmax. The memory requirement for the SLO and
CT-based algorithms can be written as

memSLO = ⌈log 2(cmax + lc,max + 1)⌉ · N2 bits, (8)

memCT = ⌈log 2(cmax + 3)⌉ · N2 bits, (9)

where N2 is the number of pixels in an image and +1 and +3 comes from the
number of preoccupied labels.

Table 1 compiles three simulations that show the number of clusters with
corresponding label collisions per frame. Sequence 1 is captured in our research
laboratory, Sequence 2 is captured outdoors covering a traffic crossing, and
sequence 3 is taken from the PETS database [83]. Using (8) and (9) and
figures from Table 1, SLO-based algorithms would require 6, 6, 7 bits per
pixel compared to CT-based algorithms which would require 5, 5, 5 to handle
the worst case scenario for sequence 1 to 3, respectively. Hence, CT-based
algorithms requires less total memory compared to SLO-based algorithms to
be able to label the same number of clusters.

From a system perspective, it is desirable to extract features where they
have low requirements in terms of execution time and hardware complexity.
Since the clusters are scanned during the labeling process, many binary features
are advantageously extracted by this unit, e.g. coordinates which are used to
create a bounding box around each cluster. The extraction procedure of many
features is the same for both types of algorithms. However, a unique property
of CT-based algorithms is that they have possibility of calculating the discrete
Green’s theorem during the CT phase. Green’s theorem gives the relationship
between a closed contour (curve) and a double integral over this cluster (plane
region), enabling calculation of moments [84]. Moments can in turn be used

140 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

pixel stream

1 bit

bus

CTR

FF

pixel control

CTFSMFIFO

mem control

mem data

memory control
FSM

CT

M
ux

M
ux

M
ux

M
ux

memlabel

memfeat.

outputArea/COG

Coordinates

features

Figure 9: Overview of the implemented CT-based architecture.

to calculate area and CoG which are important properties in this particular
application, e.g. used by the tracking unit to handle occlusion.

Summarizing the comparison between the two types of algorithms, a com-
mon property is that they impose a high bandwidth together with large memory
requirements. Since memory issues are the major concern in our application,
arithmetic complexity in the algorithms will be traded for memory resources.
Therefore, the CT-based algorithm was found more suitable in our particular
application and chosen for implementation, due to the following properties:

• CT-based algorithms requires less memory and can guarantee labeling of
a predefined number of clusters.

• Both types of algorithms have the same upper bound on execution time,
texe ≤ 3 · (Ih × Iw) [109].

• CT-based algorithms have the possibility of adding Green’s formula and
thereby extracting CoG,

• CT-based algorithms have the possibility of filling holes inside a cluster.

4.1 Labeling Architecture

An overview of the CT-based architecture implemented in [109], is illustrated
in Figure 9. A FIFO is located at the input in order to stall the data stream
as a frame is being labeled. The CTFSM first writes the complete frame into
memlabel. The first and last pixel equal to 1 for this frame is marked as global
start and end point respectively. After that, a second memory scan starts
from the global start pixel, now also marked as local starting pixel for this

5. TRACKING 141

l1 l1rl rl

(a) (b)

Figure 10: (a) A fragment of a typical binary input frame to the label
unit, (b) corresponding labeled output. The result includes bounding
boxes around each object with their CoG marked as an x. Notice rl on
each side of the cluster line segment which corresponds to the reserved
label.

particular cluster. The CTFSM traces the contour of the cluster, and writes
the label into memlabel. The contour tracing of this cluster is completed when
the local starting pixel is reached a second time. The global scan then continue
until a new cluster or the global end point is reached.

During the CT phase, the feature extraction blocks calculate i and j coor-
dinates, height, width, size, and CoG, for every cluster and stores the result
in the feature memory, i.e. memfeat. To maximize the time the embedded SW
(tracking algorithm) can access this result, a dual memory structure is used.
Hence, as the algorithm is labeling frame f in one memory pair, the tracking
algorithm has access to the result of frame f − 1 in the other memory pair. An
example of a binary frame together with corresponding labeled output from
the implemented architecture can be seen in Figure 10.

Some applications do not require unique labels and binary features are suf-
ficient. In such applications, the CT-based algorithm allows the label memory
to be reduced to 2 bits per pixel, while still maintaining correct binary feature
extraction, since each cluster will get a separate entry in the feature memory.
This observation is further discussed in Section 6.

5 Tracking

The goal of the surveillance system is to track people while they remain in view
of one stationary camera. Each person in view should be given a unique identity
that should remain fixed even though people change place and/or disappears
briefly from the scene. In the following text, people or things that are tracked,
i.e. given a unique identity, are referred to as objects whereas objects detected

142 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

Table 2: The feature classes, features part of the class, and when they are
calculated.

Class Features Calculation

Cluster Size, min coordinates, For every cluster

Height, Width, and frame

CoG coordinates

Color Mean, Variance, If occlusion

Histogram is detected

Prediction d’CoG, d’width, For every tracked

d’height, d’size object and frame

by the motion detector are referred to as clusters.

Tracking of non-rigid objects, e.g. humans, is complicated and becomes
even harder when it has to be performed on an embedded system with limited
resources. An initial decision must be made regarding hardware/software par-
titioning. Software has the benefits of flexibility and shorter design time and
hardware has the advantage of high throughput. To take advantage of both
these properties, the system is partitioned so that tasks that must be executed
directly on the image stream are implemented in hardware, while bookkeeping
and conditional tasks are performed in software. The result is that tracking
is performed in software and all preprocessing and measurements on the im-
age stream are performed in hardware. The interface between hardware and
software is the features.

A feature is a property extracted from an object in the image, e.g. size, color,
texture, or shape, that can separate different objects or recognize a certain
object class. A good feature describes each object with a unique and compact
code and does not change if the object is scaled, rotated, or enters an area
with different lighting. This is necessary to be able to track an object through
different environments, e.g. track a person standing under a lamp close to the
camera who moves away towards a darker corner.

In this system there are three feature classes that are acquired from different
parts of the system, at different times and during various conditions. First, the
cluster features acquired from the binary motion mask in the label unit. These
features are calculated for each labeled cluster and for each frame. Secondly,
color features are calculated if an occlusion between two objects is detected.
The third feature class is prediction features that are used to make an initial

5. TRACKING 143

X X

Frame t-1 Frame t

X X X X

Frame t-1 Frame t

X X

(a) (b)

Figure 11: BBs around tracked objects are shown with solid lines and
around new clusters with dashed, x marks the CoG. (a) Shows a merge
event and (b) a split event.

guess about which objects from previous frames correspond to which objects
in the current frame. Table 2 summarize the different feature classes.

Cluster features include minimum i and j coordinates, height and width
of the cluster, the number of pixels in a cluster (size), and CoG coordinates.
These features are used as initial data in the tracking algorithm, which starts
with a reconstruction phase. In this phase, objects from previous frames are
reconstructed from the detected clusters. This is necessary since objects can
consist of more than one cluster due to imperfect segmentation and occlusions.
The reconstruction is based on the predicted position of an object’s CoG and
size. When two or more clusters are used to reconstruct an object, new cluster
features are calculated as the weighted mean of the used clusters. Cluster
features are often sufficient to track non-occluded objects in the video stream.

During the reconstruction phase, merges and splits are also detected. A
merge occurs when two objects touch each other and become one object, i.e. an
object-object occlusion, and a split is when one object becomes two objects.
Both events are detected in a similar way, based on CoG coordinates and
bounding boxes (BB). The BB is defined as the minimum rectangle that com-
pletely surrounds an object or cluster and it is created with the cluster features:
width, height, and minimum coordinates. A merge is detected if the CoG of
two tracked objects are found inside the BB of one new cluster, and a split is
detected if two cluster CoGs are found inside the BB of one object. An example
is shown in Figure 11.

Color features include the mean, variance, and histogram of an object.
These features have been chosen since they may be calculated from streaming
data without any reordering of the pixels and they produce a minimal amount
of data, i.e. minimum processing time and memory requirements. In addition,
color features are size invariant and, with the right color space, also lighting

144 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

B

A1

C

Framef − 1

A

A2

Framef

CC
B2

B1 CC

(a)

(b) (c)

Figure 12: (a) Object A and B in frame f − 1 and f . Object C is object
A and B merged. (b) The two feature sets of A extracted from C. (c)
The two feature sets of B extracted from C.

invariant [105].
If the predicted position of an object’s BB in the next frame is overlapping

the predicted position of another object, i.e. an occlusion is imminent, color
features are extracted and stored as a reference. During the rest of the occlu-
sion, two sets of features are extracted for each participating object. One set
assumes that the object is to the right of the other object and the other set
assumes that it is to the left. For example, if object A and B merge and form
object C, Figure 12 shows which parts of C are used to calculate the feature
sets for both object A and B. The four feature sets are then matched against
the two stored reference sets and a Left-Right (LR) score is stored for each
object. If an object is best matched with the right, left or no feature set, the
LR score is adjusted according to

LR(f) =

LR(f − 1)α + K if a right match,
LR(f − 1)α if a no match,
LR(f − 1)α − K if a left match,

where α < 1 and K are constants, and f is the frame number. The larger the
|LR|, the stronger the evidence that the object is to either the right or left side.
The final decision on which object is which is not taken until a split event is

6. SYSTEM IMPLEMENTATION AND PERFORMANCE 145

Sensor

DDR-memory

FPGA
VGA
output

Control
switches

Figure 13: Xilinx XUP Virtex-II Pro FPGA development board with
attached sensor. Some of the main blocks are indicated that are relevant
to this application.

detected. The main advantages of this method are that no motion prediction
is used to estimate the outcome and that it easily scales to more than two
objects. Since no motion estimation is used, the system will not be confused
if a person moves behind another person, stops, turns around and moves back
the same way.

6 System Implementation and Performance

A prototype of the system is implemented on a Xilinx Virtex II pro vp30 FPGA
development board, with two FPGA embedded Power PCs and a 256 MB off-
chip Double Data Rate (DDR) SDRAM. A KODAK KAC-9648 CMOS sensor
is attached directly onto the board and is used to capture color images at 25 fps
with a resolution of 320 × 240. The development board is shown in Figure 13.

The architecture of the prototype is shown in Figure 14, where black indi-
cates custom made logic, light blue is memories and red is off-the-shelf compo-
nents. The architecture is modular in the sense that each block can be replaced
with other algorithms without changing the overall architecture. Modularity is
achieved with independent clock domains and asynchronous FIFOs in between

146 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

FIFO

Off-chip
SDRAM

Label
memory

Feature

Result
memory

memorySW
memory

FIFO

Image memory

M
U

X

Gray-scale

Bus

Xilinx Virtex-II Pro

F
IF

O

Sensor Monitor

VGA Ctrl

MorphologyRGB2YCbCr Segmentation

Labeling
PPC

Figure 14: System architecture of the prototype, where black indicates
custom made logic, light blue (light gray) is memories and red (dark
gray) is off-the-shelf components.

6. SYSTEM IMPLEMENTATION AND PERFORMANCE 147

all major blocks. Communication between feature memories and the PPC is
performed with software addressable registers and is initialized with an inter-
rupt signal from the label unit. A custom made Video Graphics Array (VGA)
controller makes it possible to superimpose bounding boxes around the detected
clusters on the output from any block. The output image can also be frozen
in order to observe details. Typical outputs from the prototype are shown in
Figure 15 and example videos can be found on the project website [110].

No color features are extracted in the current version of the prototype, since
the memory is not big enough to store a color image and the software memory
is not sufficient for the complete tracking code. Current tracking software reads
in all cluster features of all labeled clusters in order to draw the corresponding
BB. To free on-chip memory and to be able to include color feature extraction,
two additional external memories will be added to the board. One memory
will contain the software and the other a complete color image.

The prototype delivers 25 fps with an image resolution of 320× 240 pixels.
Three Gaussian distributions per pixel, stored in an off-chip SDRAM, are used
to perform color image segmentation. The morphology unit performs an erosion
followed by a dilation with a flexible SE that can be of any size up to 15 × 15.
As default, the SEs are set to 3 × 5 and 5 × 7 in the erosion and dilation
blocks, respectively. The labeling unit extracts cluster features from up to 61
clusters per frame. The most important parameters of the different blocks are
controlled with dip-switches on the board.

The chosen maximum number of labeled clusters per frame, 61, is based on
SW simulations. This number together with (9) and the system environment,
would with unique labels, result in a total memory requirement of memtot =
FIFO + 2 · (memCT + memfeat.) ≈ 1.01 Mbit, where the factor 2 is due to the
dual memory structure [109]. However, in our application a single label can
be used without system performance degradation. Using one unique label will
neither affect cluster nor color feature extraction. Cluster features are extracted
during contour tracing and color features are extracted on single objects even
before the BB of another object overlap, i.e. in either case label ambiguity is
avoided. The result is that the label memory only uses two bits per pixel and
the complete label unit requires 446 kbit instead of 1.01 Mbit.

148 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

(a) (b)

(c) (d)

Figure 15: Typical results from the different units, (a) segmentation
result, (b) the output from the morphological unit after the erosion and
dilation have been performed, (c) labeled output, (d) and original video.
The bounding boxes shown in (c) and (d) are generated from the PPC
and can be applied to any of the outputs.

6
.

S
Y
S
T

E
M

IM
P
L
E
M

E
N

T
A
T

IO
N

A
N

D
P
E
R
F
O

R
M

A
N

C
E

1
4
9

Table 3: Hardware resources and utilization of the different parts of the prototype. Figures for the segmentation
block includes sensor control logic, and the VGA controller includes both result and image memory. Color feature
extraction is currently not part of the prototype, but is included for comparison.

System RGB to Segmen- Morph- Label Color Track VGA Total FPGA

part YCbCr tation ology feature Ctrl use board

LUTs 0.8% 12.4% 0.6% 8.1% 14.8% 0% 1.2% 39% 27392

18x18 mult 2.2% 5.2% 0% 1.5% 6.6% 0% 0% 24% 136

Memint [kbit] 0% 9.6% 1.5% 20% 0% 11.8% 32% 74.9% 2448

Memext [MB] 0% 0.5% 0% 0% 0% 0% 0% 0.5% 256

PowerPC 0% 0% 0% 0% 0% 50% 0% 50% 2

fop [MHz] 8 8 9 67 N.A. 100 25 — —

fmax [MHz] N.A. 83 146 70 100 300 N.A. — —

150 PART V. AN EMBEDDED REAL-TIME SURVEILLANCE SYSTEM . . .

There are two main purposes of the prototype apart from verifying function-
ality. One is to perform high speed testing of different configurations, settings
and long-term effects of the individual blocks. Software simulation of long-
term effects can be extremely time consuming, whereas “simulations” with the
prototype are performed in real-time. To facilitate repeatability, the sensor is
disconnected and input is read from a file instead. The second purpose of the
prototype is to find system bottlenecks. The required hardware resources are
shown in Table 3 together with the speed of all blocks. LUTs show the amount
of required logic, and the 18× 18 multipliers are hard macro multipliers in the
FPGA. Internal and external memory refers to the on-chip block memories and
the off-chip SDRAM, respectively. The speed required to reach 25 fps is shown
as operating frequency and the standalone speed of a block is shown as maxi-
mum frequency. It is seen that the morphology block is very small compared to
the other parts of the system and that RGB to YCbCr conversion does not add
a significant amount of resources to the segmentation unit. The performance
of the system is to a large extent dependent on the segmentation quality, hence
the great attention paid to segmentation improvements such as the right color
space and reduced wordlengths and memory bandwidths. Despite the improve-
ments, measured in LUTs, multipliers, and external memory, the segmentation
unit still requires most hardware. However, none of these resources are critical
on a system level and will not be critical even when the color feature block is
added. On a system level, internal memory is critical. Almost 75% is used and
most of it is due to the grey-scale image that is stored in the VGA-controller.
To extend the system to store and display color images, off-chip memory is
required.

6.1 Bottlenecks

The presented system uses a resolution of 320× 240, which is rather low com-
pared to modern digital video cameras. This resolution is used due to the
limited amount of resources, especially memory, on the FPGA. However, fu-
ture surveillance systems will most likely require a higher resolution. Therefore,
it is of interest to study system bottlenecks and how they react to an increased
resolution while maintaining real-time performance. For example, if the res-
olution increases to 640x480, i.e. four times as many pixels per image, and
the frame rate remains at 25 fps, how will this affect the different parts of the
system and what can be done to decrease the impact of an increased resolution?

The segmentation algorithm scales linearly, i.e. the critical memory band-
width increases to 4.3 Gbit/s with the straightforward implementation and
to 0.82 Gbit/s with the presented memory reduction scheme. To reduce the
bandwidth further the approach presented in [111] could be used, where the

7. CONCLUSIONS 151

distributions are not updated for every frame. The morphology unit is much
less affected by a resolution increase, since the memory is only dependent on
the width of the image. If the SE is increased to match the higher resolution,
i.e. to 31x31 pixels, only 2.5 times more memory is required in the data path
and the intermediate FIFOs are unaffected. In the label unit, both label mem-
ories increase by a factor of 4. One way to reduce this could be to keep only
one label memory used by the contour tracing algorithm as it is, and compress
the resulting labeled image into a smaller memory using a compression scheme,
e.g. run length encoding or JBIG [112]. In terms of memory, feature extraction
is unaffected by the resolution increase, since it only works on streaming data
and only stores the result. However, it will require 4 times as many clock cycles
to execute; this is true for all previous blocks as well. The only part totally
unaffected by the resolution increase is the tracking part. Neither the number
of objects nor the number of features per object is affected by a resolution
increase.

7 Conclusions

An embedded automated digital surveillance system with real-time perfor-
mance is presented. The system has been developed in order to identify and
propose solutions to computational and memory bottlenecks. Due to the real-
time processing, it also substantially reduces analysis of long-term effects due
to changes in the algorithms and to parametric changes.

The main bottleneck of image processing algorithms is high memory re-
quirements. Therefore, a new memory scheme in video segmentation using
wordlength reduction and pixel locality is proposed, resulting in a memory
bandwidth reduction greater than 70%. A morphological datapath unit with
a memory requirement proportional to image width is presented. It is also
shown that in our application, the labeling memory can be reduced by more
than 50% if a contour tracing based algorithm is used. On a system level, it is
shown that on-chip memory is the main bottleneck. A system prototype has
been implemented and is running in 25 fps on an FPGA development board.

Conclusion

The main goal of the work presented in this thesis has been to develop archi-
tectures intended to be used as hardware accelerators in real-time embedded
image processing systems. The focus when developing the architectures has
been to achieve low complexity, low memory requirement, and to preserve the
raster scan order. Preserving the raster scan order both permits burst read-
and write-operations to and from memories, and avoids the need for additional
intermediate storage. By achieving these properties, the architectures are well
suited to be deployed and integrated into any streaming data environment that
allows internal embedded memories in the actual accelerators.

In this thesis, it is shown that binary erosion or dilation supporting static
flat rectangular structuring elements of arbitrary size can be performed with a
constant number of operations per output, i.e. two summations and two com-
parisons. In addition, by processing the padding in parallel, the FIFO otherwise
needed at the input, may be removed, hence a minimal memory requirement is
achieved. Furthermore, having the same memory requirement, it is shown that
extending the support to locally adaptive structuring elements increases the
computational complexity from constant to being proportional to the struc-
turing element width. Calculating the distance transform by parallel erosions
makes it possible to use a single pass resulting in increased throughput and a
lower memory requirement. Finally, an architecture for connected component
labeling based on contour tracing has also been developed. It is shown that this
type of algorithm requires less memory and can guarantee a specific number
of clusters not possible in SLO-based algorithms. In applications not requiring
unique labels but rather that each cluster is visited only once, the memory
requirement may be reduced even further, requiring only two bits per pixel yet
still extracting the cluster’s coordinates, size, and CoG.

By accelerating key operations of an automated surveillance system in dedi-
cated hardware architectures, the amount of data processed in software can
be significantly reduced. This is found to be an effective method to sustain
real-time performance and may be adopted in future advanced high resolution
and frame rate systems.

153

Bibliography

[1] L. R̊ade and B. Westergren, Mathematics Handbook for Science and En-
gineering, 2nd ed. Lund, Sweden: Studentlitteratur, 1998.

[2] R. Gonzalez, R. Woods, and S. L. Eddins, Digital Image Processing using
Matlab. Upper Saddle River, NJ, USA: Prentice Hall, 2004.

[3] H. Jiang, H. Ardö, and V. Öwall, “Hardware accelerator design for video
segmentation with multi-modal background modelling,” in Proc. of IEEE
International Symposium on Circuits and Systems, Kobe, Japan, May
2005.

[4] F. Kristensen, P. Nilsson, and V. Öwall, “Background segmentation be-
yond RGB,” in Seventh biennial Asian Conference on Computer Vision,
Hyderabad, India, Jan. 2006.

[5] Official AXIS Communications website. [Online]. Available:
www.axis.com, 2008.

[6] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Cir-
cuit, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2003.

[7] J. L. Hennesey and D. A. Patterson, Computer Architecture - A quanti-
tative approach, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann,
2003.

[8] Official Berkley Design Technology, Inc website. [Online]. Available:
www.bdti.com, 2008.

155

156 BIBLIOGRAPHY

[9] P. Lapsley, J. Bier, A. Shoman, and E. A. Lee, DSP Processor Funda-
mentals. New York, NY, USA: John Wiley & Sons, 1997.

[10] Official Texas Instruments website. [Online]. Available: www.ti.com,
2008.

[11] W. MacLean, “An evaluation of the suitability of fpgas for embedded
vision systems,” Computer Vision and Pattern Recognition, 2005 IEEE
Computer Society Conference on, vol. 3, pp. 131–131, 2005.

[12] J. Rodrigues, T. Olsson, L. Srnmo, and V. Öwall, “Digital implemen-
tation of a wavelet-based event detector for cardiac pacemakers,” IEEE
Transactions on Circuits and Systems—Part I: Fundamental Theory and
Applications, vol. 52, no. 12, pp. 2686–2698, 2005.

[13] F. Kristensen, “Design and implementation of embedded video surveil-
lance hardware,” Ph.D. dissertation, Lund University, 2007.

[14] A. N. Netravali and B. G. Haskell, Digital Pictures : Representation,
Compression, and Standards, 2nd ed. New York, NY, USA: Plenum,
1994.

[15] Paradiso-design. [Online]. Available: www.paradiso-design.net/video
standards en.html, 2008.

[16] C. A.P. and B. R.W., “Minimizing power consumption in digital cmos
circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, 1995.

[17] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm low-
power fpga for battery-powered applications,” in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate
arrays, Monterey, California, USA, Feb. 2006, pp. 3–11.

[18] T. Tuan and S. Trimberger, “The power of FPGA arcitectures,” Xcell
journal, no. 60, pp. 12–15, 2007.

[19] S. Gupta and J. Anderson, “Optimizing FPGA power with ISE design
tools,” Xcell journal, no. 60, pp. 16–19, 2007.

[20] Y. Zhang, J. Roivainen, and A. Måmmel̊a, “Clock-gating in fpgas: A
novel and comparative evaluation,” in The 9th EUROMICRO Conference
on Digital System Design, Cavtat, Croatia, Aug. 2006, pp. 584–590.

[21] B. Parhami, Computer Arithmetic, Algorithms and Hardware Designs.
New York, NY, USA: Oxford University Press, 2000.

BIBLIOGRAPHY 157

[22] J. Jönsson, V̊aglära och Optik, 2nd ed. Lund, Sweden: Teach Support,
1995.

[23] B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065, 1976.

[24] C. L. Hardin, Color for Philosophers. Indianapolis, IN, USA: Hackett
Publishing Company, 1988.

[25] Official CANON website. [Online]. Available: www.canon.com, 2008.

[26] D. Litwiller, “CMOS vs. CCD: Maturing technologies, maturing mar-
kets,” Photonics Spectra, Aug. 2005.

[27] ——, “CMOS vs. CCD: Facts and fiction,” Photonics Spectra, Jan. 2001.

[28] S. Marchand-Maillet and Y. Sharaiha, Binary Digital Image Processing.
London, UK: Academic Press, 2000.

[29] A. Rosenfeld, “Connectivity in digital pictures,” Journal of the ACM,
vol. 17, no. 1, pp. 146–160, 1970.

[30] R. Gonzalez and R. Woods, Digital Image Processing, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall, 2002.

[31] V. Öwall, M. Torkelson, and P. Egelberg, “A custom image convolution
DSP with a sustained calculation capacity of >1 GMAC/s and low I/O
bandwidth,” Journal of VLSI Signal Processing, vol. 23, no. 2-3, pp.
335–349, Nov. 1999.

[32] H. R.M., “Mathematical morphology and computer vision,” in Signals,
Systems and Computers, 1988. Twenty-Second Asilomar Conference on,
vol. 1, 1988, pp. 468–479.

[33] H. Minkowski, “Volumen und oberflshe,” Mathematische Annalen,
vol. 57, pp. 447–495, 1903.

[34] H. Hadwiger, “Minkowskische addition und subtraktion belibiger punk-
tmengen und die theoreme von Erhard Schmidt,” Mathematische
Zeitschrift, vol. 53, pp. 210–218, 1950.

[35] E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image Pro-
cessing. Bellingham, WA, USA: Spie Press, 2003.

[36] J. Serra, Image Analysis and Mathematical Morpohology. New York,
NY, USA: Academic Press, 1982.

158 BIBLIOGRAPHY

[37] S. Fejes and F. Vajda, “A data-driven algorithm and systolic architecture
for image morphology,” in Proc. of IEEE International Conference on
Image Processing, vol. 2, Austin, Texas, Nov. 13-16 1994, pp. 550–554.

[38] T. Q. Deng and H. J. A. M. Heijmans, “Grey-scale morphology based on
fuzzy logic,” Journal of Mathematical Imaging and Vision, vol. 16, no. 2,
pp. 155–171, Mar. 2002.

[39] G. Louverdis and I. Andreanis, “Design and impelementation of a fuzzy
hardware structure for morphological color image processing,” IEEE
Transaction on Circuits and Systems for Video Technology, vol. 13, no. 3,
pp. 277–288, 2003.

[40] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proc. of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Ft. Collins, USA, June 23-25
1999.

[41] B. Kisačanin and D. Schonfeld, “A fast thresholded linear convolution
representation of morphological operations,” IEEE Transactions on Im-
age Processing, vol. 3, no. 4, pp. 455–457, July 1994.

[42] J. Goutsias and H. J. Heijmans, “Fundamenta morphologicae mathemat-
icae,” Fundamenta Informaticae, vol. 41, no. 1-2, pp. 1–31, Jan. 2000.

[43] P. Soille, “Morphological operators,” in Handbook of Computer Vision
and Applications, vol. 2. New York, NY, USA: Academic Press, 1999,
pp. 627–682.

[44] G. Matheron, Random Sets and Integral Geometry. New York, NY,
USA: John Wiley & Sons, 1975.

[45] H. Park and R. Chin, “Decomposition of arbitrarily shaped morpholog-
ical structuring elements,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 1, pp. 2–15, 1995.

[46] G. Anelli and A. Broggi, “Decomposition of arbitrarily shaped binary
morphological structuring elements using genetic algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2,
pp. 217–224, 1998.

[47] R. D. Yapa and H. Koichi, “A connected component labeling algorithm
for grayscale images and application of the algorithm on mammograms,”
in Proceedings of the 2007 ACM symposium on Applied computing, Seoul,
Korea, Mar. 2007, pp. 146–152.

BIBLIOGRAPHY 159

[48] A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture pro-
cessing,” Journal of the ACM, vol. 13, no. 1, pp. 471–494, Oct. 1966.

[49] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to
connected-component labeling for aritrary image representations,” Jour-
nal of the ACM, vol. 39, no. 2, pp. 253–280, Apr. 1992.

[50] W. Kesheng, O. Ekow, and S. Arie, “Optimizing connected components
labeling algorithms,” in SPIE Int. Symposium on Medical Imaging, San
Diego, CA, USA, Feb. 2005.

[51] R. M. Haralick, “Some neighborhood operations,” in Real-Time/Parallel
Computing Image Analysis. New York, NY, USA: Plenum, 1981, pp.
11–35.

[52] K. Suzuki, I. Horiba, and N. Sugie, “Fast connected-component labeling
based on sequential local operarations in the course of forward raster
scan followed by backward raster scan,” in Proc. of 15th International
Conference on Pattern Recognition, Barcelona, Spain, Sept. 3-7 2000,
pp. 434–437.

[53] L. D. Stefano and A. Bulgarelli, “A simple and efficeient connected com-
ponents labeling algorithm,” in Proc. of 10th International Conference
on Image Analysis and Processing, Venice, Italy, Sept. 27-29 1999.

[54] S. D. Jean, C. M. Liu, C. C. Chang, and Z. Chen, “A new algorithm
and its VLSI architecture design for connected component labeling,” in
Proc. of IEEE International Symposium on Circuits and Systems, Lon-
don, England, Uk, May 30-June 2 1994.

[55] F. Chang, C. J. Chen, and C. J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Journal of CVIU, vol. 93,
pp. 206–220, Feb. 2004.

[56] F. Chang and C. J. Chen, “A component-labeling algorithm using contour
tracing technique,” in Proc. of 7th International Conference on Document
Analysis and Recognition, Edinburgh, Scotland, Uk, Aug. 3-7 2003.

[57] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “Hardware
aspects of a real-time surveillance system,” in Sixth IEEE International
Workshop on Visual Surveillance at ECCV, Graz, Austria, 2006.

[58] J. Velten and A. Kummert, “FPGA-based implementation of variable
sized structuring elements for 2D binary morphological operations,” in

160 BIBLIOGRAPHY

The First IEEE International Workshop on Electronic Design, Test and
Applications, Jan. 29-31 2002, pp. 309–312.

[59] S. Y. Chien, S. Y. Ma, and L. G. Chen, “Partial-result-reuse architecture
and its design technique for morphological operations with flat struc-
turing element,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 9, pp. 344–371, Sept. 2005.

[60] A. Źarandy, A. Stoffels, T. Roska, and L. Chua, “Implementation of
binary and gray-scale mathematical morphology on the cnn universal
machine,” Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, vol. 45, no. 2, pp. 163–168, Feb. 1998.

[61] E. N. Malamas, A. G. Malamos, and T. A. Varvarigou, “Fast implemen-
tation of binary morphological operations on hardware-efficient systolic
architectures,” Journal of VLSI Signal Processing, vol. 25, pp. 79–93,
2000.

[62] H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall, “A low complex-
ity architecture for binary image erosion and dilation using structuring
element decomposition,” in Proc. of IEEE International Symposium on
Circuits and Systems, vol. 4, Kobe, Japan, May 2005, pp. 3431–3434.

[63] J. Velten and A. Kummert, “Implementation of a high-performance hard-
ware architecture for binary morphological image processing operations,”
in Proc. of IEEE International Midwest Symposium on Circuits and Sys-
tems, vol. 2, Hiroshima, Japan, July 25-28 2004, pp. 241–244.

[64] R. Lam and C. Li, “A fast algorithm to morphological operations with
flat structuring element,” IEEE Transactions on Circuits and Systems,
vol. 45, no. 3, pp. 387–391, Mar. 1998.

[65] A. G. Dempster and C. D. Ruberto, “Using granulometries in processing
images of malarial blood,” in Proc. of IEEE International Symposium on
Circuits and Systems, Sydney, Australia, May 2001.

[66] P. Soille, “From binary to grey scale convex hulls,” Fundamenta Infor-
maticae, vol. 41, pp. 131–146, Jan. 2000.

[67] R. Lerallut, E. Decencière, and F. Meyer, “Image filtering using mor-
phological amoebas,” Image Vision Comput, vol. 25, no. 4, pp. 395–404,
2007.

BIBLIOGRAPHY 161

[68] M. van Herk, “A fast algorithm for local minimum and maximum fil-
ters on rectangular and octagonal kernels,” Pattern Recognition Letters,
vol. 13, no. 7, pp. 517–521, 1992.

[69] F. Lemonnier and J. Klein, “Fast dilation by large 1D structuring ele-
ments,” in IEEE International Workshop on Nonlinear Signal and Image
Processing, Halkidiki, Greece, June 1995, pp. 479–482.

[70] M. V. Droogenbroeck and H. Talbot, “Fast computation of morphologi-
cal operations with arbitrary structuring elements,” Pattern Recognition
Letters, vol. 17, no. 14, pp. 1451–1460, 1996.

[71] O. Cuisenaire, “Locally adaptable mathematical morphology using dis-
tance transformations,” Pattern recognition, the Journal of the pattern
recognition society, vol. 39, no. 3, pp. 405–416, 2006.

[72] G. Borgefors, “Distance transformations in digital images,” Computer
Vision, Graphics and Image Processing, vol. 34, no. 3, pp. 344–371, 1986.

[73] F.-C. Shih and O. Mitchell, “A mathematical morphology approach to
euclidean distance transformation,” IEEE Transactions on Image Pro-
cessing, Apr. 1992.

[74] D. Paglieroni, “Distance transforms: properties and machine vision ap-
plications,” CVGIP: Graphical Models and Image Processing, 1992.

[75] C. Qing, Y. Xiaoli, and E. Petriu, “Watershed segmentation for binary
images with different distance transforms,” in The 3rd IEEE Interna-
tional Workshop on Haptic, Audio and Visual Environments and Their
Applications, Ottawa, Ontario, Canada, Oct. 2004.

[76] A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture pro-
cessing,” Journal of the ACM, Oct. 1966.

[77] G. Borgefors, “Distance transformations in digital images,” Computer
Vision, Graphics and Image Processing, 1986.

[78] N. Sudha, “A pipelined array architecture for euclidean distance transfor-
mation and its fpga implementation,” Microprocessors and Microsystems,
2005.

[79] P. Kwok, “A hardware approach to distance transform,” in The 3rd Inter-
national Conference on Image Processing and its Applications, Warwick,
UK, Sept. 1989.

162 BIBLIOGRAPHY

[80] J. Takala, J. Viitanen, and J. Saarinen, “Hardware architecture for real-
time distance transform,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Phoenix, Az, USA, Mar. 1999.

[81] S. Y. Chien, S. Y. Ma, and L. G. Chen, “Partial-result-reuse architecture
and its design technique for morphological operations with flat struc-
turing element,” IEEE Transactions on Circuits and Systems for Video
Technology, Sept. 2005.

[82] Official Synopsys website. [Online]. Available: www.synopsys.com, 2008.

[83] The PETS 2001 data set, sequence from camera 1. [Online]. Available:
www.cvg.cs.rdg.ac.uk/cgi-bin/PETSMETRICS/page.cgi?dataset, 2008.

[84] L. Yang and F. Algbregtsen, “Discrete Green’s theorem and its applica-
tion in moment computation,” in Int. Conf. on Electronics and Informa-
tion Technology, Beijing, China, Aug. 1994.

[85] Official Xilinx website. [Online]. Available: www.xilinx.com, 2008.

[86] Official sony website. [Online]. Available: http://bssc.sel.sony.com, 2008.

[87] Official IBM website. [Online]. Available: www.research.ibm.com/
peoplevision/, 2008.

[88] I. Haritaoglu, D. Harwood, and L. Davis, “W 4: real-time surveillance of
people and their activities,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 809–830, 2000.

[89] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using
real-time tracking.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 747–758, 2000.

[90] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade, “Algorithms for
cooperative multisensor surveillance,” Proceedings of the IEEE, vol. 89,
no. 10, pp. 1456–1477, 2001.

[91] T. Zhao and R. Nevatia, “Tracking multiple humans in complex situa-
tions.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1208–1222, 2004.

[92] W. Hu, T. Tan, L. Wang, and S. Maybank, “A Survey on Visual Surveil-
lance of Object Motion and Behaviors.” IEEE Transactions on Systems,
Man, and Cybernetics—Part C: Applications and Reviews, vol. 34, no. 3,
pp. 334–353, 2004.

BIBLIOGRAPHY 163

[93] R. Aguilar-Ponce, J. Tessier, A. Baker, C. Emmela, J. Das,
J. Tecpanecatl-Xihuitl, A. Kumar, and M. Bayoumi, “VLSI architec-
ture for an object change detector for visual sensors,” in In proceding of
IEEE Workshop on Signal Processing Systems Design and Implementa-
tion, SIPS, Athens, Greece, 2005, pp. 290–295.

[94] S. Fahmy, P. Cheung, and W. Luk, “Novel FPGA-based implementation
of median and weighted median filters for image processing,” Field Pro-
grammable Logic and Applications, 2005. International Conference on,
pp. 142–147, 2005.

[95] P. Schumacher, K. Denolf, A. Chilira-RUs, R. Turney, N. Fedele, K. Vis-
sers, and J. Bormans, “A scalable, multi-stream MPEG-4 video decoder
for conferencing and surveillance applications,” Image Processing, 2005.
ICIP 2005. IEEE International Conference on, vol. II, pp. 886–889, 2006.

[96] R. Kordasiewicz and S. Shirani, “ASIC and FPGA implementations of
H.264 DCT and quantization blocks,” Image Processing, 2005. ICIP
2005. IEEE International Conference on, vol. III, pp. 1020–1023, 2006.

[97] R. Kleihorst, B. Schueler, A. Danilin, and M. Heijligers, “Smart Cameras
Mote with High Performance Vision System,” in Workshop on Distributed
Smart Cameras (DSC 06), Boulder, Colorado, USA, Oct. 2006.

[98] E. Ljung, E. Simmons, and R. Kleihorst, “Distributed Vision with Mul-
tiple Uncalibrated Smart Cameras,” in Workshop on Distributed Smart
Cameras (DSC 06), Boulder, Colorado, USA, Oct. 2006.

[99] E. Ljung, E. Simmons, A. Danilin, R. Kleihorst, and B. Schueler,
“802.15.4 Powered Distributed Wireless Smart Cameras Network,” in
Workshop on Distributed Smart Cameras (DSC 06), Boulder, Colorado,
USA, Oct. 2006.

[100] R. Gonzalez and R. Woods, Digital Image Processing, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall, 2002.

[101] J. Toyama, B. Brumitt, and B. Meyers, “Wallflower : principles and
practice of background maintenance,” In Proc. IEEE International Con-
ference on Computer Vision and Pattern Recognition, 1999.

[102] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proc. of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Ft. Collins, USA, June 23-25
1999.

[103] G. Russo and M. Russo, “A novel class of sorting networks,” IEEE Trans-
actions on Circuits and Systems—Part I: Fundamental Theory and Ap-
plications, 1996.

[104] H. Jiang, H. Ardö, and V. Öwall, “Real-time Video Segmentation with
VGA Resolution and Memory Bandwidth Reduction,” In Proc. of AVSS,
2006.

[105] F. Kristensen, P. Nilsson, and V. Öwall, “Background Segmentation Be-
yond RGB,” in Seventh biennial Asian Conference on Computer Vision,
Hyderabad, India, Jan. 2006.

[106] J. Serra, Image Analysis and Mathematical Morpohology, Vol 1. Aca-
demic Press, 1982.

[107] H. Hedberg, F. Kristensen, P. Nilsson, and V. Öwall, “A low complexity
architecture for binary image erosion and dilation structuring element
decomposition,” in Proc. of IEEE International Symposium on Circuits
and Systems, Kobe, Japan, May 2005.

[108] K. Suzuki, H. Isao, and S. Noboru, “Linear-time connected-component
labeling based on sequential local operations,” Journal of CVIU, vol. 89,
no. 1, pp. 1–23, Jan. 2003.

[109] H. Hedberg, F. Kristensen, and V. Öwall, “Implementation of labeling
algorithm based on contour tracing with feature extraction,” in Proc. of
IEEE International Symposium on Circuits and Systems, New Orleans,
USA, May 23-26 2007.

[110] Project website. [Online]. Available: www.es.lth.se/Digital Surveillance,
2008.

[111] D. Magee, “Tracking multiple vehicles using foreground, background and
motion models,” Image and Vision Computing, vol. 22, pp. 143–155,
2004.

[112] Official JBIG website. [Online]. Available: www.jpeg.org/
jbig/index.html, 2008.

