
ASIC Implementation of a Delayless Acoustic Echo Canceller

ASIC Implementation of a
Delayless Acoustic Echo Canceller

Architecture and Arithmetic

Anders Berkeman

Department of Electroscience, Lund University

c© 2002 Anders Berkeman

Department of Electroscience
Lund University
Box 118, S-221 00 Lund
Sweden

This thesis was set in Computer Modern 10,
using the LATEX Documentation System.

The image featured on the front cover is a
micro photograph of the acoustic echo canceller
chip presented in paper II.

Printed in Sweden by KFS AB, Lund
November 2002

No. 32

ISSN 1402-8662

ISBN 91-628-5463-1

Abstract

Application specific digital signal processors are superior compared to standard
digital signal processors in a number of application fields, mainly due to high
throughput and low power consumption traded for flexibility.

This thesis deals with two areas related to hardware implementation of cus-
tom digital signal processors: design methodology and efficient implementation
of arithmetic circuits. A delayless acoustic echo canceller is chosen as an exam-
ple algorithm for custom hardware implementation. The canceller algorithm
with no signal path delay is suitable in telecommunication applications, and
has a high implementation complexity both in number of operations per second
and in the variety of signal processing elements it is composed of. The design
methodology developed and applied during the echo canceller hardware imple-
mentation is presented together with a number of optimizations applicable to
the algorithm, architecture, and arithmetic design levels.

The work on digital arithmetic circuits includes efficient implementation
of dividers and complex multipliers. A configurable divider architecture for
use in a wide range of applications is proposed. The divider is based on digit
recurrence algorithms. A parameterized complex multiplier designed for low
power consumption and high throughput applications is presented. The multi-
plier is based on distributed arithmetic, offset binary coding, and adder trees.
Furthermore, an arithmetic co-optimization between two algorithms, the fast
Fourier transform and the FIR filter, is proposed.

The acoustic echo canceller chip has been fabricated and verified for func-
tionality, throughput, and power consumption.

v

Contents

Preface xi

Acknowledgments xiii

Abbreviations xv

Part I — General Introduction

1 Motivation 3
1.1 Implementation Technologies 5
1.2 Application Specific DSPs 8
1.3 Overview of the Thesis 9

2 Introduction to Echo Cancellation 11
2.1 Typical Echo Canceller Scenario 12
2.2 Echo cancellers 14
2.3 Theoretical Background 20
2.4 Signal Estimation 21
2.5 Polyphase Filterbanks 27
2.6 Summary 30

3 ASDSP Design Methodology 31
3.1 Design Space Exploration 31
3.2 Hierarchy 33
3.3 Datapath, Memory, and Controller 34
3.4 Synthesis and Standard-Cell Libraries 40
3.5 Example: FFT Architecture Exploration 41

vii

viii Contents

3.6 Low Power Optimizing Strategies 47
3.7 ASDSP Design Flow 55
3.8 A Design Methodology 58
3.9 Summary 61

4 CMOS Technology 63
4.1 Power Dissipation in CMOS 64
4.2 Memory Technology 68
4.3 Summary 71

5 Arithmetic 73
5.1 Fixed and Floating Point Number Systems 73
5.2 Bit Serial and Bit Parallel Arithmetic 74
5.3 Arithmetic for Digital Signal Processing 75
5.4 Distributed Arithmetic 77
5.5 Offset Binary Coding 80
5.6 Summary 81

6 Conclusion and Summary of Papers 83

Bibliography 85

Part II — Included Papers

I A Prestudy of an Echo Canceller Implementation 97
1 Introduction 99
2 The Cancellation Algorithm 101
3 Analysis of the Algorithm 102
4 Optimizations 105
5 Hardware Mapping 107
6 Summary 108
7 References 109

II Custom Silicon Implementation of a
Delayless Acoustic Echo Canceller Algorithm 113
1 Introduction 115

Contents ix

2 Sub-Module Analysis 119
3 Architecture 123
4 The Chip 133
5 Conclusions 138
6 References 140

III A Low Logic Depth Complex
Multiplier using Distributed Arithmetic 143
1 Introduction 145
2 The FFT Processor 145
3 Multiplier Algorithm 146
4 Implementation 149
5 Results 153
6 Conclusion 154
7 References 155

IV Efficient Implementation of an FFT-FIR Structure
Using a Distributed Arithmetic Multiplier 159
1 Introduction 161
2 Echo Canceller Application 162
3 Utilizing the Distributed Arithmetic Multiplier 165
4 Complexity Analysis 170
5 Conclusion 173
6 References 176

V A Configurable Divider using Digit Recurrence 179
1 Introduction 181
2 Divider Architecture 182
3 Divider Sub Blocks 184
4 Application Examples 188
5 Measured Results 189
6 Conclusion 189
7 References 191

Preface

This thesis summarizes most of my work in the Digital ASIC group at the
Department of Electroscience, Lund University. Parts of the work has been
published or is submitted as the following papers:

A. Berkeman, V. Öwall, and M. Torkelson, “A Low Logic Depth Complex
Multiplier using Distributed Arithmetic,” IEEE Journal of Solid-State
Circuits, Vol 35, No. 4, pp. 656–659, Apr. 2000.

A. Berkeman, V. Öwall, and M. Torkelson, “Co-Optimization of FFT
and FIR in a Delayless Acoustic Echo Canceller Implementation,” in
Proceedings of IEEE International Symposium on Circuits and Systems,
Geneva, Switzerland, May 2000.

A. Berkeman, V. Öwall, and M. Torkelson, “A Prestudy of an Echo Can-
celler Implementation,” in Proceedings of the International Conference
on Signal Processing Applications and Technology, Orlando FL, USA,
Nov. 1999.

A. Berkeman and V. Öwall, “A Configurable Divider using Digit Re-
currence,” Submitted to IEEE International Symposium on Circuits and
Systems, 2003.

A. Berkeman and V. Öwall, “Efficient Implementation of an FFT-FIR
Structure Using a Distributed Arithmetic Multiplier,” Submitted to IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.

A. Berkeman and V. Öwall, “Custom Silicon Implementation of a Delay-
less Acoustic Echo Canceller Algorithm,” in preparation.

xi

xii Preface

During my time at the Department, the following papers have also been pre-
sented, but are not considered to be part of the thesis:

A. Berkeman and V. Öwall, “Architectural Tradeoffs for a Custom Imple-
mentation of an Acoustic Echo Canceller,” in Proceedings of the Nordic
Signal Processing Symposium, Hurtigruten from Tromsø to Trondheim,
Norway, Oct. 2002.

A. Berkeman, V. Öwall, and M. Torkelson, “Implementation Issues for
Acoustic Echo Cancellers,” in Proceedings of the 42th Midwest Sympo-
sium on Circuits and Systems, Las Cruses NM, USA, Aug. 1999.

A. Berkeman, V. Öwall, and M. Torkelson, “Implementation of Delay-
less Echo Cancellers for acoustic echoes,” in Proceedings of RVK Radio
Science Conference, Karlskrona, Sweden, June 1999.

A. Berkeman, V. Öwall, and M. Torkelson, “An Adder Tree Based Com-
plex Multiplier,” in Proceedings of RVK Radio Science Conference, Karl-
skrona, Sweden, June 1999.

A. Berkeman, V. Öwall, and M. Torkelson, “A Low Logic Depth Com-
plex Multiplier,” in Proceedings of the 24th IEEE European Solid-State
Circuits Conference, The Hague, The Netherlands, Sept. 1998.

A. Berkeman, V. Öwall, and M. Torkelson, “A Complex Multiplier with
Low Logic Depth,” in Proceedings of the 5th IEEE International Confer-
ence on Electronics, Circuits, and systems, Lisbon, Portugal, Sept. 1998.

A. Berkeman, V. Öwall, and M. Torkelson, “A Fast Complex Tree Mul-
tiplier using Distributed Arithmetic,” in Proceedings of the NORCHIP
Conference, Tallin, Estonia, Nov. 1997.

A. Berkeman, P. Nilsson, V. Öwall, P. Åström, and M. Torkelson, “A
Bit-Serial Implementation of a Wavelet Filter-Bank,” in Proceedings of
the Nordic Signal Processing Symposium, Espoo, Finland, Sept. 1996.

Acknowledgments

Looking back at my time as a graduate student, there are so many people I
have met and worked with that have altered the course of my work and life.
Trying to mention all of them here is not possible.

Without doubt, I am most grateful to my advisor, Viktor Öwall. Although
a busy man, he has always had time for me and my problems, and I have
always felt confident with his knowledge and support. During my time at the
Department, I have also had the opportunity to travel, and Viktor has shown
me many interesting places — from Vesuvio in San Francisco to Clube de Fado
in Lisbon — that I will never forget.

To work in the inspiring atmosphere of the Digital ASIC Group has been a
pleasure. I am grateful to Peter Nilsson for enlightening discussions about ev-
erything from deep submicron silicon technology to carpentry; Mats Torkelson
for always being around, giving advice and helping me see things in a different
perspective; Shousheng He for giving me a head-first start into the topics of
fast Fourier transforms and Distributed Arithmetic. I also want to thank my
colleague graduate students, both past and present, and Martin Nilsson, for
long nights of discussions about important matters such as the mathematics of
juggling and early analog sound synthesizers.

I wish to thank Francky Catthoor for giving me the opportunity to visit
the VSDM section of the IMEC Laboratory in Leuven during the fall of 1998.

I am grateful to the technical and administrative staff at the department.
Especially Lars Hedenstjerna for always helping me with chip micro photo-
graphs and other technical matters; Erik Jonsson for a stable computer envi-
ronment, at least until he gave up on me and handed me a root password of
my own; and Britta, Pia, and Elsbieta for helping me out with the paperwork.

Finally, I would like to thank my parents and my sister, for always standing
by my side, and Gisela for her constant support and endurance throughout
these years.

xiii

Abbreviations

ASDSP Application Specific Digital Signal Processor

ASIC Application Specific Integrated Circuit

CMOS Complementary Metal Oxide Semiconductor

DFT Discrete Fourier Transform

DSP Digital Signal Processing or Digital Signal Processor

DTSE Data Transfer and Storage Exploration

DVB-T Terrestrial Digital Video Broadcast

ERLE Echo Return Loss Enhancement

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

IC Integrated Circuit

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

ITU International Telecommunication Union

LMS Least Mean Squares

LVDS Low-Voltage Differential Signal

xv

xvi Abbreviations

MAC Multiply and Accumulate

MMSE Minimum Mean-Squared Error

NLMS Normalized Least Mean Squares

PCB Printed Circuit Board

PSTN Public Switched Telephone Network

RAM Random Access Memory

RLS Recursive Least Squares

ROM Read Only Memory

SIMD Single Instruction Multiple Data

VLIW Very Long Instruction Word

Part I

General Introduction

Chapter 1

Motivation

The field of modern digital signal processing applications includes image pro-
cessing, active suppression of noise or echoes, audio and video processing,
telecommunications, medical implants, etcetera. The reason for the popularity
is partly due to the advances in silicon device manufacturing technology. Device
development makes low cost integrated circuits for digital signal processing al-
gorithm implementations possible. As manufacturing technology evolves, more
complex algorithms are realized on silicon, which, in turn, paves the way for
new applications and development in already well-established areas. Only two
decades ago, a majority of the signal processing applications was performed
in the analog domain. Today, signal processing is more or less synonymous
with signal processing in the digital domain. Reasons for the popularity of
digital signal processing compared to the analog counterpart are, that a digital
implementation is [53]:

Capable of being reprogrammed

Capable to handle complicated algorithms

Insensitive to environmental conditions

Insensitive to component tolerances

Predictive and has a repeatable behavior

To solve a digital signal processing problem using silicon technology, the task
is expressed as an algorithm. The algorithm is mapped to a target silicon device
where it is executed. Silicon devices are either standard off-the-shelf compo-

3

4 General Introduction

nents, or Application Specific Integrated Circuits (ASIC1). Combinations are
also possible. Off-the-shelf components include microprocessors, Digital Signal
Processors (DSPs), and reconfigurable logic circuits, for example Field Pro-
grammable Gate Arrays (FPGAs). The common denominator of these devices
is that they are designed to handle a wide range of applications. The ASIC,
on the other hand, is developed for a specific application, giving a less flexible
but far more efficient solution.

The number of available components per silicon area unit appears to in-
crease in an exponential fashion over time. Approximately every second year,
the number of components on an Integrated Circuit (IC) is doubled. This
observation was reported almost four decades ago [59] and is still valid. As
integrated circuits are getting more complex, delivering more performance for
each generation, a question is why not every digital signal processing applica-
tion can be implemented on a standard programmable circuit. The answer is
that also the development of Digital Signal Processing (DSP) applications and
algorithms appear to grow in complexity in an exponential fashion, probably
with an even higher rate than the development of circuit technology. For the
most computationally demanding applications, an ASIC solution is the only
choice. However, within a few circuit generations, today’s state-of-the-art ap-
plications will be implemented using standard components. ASICs are also
used for economic and low power reasons.

Today, the maximum number of components available on single piece of
silicon (a “chip”) is for most applications not a limiting factor. On one small
chip, a huge amount of functionality can be incorporated. However, a number
of factors limiting complexity of silicon designs can be identified. Three of the
most important factors are:

Design Complexity. As design complexity increases, the problem of man-
aging large projects becomes apparent. These problems have been a
subject of research for decades in the software community [23]. How-
ever, hardware design has the additional issue of precise signal timing
not present in software design. Also, once the hardware is fabricated, it
is impossible to do any modifications to the design. For software devel-
opment, changes can always be made.

Control and Dataflow. To keep the dataflow between memories and com-
putational units constant at a sufficient pace by designing controller units
that performs efficient memory addressing. As will be seen in chap-
ter 3.3.2, memories are commonly a limiting factor of digital designs.

1The definition of ASIC is an integrated circuit designed for a specific application. How-
ever, the acronym is also used to denote the silicon process on which the circuit is fabricated.

Chapter 1. Motivation 5

Controller design is a tedious work, increasing rapidly with the complex-
ity of the circuits to be controlled.

Verification and Testability. As part of the design process, functionality it
added to make sure the circuit can be tested and verified once fabricated.
Measuring signals on a fabricated chip is both difficult and expensive,
even if the signals are connected to external pads. Adding a number of
external connections just for the purpose of testing if a device contains
fabrication faults is in most cases not possible, due to increased manu-
facture cost. With more external connections on the package, packaging
cost and size of the target Printed Circuit Board (PCB) where the device
will be mounted will be larger. Therefore, more advanced on-chip testing
functionality has to be included, like Built-In Self-Test (BIST).

1.1 Implementation Technologies

There are a number of possible implementation target technologies to choose
from for mapping a digital signal processing algorithm to a silicon device. Each
technology has specific features and drawbacks, and to decide which to choose
will include more parameters than covered here, for example time to market,
and overall features of the target DSP system. Below are the main device types
and technologies:

Microprocessors, ranging from small controllers for embedded systems to
high performance processors for use in workstations. The microprocessor
is in general optimized to make the most common case fast [42], making it
flexible and suitable for general purpose computing. Thus, for a specific
algorithm, the implementation is sub-optimal, resulting in a relatively
expensive and power consuming solution.

Digital Signal Processors (DSPs), is a special set of microprocessors, ded-
icated to solve the most common DSP problems in an efficient manner.
The datapath of a DSP is designed to fit digital signal processing ap-
plications. Common features of a DSP include bit-reversed and cyclic
addressing, a Multiply and Accumulate (MAC) unit, and special buffer
memories.

Reconfigurable logic circuits, are a fast growing set of components with
generic logic elements that can implement any logic function. Field Pro-
grammable Gate Array (FPGA) technology families range from devices
with low to high number of programmable elements, and can be used
in a wide range of applications. Modern FPGAs contain microprocessor

6 General Introduction

cores together with memory instances, and are shipped with extensive
input/output capabilities.

Application Specific Integrated Circuits (ASICs), that is, integrated cir-
cuits custom designed for specific tasks. The design methodology can be
full-custom, giving the ability to control every wire and component on the
chip; semi-custom, or standard-cell design, where a design description is
synthesized to cells from a cell library; or a combination or standard-cells
and full-custom, where the critical parts are designed on a low level.

In this thesis, the terminology Application Specific Digital Signal Processor
(ASDSP) is used for an architecture tailored for solving a specific DSP prob-
lem. Target implementation technology can be either as ASIC or on a recon-
figurable logic device. ASIC technology offers the most design flexibility and
performance, and is therefore the target technology for this thesis work.

The main advantage with microprocessors and DSPs is flexibility to solve
any computational problem. The flexibility is achieved by having a datapath
that can be controlled by a program, consisting of a list of ordered instructions.
Such a program can be modified with a short iteration cycle. The limitation of
a microprocessor or DSP solution is performance, which is the trade-off for the
high flexibility. A non-realtime solution will be the result when performance is
insufficient.

Except for the different datapaths of the microprocessor and the DSP, they
differ in memory accessing. Microprocessors commonly apply the von Neumann
architecture, while DSPs are more or less Harvard architectures [53]. The von
Neumann computer reads both data and instructions from one memory. Oper-
ations are performed on the data according to the instruction, and computed
results are written back to the same memory. This approach is straightforward,
and feasible for standard microprocessors designed with general computing in
mind.

For digital signal processors, with a datapath tailored for the common mul-
tiply and accumulate operation, performance will be limited using the von
Neumann memory structure. In fact, it can be shown that four clock cycles
are necessary to perform a single MAC operation using the von Neumann ar-
chitecture [53]. Thus, performance of a tailored datapath capable of executing
a MAC in one clock cycle is negligible in comparison to memory accessing. A
common solution to increase memory bandwidth is to use the Harvard architec-
ture, which in its native form has separate memories for data and instructions.
This device doubles the bandwidth of the processor, being able to read instruc-
tions and data in parallel. A common modification of the Harvard architecture
is to allow data accesses not only from one, but from both memories. Using a
repeat instruction and a singe-instruction buffer memory, two words of data can

Chapter 1. Motivation 7

be read on every clock cycle throughout the repetition. Memory bandwidth is
further increased by additional buffers and special memories with dual accesses
per clock cycle [53], designed to decrease the execution time of common DSP
algorithms.

Devices based on reconfigurable logic have the capability to map any ar-
chitecture, if the device is large enough. The device technology is based on
small, versatile configurable logic blocks, connected to each other in what can
be described as a programmable matrix. This design strategy results in a high
flexibility, at the cost of hardware overhead. Every small logic block has a
generic structure that will be suitable for a large number of logic or arithmetic
operations. A mapping of a specific function to the block will imply that a
large part of that block is disconnected, and thus is useless for that applica-
tion. Furthermore, it is not possible to design an ideal connection matrix, and
different connections will differ in latency and load. For performance reasons,
the device has to be sufficiently larger than actually required for the target
application. Therefore, targeting an ASDSP to a reconfigurable logic device is
not optimal in device utilization, which for a specific application is apparent in
device cost and power consumption.

Modern FPGA circuits with on-chip dedicated microprocessor kernels, mem-
ory cores, and dedicated general purpose arithmetic circuits are removing the
borders between processors and reconfigurable logic. Furthermore, there is no
strict distinction between general purpose microprocessors and DSPs. There
are microprocessors with DSP functionality, and DSPs with a close to general
purpose instruction set.

Development of general purpose microprocessors have evolved since the
early 1970s, and DSPs and reconfigurable logic since the 1980s — it is im-
possible for most departments and companies to compete with the huge effort
and number of man-years spent in developing these components. With such
competitors, it is obvious that an ASIC solution has to have extraordinary fea-
tures that make it stand out in performance. Comparing application specific
hardware to a standard DSP is difficult in general — the result will depend on
the algorithm, the manufacture process, and how much time that is spent on
the implementation. In [64], typical telecommunications and signal processing
algorithm implementations are investigated. It is shown that an ASIC imple-
mentation consumes almost three levels of magnitude less energy per operation
compared to a high-performance or low-power DSP.

8 General Introduction

1.2 Application Specific DSPs

The nomenclature Application Specific Digital Signal Processor (ASDSP) is
used in this thesis to denote the architecture designed to solve a DSP algorithm.
If nothing else is stated, it is assumed that the architecture is implemented in
ASIC technology.

The advantage of ASDSP design is the possibility to implement only the
logic necessary to realize a specific functionality, and design flexibility per-
mits thorough exploration of the design space. For example, the architecture
can be a hardware-mapped realization of the algorithm. A Finite Impulse
Response (FIR) filter is an example, giving maximum throughput when all
taps are computed in parallel. A different approach is to reuse hardware in a
time-multiplexed scheme, which results in lower throughput, and smaller area
compared to the parallel hardware-mapped implementation.

For ASIC implementation, maximum performance in speed and throughput
is achieved by taking special care when designing critical parts. It is clear
that the philosophy of tailoring the implementation to the application using
ASIC technology gives an advantage compared to implementation on competing
target technologies, which are aiming at solving a computation task in general.
However, a tailored architecture will lack the flexibility of a general purpose
component, and can not be reprogrammed to perform other tasks than designed
for.

The ASDSP can be more or less designed to work in conjunction with other
processors and devices. It can be a stand alone kernel to solve one dedicated
problem autonomously, or it can be a tailored datapath working intimately
with a microprocessor. The latter is more flexible, in that it co-operates with
a programmable processor, while the first is often more efficient since only
hardware necessary to solve the problem has to be implemented. While a stan-
dard microprocessor might not have the necessary performance for a digital
signal processing application, it is suitable for control and high level proto-
col handling. Examples of such protocols are Ethernet, JPEG/JFIF, MPEG,
etcetera. Therefore, combining a microprocessor with a dedicated hardware ac-
celerator tailored for the specific application is a favorable solution. By giving
the custom datapath accelerator a basic configuration interface, it has sufficient
performance while maintaining the flexibility of the processor architecture.

To conclude, an ASDSP implementation gives by far the highest perfor-
mance and room for design creativity. It can be designed to work alone or in
conjunction with for example a microprocessor. Although it is dedicated hard-
ware, it can be configurable or programmable to a certain extent. This thesis
covers implementation methodology for design of large and efficient ASDSP
circuits.

Chapter 1. Motivation 9

1.3 Overview of the Thesis

The thesis is divided into two parts. Part I is the general introduction, covering
motivation, background, related research, and basic theory. Part II is composed
of included papers.

An acoustic echo canceller for handheld applications is chosen as a target
example where an ASDSP solution is in favor of a solution based on a standard
DSP. A modern DSP, as well as an ASDSP solution, will meet the realtime
requirements of the application, but the ASDSP will have significantly lower
power consumption. Furthermore, the echo canceller algorithm only will use
all resources of the standard DSP.

Acoustic echo cancellers are necessary for communication systems where
there exists a direct acoustic path from the loudspeaker to the microphone
of the communication device. This includes applications such as telephone
conferences, hands-free communications, and future applications such as com-
munication using stationary or handheld computers, where earphones, cables,
and external microphones will be considered circumstantial.

The chosen echo canceller is a computationally expensive algorithm with no
delay in the signal path [60]. A delayless approach is important in telecommu-
nication systems, where the signal is delayed not only from transmission in the
air but from all parts of the digital transmission chain such as speech codecs,
channel codecs, and so on. A reception of the user’s own voice looped and
delayed some tenths of milliseconds is considered to be extremely annoying.
Therefore, delay of the communication system should be as short as possible,
motivating the fact that the chosen algorithm has a higher complexity com-
pared to cancellers adding delay to the signal path.

The introduction ranges over a number of topics. Chapter 2 gives a back-
ground to the basic concepts of signal estimation and echo cancellation. Theory
regarding efficient realization of filterbanks is also included. In chapter 3, de-
sign methodologies for ASDSP design are presented. The focus is on design
space exploration, hierarchy, controller design, design flow and standard-cell
synthesis, and cache memory strategies. Chapter 4 gives a basic background to
Complementary Metal Oxide Semiconductor (CMOS) technology, the concepts
of power and energy dissipation, and memory technology. In chapter 5, digital
arithmetic for ASDSP design is presented. In particular, arithmetic functions
not available in standard processor implementations, distributed arithmetic
and offset binary coding, are investigated. Finally, a conclusion and summary
of papers is presented in chapter 6.

As part of the thesis work, the echo canceller algorithm is implemented as
an Application Specific Digital Signal Processor (ASDSP). The chip has been
fabricated and successfully verified. Paper I and II covers algorithm analysis

10 General Introduction

and implementation of the echo canceller chip. Paper I presents an initial study
of what parts of the canceller algorithm that are critical for an implementation,
and in paper II, the architecture and optimizations of the implemented design
together with measured results of the manufactured chip are presented.

Paper III, IV and V describe efficient implementation of arithmetic com-
ponents required for the hardware implementation. In paper III, and efficient
implementation of a complex multiplier is presented. Paper IV, presents a co-
optimization of two algorithms, the fast Fourier transform and the FIR filter,
based on a special arithmetic component. In paper V, an efficient configurable
divider implementation is proposed.

Chapter 2

Introduction to Echo Cancellation

The problem of acoustic echoes in telecommunication systems arises when a
loudspeaker and microphone are positioned such that the microphone picks up
the acoustic waves emitted from the loudspeaker, and there is an electrical path
from the microphone back to the loudspeaker. Depending on the turnaround
time of the system, this is perceived as reverberation, or for longer delays, as an
annoying echo [79]. The situation appears in telecommunication systems and
sound amplification applications if not proper steps have been taken to prevent
it. A related problem is cancellation of line echoes in the Public Switched
Telephone Network (PSTN). Line echoes appear in long telephone wires, due
to long wave propagation time and impedance mismatch [78]. The line echo
problem is easier to solve, since wires are stationary, and the echo path changes
little over time, as opposed to the acoustic counterpart.

Typical applications for acoustic echo cancellers include hearing aids, hand-
held telephones, hands-free systems, and audio/video teleconferencing systems.
For the latter, stereophonic systems are desired to increase perception and sense
of a talkers spatial location. A characteristic of telecommunication systems is
the rather long system round-trip time; and for devices not depending on head-
sets or telephone receivers, a long acoustic impulse response. Since users of such
systems are annoyed by listening to their own speech delayed by the round-trip
time of the system, the need for acoustic echo cancellers is apparent.

Acoustic echoes can be reduced by sufficient attenuation of the acoustic path
between loudspeaker and microphone. Historically, this is achieved by acoustic
means, for example by highly directionally sensitive microphones and loud-
speakers, or by using headsets providing the required attenuation. For hands-
free telecommunication systems, where no attenuation of the signal path is
possible, the situation is more complicated. The acoustic path may constantly

11

12 General Introduction

change due to variation of the enclosure and location of objects interacting
with the sound waves. Therefore, it is not possible to have sufficient atten-
uation from loudspeaker to microphone — the loudspeaker and microphone
can not be arranged in a way that they do not “see” each other. In the past,
the problem has been solved by the use of half-duplex channels, allowing the
signal to go in only one direction at a time using voice controlled switches.
However, controlling these switches is a difficult task and requires highly dis-
ciplined speakers [21]. More advanced methods have to be used that can cope
with rapidly changing echo paths and the long impulse responses of for example
conference rooms.

As indicated, delay is an important aspect in speech communication. The
International Telecommunication Union (ITU) restricts the maximum delay
of a stationary telephone to 2 ms, and for a mobile telephone to 39 ms [21].
Since a telecommunication system is a complex device consisting of channel
coders, speech coders, error correcting devices, and more, the total delay of the
communication chain is a sum of all sub-block delays, and the echo canceller
is only one of the contributors. Therefore, it is desired to keep the canceller
delay as short as possible.

2.1 Typical Echo Canceller Scenario

A typical echo canceller scenario is depicted in figure 2.1. The signal x(n) is
assumed to be generated by a system similar to the one in the figure. This other
system is denoted “the far end”, and accordingly, the system in the figure is
“the near end”. The signal x(n) is therefore denoted the far end signal, feeding
the near end loudspeaker. Acoustic waves emitted from the loudspeaker are
reflected by the enclosure and objects present within, and noise plus a possible
near end talker signal s(n) is added. The signal received by the microphone
is denoted y(n), and the acoustic path from x(n) to y(n) can be modeled as a
linear time-variant system with a kernel h(n), representing the acoustic impulse
response. The shape of h(n) is determined by the enclosure and location of
relevant objects for the sound waves to interact with. Using h(n), the function
from loudspeaker to microphone can be written as

y(n) = h(n) ∗ x(n) + s(n), (2.1)

where ∗ denotes a convolution. The idea of the canceller is to suppress the
impact of x(n) on y(n), ideally returning only the signal s(n) to the far end.
This can be achieved by a filter in parallel to the acoustic path, holding an
approximation ĥ(n) of the acoustic impulse response h(n). By subtracting the
estimate ŷ(n) from y(n), ideally the part dependent on x(n) is cancelled out.

Chapter 2. Introduction to Echo Cancellation 13

Echo Cancellation
Filter ĥ(n)

Σ

s(n)

x(n) − e(n)
︸ ︷︷ ︸

h(n)

y(n)

ŷ(n)

Figure 2.1: Echo canceller scenario. The far end signal x(n) is fed to
both the loudspeaker and a cancellation filter. As an acoustic wave, the
signal propagates through the acoustic path, where noise and a near end
talker signal is added. The acoustic path impulse response is denoted
h(n). If the cancellation filter holds an estimate ĥ(n) of h(n), a subtrac-
tion of the cancellation filter output ŷ(n) from the microphone signal
y(n) ideally leaves only the near end talker signal s(n) plus noise.

This leaves s(n), which is fed back to the far end. The problem for the echo
canceller is then to find the estimate ĥ(n). Since sound travels at a speed of
about 340 m/s, a sample rate of 16 kHz1 corresponds to a distance of about
2 cm. Thus, a small change in the length of the acoustic path or shape of the
enclosure results in a large change of the impulse response h(n). Therefore, the
acoustic impulse response is considered to be time-variant, and an adaptive
circuit keeping track of changes in the echo path is necessary.

For sufficient suppression, the length of the adaptive filter should be in the
range of the reverberation time of the enclosure, depending on the size of the
room, objects within, and what materials it is build of. An empty room with
concrete walls, for example, have a rater long reverberation time compared to
a furnished room with carpeted floor and wood-paneled walls. Typical values
for the size of the adaptive filter, N , is in the range of 1024 to 4096 taps. This
corresponds to an acoustic echo of 1/16 to 1/4 seconds at a sample rate of
16 kHz [79].

1The mentioned sample rate of 16 kHz is a typical value. It gives a relatively high quality,
since it is twice the rate of the PSTN, and sufficient to represent the spectrum of human
speech.

14 General Introduction

2.2 Echo cancellers

Echo canceller algorithms are based on estimation of the acoustic path impulse
response, and cancellation (removal) of the loudspeaker signal from the micro-
phone signal. There are two requirements for the estimation of the acoustic
path to work. First, it is essential that there is a signal emitted from the loud-
speaker. Second, estimation can not be performed while there is sound, such
as a near end speaker signal, added in the acoustic path. When the near end
talker is speaking, estimation must be turned off.

Assuming the far end talker is speaking, which can be easily detected by
measuring the power of the loudspeaker signal, there are two cases. The first
is that the near end talker is silent and there is no explicit noise within the
enclosure. The second condition is the opposite, that is, there is sound that can
not be derived from the loudspeaker generated within the enclosure. Under such
a condition as the latter, popularly denoted “double-talk”, it is not possible for
the estimation algorithm to work properly. A double-talk detector has to be
used to find these events [38]. The design of double-talk detectors is not within
the scope of this thesis.

Echo canceller systems can be built based on estimators and adaptive filters.
In section 2.3, theory of signal estimation and adaptive filters is presented.
Several configurations are possible concerning both estimation and cancellation.
The design space is vast and performance in terms of convergence rate and
maximum echo suppression, as well as design cost in terms of silicon area or
power consumption, depends strongly on how the algorithm is constructed.

A number of estimation algorithms are theoretically applicable for acoustic
echo cancellation purposes [79, 80]. However, in most cases, a simple and robust
algorithm outperforms more sophisticated solutions [21]. Although the more
sophisticated solution might have better performance in theory, the simple and
robust algorithm is easier to get to work in an implementation. Furthermore,
the simpler algorithm is easier to analyze, and is associated with a lower im-
plementation cost. Therefore, the Normalized Least Mean Squares (NLMS)
algorithm has been selected as the estimation algorithm of choice throughout
this work. Performance of the NLMS is sufficient for a reasonable implemen-
tation cost while stability and convergence can be guaranteed.

2.2.1 estimation domain

Acoustic impulse response estimation, can be performed either in the time do-
main, subband domain, or frequency domain. Frequency domain estimation
is based on processing of blocks of signals, making estimation delay signif-
icant [55, 79], and for that reason not included in the further analysis. A

Chapter 2. Introduction to Echo Cancellation 15

subband domain is defined by the filters of an analysis filterbank. The outputs
of a filterbank are defined on such a domain.

A basic canceller using the (N)LMS estimation algorithm on speech sig-
nals in the time domain will result in poor performance. The reason is the
strong correlation properties of the speech signal resulting in an ill-conditioned
autocorrelation matrix [21]. A way to overcome the problem is to initially
decorrelate x(n) and y(n) prior to adaption [21, 79]. This “pre-whitening” can
be either adaptive or stationary. Stationary decorrelation filter coefficients have
a low implementation cost, but they are constructed using a representative set
of speech sequences and has limited performance. Adaptive coefficients are, on
the other hand, renewed continuously to conform to the instantaneous prop-
erties of the speech signal. Performance is improved, but the adaption comes
at a higher cost compared to stationary coefficients. Thus, the choice between
adaptive or static decorrelation filters is a trade-off between performance and
processing power [21].

Performing estimation in a subband domain is an alternative to time domain
estimation. Subband estimation results from splitting the input signals x(n)
and y(n) into subbands using analysis filterbanks, and performing estimation
independently in each band. Since a subband signal contains only part of the
total signal information, the filterbank is downsampled. With a lower sample
rate, it is enough for each subband estimator to hold only a fraction of the
total length of the corresponding time domain impulse response. In total, the
subband solution reduces implementation cost significantly.

Furthermore, rate of convergence for the subband LMS is faster, because
the spectral range is greatly reduced in each subband [47, 60]. In practice, this
advantage is partially lost due to non-ideal filtering in the filterbanks, for two
reasons: there is aliasing between the different subbands, making the subbands
“leak” into each other, and the filterbank can not have infinite filter lengths.
For an analysis of LMS convergence rate in the subband domain, see [79]. An-
other issue of the subband approach is that a causal fullband impulse response
function transforms into non-causal subband impulse responses [47]. In or-
der to achieve adequate echo suppression, this effect has to be considered. A
practical solution is to compensate the non-causal taps by delaying the micro-
phone signal [21]. Therefore, a careful design of the filterbanks is crucial for
performance of the canceller algorithm [47]. For design of filterbanks, see for
example [33].

Subband estimation is faster and comes at a lower cost, and there are more
advantages. Since all subband estimators work independent of each other,
they can be controlled independently. The possibility to control each subband
is beneficial when for example a double-talk situation occurs, or if the input
signal energy is too low for adaption to be reliable. Double-talk and energy

16 General Introduction

fil
te

rb
an

k

fil
te

rb
an

k
LMS

LMS
LMS

LMS

synthesis filterbank

e(n)

︸ ︷︷ ︸
h(n)

x(n) y(n)

x0

x1

x2

y0

y1

y2

e0 e1 e2

s(n)

xM−1 yM−1

eM−1

...
...

Figure 2.2: Open loop echo canceller using subband decomposition of
the near and far end signals. The adaption is optimal in each subband,
and not for the complete system, due to the open loop structure. There-
fore, the output signal e(n) is a suboptimal solution. In this algorithm,
the signal is delayed by the analysis and synthesis filterbanks.

detectors can work independently in each subband, and convergence rate will
increase while the total number of operations per sample is lowered.

2.2.2 subband domain cancellation

In figure 2.2, a basic structure of an echo canceller with estimation and can-
cellation in the subband domain is shown [47]. The loudspeaker signal x(n)
and the microphone signal y(n) are fed to two analysis subband filterbanks.
The filterbanks can be uniform or have any frequency selection desired. For
each subband, adaptive LMS filters perform estimation and cancellation in-
dependent of each other. Each adaptive LMS filter has a fast and reliable
convergence since it is operating on subband filtered signals [79]. Because of
the possibility to reduce the sampling rate of the subband signals the adap-
tion within each subband can be performed with shorter filters at a lower rate.
This reduces the number of operations per second considerably, compared to a

Chapter 2. Introduction to Echo Cancellation 17

Σ

LMS
iteration

em(n)

−
ŷm(n)

xm(n) ym(n)wm

Figure 2.3: Subband LMS adaptive filter. The subscript m indicates
the subband version of the loudspeaker, microphone and error signals
x(n), y(n) and e(n). The subband part of the fullband acoustic impulse
response is here denoted wn.

fullband solution [15]. The error signals generated by each subband adaptive
LMS filter are assembled into a time domain error signal using a synthesis fil-
terbank. Characteristics of the synthesis filterbank is matched to the analysis
filter banks for minimum aliasing and leakage effects [47].

A schematic illustration of a subband LMS adaptive filter is depicted in
figure 2.3. Subband versions xm(n) of x(n) and ym(n) of y(n) are input to the
left and right. Using xm(n) and the error signal em(n), the LMS algorithm
estimates the subband portion of the acoustic echo path impulse response. An
adaptive filter using the impulse response estimate as filter kernel is fed by the
subband loudspeaker signal xm(n). The output is a signal ŷm(n), which is the
estimate of the subband microphone signal ym(n). The subband error signal
em(n) is then calculated as the difference between the subband microphone
signal and its estimate. Note that the time scale may be different in the subband
domain due to downsampling.

There is no global feedback of the error signal e(n) in the algorithm of
figure 2.2. Each subband processor has its own loop. This device leads to a
convergence in mean in each subband, and not necessarily to a optimal solution
for the whole canceller. A problem with the subband canceller of figure 2.2 is
the signal delay associated with the analysis and synthesis filterbanks connected
in cascade. For high quality telecommunication applications, this delay might
be too long to meet the target system constraints.

18 General Introduction

fil
te

rb
an

k

fil
te

rb
an

k
Σ

LMS
LMS

LMS

LMS

x0

x1

x2

y0

y1

y2

FFT FFT FFTFFT

y(n)
x(n)

ŷ(n)

e(n)

w0 w1 w2

s(n)

xM−1 yM−1

wM−1

IFFT

conjugate, mirror, and stack

−

...
...

adaptive FIR

Figure 2.4: Open loop subband canceller with no signal path delay.
Estimation in the subband-domain and cancellation in the time domain
using a fullband FIR filter. See text for details.

2.2.3 time domain cancellation

The algorithm by Morgan and Thi [60] solves the problem of signal path delay,
at a higher implementation cost. The main features are depicted schematically
in figure 2.4. An estimate of the impulse response is kept in the fullband
adaptive filter. By time-domain filtering and subtraction, there is no delay
in the signal path. The fullband filter has a high number of operations per
sample compared to the LMS filters, since it holds a complete acoustic impulse
response of considerable length, running at full sample rate [15].

The impulse response is estimated in the subband domain, but cancellation
is performed in the time domain. An adaptive FIR filter holds the estimate
of the time domain acoustic impulse response, and a subtraction removes the

Chapter 2. Introduction to Echo Cancellation 19

impact of the far end signal to the return signal. This subtraction is the only
processing element in the signal path, making the canceller a “zero-delay” echo
canceller. As before, there is delay in the analysis filterbanks, and the estimate
of the impulse response is delayed correspondingly.

The calculation of the fullband impulse response estimate is distributed
to LMS estimators in all subbands, similar to the canceller in figure 2.2. A
fullband impulse response estimate is assembled in the frequency domain by a
mirror and stacking device [60]. This device operates on frequency transforms
of each subband estimate. The output of the assembling box is transformed
back to time domain and used as coefficients of the fullband adaptive filter.

The canceller presented in figure 2.4 is an open loop configuration, that is,
there is no feedback except for within each subband. Thus, each subband LMS
converges in the mean to an optimal result, but the fullband impulse response
estimate might be suboptimal. As an alternative, it is also possible to have
a closed loop configuration of the canceller by simply feeding back the error
signal e(n) instead of the microphone signal y(n). In the long term, a closed
loop canceller reaches a higher Echo Return Loss Enhancement (ERLE) and
better echo suppression, but has an initial slower convergence rate. In a real
application, the acoustic path fluctuates continuously, and it is unlikely to get
to a state benefiting from the high suppression rate from the closed loop [60].
Instead, a faster convergence rate is preferred. However, it is possible to design
a switch that changes from open to closed loop when appropriate, to get the
best from both parts, but the problem of controlling such a switch remains.

2.2.4 hybrid time and subband domain cancellation

The approach of the algorithm by Dörbecker and Vary [34] addresses the high
complexity of the time domain FIR filter of the Morgan and Thi algorithm.
The idea is to split each subband estimate of the acoustic impulse response into
two parts, the early and the late part. The echo canceller algorithm consists of
both a time domain and a subband domain canceller, where the early part of
the impulse response estimate is used in the time domain canceller. The late
part corresponds to the impulse response taps having indexes larger than the
delay of the analysis and synthesis filterbanks, and are used to cancel echoes
in the subband domain. In total, the canceller is without delay in the signal
path. The transformation of the early taps from subband to time domain is
implemented through a synthesis filterbank with a composite prototype filter.
If the analysis and synthesis filterbanks are well designed to work together, they
ideally calculate a lagged version of the early taps of the impulse response.

In reality, a well-designed analysis filterbank has a considerable number of
taps, and a correspondingly large delay. A long filterbank delay implies that

20 General Introduction

a considerable part of the subband domain impulse response has to be trans-
formed to the time domain cancellation filter. Taking into account the special
upsampling synthesis filterbank required to compute the early filter taps, while
still having a fair fullband FIR filter makes the solution less attractive. Also,
for a hardware implementation of the algorithm, both time and subband can-
celler hardware need to be implemented. This extra amount of hardware is
difficult to motivate without a significant gain in performance.

2.3 Theoretical Background

In this section, the LMS and Normalized Least Mean Squares (NLMS) esti-
mation algorithms are derived and compared to another popular estimation
algorithm, the Recursive Least Squares (RLS). Initially, properties of speech
signals and a cancellation quality measurement are presented.

2.3.1 properties of speech signals

Performing signal processing on speech signals is considered to be difficult [21].
The reason is mainly that speech signals have a high correlation between neigh-
boring samples. Estimation algorithms such as the Least Mean Squares (LMS)
suffer from low convergence rate for correlated input [29]. Speech signals have a
widely fluctuating envelope, consisting of segments of nearly periodic sequences,
noise segments, and pauses. Sample rate of speech signals is typically in the
range of 8 kHz in telephone systems to 40 kHz in high-fidelity applications, but
even in the case of an 8 kHz sample rate, consecutive samples are highly cor-
related [21]. In general, algorithms for adaptive filter update suffer from low
convergence rate and performance when operating on speech signals, due to
the correlation.

2.3.2 quality measurement

A number of quality measurements have been derived for determining perfor-
mance of an echo canceller algorithm. As such algorithms are designed to work
with speech signals, it is important to perform quality tests based on human
perception and sense for sound fidelity. For sound processing, as well as image
and video processing, there are no good objective quality measurements. The
human brain may be sensible to one kind of distortion, but forgiving to some
other, and it is difficult to find a measurement capable of telling the difference.

A simple measurement producing exact numbers that can easily be used for
comparison purposes is the Echo Return Loss Enhancement (ERLE). ERLE is

Chapter 2. Introduction to Echo Cancellation 21

expressed in decibels (dB) and defined using the expectation operator E{·} [29]
as

ERLE = 10 lg
E
{
y2(n)

}
E
{

(y(n)− ŷ(n))2
} , (2.2)

where y(n) is the microphone signal and ŷ is the corresponding estimate gen-
erated by the echo canceller. This measure is calculated under the assumption
that the signal y(n) received by the microphone only contains signal contribu-
tion from the loudspeaker signal. In other words, the loudspeaker is the only
signal source within the acoustic enclosure.

2.4 Signal Estimation

The general estimation problem can be stated as follows, given a signal x(n),
find an estimate of the desired, or ideal, signal d(n) that is optimal in some
sense. The estimate is expressed as a function of x(n). There exists many
estimators that solve the problem [29, 80], but the linear Minimum Mean-
Squared Error (MMSE) estimator is the most practical one, since it is based
on the assumption that the estimate y(n) can be written as

y(n) =
∑

i

w(i)x(n− i), (2.3)

that is, as an Finite Impulse Response (FIR) filter. Such filters are thoroughly
analyzed in the literature, and they are stable and easy to implement in software
as well as hardware. The filter length and the coefficients w(i) determine the
quality of the estimate. In order to track changes in the desired signal, the
filter coefficients are updated using an adaptive algorithm.

A basic constellation of an adaptive filtering system is presented in fig-
ure 2.5. The signal y(n) is generated from the input signal x(n) by the FIR
filter as

y(n) = w(n) ∗ x(n). (2.4)

The signal y(n) is compared to the input signal d(n), and an error signal e(n)
is constructed as the difference

e(n) = d(n)− y(n). (2.5)

The error signal is used to control the filter coefficients to move in a direction
that minimizes the error signal itself. Thereby, matching y(n) to the desired

22 General Introduction

Σ

d(n)

− e(n)
y(n)

x(n) w

Figure 2.5: Basic adaptive filtering system. Input to the system is
x(n) and d(n). The filter generates the output y from input x and
filter coefficients w. The error signal e(n) is used to control the filter
coefficients.

signal d(n). How the minimization is carried out is determined by an adap-
tion algorithm. The most common adaption algorithms, the Recursive Least
Squares (RLS) and Least Mean Squares (LMS), are presented next [29, 85].
Both algorithms are based on iteration formulas. The RLS has a theoretical
fast and optimal convergence, but suffers from a high complexity and large
requirements on signal dynamics. Therefore, the RLS is mostly used in theo-
retical simulations, as it is hard to apply in practical applications. The LMS on
the other hand is less computationally expensive, but it has slower convergence
for non-Gaussian input signals. In order to describe the algorithms, the subject
of the normal equations is introduced first.

2.4.1 the normal equations

An adaptive circuit optimizing in the least squares sense minimizes the mean
energy of the error between desired signal and estimate. The mean energy can
be written as

J = E
{
e2(n)

}
. (2.6)

The use of the expectation operator is for generality and clarity. For determin-
istic sequences, J can be defined analogously as

J =
∑

n

e2(n), (2.7)

and expectation as well as correlations can be expressed using summations.
The error signal e(n) is written using equations (2.4) and (2.5) and figure 2.5
as

e(n) = d(n)− w(n) ∗ x(n). (2.8)

Chapter 2. Introduction to Echo Cancellation 23

Writing the filter operation explicit, the expression becomes

e(n) = d(n)−
∑

i

w(i)x(n− i), (2.9)

where the summation is over all of the coefficients of the filter w. The idea
of adaptive filtering is to design a method to find the w that minimizes J .
The optimal solution is found by differentiating J with respect to each filter
coefficient w(i) and equating the result to zero,

∂J

∂w(j)
= 2E

{
e(n)

∂e(n)
∂w(j)

}
= 0. (2.10)

Differentiating equation (2.9) gives the interior derivative in (2.10) as

∂e(n)
∂w(j)

= −x(n− j), (2.11)

and thus

∂J

∂w(j)
= −2E {e(n)x(n− j)} . (2.12)

Taking e(n) from equation (2.9) yields

∂J

∂w(j)
= 2

∑
i

E {w(i)x(n− i)x(n− j)} − 2E {d(n)x(n− j)} . (2.13)

By identifying the correlation between d and x as r(n− j, n) and the autocor-
relation of x as R(n− i, n− j), and equating to zero results in∑

i

w(i)R(n− i, n− j)− r(n− j, n) = 0. (2.14)

This is referred to as the normal equations. The solution to these equations
results in an optimal filter in the least squares sense. It is convenient to express
the normal equations in matrix form. Assuming the length of the causal FIR
filter w to be N taps, the indices i and j from equation (2.14) are limited to
the set

i, j ∈ {0, 1, . . . , N − 1} . (2.15)

The filter taps w(i) are then represented by a column vector –w as

–w =
[

w(0) w(1) · · · w(N − 1)
]T

. (2.16)

24 General Introduction

The set of equations in (2.14) is written in matrix notation as

R–w − –r = –0, (2.17)

using the following additional definitions


R = the N ×N autocorrelation matrix with elements
Rij = R(n− i, n− j)

–r =
[

r(n, n) r(n− 1, n) · · · r(n−N + 1, n)
]T (2.18)

A straightforward solution to the normal equation (2.17) involve inversion
of the autocorrelation matrix R. This inversion is complicated by the fact
that the matrix is positive semi-definite [29], and thus possibly singular and
non-invertible. Furthermore, matrix inversion is a computationally expensive
operation to realize in hardware. Partly due to the high number of computa-
tions involved, and partly due to the high dynamics required of the values of
the matrix, especially if the matrix is close to singular. Since limited dynamics
is desired in a custom hardware implementation to reduce power consumption,
matrix inversion is in general avoided.

2.4.2 least mean squares

The normal equations can be solved by an iterative approach using the steepest
descent formula [29]. Let –w be a column vector of the filter taps w(i) as before.
The steepest descent formula is then written as

–wn+1 = –wn − α

2
∇Jn, (2.19)

where the subscript of w denotes iteration number, that is n and n+1, and α is
the step-size parameter affecting convergence rate and stability. The steepest
descent is a straightforward approach to the minimization problem, and it turns
out to be a practical solution. The philosophy can be described as follows:
The gradient ∇Jn points in the direction where Jn is increasing the fastest.
Therefore, at each iteration, a move in the opposite direction to the gradient
with a step size proportional to the magnitude of the gradient is made. The
further away from the minimum, the larger the step size. For each iteration,
the solution gets closer to the minimum of J .

The calculation of ∇Jn is expensive and can be approximated by a simpler
expression for practical use. If ∇Jn is approximated by

∇Ĵn =
∂e2(n)
∂–wn

(2.20)

Chapter 2. Introduction to Echo Cancellation 25

the result is the LMS filter algorithm. The mean value operation from equa-
tion (2.6) or (2.7) is approximated by the instantaneous value. The gradient
vector is found from the derivatives of equation (2.12) by removing the expec-
tation operator accordingly. By defining a column vector –xn as

–xn =
[

x(n) x(n− 1) · · · x(n−N + 1)
]T

, (2.21)

the iteration formula is conveniently written as

–wn+1 = –wn + αe(n)–xn. (2.22)

Approximation of mean values by instantaneous values results in a simple and
practical formula, but by approximating ∇J with ∇Ĵ , equation 2.22 no longer
solves the same problem. For each single iteration, it tries to find the instan-
taneous solution to the normal equations instead of a solution in the mean.

For non-Gaussian signals, such as speech signals, convergence rate of the
LMS algorithm is non-uniform. This is referred to in the literature as the
eigenvalue disparity problem, since the elements of the adaptive filter has a
convergence rate that depends on the eigenvalue spread of the autocorrelation
matrix [29]. Since the eigenvalues are proportional to the variance, or power,
of the input signal, the spread can be reduced by normalizing the input signals
prior to adaption [79]. The normalized LMS (NLMS) is derived by replacing
the factor α by

α′ =
α

Px
. (2.23)

In practice, the power is approximated by a time average. A practical approx-
imation is to use

P̂x = –x
T
n–xn, (2.24)

since –xn is already available in the calculation of the iteration formula. The
iteration step of the NLMS-algorithm then becomes

–wn+1 = –wn +
α′

ε + –x
T
n–xn

e(n)–xn. (2.25)

A small positive number ε is added to the energy before division. This is
to avoid the possibility of division by zero, as well as avoiding division by a
far to small number. Such a division might lead to a too large quotient to be
represented with a fixed point number, causing overflow and accuracy problems.

26 General Introduction

Furthermore, it is common to make the (N)LMS leaky by multiplying the old
estimate by a leakage factor, γ, as

–wn+1 = γ–wn +
α′

ε + –x
T
n–xn

e(n)–xn. (2.26)

The leakage factor γ should be in the range of 0 < γ < 1, but in practice it is
set close to one. Leakage forces the estimate to decrease to zero if for example
the gradient estimate is constantly zero. It is also advantageous to cancel out
impact of iterations in the wrong direction, caused by for example noise or
signal errors, or as in the echo canceller application, a present near-end talk
signal.

2.4.3 recursive least squares

The RLS algorithm is derived without the approximations used for the LMS.
This makes the solution for the RLS optimal in each iteration. Furthermore,
the RLS does not suffer from the eigenvalue disparity problem of the LMS.
Instead, convergence is fast and uniform [29].

The basis of the algorithm is recursive calculation of the correlations, and
inversion of the correlation matrix. These operations are computationally ex-
pensive compared to the LMS. Furthermore, the initial estimate of the auto-
correlation is crucial, since an inaccurately initialized matrix adds a bias to
all following iterations. Initial conditions have to be derived from the input
data characteristics in order to guarantee stability and convergence. Finding
adequate characteristics for speech signals is difficult, due to the varying en-
velope and the segments of periodic sequences, noise, and pauses. In theory
though, the bias approaches zero for a converging solution when the number
of iterations approach infinity.

As stated earlier, the autocorrelation matrix is ill-conditioned for speech
signals. Inversion of such a matrix is difficult without a large precision un-
available for most implementations. Especially fast versions and fixed point
implementations are in general difficult to realize in hardware. At least single
precision floating point number representation is required for a reliable im-
plementation of the RLS [76]. The RLS suffers from poor tracking ability of
non-stationary data due to the equal weighting applied to all previous input
data in the correlation calculations. This effect can be reduced by an expo-
nential forgetting-factor similar to the leaky LMS described earlier. However,
choosing an appropriate forgetting-factor is difficult, and it also degrades the
quality of the cancellation.

To summarize, the RLS implementation suffers from stability problems,
high requirements on dynamics, and a high complexity. The LMS is easier to

Chapter 2. Introduction to Echo Cancellation 27

analyze and implement, and is known to be stable for certain easy-attainable
conditions. Thus, for a hardware implementation, the LMS is preferred.

2.5 Polyphase Filterbanks

The number of arithmetic operations necessary to perform a straightforward
M -band filterbank operation is limited by O(MK), if each filter has K taps.
For a subband echo canceller with long filters and a large number of subbands,
this is a substantial cost of the total complexity [15], especially since a subband
canceller require two or three filterbanks.

The polyphase filterbank is an ingenious device to reduce the computational
complexity of a filterbank [82]. It is based on a prototype filter {h(n)}K−1

n=0 .
The prototype filter is shifted in the frequency domain and used to filter all
subbands. The filter kernel used for subband m can be expressed using the
prototype filter h(n) as

hm(n) = h(n) e j2π mn
M . (2.27)

This is validated by the time-frequency relation

e jω0nx(n) F←→ X(ω − ω0), (2.28)

and setting the frequency translation ω0 = 2πm/M . The filter output at
subband m can then be expressed as the convolution ym = hm ∗ x, or by using
summations as

ym(n) =
K−1∑
k=0

h(k) e j2π mk
M x(n− k). (2.29)

Assume that M is a factor of the filter length K, that is, K can be written as
K = LM . Writing equation (2.29) with sums over L and M yields

ym(n) =
M−1∑
i=0

L−1∑
`=0

h(i + `M) e j2π
m(i+`M)

M x(n− i− `M)

=
M−1∑
i=0

e j2π mi
M

L−1∑
`=0

h(i + `M)x(n− i− `M). (2.30)

This can be identified as the Inverse Discrete Fourier Transform (IDFT) of the
convolution for every Mth sample of x and h. It is convenient to write the

28 General Introduction

equation on matrix form, by introducing the following symbols


–xn =
[

x(n) x(n− 1) · · · x(n−K + 1)
]T

(the latest K samples of x(n), compare equation (2.21))

–
y(n) =

[
y0(n) y1(n) · · · yM−1(n)

]T
(one value per subband)

W = the Fourier matrix with elements
Wij = e−j2πij/M

H =
[

H0 H1 · · · HL−1

]
,

with Hi = diag (h(Mi), h(Mi + 1), . . . , h(Mi + M − 1))

Now, the polyphase filtering operation is expressed using the introduced ma-
trices as

–
y(n) = W−1H–xn. (2.31)

There are K non-zero position in the H matrix. Thus, the number of FIR
multiplications is reduced from MK to K, multiplication of the Fourier matrix
W not counted. If the Fourier transform is implemented using the radix–2 Fast
Fourier Transform (FFT) algorithm, the additional number of multiplications
per filter operation is M/2 log2 M .

Running the filterbank on every input sample results in an M time increase
in generated output sample. No new information is added in the filtering
process, therefore, the extra amount of samples are redundant. Combining the
filterbank with downsampling is a means to reduce the redundancy, while at
the same time lowering the update rate of the signal processing following the
filterbank. Critical downsampling is optimal, generating M output samples
for every block of M input samples. However, since the prototype filter has
finite length, and is non-ideal, there are aliasing effects and leakage between the
subband outputs. The downsampling factor is a trade-off between operations
per sample after the filterbank, and prototype filter length and dynamics in
the filterbank.

An illustration of the downsampled polyphase filterbank is shown in fig-
ure 2.6. In 2.6(a), the straightforward approach is depicted. Only every Mth
filter output have to be calculated, since the others are discarded by the down-
sampling. If the filter length is K, this yields MK multiplications every M
samples, or K multiplications per sample. Figure 2.6(b) is the corresponding

Chapter 2. Introduction to Echo Cancellation 29

∆

↓M

↓M

↓M

↓M

↓M

↓M

↓M

↓M

h0

h1

h2

hM−1

h′0

h′1

h′2

h′M−1
IF

F
T

(a) (b)

∆

∆

Figure 2.6: Critically downsampled M -band filterbanks. (a) straight-
forward approach, (b) polyphase implementation. The input-output re-
lation is the same for both implementations, if the filter coefficients are
chosen according to equation (2.27). The ∆ boxes have an impulse re-
sponse of δ(n− 1), and delays the signal one sample.

polyphase implementation. Each filter {h′i}i has only one Mth of the taps of
the corresponding filter h. Therefore, complexity is reduced to K+M/2 log2 M
multiplications per M samples. This corresponds to only K/M + 1/2 log2 M
multiplications per sample. The term containing the logarithm is due to the
Inverse Fast Fourier Transform (IFFT), if a radix–2 implementation is chosen.

An examination of the subband impulse responses for the polyphase filter-
bank, equation (2.27), shows that impulse response for band zero and M/2
are real valued, and the remaining are complex valued. Therefore, most of the
outputs of the filterbank are complex, and subband estimators and cancellers
have to be designed for operating on complex numbers.

In the subband echo canceller application, input to the filterbanks are sam-
pled sound signals. Sound signals are real-valued, and the corresponding com-
plex spectrum has a symmetry property along the frequency f = 1/2. There-
fore, for an M band analysis filterbank, output band M/2 + 1 to M − 1 does
not contain any information not present in band zero to M/2. These bands are
thus not needed in the subband estimation and cancellation calculations. Fur-
thermore, from an implementation point of view, band M/2 can be neglected
since it represents the highest sampled frequencies of the input signals. Signals
at these frequencies are attenuated in the analog domain prior to sampling in
order to avoid aliasing effects.

30 General Introduction

2.6 Summary

In this chapter, the problem of acoustic echoes in telecommunication systems
is presented together with some common solutions. The importance of a low
delay in the signal path for telecommunication systems is pointed out. An
acoustic echo canceller consists of an estimation part and a cancellation part.

In the estimation part, the acoustic channel is estimated. Estimation is
carried out either in the time, subband, or frequency domain. Time domain
estimation has a high complexity, and require decorrelation filters to precede
the actual estimation. Due to the strong correlation of neighboring samples in
speech signals and the lower implementation complexity, subband estimation
is preferred.

The cancellation part can also be implemented in time, subband, or fre-
quency domain. Subband cancellation implies that the output signal has to be
transformed back to time domain before transmission, and this inevitably in-
troduces delay in the signal path. Frequency domain cancellation is performed
block-wise, and thus adds to the signal path delay. For these reasons, cancel-
lation in the time domain is preferred for applications where signal path delay
is a crucial design parameter, although the complexity is higher. Doing part
cancellation in the time domain, and part in the subband domain is also achiev-
able, but this requires a hardware implementation to have both subband and
a time domain cancellers, and is considered to be unnecessarily complicated.

Chapter 3

ASDSP Design Methodology

Design of an Application Specific Digital Signal Processor (ASDSP) is a com-
plex task, ranging from initial problem definition down to structures on a silicon
chip. To end up with a working circuit, constraints and limitations on all levels
of the design process have to be taken into consideration. Therefore, a thorough
design methodology is required.

This chapter summarizes the design methodology applied and developed
during development of the acoustic echo canceller chip presented in paper II.

3.1 Design Space Exploration

Given a Digital Signal Processing (DSP) design problem, the first task is to
find a solving algorithm. Most likely, there are many candidate algorithms with
different complexity and resource requirements, giving different performance of
a hardware implementation. Unfortunately, the consequences of the choice of
algorithm can not be fully explored without actually doing the implementation
and examine the result. For ASDSP implementation on ASIC, iterating the im-
plementation process from initial algorithm to layout is a time-consuming task.
Therefore, it is important that as much information as possible is gathered be-
fore the implementation phase is initialized. At least quantitative comparisons
can be done by analyzing properties having impact on the implementation.

If the application is to run on a generic DSP or microprocessor, the design
process is almost complete when the algorithm is determined. In order to exe-
cute the algorithm on a processor, it has to be written in a low level language,
such as the C programming language [50]. The description is then compiled
and executed on the target processor, and performance is measured.

31

32 General Introduction

im
pl

em
en

ta
ti

on
co

st

(multidimensional) design space

Figure 3.1: The idea of the design space. The graph illustrates imple-
mentation cost for a given DSP problem as a function of the (multidi-
mensional) design space.

For implementation on ASIC or reconfigurable hardware, there is the addi-
tional step of finding a suitable hardware architecture. The best implementa-
tions are found by having the architecture in mind while choosing the algorithm,
and optimize the algorithm and architecture together.

In both the DSP and the ASDSP algorithm implementation cases, the al-
gorithm is mapped to a datapath. The complexity of the mapping problem is
limited if the datapath is fixed, as for the DSP case. Mapping to the ASDSP,
on the other hand, includes design of a tailored datapath, making it a different
and more difficult problem. Therefore, it is not certain that the same algorithm
is equally suitable for both implementations.

The concept of a design space is a useful analogy to describe the impact
of design decisions to design cost. Figure 3.1 illustrates what a design space
might look like for a given DSP problem. On the horizontal axis, which is
multi-dimensional in reality, different algorithms and possible architectures are
plotted. The vertical axis represents the design cost, in area, throughput, power
consumption, money, etcetera. The graph illustrates that a small leap on the
horizontal axis might imply a gigantic step in cost measure. Therefore, it is
important to do a thorough search of the design space prior to making design
decisions, if possible. It is of course not practicable to cover the complete
space, but significant subsets of the space have to be identified and explored.
It is probably so that a more experienced designer is capable of doing a better
search than the novice. Design automation tools help calculating properties
for a solution, but can not compete with the human brain when it comes to
creative exploration of the design space.

Chapter 3. ASDSP Design Methodology 33

3.2 Hierarchy

A powerful method to handle large and complex designs is to apply the divide
and conquerer approach, expanding the design into a hierarchy of subdesigns.
On the highest level of the hierarchy, the top level, interfaces to surrounding
devices and instantiations of the main submodules appear. Each submodule, in
turn, may contain instantiated submodules from a further lower level. Dividing
the design into a hierarchy has several benefits:

It is a comprehensible view of the design, where it is easy to focus on the
relevant parts.

The design process can evolve top-down, bottom-up, or as a mix of both.
Designing top-down makes it possible to create an initial high level de-
scription of the complete circuit for system simulation. By designing
submodules bottom-up, it is possible to verify and debug each submod-
ule before instantiation in the real design.

Typical synthesis tools work faster on a design split into submodules.

If the interfaces between submodules are specified, several designers can
contribute to the same design, since there are tight borders between the
different modules, separating one sub-block from the other.

In the methodology used for this thesis work, the design is split into a hierarchy
of autonomous submodules, where each submodule executes a part of the total
algorithm, a subalgorithm. A submodule is then a hardware realization of a
subalgorithm. Each submodule has its own controller — processing is carried
out independent of other submodules. Thereby, communication between a
module and its lower level submodules becomes limited. This reduces the
complexity of the implementation task, since less time has to be spent on
inter-module communication and design of large complicated controllers.

The definition of a subalgorithm has to be elaborated. A multiplication
operation is in most cases implemented as a combinational hardware multiplier
unit, not depending on any controller whatsoever. The multiplication is consid-
ered to be too simple to be a subalgorithm. An Finite Impulse Response (FIR)
filter on the other hand, based on iterative use of a multiplier and an accumu-
lator (Multiply and Accumulate, MAC) for several clock cycles, requires some
control circuit, and is a typical example of a subalgorithm.

A more advanced algorithm, such as the Normalized Least Mean Squares
(NLMS) filter, can be divided into several subalgorithms, or hardware sub-
modules: an FIR filter, a coefficient update unit, an energy calculator, and
a divider. The four hardware submodules have one controller each, and the

34 General Introduction

NLMS unit has a controller of its own, running the four submodules in turn.
Furthermore, the NLMS is a subalgorithm of a complete echo canceller, for
example. Exploiting this hierarchy, a tree of autonomous function blocks is
derived, and the resulting hierarchy reveals a natural way for the controllers to
communicate to each other.

In the case of the echo canceller implementation, submodules operate on
chunks of data. Therefore, intermediate storage of data is required before
and after most of the submodules. For these reasons, memory buses are a
natural way for data transfer between submodules. An efficient implementation
strategy for sharing memories have been developed, see paper II.

3.3 Datapath, Memory, and Controller

An ASDSP hardware implementation of a DSP algorithm is composed of a
number of hardware units, each belonging to one of three1 main disjoint sets,
based on functionality:

Datapath

Memory

Controller

A datapath performs the actual arithmetic or logic operations of the al-
gorithm implementation. The datapath can be streamlined for one particular
arithmetic operation in the algorithm, or designed to compute a set of different
operations, depending on how it is controlled. Datapath building blocks are
arithmetic and logic computational units and pipeline registers for storage and
performance purposes.

Most algorithms entail intermediate storage of data. Data storage is im-
plemented using instances of Random Access Memory (RAM) or banks of flip-
flops. There are limitations on access time, bandwidth, and latency for the
RAM memories, that have to be taken into consideration when designing a
datapath.

Since datapaths are data processors only, and memories are locations of
storage, some kind of controlling hardware is required. A controller manages
read and write data accesses to the memories, making sure the datapaths exe-
cute the correct operation on the accurate data at the right time. The controller
might be either externally programmable or hardwired for a specific behavior.

1External interfaces is a fourth set, not covered by this thesis.

Chapter 3. ASDSP Design Methodology 35

Depending on the complexity and required throughput of a hardware re-
alization of an algorithm, it is said to be either control-dominated or data-
dominated. Typical properties of a control-dominated implementation is data-
path hardware reuse and storage of large data sets. The controller is responsible
for transferring data between intermediate storage and the datapaths, and mak-
ing the datapath execute the correct operations. A data-dominated hardware
realization typically consists of a multistage pipeline datapath, operating on
high speed datastreams.

3.3.1 datapath

The computational operations of a DSP algorithm implementation is performed
in datapaths. Here, arithmetic and logic operations are executed. An imple-
mentation may contain only one datapath, but it is common to have several,
depending on the complexity of the implemented algorithm and the design con-
straints. Data is fed to a datapath from either another datapath, a memory, or
from an off-chip device. The datapath itself operates independent of what kind
of data it is or from where it originates. A controller is working in conjunction
with memories and datapaths, and is responsible for data scheduling between
the units. However, it is possible to design a datapath with memory addressing
capabilities, if it brings special advantages.

For datapath design, the design space is vast. In one end of the space is
the hardware-mapped datapath. If the algorithm is expressed as a signal-flow
graph [31], composed of basic hardware realizable arithmetic functions and
interconnections, the hardware-mapped datapath is the one-to-one mapping of
the graph to hardware units and wires. In this scheme, every operation in the
algorithm is implemented using a unique hardware unit. Control requirements
for such a datapath are minimal.

In the other end of the design space is the generic datapath, as used in gen-
eral purpose microprocessors and DSPs. This datapath is designed to perform
all possible operations present in the algorithm. Such a design decision results
in a programmable solution, with a wide application area. Data to and from
the datapath does for most applications need intermediate storage. Most likely,
there will be a memory bottleneck as there is in the Harvard or von Neumann
schemes discussed in section 1.1. Therefore, the flexibility added results in a
lower performance.

For a given DSP algorithm, such as an FIR filter, there is no point in
implementing it using a general purpose datapath, unless the datapath is shared
with some other algorithm in the design. For a tailored FIR filter datapath,
there is the option of doing either a hardware-mapped or time-multiplexed
implementation.

36 General Introduction

The N tap FIR will be implemented using N multipliers for a hardware-
mapped realization. With proper pipelining [69], such a parallel solution results
in high throughput. A time-multiplexed implementation, on the other hand, is
composed of only one multiplier instance. This multiplier is used to execute all
FIR multiplications of the filter in a sequential manner. Throughput will be
lower, but the realization is more compact in size. In-between these two realiza-
tions, there is a number of hybrid parallel/time-multiplexed solutions, all with
different performance and design cost. Which solution to choose depends on
the surrounding circuits and the required performance of the implementation.

3.3.2 memory

The use of on-chip intermediate data storage significantly increases the set of
algorithms possible to implement on a single chip. However, it is important
to understand the restrictions and limitations of on-chip memories to an AS-
DSP design in order to achieve an efficient implementation. Typically, on-chip
memories occupy 50% of the chip area and about half of the power consump-
tion [25]. Thus, efficient handling of memory instances is a powerful means to
achieve high performance.

Memory for intermediate storage can be either implemented as a RAM
or, for smaller entities, using flip-flops. Memory for storage of constants can
be implemented using random logic, Read Only Memory (ROM), or FLASH
techniques. This section deals with problems associated with random access
memory. CMOS memory technology is the subject of section 4.2.

On-chip RAM has either asynchronous or synchronous access operation.
The synchronous memory behaves similarly to the common edge-trigged flip-
flop, and is preferred in a synchronous design methodology. The asynchronous
memory, on the other hand, can be converted to a synchronous access behavior
by adding external flip-flops. Thus, if a design is based on synchronous mem-
ories, it can be adopted to work with asynchronous memories as well, whereas
the other way around is not true. This is important when designing for porta-
bility, since different silicon device vendors use different memory generators.

An on-chip memory can have more than one interface port, allowing parallel
access to different locations of the memory simultaneously. This is a convenient
feature, since the data rate is multiplied while the data maintains local into
one memory instance. Again, for a design to remain portable, it is safe to rely
on single port memories only, since multiport devices are not available in all
processes. Furthermore, the area of a memory with two interface ports is larger
than the single port counterpart. For the memory generator used for the echo
canceller chip, the dual port memory is significantly larger, as shown in [52].

In figure 3.2, a graph of the area versus storage capacity for three memory

Chapter 3. ASDSP Design Methodology 37

single port RAM
two single port RAMs

dual port RAM

memory storage capacity (in words of 16 bits)

ar
ea

(m
m

2
)

120010008006004002000

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 3.2: Memory area versus storage capacity for different imple-
mentation strategies.

configurations, generated using the same generator as in [5, 52], is shown [1].
The bottom dotted line is the reference static single port memory. The other
two lines represent memory configurations with higher bandwidth. The top
solid line is a dual port synchronous memory instantiated using the same mem-
ory generator family. As shown, the dual port memory has at least twice the
area for the same storage capacity. The middle line is calculated by replacing
the single port memory with two half-sized single port memories. This effi-
ciently doubles the memory bandwidth, although the division of address space
makes it impracticable for some applications. The double-memory approach is
only slightly larger (approximately 20%) than using only one single port mem-
ory, and much smaller compared to the dual port alternative. Thus, the dual
port memory should be avoided if possible.

Memory access diagrams for a single port synchronous RAM are shown
in figure 3.3. It is assumed that all synchronous transactions appear on the
rising edge of the clock. To perform a read operation, the synchronous opera-
tion of the memory requires the address to be latched on a rising edge before
data lookup takes place. The next rising clock edge, output data is latched by
the datapath to be used for calculations the next clock cycle. As the output
data lags the input address by one clock cycle for the read access, a useless
turnaround cycle has to be added when switching from write to read opera-

38 General Introduction

READ cycle WRITE cycle

A0 A1 A2 A0 A1

D0 D1X(A0) X(A1)

CLK

A

D

CLK

A

Q

Figure 3.3: RAM access waveform for read and write operations.

tion. It is common that the data output at the turnaround cycle is the same
as was written the previous clock cycle, but it depends on the implementa-
tion, and should not be counted on. As single-port RAM only has capacity
to either perform a read or a write operation each clock cycle, the cost of
this turnaround cycle is evident in algorithms with an extensive use of read-
modify-write operations, such as the Least Mean Squares (LMS) or the Fast
Fourier Transform (FFT). To maximize the utilization of the hardware, the
implementation has to be design so that the amount of stall cycles are kept to
a minimum.

3.3.3 controller

The controller is responsible for data transfers between memories and datap-
aths, as well as making sure that datapaths with control input signals execute
the correct operations on the data.

By making sure that only controllers can do memory accesses — and dat-
apaths can not — simplifies the design process. The division into dedicated
controllers, datapaths, and memories speeds up development and verification.
Breaking the boundaries is allowed if it can be motivated for example by in-
creased performance or simpler control.

Since digital signal processing is used in for a wide range of applications,
there is a large variation in the complexity of a controller. Some applica-
tions are computationally extensive with high throughput datapaths and sim-
ple control requirements, while others have a time-shared datapath and rely on
complicated control structures. The span ranges from autonomous massively
pipelined computational units to the microprocessor architecture, with general
datapath and versatile control capabilities.

A controller behaves similar to a Finite State Machine (FSM). For every
time instance, it has a well-defined state, and state transitions are scheduled
to the next time instance depending on certain input signal conditions. The
outputs from the controller depend on the state and possibly on the input

Chapter 3. ASDSP Design Methodology 39

signals. If the outputs depend on the current state only, it is a Moore machine,
otherwise it is a Mealy machine.

It is common to model behavior of a controller as an FSM description.
Controller descriptions based on FSMs grow rapidly in complexity for larger
control tasks. For N states and M input signals, there are (N2−N)/2 possible
transitions, each with 2M possible input signal conditions. So, the number
of possible transitions grow with O(N2), each with exponential input signal
condition complexity. Even if the practically used transitions only grow in,
say, a linear fashion, a large FSM is difficult to design, verify, and maintain.
A large design may have hundreds or thousands of control signals to be read
and written at every clock cycle for sustained operation. Thus, using a single
controller for a large design results in complicated problems.

As a means to reduce the number of control signals, an instruction decoder
can be inserted between the controller and the datapath. The datapath is then
programmed using Very Long Instruction Word (VLIW) instructions, similar
to some standard processors. A more complex instruction decoder result in
shorter instructions and less flexibility, while a wider instruction word allows
more versatile operation at the cost of managing longer instruction words.

Another solution to the problem of large and complex controllers has al-
ready been mentioned — the divide and conquerer approach. By dividing
the controller into a number of disjoint subcontrollers, each tailored to a spe-
cific subpart of the algorithm, control design becomes more manageable. The
drawback with the divide and conquerer method is that inter-controller com-
munications becomes increasingly difficult with more controller units. The
inter-controller communication also grows as O(N2), and fatal situations like
deadlock [74] may occur. The phenomenon of deadlock appears for example
when two communicating units both expect the other to respond to some mes-
sage or situation, and execution stalls.

An easier way to describe controller behavior compared to the FSM descrip-
tion, is to use some kind of description language, with well-known sequential
statements such as:

if(expression) statement;

while(condition) statement;

for(initialization;condition;increment) statement;

Such high level descriptions are easier to write, debug, and maintain. LAGER
is a tool for automated control and datapath generation and has user interfaces
on several design levels [77].

A tool focused on controller synthesis given knowledge about the datapath
is an efficient means to design and maintain controllers [67]. The controller

40 General Introduction

synthesis tool parses the high level input control program and automatically
generates a controller unit, given knowledge of datapath control signals. By
this method, the design focus is on the behavior of the controller — and not
the actual implementation, which is less relevant.

3.4 Synthesis and Standard-Cell Libraries

To have a hardware solution with the lowest cost in terms of clock speed, area,
and power consumption, optimization on all design levels has to be consid-
ered [27]. In most cases, time-to-market is an important design parameter,
that is, if the design process takes too long the solution might not be competi-
tive. For that reason, it is common that design methodologies does not employ
as thorough optimization on all design levels. High level design tools pay little
attention to the lower levels. This is reasonable, however. For multi-million
transistor designs, as are common today, it is not possible to do individual
transistor sizing and layout.

Clearly, not all parts of a circuit are equally critical. Therefore, it is a waste
of time and resources to do too much optimization on the layout level. To
decrease design time, non critical parts, or even complete designs, are designed
on a higher design level. This is commonly done by relying on a cell library.
The cell library is a set of small circuits, to which a design description is
mapped. Typical circuits include various logic gates and flip-flops, but it may
also contain higher level components, such as simple arithmetic functions.

A design is mapped to a cell-library using a synthesis tool. Input to the
tool is a description of the design in a Hardware Description Language (HDL),
for example VHDL [18] and Verilog [19]. VHDL has the most functionality,
making it more flexible. On the other hand, a more advanced language may
be slower in simulation, and a bit detailed. Only a minority of the constructs
of VHDL are actually valid for synthesis.

Which language to choose is a matter of taste — a successful design method-
ology does not depend on the chosen language, but on how it is used. Describ-
ing a large design in a HDL requires disciplined design entry. Extensive use of
hierarchy simplifies both design description and code comprehensibility, while
improving performance of logic optimization tools.

Hardware implementations will loose performance by the synthesis method
compared to the full-custom technique. The designer has to rely on the ef-
ficiency of the components in the cell library, and that the synthesis tool is
capable of handling low level design issues such as load matching and wire
length calculations. For performance critical applications, synthesis to a stan-
dard cell-library may not fulfill the design constraints. In these cases, either

Chapter 3. ASDSP Design Methodology 41

the parts of the design that limit performance have to be re-designed using
full-custom techniques, or a different design decision at a higher design level
has to be taken. Identification of the critical part is important. Time con-
suming full-custom techniques should only be performed where necessary, as
design, simulation, and verification procedures are far more complicated and
time-consuming for full-custom compared to a standard cell synthesis approach.

Today, a number of high-level design tools and libraries are available. With
these tools, the design is described in terms of high-level objects, such as FIR
filters. It is tempting to design on this level, not having to care about logic
style or finite state machines. For a design with loose constraints, it may work
satisfactory, and save design time. Unfortunately, for critical circuits, a more
detailed control of the design is necessary.

The methodology used in this work is based on standard VHDL, making
it independent of any specific synthesis or design automation tools. The code
is written on a level where logic and arithmetic operations are separated from
sequential functions. The use of a HDL allows the logic, arithmetic, and se-
quential units to be written on a behavioral level. A division into logic and
sequential units makes the design easier to verify and maintain, since all time-
depending functionality is located in the sequential part of the code.

3.5 Example: FFT Architecture Exploration

In this section, an example of an architecture level design space exploration
is performed. The well-known radix–2 Fast Fourier Transform (FFT) algo-
rithm [20] is chosen as subject for the exploration. As part of the echo canceller
project, an 1024-point FFT testchip has been fabricated, see figure 3.4. Design
of the testchip initiated investigation of efficient FFT architectures.

Maximum throughput implementations of the FFT are based on pipelined
datapaths and/or systolic array architectures. A pipelined FFT processor has
a datapath consisting of several butterfly processor instances, one for every
butterfly stage, resulting in a high utilization at the cost of a large area. For
the radix–22 algorithm [40], based on a “radix–4 architecture with radix–2
butterflies”, multiplier utilization is 75%, and an N bin FFT is computed in
only N clock cycles. Performance of this pipelined FFT is thus O(N). Though
it is possible, for most applications there is little use in going faster. For small
N , high throughput FFTs can be realized using signal-flow graph hardware
mapping.

For implementations with lower requirement on throughput, such as the
adaptive filter update unit in the echo canceller, the datapath can be re-used,
or time-multiplexed, to save area. Six possible time-shared schemes based on

42 General Introduction

Figure 3.4: FFT testchip. The chip performs the fast Fourier transform
on data sets of size 1024, with a wordlength of 12+12 real and imaginary
bits.

the use of synchronous RAMs are presented and evaluated in this section. They
all use the same datapath, a radix–2 butterfly, as depicted in figure 3.6. Inputs
to the butterfly are X(s), X(t), and a twiddle factor W . The butterfly datapath
computes one addition, one subtraction, and one multiplication per operation.
In fact, the multiplication is a rotation, since the twiddle factor is a root of
unity. The indices s and t refer to locations of data in a data set. Thus, data
is read, altered by the butterfly operation, and written back to the original
locations. To compute one FFT operation using a single butterfly instance, a
number of butterfly operations have to be performed iteratively on the input
data set. For a size-N FFT, log2 N stages of N/2 butterflies each is required.
In figure 3.5, an eight bin radix–2 Fast Fourier Transform (FFT) is depicted.
It consists of twelve butterflies connected in three stages, that depend on each
other.

A straightforward time-shared radix–2 FFT architecture is based on one
memory instance and one butterfly datapath, as shown in figure 3.7. This is
the reference architecture denoted architecture A. The box “Radix–2 Butterfly”
is the structure from figure 3.6.

The butterfly datapath is combinational, and surrounded by pipeline reg-
isters for performance and power consumption reasons. Registers marked with
an “E” have an enable signal. The content of the E-register is only updated
when the enable signal is active, otherwise it keeps its old value. The datap-
ath has two inputs and two outputs, twiddle factor not counted. The twiddle
factors are stored in a ROM, which for clarity is not shown in the pictures.

Chapter 3. ASDSP Design Methodology 43

X(0)
X(4)
X(2)
X(6)

x(2)

X(1)
X(5)
X(3)
X(7)

x(0)
x(1)

x(7)
x(6)

x(3)
x(4)
x(5)

Figure 3.5: Eight-bin radix–2 FFT.

W

X ′(s)

X ′(t)X(t) −

X(s)

Figure 3.6: A radix–2 butterfly datapath. One butterfly operation
requires six clock cycles. The datapath is used during the cycle marked
“Calc” only.

At maximum pace, the datapath inputs two words and outputs two words
of data each clock cycle. Since the memory can either read or write one word
per clock cycle, the datapath has four times the possible throughput of the
memory. Furthermore, as one clock cycle is required to perform the butterfly
operation, and one clock cycle is lost due to read/write turnaround, the single-
memory FFT requires a total of six clock cycles per butterfly, see the waveform
diagram in figure 3.8.

An obvious drawback with architecture A is that memory and datapath
operate in a serial fashion. By adding two more buffer registers, operation
is parallelized. This architecture, denoted B, is shown in figure 3.9, and the
corresponding waveform in 3.10. Note the analogy to software pipelining [42].
With this architecture, the theoretical lower bound is reached, since a butterfly
operation is performed on average every fourth clock cycle, using a datapath
instance having fourfold the throughput of the memory. In order to have a
faster architecture, memories with higher throughput are required. Thus, when
reaching the optimal solution, memory throughput is the limiting factor.

In order to increase throughput using single port memories, parallel memory

44 General Introduction

E

ERAM
Radix–2
Butterfly

E

D Q

Figure 3.7: Architecture A, radix–2 FFT. The twiddle factor ROM is
hidden in the butterfly datapath.

Calc

s0 t0 s0 t0

X(s0) X(t0)

X ′(s0) X ′(t0)

CLK

A

Q

D

Figure 3.8: Waveform for architecture A.

units have to be instantiated. Using two instances each with half the original
storage capacity results in two new architectures, A′ and B′. The idea is that
an N bin radix–2 FFT can be split into two N/2-sized FFTs plus a pre or
post stage. This follows directly from the derivation of the radix–2 FFT [20].
Data for the two smaller FFTs is stored disjointly in the two memories, and
the transforms are calculated independently. Due to the low utilization of the
datapath, the two N/2-sized FFTs can be skewed a few clock cycles apart, and
use the same butterfly datapath without collision.

A better way to utilize parallel memories for FFT calculation is to use
Cohen’s scheme [30]. It is based on the observation by Pease that s and t
always differ in parity [70]. Therefore, x(s) and X(t) can be stored in different
memories that are accessed in parallel. More advanced schemes to reduce power
consumption by further separating the memories into source and destination
banks have been proposed, see for example [54].

Two architectures, C and C′, based on the observation by Pease [70], are
depicted in figure 3.11. The difference between the architectures is that C′ has
an extra set of flip-flops in the datapath. Data associated with odd-parity bins
are stored in one memory, while data with even-parity address is stored in the

Chapter 3. ASDSP Design Methodology 45

E

E

E

E Radix–2
Butterfly

RAM

D Q

Figure 3.9: Architecture B. By adding two registers for intermediate
storage, throughput can be increased by 50%.

s0 t0 s1 t1 s0 t0 s1 t1

X(s0) X(t0) X(s1) X(t1)

Calc0 Calc1

X ′(s0) X ′(t0) X ′(s1) X ′(t1)

CLK

A

Q

D

Figure 3.10: Waveform for architecture B. Two butterfly operations
are executed in eight clock cycles.

other. Depending on the parity of s, the contents of the odd or even memory
should be connected to the top or bottom input of the butterfly. The switching
of the input signals is implemented as two switches, each composed of double
multiplexers, at the input and output of the memories.

The number of clock cycles for a read, compute, and write back operation is
three clock cycles, including synchronous memory and pipeline flip-flops. The
throughput of the architecture is improved by retiming [69] the operation to
four clock cycles by extending the path by an extra set of registers. Retiming
results in the final architecture, C′ to be covered in this section. A wave graph
for architecture C′ is shown in figure 3.12.

To summarize, the number of clock cycles for a given architecture is shown
in table 3.1. The performance differs a factor three between the worst (A) and
best (C′) architecture. It might be surprising to see that the initial architec-
ture based on Cohen’s scheme (C) is not as fast as B′. However, it is fair to
compare B′ to the retimed version using Cohen’s scheme (C′), where the latter

46 General Introduction

E

Radix–2
Butterfly

RAM

RAM

D Q

QD

C′

Figure 3.11: Architectures C and C′. The architecture C lacks the
extra flip-flop at the output of the datapath, only present in Cprim. For
the C′ architecture, the location of the flip-flop could be anywhere in the
datapath.

Calc0 Calc1 Calc2 Calc3

t1 t2 t3 t0 t1 t2 t3t0

s1 s2 s3 s0 s1 s2 s3s0

X(t0) X(t1) X(t2) X(t3)
X(s0) X(s1) X(s2) X(s3)

X ′(t0) X ′(t1) X ′(t2) X ′(t3)
X ′(s0) X ′(s1) X ′(s2) X ′(s3)

D

Q

A

CLK

Figure 3.12: Waveform for architecture C′.

is the fastest.
It is interesting to note what happens when migrating from radix–2 to

radix–4 using a time-shared architecture. The number of butterfly computa-
tions decrease from N/2 log2 N to N/4 log4 N , or to one fourth. This indicates
that a time-shared radix–4 architecture will be four times faster than its radix–
2 counterpart, since the architecture is based on iterative use of one butterfly
datapath. However, the radix–4 butterfly datapath requires a throughput of
four reads and four writes per operation, that is, at least eight memory ac-
cesses per butterfly, whereas the radix–2 architecture required only four. As
the radix–4 butterfly requires twice the number of memory accesses, total in-

Chapter 3. ASDSP Design Methodology 47

Table 3.1: Clock cycles for an N bin FFT for architectures A to C′. A and B
are based on one N -word memory instance, while B to C′ have two N/2 word
instances.

N A B A′ B′ C C′

16 192 128 120 80 80 64
64 1152 768 672 448 480 384

256 6144 4096 3456 2304 2560 2048
1024 30720 20480 16896 11264 12800 10240
4096 147456 98304 79872 53248 61440 49152

crease in performance is not a factor four, but only two, depending on memory
bandwidth. A further increase of the radix results in non-trivial twiddle multi-
plications within the butterfly structure and the gain of such an implementation
is in general not worth the additional complexity introduced by these multipli-
cations. Furthermore, with a higher radix, there are less choices of N , making
the architecture less flexible.

The split-radix–2/4 algorithm outperforms both radix–2 and radix–4 in the
number of multiplications per FFT operation [35]. The algorithm is commonly
mentioned in the context of high performance FFT calculations, and is there-
fore an important implementation candidate. Unfortunately, the split-radix
algorithm is implemented as a radix–2 or radix–4 FFT, with the same number
of butterflies. Therefore, there will be no gain in the number of clock cycles per
FFT for the split-radix algorithm. Power consumption may be lower though,
if the trivial multiplications by j are implemented efficiently.

In conclusion, looking at the radix–2 case, a performance increase of a factor
three is gained by building a few models to explore the design space. The
cost associated with the performance gain is a few extra registers and a small
overhead from using dual RAMs described in section 3.3.2. More complicated
algorithms are faster, but maybe not as fast as expected when implemented
using a limited memory bandwidth.

3.6 Low Power Optimizing Strategies

Power consumption is affected by decisions on all levels of the design process,
from choice of algorithm to logic style and layout. For a low overall power
consumption, optimizations have to be applied on as many design levels as
possible [27].

In a CMOS circuit, the dynamic contribution to the total power consump-

48 General Introduction

tion dominates in general. Since dynamic power is energy per time, the power
measurement is dependent of the execution rate. A more accurate measure-
ment to minimize is the energy per operation. The theory behind CMOS power
dissipation is discussed further in chapter 4.

Focusing on the energy per operation, there are two variables affecting
the power consumption. First, the amount of energy spent for an operation.
Second, the number of operations per time unit. The amount of energy per
operation depend on supply voltage and load capacitance. The load capacitance
depends on the layout level of wire lengths and transistor size. On a higher
design level, factors affecting the load capacitance are logic style, arithmetic
implementation, and memory size. The number of operations per time unit
depend on the clock rate of the system, see section 4.1.3, and the average
number of transitions in the circuit. In the next two sections, two methods to
reduce power consumption based on minimizing the energy per operation and
number of operations per time are presented.

As will be seen in section 4.1.2, the supply voltage VDD has a quadratic
impact of the power consumption. Clearly, a low voltage is desired for low power
dissipation. However, there are two main effects contradicting a reduction of
the supply voltage. First, the device gets slower. For voltages well above the
threshold voltage, speed decreases approximately proportional to 1/VDD. This
is a result from equation (4.3). Second, as the supply voltage is lowered, there
is a corresponding decrease of the signaling voltage. When the noise margin
determined by the threshold voltage is reached, the logic will malfunction.

A well-known power optimization technique is to design the circuit at higher
target clock frequency than it is intended to be used at. The circuit is then
run at the lower, intended pace. The energy per operation remains the same,
independent of the clock rate, but power is saved by lowering the supply volt-
age [27]. The speed margin created by the higher target clock frequency allows
for operation at a lower voltage. On the other hand, a circuit optimized for
speed is in general more flattened, consisting of fewer gates in series. This re-
sults in a larger share of high fan-out nets, requiring large drivers to maintain
speed. Large drivers and long interconnection wires have a higher capacitance
resulting in a higher power consumption, since power is proportional to the
total switched capacitance, see section 4.1.4. Thus, by making the circuit fast
does not guarantee a low power consumption. Designing for low power is dif-
ferent from designing for high speed.

3.6.1 activity factor optimization

Activity is defined as the average number of switching cycles per time unit for a
node, see section 4.1.4. By reducing the switching activity, power consumption

Chapter 3. ASDSP Design Methodology 49

is lowered. For example, submodules can be deactivated when not computing.
Deactivation can be done to a certain level. On the first level, all inputs to
the submodule could be frozen, and internal feedback loops cut. Keeping input
signals constant reduces switching activity inside the submodule. Remains the
clock signal. As the clock signal is always switching large capacitive loads, the
second level of deactivation is reached by gating the clock, virtually freezing all
signals in the module. As there is no switching activity in the frozen module,
power dissipation is due to leakage currents. Leakage current can be reduced
by increasing the threshold voltage, and this is a subject of section 4.1.1.

For circuits with constant operation, or in designs where clock gating is not
feasible, dynamic power consumption is decreased by reducing the switching
activity of operating circuits. On the higher design levels, factors like the choice
of algorithm and memory addressing have a large impact. On lower design
levels, low-switching implementations of arithmetic functions and wordlength
optimization are important. Low-activity arithmetic circuit realization is a
technique applicable to most designs. For example, a tree adder compressor has
a shorter logic depth, and thus less switching, compared to an array compressor,
see paper III [17]. Another example is the use of carry save arithmetic, where
no high switching activity carry ripple is present.

The width of buses and signals directly sets the width of the computational
units in the datapath. Therefore, a minimum wordlength is a powerful means
to reduce switching activity. In general purpose processors and DSPs, data
wordlength is fixed. This implies that the datapath is of fixed size, independent
of the required or necessary accuracy of the data. Some processors allow for
splitting the data path in halves or smaller parts, though, thereby allowing an
alternative data format with lower accuracy. The main aim with this construct,
however, is to increase throughput by parallelizing the data flow in a Single
Instruction Multiple Data (SIMD) like fashion — and not to reach a low power
operation.

The ASDSP design allows for optimal wordlengths on all signals in the
design. Datapaths and memories are optimized towards the input and output
data wordlengths, resulting in a minimal overhead in computation and storage.
Thereby, switching activity is decreased.

3.6.2 memory optimization

Memory accesses are costly operations that have a major contribution to the
total power consumption of an ASDSP [25]. The larger the memory, the more
energy is consumed per access. Furthermore, large off-chip memory devices
require orders of magnitude more energy per access than a small on-chip mem-
ory. Off-chip signaling is also expensive in energy due to the large capacitances

50 General Introduction

associated with bonding wires, package pins, and Printed Circuit Board (PCB)
wires. For the reasons given, the number of memory accesses should be kept
at a minimum — especially accesses to external memory devices. A primary
goal is to reduce the number of accesses to large memories. A memory manage-
ment methodology, such as the Data Transfer and Storage Exploration (DTSE)
methodology is a means to reach the goal [25]. The idea is as follows:

first, by loop transformation techniques [3], the memory accesses are con-
centrated in time and memory range

second, cache memories — small energy efficient memories for intermedi-
ate storage — are used to mirror the data in the larger memories

If the accesses can be arranged to be local in time and address range for a time
period, most memory accesses are addressing the small on-chip cache memory
instead of the off-chip memory device. The arrangement leads to a lower energy
per operation in average. Furthermore, as cache memory is faster, throughput
is increased and the application executes faster.

The memory methodology is illustrated by an example. Consider a two-
dimensional time domain convolution of an image and a filter kernel. For
simplicity, both the image and the kernel have a quadratic shape. The image
has N ×N elements, whereas the kernel has M ×M elements. It is assumed
that the image is large and that the kernel is significantly smaller than the
image.

The convolution operation is performed by moving the kernel over the im-
age. For each kernel position, overlapping image and kernel elements are mul-
tiplied and accumulated. The accumulated sum is the correlation output value
for the image element corresponding to the center of the kernel. The operation
lasts until the multiply and accumulate operation has been carried out for all
possible positions of the kernel. The multiply and accumulate operation of the
M2 elements is performed in its entity at all positions, and the kernel visits
every unique position only once.

Figure 3.13 illustrates the convolution process. The shape of path described
by the kernel during the convolution operation has no significance to the calcu-
lated result. To simplify the example, kernel movement is restricted — no part
of the kernel is allowed outside of the image bounds. The restriction implies
that there are no output values computed for the outermost elements of the
image.

As a consequence of the large image size, it has to be stored in an off-
chip memory. Large memories have a higher energy dissipation per access and
longer access times than the small counterparts. Furthermore, off-chip accesses
in themselves are expensive in energy dissipation. In order to reduce memory

Chapter 3. ASDSP Design Methodology 51

N

N

Figure 3.13: Two-dimensional convolution. Filtering of an image by a
kernel.

access energy, a cache memory scheme is investigated. Since the kernel is
M ×M elements, and a multiply and accumulate operation is performed at
(N −M + 1) × (N −M + 1) positions, there will be a total of M2(N −M +
1)2 ≈ M2N2 read accesses to the large memory, resulting in a high energy
consumption. Ideally, with a perfect cache scheme, the number of reads to the
large memory is only N2, or one access per element. If the M2M2 accesses are
addressing a small cache memory instead, a significant reduction is expected.

Assume that the image is stored with address zero corresponding to the
upper left element, and that the following elements are stored horizontal ele-
ments first, left to right. If the kernel moves in a top to down vertical move-
ment first manner, starting at the top left position and working its way to the
bottom right position, the memory access pattern will look like illustrated in
figure 3.14(a). The thick line is not continuous — there are small leaps up and
down the address range on the smaller scale. Every time the kernel moves one
image element down, memory addressing will increase by N elements. When
the kernel has reached the bottom line, it moves back to the top, one element
to the right, and the procedure repeats. Thus, the majority of the memory
address range is accessed continuously. If a small cache memory is to be used,
its contents have to change rapidly. Therefore, it is difficult to apply a cache
strategy with an access pattern as in figure 3.14(a).

From a cache point of view, the ideal access pattern for the convolution
would look like in figure 3.14(b). The memory accesses are local in time and
address space, and therefore cached data will be valid for a larger number
of accesses. Again, this is on the larger scale, the curve is fluctuating on
the smaller scale, but it is not significant in this context. An access pattern
like in figure 3.14(b) can be achieved by applying loop transformations [3].
A simple modification to the algorithm — letting the kernel move horizontal
before vertical, and not the other way around — will generate such a pattern.

52 General Introduction

m
em

or
y

lo
ca

ti
on

time
(a) (b)

time

m
em

or
y

lo
ca

ti
on

N2 N2

Figure 3.14: Memory access patterns for different loop ordering. (a)
results from moving the kernel top to bottom, left to right; (b) when
moving first left to right, then top to bottom. The thick lines are not
continuous — on a lower scale addressing is less regular.

Now, as the kernel moves left to right, the memory addressing is incremented
by one for each step to the right. When the rightmost operation is finished, the
kernel jumps back to the left and begins at a new line, increasing the address
counters by M only.

Loop transformations have to be applied with care. By rescheduling the
order of read operations, output data will most likely be rescheduled too. Fur-
thermore, if the loops of the kernel M ×M multiply and accumulate operation
is part of the loop transformation process, the calculation of each image element
output will be distributed in time. If an output calculation is only performed
in part, intermediate storage is required, and it is less likely that there will be
any gain from the loop transformation. Instead, by keeping the multiply and
accumulate operation intact, there are no dramatic changes to the algorithm.

There are a number of candidate cache memories for the convolution ex-
ample. The more straightforward alternatives, found by examining the loop
counter bounds after loop transformation, are depicted in figure 3.15.

Scheme A, based on the external memory M0 only, for reference.

Scheme B, using a combination of M0 and C0. The larger cache memory,
C0, has capacity to store a kernel sized fraction plus the M−1 last visited
lines of the image. For every right-step, only one new image element has
to be read, while one old is discarded. For a right to left jump, M new
elements are read. In total, N2 reads from M0 are required for a complete
convolution operation, which is optimal.

Chapter 3. ASDSP Design Methodology 53

Table 3.2: Cache memory schemes and the corresponding number of accesses
between each memory.

scheme M0→ C0→ C1→
A: M0 M2(N −M + 1)2

B: M0→C0 N2 M2(N −M + 1)2

C: M0→C1 MN(N −M + 1) M2(N −M + 1)2

D: M0→C0→C1 N2 MN(N −M + 1) M2(N −M + 1)2

N2 M2N(M − 1) + M

M0

C0 C1

Figure 3.15: Possible cache memories for the two-dimensional convolu-
tion example. The number of stored elements is printed in each memory.

Scheme C, based on M0 and C1. The smallest memory, C1, is large
enough to hold a kernel sized image fragment. For every step to the right,
M new elements need to be read from the large memory M0, and M old
values are discarded. When reaching the right border and jumping back
to the left side, all M2 values have to be replaced. This memory requires
MN reads per row times (N −M +1) rows, or MN(N −M +1) ≈MN2

reads per convolution from M0.

Scheme D, combining M0, C0, and C1 in a hierarchy. The scheme is
interesting, since C0 has the minimum number of accesses from the large
M0, and C1 has minimum size and is target for most accesses.

The number of accesses between the large memory M0, the different cache
memories (C0 and C1), and the target datapath are shown in table 3.2 for the
four different cache hierarchies, A to D. As expected, the number of accesses
to the datapath is constant for all four schemes, but the access count to the
large memory varies.

The effect of the cache hierarchy exploration is best seen if real numbers
are used. Let the size of the image memory be 1024 × 1024 elements, and
the kernel 15 × 15 elements. These numbers are reasonable for some image

54 General Introduction

Table 3.3: Energy consumption for the external and internal memories. The
off-chip signaling power dissipation due to accessing of M0 it not included in
the table. See text for more information about the memory instances.

memory words wordlength energy/access

M0 1048576 16 60 nJ
C0 15376 16 4 nJ
C1 225 16 1 nJ

applications [66]. Energy access cost are presented in table 3.3. The table is
created using the same memory generator as used for the echo canceller imple-
mentation [1]. Data for the large off-chip memory is taken from a low power
static RAM [58]. It should be noted that the external RAM is a state-of-the-
art component, fabricated in a 0.18µm process, while the embedded memories
are implemented in a slower and more energy consuming 0.35 µm process. The
presented number are nominal, expected to be valid under “normal” conditions.

Total cost of the different cache schemes A to D is shown in table 3.4.
The scheme based on no cache memories (A) consumes 30 times more energy
compared to the best scheme (D), for the same operation. The energy cost
for off-chip communication is not included in the table, and neither are ad-
justments for the different manufacturing processes. If off-chip access cost and
process scaling was included, the differences would be even more dramatic. Es-
pecially, comparing B and C, the former has about M times less accesses to
M0, and is therefore a better choice when the external memory addressing is
more expensive.

Cache memories add to the total chip area. The scheme having a 30 times
reduction (D) in energy requires about 30 kilobyte internal memory. Scheme C,
with an energy saving of twelve times, requires only 450 bytes memory, which
comes at a negligible cost in most implementations.

Furthermore, as internal memories are faster, the operation will be carried
out in a shorter time using cache memories, if the internal clock rate is higher.
The external low power memory runs at a maximum frequency of 18 MHz [58],
while on-chip circuitry in a corresponding process typically runs at one to two
decades faster. Assuming the on-chip convolution processor and cache memory
runs at 180 MHz, ten times faster than the external RAM, speedup will be in
the range of six to nine times depending on the cache scheme.

In summary, all proposed cache schemes reduce energy consumption con-
siderably while increasing the throughput. Which scheme to choose depends
on a number of implementation constraints, such as required throughput, chip

Chapter 3. ASDSP Design Methodology 55

Table 3.4: Energy dissipation for the different cache schemes.

cache configuration energy cost

A: M0 13.82 J
B: M0→C0 1.03 J
C: M0→C1 1.21 J
D: M0→C0→C1 0.40 J

area, and control resources.
In [65], a convolution processor for image enhancement is presented. The

architecture employs a cache hierarchy corresponding to scheme B in this sec-
tion.

3.7 ASDSP Design Flow

A design flow covers the important levels and tools used for going from initial
problem description to a hardware implementation. For digital circuits, the
design process is carried out at a number of levels: initial problem description,
algorithm, architecture, arithmetic, logic, and layout. Highest performance is
achieved if all levels are considered during the design phase. For today’s multi
million transistor designs, however, this is not possible within a reasonable
time perspective. Instead, synthesis tools and cell libraries are used to raise
the abstraction level of the design process. Synthesis tools and cell libraries are
the subjects of section 3.4. Still, for designs with extraordinary requirements
on speed or power, low level full-custom design is the only way.

The ASDSP design flow is based on synthesis and automatic layout tools.
The flowgraph is depicted in figure 3.16. The design process evolves vertically in
the diagram, from initial description at the top, down to a fabricated chip at the
bottom. From the initial specification, constraints that determine performance
of every part of the design are derived. At each level, the design is compared
to the initial specifications and constraints, and incremental optimization is
performed as required. Further constraints are added at lower design levels.
Sometimes, a larger leap up in the design flow might be necessary to meet
the design constraints at a lower level. The initial step of going from a DSP
problem to an algorithm is not within the scope of this thesis.

The design flow depends on a standard cell library and a synthesis tool, by
which the lowest design levels are removed. Instead, the design is modeled using
a Hardware Description Language (HDL), see section 3.4. The HDL description
is mapped to nets and cells in the synthesis process. A cell is a component

56 General Introduction

that reside in a standard-cell library, and the nets are connections, or wires,
between cells. The cell library has to contain the most necessary combinational
and sequential logic functions for the process to work. The resulting circuit is
sub-optimal, in the sense that all cells are pre-defined and no optimization on
the transistor level is done, but the advantages are several:

A hardware description language allows for parameterization and flexibil-
ity of a design. Different wordlengths and coefficients can be elaborated
with a short turn-around time.

The design does not depend on a specific hardware technology. Therefore,
the design can be resynthesized to any cell-library.

Design time is shorter than for full-custom. Modifications and corrections
can be included with a short turnaround time. Time to market is an
important factor.

There are standardized, non-propriety languages available, and support
from several independent software companies.

The main parts of the ASDSP design flow in figure 3.16 are

Specification. For a given a DSP problem, a specification regarding the
operation of the implementation is elaborated. Initial constraints in terms
of timing budget, cost, and accuracy are approximated. From these con-
straints, together with target implementation technology data, detailed
design constraints are derived regarding area, power consumption, mini-
mum clock frequency, and so on.

Algorithm An algorithm to solve the problem is developed in a high level
simulation language. On the algorithm level, simulations are performed to
find higher bounds on accuracy; and the number of arithmetic operations
per second can be estimated. This simulation model is later used to
compare lower level descriptions.

Architecture and arithmetic An architecture of hardware functional units
is developed. The architecture is designed to make mapping of the algo-
rithm to the functional units easy. Furthermore, the implementation of
the arithmetic operations of the functional units is investigated. Standard
architectures for the most common arithmetic operations are available in
a library. If special arithmetic is to be used, it has to be designed sep-
arately. Modeling of the architecture is done in a high level hardware
description language.

Chapter 3. ASDSP Design Methodology 57

Manufactured
chip

extraction

phys. test

si
m

ul
at

io
n

si
m

ul
at

io
n

si
m

ul
at

io
n

si
m

ul
at

io
n

Architecture
and arithmeticlibrary

cell
library

arithmetic

Specification

Algorithm

Netlist

Physical
layout

co
m

pa
ri

so
n

Figure 3.16: A typical design flow for ASDSP design using hardware
description languages and synthesis tools.

Netlist When the algorithm has turned into an architecture, proven to be
consistent with initial specifications by simulation, it is synthesized using
a synthesis tool. The generated netlist consists of instances of compo-
nents from the target cell library, memory instances created by memory
generator, and interconnecting wires. The netlist is by simulation com-
pared to the architecture model it originated from. It is also possible to
do formal verification. Analysis of the netlist gives approximate infor-
mation on area and timing of the final chip. After layout, timing goals
might be violated, and it is necessary to satisfy design constraints with
a sufficient margin at the netlist level. Small performance improvements
can be achieved by exploring the parameter space of the synthesis tool,
but larger improvements force re-design at a higher level, for example by

58 General Introduction

modifying the architecture or by using faster arithmetic.

Physical layout Using place and route tools, the netlist, together with
information from the target cell library, is transformed into a layout de-
scription of the design. Cells are placed according to a floorplan, and
interconnecting wires are routed accordingly. The floorplan effects the
total wire-length of the layout, and is designed with care. Furthermore,
power wires and clock signals are routed using special strategies. Most
steps on the physical level are done by design tools. Design of the floor-
plan is an exception, designed by hand, as it has great impact of the
performance of the circuit. Extraction of capacitances and wire lengths
of the physical layout are fed back to the netlist simulation to get a more
accurate timing of the placed and routed design. When the design is
completed and verified it is sent for fabrication.

Manufactured chip When the chip has returned from fabrication, it is
compared to the design specifications. Functional verification as well
as performance in terms of maximum clock rate and power dissipation
are investigated. For a mass-produced circuit, fast correctness tests are
developed to find faulty chips [37].

As a DSP problem converges from initial specification to an ASIC, it is
modeled on several abstraction levels. For each level, there is an accompanying
language that is well-suited for the description. However, coupling between
the different models and languages is a necessity, since design iteration depend
on the possibility of going “back” one or more levels of the design flow, to
make corrections to problems that becomes evident first on lower description
levels. Furthermore, consistency between the different levels of the design flow
is important to guarantee that the design complies to the initial specification.
The design has to be validated at all design levels. Ideally, each model is by
simulation compared to the initial algorithm. Since several modeling languages
are involved in the design process, it is complicated to achieve such a compar-
ison in practice. Instead, every design level is at least compared to the level
immediately above.

3.8 A Design Methodology

As mentioned at the end of the previous section, consistency of the design flow
is a problem due to the different modeling languages involved. Here, a method
for keeping consistency from algorithm description to a low level fixed point C
description is presented.

Chapter 3. ASDSP Design Methodology 59

Initially, an algorithm is modeled in a high level language, such as Mat-
lab [56] or Octave [36]. High level languages makes design entry fast, and
comes with extensive debug capabilities to shorten design iteration time. Un-
fortunately, expressing the algorithm in terms of high level operations such
as matrix operations and FFTs results in a description that is far from the
architecture level. A description in for example the C Programming language
is closer to the architecture level, since the basic data types are scalars, and
arithmetic operations are performed on scalar data only. The method proposed
in this section transforms a Matlab or Octave description into C, with a guar-
anteed consistency of the descriptions. The methodology is used in this thesis
work and is summarized as follows:

1. The algorithm is developed in a high level language such as Octave [36] or
Matlab [56]. On this design level evaluation of different algorithms and
transformations is fast. The languages comes with libraries of standard
DSP functions that can be called from the program, and arithmetic is
performed using double floating point precision. Furthermore, powerful
visual aids speed up debugging and assists in finding errors.

The first description is typically non-causal, accessing input data for time
n, −∞ < n < ∞. This makes it difficult to estimate important imple-
mentation properties, such as in which order things have to happen and
how much memory that is required.

2. Sub-algorithms are rewritten one at a time into the C programming lan-
guage. By linking the C code dynamically into Octave or Matlab, it can be
run together with the original high level code. Therefore, the debugging
process uses the same development environment with advanced graphi-
cal capabilities as used for the initial algorithm model. If every part of
the algorithm is rewritten and debugged consecutively in this fashion,
consistency with the original description is kept.

Eventually, all code is transfered to C and debugged in this fashion, and
at the same time it is verified to the original description. The C model of
the algorithm does not, as opposed to the high level description, rely on
matrix operations. Instead, it is constructed based on additions, multipli-
cations, and for-loops. With such a description, it is easy to understand
the complexity of each and every part of the algorithm.

3. All sub-algorithms are merged into one C function block. This block can
still be run from inside the high level environment, keeping the same de-
bug functionality, but having significantly lower simulation times. For
the echo canceller implementation, a twenty times faster simulation time

60 General Introduction

was observed. The new description will contain several loops over time
ranging from a low index to infinity.

for(n=nmin0; n<∞; n++) {
· · · loop body 0 · · ·

}
for(n=nmin1; n<∞; n++) {
· · · loop body 1 · · ·

}
for(n=nmin2; n<∞; n++) {
· · · loop body 2 · · ·

}
· · ·

It is straightforward to move all loop bodies into one large for-loop.
The largest loop initialization value is

initial n = max
i

(nmin i).

By splitting all for-loops into two parts, one ranging from nmin i to
initial n−1, and one from initial n to infinity, as

for(n=nmin0; n<initial n−1; n++) {
· · · loop body 0 · · ·

}
for(n=initial n; n<∞; n++) {
· · · loop body 0 · · ·

}

all loops ranging to infinity are merged into one main loop. The residual
loops ranging from nmin i to initial n−1 describe transient behavior,
and all variables with index within the range can be set to zero, as the
reset sequence.

The main loop is translation invariant, and can begin at any time unit.
For comprehension, the loop is translated to start at time unit zero.

4. The resulting C-code is prettified, pruned and subject to various low-level
optimizations. Loop transformation [3, 25] is a powerful tool used to
explore the design space of the algorithm. Memory size requirements are
found by studying loop bounds. To verify the bounds and to simulate
memories of limited size, memory addressing is performed integer modulo

Chapter 3. ASDSP Design Methodology 61

the memory size. Cache hierarchies can be found and exploited to reduce
memory power by utilizing the Data Transfer and Storage Exploration
(DTSE) memory management methodology [25].
Signal wordlengths are optimized using a suitable tool. A C++ library
overloading the arithmetic operations has been found to be efficient [45].

The resulting code contains all necessary information for a hardware imple-
mentation: memory sizes, signal wordlengths, data operations, and the order
in which operations are to be executed. However, the memory sizes found
by this method are maximum sizes, and the description is subject to further
optimizations.

The presented scheme is only part of the way towards an architecture. Ev-
ery operation present in the resulting code can be realized in a more or less
parallel fashion in the architecture. For a more parallel solution, requirements
on intermediate data storage is reduced. In order to reach an efficient architec-
ture, implementation constraints are added to the description. Typically, these
constraints include sample rate, clock frequency, area limitations, and power
consumption. Constraints for every functional unit can be derived from this in-
formation. With known constraints, functionality, and memory requirements,
an architecture for each functional unit can be constructed.

A design project will consist of a large number of lines of code. In the
design methodology, all code is written according to a number of rules regarding
simplicity, clarity, and generality [48, 49]. To minimize the risk of old code
turning obsolete, the methodology is based on standard, de-facto or otherwise,
formats and programs, such as the C programming language [50], VHDL or
Verilog, and common UNIX [48] tools.

3.9 Summary

A thorough methodology is necessary to complete large ASDSP designs. The
design space is explored to find local cost minima for algorithms and archi-
tectures. By dividing the design into a hierarchy, design, verification, and
maintenance becomes easier. Each submodule in the hierarchy contains one
or more of the following components: memory, datapath, and controller. The
different phases of the design process is further simplified by only letting the
controller manage memory accesses, while the datapath computes operations
on data only. To speed up the design process, the lower level of CMOS design
are replaced by standard-cell libraries and synthesis tools. Memory throughput
is often a bottleneck in digital designs. The use of cache memories is an efficient
means to increase throughput and reduce energy per operation in architectures
with large or frequently addressed memories.

Chapter 4

CMOS Technology

Complementary Metal Oxide Semiconductor (CMOS) technology is by far the
most used digital integrated device technology today. The development of
CMOS circuits follows Moore’s law, stating that the number of components
on a chip giving the lowest manufacturing cost grows exponentially over time.
In his original paper, Moore stated that the number of devices on a chip will
double every year [59]. The assumption was based on linear extrapolation in
a logarithmic diagram of data from designs fabricated between 1959 and 1965.
In 1959, the most cost-effective design had about 50 components. Later, Moore
revised the prediction to a doubling every second year.

Today, four decades later, chips containing a hundred million transistors are
realistic to fabricate. To make this dramatic increase in the number of transis-
tors per chip possible, the size of each transistor has shrunk tremendously. A
smaller transistor is faster, and this effect has in turn given the devices even
higher performance. The corollary to Moore’s law appears to be that micropro-
cessor performance doubles even faster than the number of devices per chip.
The rate of performance increase of microprocessors is as fast as a doubling
every eighteen months1 [87].

CMOS technology is under constant development, and Moore’s law still
seems to be relatively accurate. A common question is how long can CMOS
technology development keep up with Moore’s law. Most likely, the pace will
decrease as device sizes approach the atom scale [87].

1There is a slight confusion about the term “Moore’s law” in the literature. Transistor
count or performance doubling every eighteen months is a common interpretation.

63

64 General Introduction

4.1 Power Dissipation in CMOS

A major reason that contemporary high performance devices are implemented
in CMOS technology, except for low cost, reliability, and high density is the al-
most complete absence of static power consumption in steady-state mode [73].
For circuits not constantly occupied by computational tasks, this is beneficial,
since they can be turned off when idle to save energy. Low power consumption
is important in for example handheld devices, where battery capacity limits
time of operation. Furthermore, low power consumption is also attractive in
stationary, mains-powered applications. Low power consumption implies re-
duced requirements on cooling, which is expensive, and increases the reliability
of the device since it will operate at a lower temperature.

To design power efficient hardware, it is important to understand the basic
theory of CMOS power dissipation, even if the design process is focused on the
architectural level. The total power consumption of a digital CMOS gate can
be divided into a static and a dynamic contribution [26], as

Ptotal = Pstatic + Pdynamic. (4.1)

The two parts consists in turn of a number of sources, of which the major ones
will be discussed in more detail.

4.1.1 static power dissipation

Static power dissipation is due to leakage currents, and is modeled with a simple
equation,

Pstatic = IleakageVDD, (4.2)

where VDD is the supply voltage. The leakage current is primarily determined
by fabrication technology considerations [22]. There are two main sources of
leakage current, reverse-biased diode junction current and sub-threshold cur-
rent. The first is due to thermally generated carriers. These carriers flow
through the reverse-biased diode junctions of the transistors located between
the source or drain and the substrate. The reverse-biased diode junction cur-
rent is generally negligible at room temperature, but increases with junction
temperature in an exponential fashion.

The sub-threshold, or weak-inversion, current is potentially a bigger issue
when considering low-power methodologies. When a CMOS transistor is “log-
ically off”, there is still a small drain-source current present. The transistor
experiences an exponential decrease in drain-source current as the gate-source
voltage VGS decreases below the threshold voltage VT . Figure 4.1 illustrates the

Chapter 4. CMOS Technology 65

VGSV ′
T VT

I0

I ′1

I1

log(IDS/A)

Figure 4.1: Logarithm of IDS versus VGS for two different threshold
voltages. The exponential relation between gate voltage and the drain
current is a straight line in a log plot. See text.

(logarithm of the) weak-inversion current versus VGS for two different thresh-
old voltages. Moving from VT to V ′

T results in a change in leakage current
from I1 to I ′1. Thus, a large VT gives a low leakage current, which is desired
for applications that utilize standby modes of operation. A small VT , on the
other hand, is desired for applications where speed is an important factor. The
reason is the dependence of VT to the propagation delay of a CMOS gate. The
propagation time T can be written as

T =
CL

kp

VDD

(VDD − VT)2
, (4.3)

where CL is the load capacitance and kp is a process transconductance param-
eter [73]. Equation (4.3) states that an increase in VT implies longer propaga-
tion times — the device gets slower. Thus, there is a trade-off between speed
and static power consumption [75]. A CMOS process with dynamic threshold
voltage is beneficial in low power applications where requirements on perfor-
mance vary with time. For maximum performance, VT is at its minimum, and
otherwise it is adjusted to make the logic “fast enough” for the momentary
performance requirement.

Design of dynamic circuits is another issue where static leakage is an im-
portant aspect. Dynamic implementations depend on the storage of charge in
capacitors, and therefore leakage must be reasonable low. A firm lower bound
on the value of the threshold voltage is set by this sub-threshold effect [73].

66 General Introduction

Vout

Ishort

Ishort

Vin Vout

Figure 4.2: Direct path current in a CMOS inverter.

4.1.2 dynamic power consumption

The dynamic power consumption for one node switching a complete cycle, from
zero to one and back to zero again, at a frequency fclk is

Pdynamic = CL · V · VDD · fclk, (4.4)

where V is the voltage swing at the output, VDD the supply voltage, and CL

the capacitive load of the circuit [27]. The voltage swing V is in most cases
equal to VDD, resulting in the more commonly used expression

Pdynamic = CLV 2
DDfclk. (4.5)

However, some circuits rely on a voltage swing on some internal nodes to be
less than VDD. Examples include low power memory design [75] and low swing
buses [43]. Lower voltage swing also appears in pass-transistor logic implemen-
tations [88],

There is a second source of dynamic power consumption, appearing at the
moment of transition when both N and P type transistors are active, denoted
direct path or short-circuit current, see figure 4.2. A first order approximation
of the short-circuit direct path current is

Pdp =
tr + tf

2
VDDIpeakfclk, (4.6)

where tr and tf is the rise and fall time of the transition respectively, and Ipeak

is the peak short circuit current, proportional to the size of the transistors [73].
The direct path current can be reduced by carefully sizing transistors for equal
rise and fall times for the input and the output signals of a gate. Then, short-
circuit currents contribute less than 20 percent to the dynamic dissipation [83].

Chapter 4. CMOS Technology 67

time

f c
lk

(p
ow

er
)

Figure 4.3: Operation of two different designs. The dotted line repre-
sents a design with a constantly low clock frequency. The solid line is a
design with a faster clock frequency and power down mode.

4.1.3 energy per operation

Examining the equations describing the dynamic power consumption, (4.5)
and (4.6), it is apparent that both are proportional to the clock frequency fclk.
Thus, the higher clock frequency, the more power consumption. Is it then true
that a slower design is more efficient?

Consider figure 4.3. The horizontal axis represents the time axis. On the
vertical axis is the clock frequency. The vertical axis also represent execution
speed and power consumption, since they are proportional to the clock fre-
quency. The figure illustrates operation of two different designs. The solid
curve is a fast design with a high clock frequency. To save energy, operation is
halted when not performing any computations. The other design, represented
by the dotted line, has no “power down” mode of operation, but runs at a
significantly lower clock frequency.

The area under each curve represents both energy and total number of
operations, and is equal for both designs. Thus, both designs consume the
same amount of energy for the same number of operations. The energy per
operation is constant.

When analyzing the energy per operation, it is common to only take into
account the effect due to the capacitive load. Energy per operation is thus
written as

E = CLV 2
DD. (4.7)

It is interesting to note that the energy per operation of a CMOS gate only
depend on the capacitive load and supply voltage. In equation (4.7), the supply
voltage has a quadratic impact on the power delay product, assuming the
nodes swing to VDD. As the energy per operation is independent of the clock
frequency, it is clear that a reduced clock frequency does not affect the energy
spent per operation. Power consumption will be lower, but the operation takes

68 General Introduction

longer to complete.
The key is found from equation (4.3), stating that the speed of a circuit de-

creases with a reduced supply voltage. Thus, by lowering the clock frequency of
a device, supply voltage can be reduced as well. From (4.7), it is apparent that
the supply voltage has a large impact of the energy per operation. By reducing
the supply voltage, speed can be traded for energy [26]. For battery powered
devices, the energy per operation, and not the momentary power consumption,
determines the longevity.

4.1.4 circuit level power consumption

To model power consumption on the circuit level, a useful expression is derived
from equation (4.4). Assuming each node has a switching capacitance CLi;
a switching activity, αi, defined as the average number of switching cycles
per clock cycle of the node; and a swing voltage Vi. The circuit level power
consumption is written [28]

P =

(∑
all nodes

αiCLiVi

)
VDDfCLK . (4.8)

The value of αi is not bounded by an upper limit. Consider the example of a
ripple carry adder with all inputs zero. Switching one of the input words plus
the carry in bit to one forces all the outputs immediately to one. In parallel, a
carry ripple chain runs through all the full adders and toggles all outputs back
to zero again, resulting in a high activity of several transitions per adder cell.
For this example, the number of transitions is only limited by the wordlength
of the ripple carry adder.

The amount of switching activity in a circuit depends on the input signal
statistics, circuit architecture, and logic style. Tools for determining switching
activity are often based on statistical methods. A highly correlated data set
causes less switching in for example an adder circuit, since only a few bits
change per input word. On the logic level, switching can be decreased by
applying the precharged, or dynamic, logic style. In this technique, a gate
has a maximum of two transition per clock cycle. However, it turns out to be
difficult to design generic circuits based on precharged gates. One example of
where it is applicable is in design of memories.

4.2 Memory Technology

Most DSP algorithm implementations rely on some kind of memory for in-
termediate data storage. For example, adaptive filters need storage for coeffi-

Chapter 4. CMOS Technology 69

cients, and autocorrelation devices need storage of the input signal. Therefore,
memory technology is equally important as the implementation of arithmetic
circuits.

The most common memory technologies are either Read Only Memory
(ROM) or Random Access Memory (RAM). Data in a ROM is determined in
the design process, and cannot be changed after fabrication. An increasingly
popular memory component is the FLASH memory [73]. A FLASH behaves as
a ROM, but it can be reprogrammed completely or partially. Efficient ROM
implementations are based on two-dimensional arrays of programmed bit ele-
ments, requiring only one transistor per bit of storage. Alternatively, a ROM
storing a small number of information bits can be implemented using random
logic, realizing a multi-dimensional logic function. Implementation of RAMs
are more delicate, and the subject of this chapter.

There exists two major techniques for on-chip RAM implementation, either
static or dynamic. The dynamic memory will loose its contents after a short
time period, depending on the implementation. In order to keep the data valid,
it needs constant refresh accesses. The static memory, on the other hand, stores
written data until power off, without any dedicated refresh cycles. Behavior
of static and dynamic memories can be compared to static and dynamic logic.
Small intermediate storage can also be implemented using flip-flops. This tech-
nique results in extremely fast memories, at the cost of a larger area and higher
load on the clock net.

A static RAM implementation typically requires six transistors per stored
data bit, arranged in an area-efficient scheme [2]. A six transistor static RAM
cell is shown on the left hand part of figure 4.4. The implementation is similar to
a flip-flop based on two cross-coupled inverters. A read operation is performed
by activating the wordline WL, and detecting the stored state on the bitlines
BL and BL. Benefits of static memories are fast access times and non-volatile
behavior as long as the supply voltage is present. To write a zero/one to the
cell (forcing Q =zero/one), the wordline WL is set to one, and the bitline BL
is set to zero/one (while BL is the opposite, one/zero).

The main advantage of dynamic memories is area efficiency. The most
efficient implementations are based on only one transistor per bit of storage.
Thus, they are significantly smaller than their static counterpart. However,
the dynamic RAM is based on the principle of storing charge in capacitors.
These capacitors are drained by the leakage current, and need to be refreshed
intermittently [73]. A one transistor dynamic RAM cell is depicted at the
right of figure 4.4. Data is written by setting the wordline WL to one, and
putting the data on the bitline BL. A one will be stored in the cell capacitance,
CS , while a zero will drain CS . A readout is performed similarly. First, the
bitline is precharged to a value in-between ground and VDD. The wordline

70 General Introduction

WL

BL

VDD

Q

BL

Q

six transistor SRAM cell

CS

WL

BL

one transistor DRAM cell

CBL

)(

Figure 4.4: Static and dynamic random access memory cells [73]. See text.

is then activated and the charge in the cell capacitor will be redistributed to
a equilibrium between CS and the bitline wire capacitance CBL, forcing the
voltage on the bitline to either raise or fall by a small amount. The difference
between initial precharge voltage and readout voltage is amplified in a sense
amplifier, enhancing the difference into a logic zero or one. The readout
of a dynamic RAM cell is destructive, that is, the originally stored value is
affected by the read operation. Thus, the readout has to be followed by a
write operation, either with the same or new data. Furthermore, if data is not
accessed for some time, it has to be read out and written back again, since
leakage current will drain the cell capacitance. The process of updating the
memory cell information is referred to as a refresh operation.

Typically, dynamic RAMs are implemented in special processes, making it
possible to design compact bit-cells with reasonable refresh-rates [46]. Pro-
cesses suitable for both logic and dynamic RAM design are not yet standard.
Instead, on-chip memories are static for several reasons: reliability, absence
of refresh cycles, and IDDQ-test2. Unfortunately, the six-transistor static cell
limits effective storage on a chip significantly. If a large storage is required, it
has to be added externally.

2The IDDQ test is a fast method to find errors in manufactured devices. The device is set
to a pre-determined state by test vector stimuli, and the static supply current is measured.
With a high probability, short-circuits will be revealed in the static power consumption.

Chapter 4. CMOS Technology 71

One factor setting the higher bound on throughput in a digital design is
the memory bandwidth. As long as the design is within the area limits, dat-
apaths can in general be parallelized to any degree of throughput. Memories
can be split and parallelized, but smaller memories have a large overhead in
address decoders and data multiplexers, making the total area grow consid-
erably. Furthermore, to split a large memory into a number of smaller ones,
partitioning of the contents has to be done in accordance to the access pattern
of the data. If data is accessed locally during a time period, probably only one
of the smaller memories is accessed continuously, and there will be no gain in
throughput using the split memory approach, for a constant clock frequency.
Keeping datapaths constantly busy sets the same throughput constraints on
the memories as on the datapath itself. There is no use of a high performance
parallel datapath if it can not constantly be fed with new data from a memory
— the datapath will be unnecessarily fast.

As only relatively small memories can be implemented on chip, large sets
of data have to be stored externally in dedicated memory integrated circuits.
Unfortunately, external connections are limited by the number of IO-pads and
their speed. Using a Low-Voltage Differential Signal (LVDS) scheme, or similar,
IO-bandwidth is increased dramatically [43]. However, rapid off-chip transmis-
sion through pads, bonding wires, and Printed Circuit Board (PCB) is expen-
sive in power consumption. Also, large and fast external memories consume
a significant amount of energy per operation. Thus, off-chip memory will be
slower and more energy consuming than an internal memory.

A popular scheme to reduce external memory accessing is to use internal
cache memories, see section 3.6.2. In this scheme, the cache memory ideally
mirrors the most commonly accessed data, and most accesses target the small
internal cache memory instead of doing a power expensive external access.
Cache techniques are widely used in microprocessors and DSPs, but as DSP
algorithms becomes more complex and memory requiring, it is more common
in ASDSP designs as well. In fact, for some systems several levels of cache
memories are beneficial, and systems with three cache levels are common to-
day [61].

4.3 Summary

CMOS technology delivers high performance digital signal processing at a low
cost. A low power implementation is important both for battery powered hand-
held devices and stationary computers. The handheld device will run longer
between charging, and a stationary computer will be less expensive and more
reliable, due to less cooling equipment and lower temperatures of operation.

72 General Introduction

The subjects of static and dynamic power consumption are introduced, and
it is shown that running at a reduced clock frequency just makes things go
slower — the same amount of energy is still consumed per operation, and the
application takes longer to finish. The key is to lower the clock frequency and
adjust the supply voltage in parallel.

CMOS random access memories can be either implemented using a static or
dynamic technology. The dynamic memory is significantly smaller in size, but
requires constant refresh cycles and special fabrication processes for reliable
operation. Therefore, most on-chip memories are static. These memories keep
their contents for as long as the supply voltage is sufficiently high, but due to
their size only a limited memory storage fits on a chip.

Chapter 5

Arithmetic

In digital CMOS technology, circuits conforming to the laws of Boolean logic
are straightforward to implement [72, 73, 84, 86]. The logic values true and
false are commonly represented by a low and high voltage level respectively.

Additionally, letting the low and high voltage levels represent the arithmetic
numbers 0 and 1, binary arithmetic components are designed using logic gates.
A binary digit, or “bit” for short, is a number with domain 0 and 1. Any
number can be represented with a limited precision using binary digits [68]. It
is common to use the two’s complement binary number system for representing
numbers, but other representations are used as well [68]. For digital signal
processing applications, fixed point and floating point number representations
are common.

5.1 Fixed and Floating Point Number Systems

Numbers are conveniently represented in a positional numbering system [51].
In such a system, there are several ways to represent negative numbers. A
common representation of numbers using binary digits is the two’s complement
fixed point binary representation. An N -bit number x is written as

x0.x1x2 · · ·xN−2xN−1, (5.1)

where each xi is a binary digit. The leftmost bit, called the most significant
bit, has negative weight, and the value of the number x is calculated by

x = −x0 +
N−1∑

1

xi2−i. (5.2)

73

74 General Introduction

The position of the point separating integer from fraction bits is fixed, making
it a “fixed point” representation. In equation (5.1), there is only one integer
bit, and the value of the number is limited to the range −1 ≤ x < 1. However,
there can be any number of integer and fraction bits in a fixed point number.
For a given sequence of bits, the fraction point is implicit, and has to be decided
before the value of the number can be calculated.

Basic arithmetic operations does not depend on the position of the fraction
point. Addition of two numbers, for example, can be performed as long as the
fraction point is at the same position in both input numbers. A multiplication,
on the contrary, is totally independent of what is fraction bits and what is
integer bits. As already mentioned, the position of the fraction point does only
make sense when the value of a fixed point number is to be calculated.

Floating point number systems consists of a significand and an explicit
exponent [51]. To calculate the value of the number, the significand has to be
multiplied by a base raised to the power of the exponent,

x = ±significand · baseexponent. (5.3)

Comparing floating and fixed point numbers represented with the same number
of bits, the floating point number has higher dynamics, whereas the fixed point
number has a higher resolution. The floating point number gains dynamics from
the exponent, but as the significand is represented with fewer bits, resolution
will be lower. Floating point is therefore to be preferred when large dynamic
range is more important than resolution, or when signal dynamics is unknown.
For fixed point number representation, signal dynamics has to be known in
order to determine how many integer and/or fractional bits that are required.

Today’s high-end microprocessors and DSPs have floating point units of
large wordlength, giving high dynamics. Large floating point number arith-
metic has a higher cost, both in area and number of clock cycles per operation,
but makes the processor more flexible. Since most signals are represented with
a sufficiently high resolution, no time has to be spent solving overflow or ac-
curacy problems. However, due to the overhead in the more costly floating
point arithmetic circuits, and the excessively high dynamics, such a solution is
always sub-optimal in terms of chip area and power consumption, and should
be avoided for an application specific design.

5.2 Bit Serial and Bit Parallel Arithmetic

The most basic form of arithmetic uses binary digits, or a radix–2 representa-
tion, of numbers, while more advanced arithmetic circuits operate on digits of
higher radices by combining several bits to represent one digit. The advantage

Chapter 5. Arithmetic 75

of low radix circuits is the ease of implementation, while higher radices gives
advantages in certain cases.

In order to carry out for example an addition of two N -bit numbers, there
are a number of way to organize the arithmetic circuits. One solution is to
place N bit-adders, or full-adders, in parallel, feeding the carry signal from one
full-adder to the other in a serial fashion [68]. In this way, the full-adders are
working concurrently on all input bits in parallel. Therefore, this is called a
bit-parallel adder. Although the adder has access to all input signals in parallel,
worst case execution time of the N -bit adder is N times the delay of a single
full-adder unit, from carry in signal to carry out. There are more efficient
solutions to speed up adder circuits, for example carry-skip, carry-select, and
carry-lookahead adders [68].

Using pipeline registers and feedback, the bit-serial solution is constructed
using only one bit-adder working iteratively on all input bits. The bit-adder
feeds the carry signal back to itself though a delay. This approach has minimal
area, while requiring an N times higher clock rate. A solution in-between is the
digit-serial approach, grouping bits to digits of a higher radix, and operating on
one digit per clock cycle. Three different adder schemes are shown in figure 5.1.

The bit-serial and digit-serial architectures require less hardware to imple-
ment at the expense of a higher clock rate, when compared to a bit-parallel
operation. Wave-digital filters are efficiently realized using bit-serial arith-
metic [63, 84]. Operation on bit-serial data, input and output to the circuit
must be in a serial format. However, high performance A/D and D/A convert-
ers1 often have a parallel interface. In such cases, parallel to serial, and serial
to parallel converters have to be used if arithmetic is carried out in a bit- or
digit-serial fashion.

5.3 Arithmetic for Digital Signal Processing

Digital signal processing algorithms are expressed using the basic arithmetic
operations addition, subtraction, multiplication, and division. The MAC is a
common operation consisting of one multiplier and one adder connected as an
accumulator. MAC, multiply, addition and subtraction are standard in most
fixed and floating point DSPs, whereas division is not.

If the numbers are encoded in two’s complement representation, the addi-
tion and subtraction operations are realized using the same hardware circuit.
Multiplication and division are more expensive to implement compared to ad-
dition and subtraction. Arithmetic and logic integer shift operations, however,

1A/D (Analog to Digital) and D/A (Digital to Analog) converters are used to interface
digital signal processing hardware to signals in the analog domain.

76 General Introduction

FA

FA

FA

FA

FA FA

FA

FA

c0
x0
y0
x1
y1
x2
y2
x3
y3

xN−1
yN−1

s0

s1

s2

s3

sN−1

cN

...

...

xi
yi

si x2i
y2i

x2i+1
y2i+1

s2i

s2i+1

ci ci+1

c2i c2i+2

Figure 5.1: Bit-serial, digit-serial and bit-parallel adders. The FA
module denotes a Full Adder. Top left is a bit-serial adder, processing
one bit per clock cycle. Top right is a radix–4 digit-serial adder. Bottom
is a bit-parallel adder, adding two numbers of wordlength N bits.

are of low or insignificant cost, and used to multiply or divide by powers of two.
Multiplication of numbers is carried out as a series of conditional additions and
small trivial digit multiplications.

Algorithms for division are implemented based on subtraction, or a com-
bination of multiplications and subtractions. The main difference between
multiplication and division of two’s complement numbers is that the first is
implemented without data dependency, while the latter is data dependent and
requires decisions to be made for each digit. Data dependency makes a parallel
implementation harder to realize. Division is often avoided, or limited in usage,
and is not always implemented in a processor. For some applications, though,
implementation of division is necessary.

For fixed point numbers, all four basic arithmetic functions increase data
wordlength from input to output. Therefore, overflow detection, downscaling,
or truncation has to be implemented as part of a datapath. Consider the
operation on two numbers of N bits each. If the operation is an addition or
subtraction, the output wordlength is maximum N +1 bits. For multiplication,

Chapter 5. Arithmetic 77

the output wordlength is 2N−1 for two’s complement numbers. Division is the
most problematic operation. If the two input numbers are relatively prime, the
division operation may go on forever, resulting in an infinite number of output
digits. Thus, the division iteration has to be halted after a sufficient number
of generated output bits.

5.4 Distributed Arithmetic

As an example of what kind of optimizations that are possible on the arithmetic
level, this chapter gives an introduction to the concept of distributed arithmetic.
Distributed arithmetic has been used in paper III and IV, and is an optimization
technique on the arithmetic level, that generic processors or DSPs can not take
advantage of.

The distributed arithmetic can be seen as a scheme to implement vector
multiplication efficiently on a bit level [32, 69, 71], and is used in tailored
architectures for digital filters and transforms, see for example [57, 81, 84], but it
is not limited to such applications. Vector multiplication is a common operation
in all areas of signal processing, and is therefore assigned many names: vector
multiplication, vector scalar product, inner product, multiply and accumulate,
sum of products, etcetera. Vector multiplication of length N can be written
mathematically as

y =
N−1∑
n=0

h(n)x(n), (5.4)

where h(n) and x(n) are variables of wordlengths Wh and Wx bits respectively.
Assuming that the signal x is limited to −1 ≤ x < 1, the value of x can be
expressed in two’s complement as

x = −x0 +
Wx−1∑
i=1

xi2−i, (5.5)

and the corresponding −x as

−x = −x0 +
Wx−1∑
i=1

xi2−i + 2−(Wx−1), (5.6)

where each xi is a one-bit variable with the value zero or one, that is xi ∈
{0, 1}. The bar over x denotes the logic-not operation. Inserting (5.5) into

78 General Introduction

(5.4) results in

y = −x0(n)
N−1∑
n=0

h(n) +
N−1∑
n=0

Wx−1∑
i=1

h(n)xi(n)2−i, (5.7)

or by rearranging the order of summation,

y = −
N−1∑
n=0

h(n)x0(n)

︸ ︷︷ ︸
I

+
Wx−1∑
i=1

N−1∑
n=0

h(n)xi(n)

︸ ︷︷ ︸
II

2−i. (5.8)

This equation is close to the definition of a two’s complement number from
(5.5), but with more complicated terms, I and II. The braced sum I is an index
i = 0 version of II, but can not be included in the sum over i since it is preceded
by a minus sign. The observation of similarities leads to a simpler way to write
equation (5.8). By defining a function F of N one-bit variables

F
(
xi(0), xi(1), . . . , xi(N − 1)

)
=



−

N−1∑
n=0

h(n)x0(n) : i = 0

N−1∑
n=0

h(n)xi(n) : i 6= 0,
(5.9)

equation (5.8) is conveniently reduced to

y =
Wx−1∑
i=0

F
(
xi(0), xi(1), . . . , xi(N − 1)

)
2−i. (5.10)

The initial convolution of (5.4) has been turned into a sum. The function F can
be pre-calculated and implemented as a Read Only Memory (ROM) containing
2N words, one for each combination of the N input bits. ROM contents for
N = 3 is shown in table 5.1.

Comparing the original equation (5.4) to (5.10), all multiplications are re-
moved and replaced by lookups. Instead of a summation of N multiplications
of size Wx × Wh, the calculation is performed by summation of Wx lookup
values of approximate length Wh + log2 N .

If only one ROM is used, the calculation of y has to be carried out in a serial
fashion. A typical serial implementation uses an accumulator, adding one ROM
lookup per clock cycle for Wx cycles [44]. A parallel implementation depend on
Wx ROMs connected in parallel to an adder compressor with Wx inputs [84].
A hybrid serial-parallel solution is possible by having an accumulator with K
parallel inputs from K ROMs, and iterating for Wx/K clock cycles.

Chapter 5. Arithmetic 79

Table 5.1: The F function for N = 3.

xi(0) xi(1) xi(2) F
(
xi(0), xi(1), xi(2)

)
0 0 0 0
0 0 1 h(2)
0 1 0 h(1)
0 1 1 h(1) + h(2)
1 0 0 h(0)
1 0 1 h(0) + h(2)
1 1 0 h(0) + h(1)
1 1 1 h(0) + h(1) + h(2)

For large values of N , implementation of the coefficient ROM becomes diffi-
cult, since the required coefficient storage grows exponentially as O(2N). From
a look at table 5.1, it becomes evident that each h(n) is only present in half of
the rows. For example, h(0) is only used in the lower four rows. This suggests
that it is possible to split F into two ROMs, one containing the permutations of
h(1) and h(2), and one containing the value h(0) only. The output of the latter
is then added conditionally to the first depending on xi(0). In this example,
ROM usage is decreased from eight words down to five.

A more formal method can be developed by splitting the function F of N
variables into a set of functions of fewer variables by factoring N = N1N2.
Divide the input variables {xi(n)}n into N1 disjoint sets

{xi(n)}N2−1
n=0 , {xi(n)}2N2−1

n=N2
, . . . , {xi(n)}N−1

n=(N1−1)N2
. (5.11)

Construct the corresponding functions F0 . . . FN1−1 and add prior to accumu-
lation

F =
N1−1∑
k=0

Fk

(
xi(kN2 + 0), . . . , xi(kN2 + N2 − 1)

)
. (5.12)

Effective storage is reduced to N
N2

2N2 , which is of O(N). The drawback is the
extra additions represented by the summation in (5.12). These additions can be
realized with carry-save adders at relatively low cost if the ROM is split in few
parts, but with increasing N1, the solution becomes less attractive. Consider
the case with N2 = 1. There are N ROMs of one word of storage each, or
actually N ROMs storing zero and h(n), but the zeroes are not implemented in
the ROMs. All N words have to be added together before accumulation. This
scheme corresponds to the straightforward implementation of (5.4), without
the advantage gained by distributing the arithmetic.

80 General Introduction

5.5 Offset Binary Coding

Offset binary coding [24, 32] can further reduce coefficient storage. Write x as

2x = x− (−x), (5.13)

and replace x by its value in two’s complement from (5.5)

2x = −x0 +
Wx−1∑
i=1

xi2−i − (−x0 +
Wx−1∑
i=1

xi2−i)

= −x0 +
Wx−1∑
i=1

xi2−i + (−x0 +
Wx−1∑
i=1

xi2−i + 2−(Wx−1))

= −(x0 − x0) +
Wx−1∑
i=1

(xi − xi)2−i − 2−(Wx−1). (5.14)

The expression can be written more compact, by defining

ξi =
{ −(x0 − x0) : i = 0

(xi − xi) : i 6= 0. (5.15)

The definition or xi is motivated by the domain

ξi ∈ {−1,+1} . (5.16)

Now, equation (5.14) is written using ξi as

2x =
Wx−1∑
i=0

ξi2−i − 2−(Wx−1), (5.17)

and the initial vector multiplication (5.4) becomes

y =
1
2

N−1∑
n=0

Wx−1∑
i=0

h(n)ξi(n)2−i − 2−Wx

N−1∑
n=0

h(n)

︸ ︷︷ ︸
extra

. (5.18)

The part marked “extra” is the sum of the coefficients multiplied by a weight
corresponding to half the least significant weight of x. Neglecting this part
makes the result slightly too big, but for applications where full accuracy is
not required it can be disregarded in order to simplify hardware implementa-
tion [39].

Chapter 5. Arithmetic 81

Table 5.2: The F ′ function for N = 3.

xi(0) xi(1) xi(2) ξi(0) ξi(1) ξi(2) F ′(ξi(0), ξi(1), ξi(2)
)

0 0 0 −1 −1 −1 −(h(0) + h(1) + h(2))
0 0 1 −1 −1 1 −(h(0) + h(1)− h(2))
0 1 0 −1 1 −1 −(h(0)− h(1) + h(2))
0 1 1 −1 1 1 −(h(0)− h(1)− h(2))

1 0 0 1 −1 −1 (h(0)− h(1)− h(2))
1 0 1 1 −1 1 (h(0)− h(1) + h(2))
1 1 0 1 1 −1 (h(0) + h(1)− h(2))
1 1 1 1 1 1 (h(0) + h(1) + h(2))

In accordance to equation (5.9), a function F ′ is introduced, replacing the
innermost summation,

F ′(ξi(0), ξi(1), . . . , ξi(N − 1)
)

=
Wx−1∑
i=0

h(n)ξi(n)2−i. (5.19)

As before, F ′ is stored in a ROM, and addressed when accumulating equa-
tion (5.18). The relation between ξi and xi is straightforward. In table 5.2, F ′

is shown for N = 3. From the table it is clear that the values of F ′ are mirrored
along the line between fourth and fifth rows, except for the sign. Therefore,
using an external negation circuit, only half of F ′ is unique and need to be
stored in a ROM. Thus, offset binary encoding reduce the coefficient storage
by one half. Furthermore, the scheme of splitting the ROM in parts described
earlier is also applicable on offset binary coded coefficients.

In some applications, distributed arithmetic and offset binary coding can
be used without the need of ROM lookups. This is the case when inputs
to the function already exists in the same format as would be stored in the
ROM. Paper IV is an example where an FIR filter operate on data generated
by an FFT. If the last butterfly stage of the FFT is removed, signals that
connects directly to an distributed arithmetic multiplier are revealed. Thereby,
complexity is reduced, both in the FIR filter and in the FFT units.

5.6 Summary

In CMOS, arithmetic operation units are straightforward to implement. For
DSP applications, numbers are typically represented using two’s complement

82 General Introduction

fixed point or floating point. The latter is easier for development, since the
dynamic range for a fixed number of bits is larger, and problems of overflow
or saturation are less frequent. However, fixed point representation comes at
a lower cost, and is the most common choice for ASDSP implementations,
especially where low power consumption is a concern.

Distributed arithmetic and offset binary coding is a means for efficient cal-
culation of inner products. The inner product is common in DSP algorithms,
for example as the basis of FIR filters. To gain from distributed arithmetic,
datapaths have to be custom designed. Therefore, it can only be used in custom
implementations such as ASIC ASDSPs, and not in standard DSP implemen-
tations.

Chapter 6

Conclusion and
Summary of Papers

This thesis covers design methodology for Application Specific Digital Signal
Processors (ASDSPs), mainly focusing on low power hardware implementa-
tions. Comparing ASDSPs to general purpose DSPs, high throughput and low
power consumption are traded for flexibility of the final circuit. A delayless
acoustic echo canceller is chosen as a target algorithm for custom hardware
implementation, and subject of the developed design methodology proposed in
the thesis.

A design methodology is presented to keep consistency between higher and
middle level descriptions. The problem of controlling the dataflow is empha-
sized, and it is found that a hierarchical design approach reduces control com-
plexity. Also, by strictly dividing processing elements into three sets: memory,
datapath, and control, the problems of design, verification, and maintenance
are reduced.

The fabricated echo canceller chip consists of more than two million tran-
sistors and twelve dedicated memory blocks. The design is successfully verified
for functionality, throughput, and power consumption.

Paper I is an initial analysis of the chosen delayless echo canceller algorithm
by Morgan and Thi [60]. The main parameters affecting the overall compu-
tational complexity of the algorithm are identified, and it is found that the
number of subbands has the most impact on the number of operations per
sample. Selecting the number of subbands for a low total complexity, the dom-
inating part of the algorithm is the fullband FIR cancellation filter. A method
to reduce power consumption of the filter is proposed, based on dividing the

83

84 General Introduction

filter architecture into a number of accumulators with different dynamics. The
paper is equivalent to the presented paper [15] with a modified typesetting.

Paper II describes the custom hardware implementation of the echo can-
celler together with trade-offs and optimizations. The implemented architec-
ture is composed of a hierarchy of autonomous submodules. This simplifies
design of each module, and by using a simple inter-module communication pro-
tocol, operation of the complete design is controlled from the top-level. Mem-
ory addressing is investigated, and two cache memory candidates are identified.
The fullband FIR filter is the most data requiring component, setting the lower
limit on system clock frequency, and a redundant cache memory is inserted to
have the filter operating at maximum pace. The paper is in preparation [5],
and partial results are presented in [7].

Paper III presents the work on complex multipliers based on distributed
arithmetic. To reduce power consumption of a complex multiplier, the num-
ber of partial products are reduced by distributed arithmetic and offset binary
coding, and an adder tree is used for partial product addition. The original
paper [17] is printed in its entity with typographic modifications. The mul-
tipliers were originally designed for an FFT chip for Terrestrial Digital Video
Broadcast (DVB-T) transceivers developed in the Digital ASIC group [62, 41].

Paper IV presents a co-optimization between two digital signal processing
algorithms, the FFT and the FIR filter, using a special arithmetic component.
The component is based on distributed arithmetic, and the paper is an exten-
sion of the work on complex multipliers. The echo canceller algorithm is used
as an example of where the optimization can be applied. Initially, the work
was presented in [16], and the included paper is based on [6] that is submitted.

Paper V describes a flexible architecture for an efficient divider circuit. Di-
vision is common in digital signal processing applications, but the constraints
on the divider derived from different application differ significantly. Thus, hav-
ing only one fixed divider architecture for all ASDSP implementations results in
sub-optimal performance. The proposed divider is configurable, and it is possi-
ble to explore a wide range of the design space using the parameter space of the
divider description. The divider is used in the echo canceller implementation.
The work is submitted as a paper [4].

❦

Bibliography

[1] ADS Documentation: SPS2 RAM generator for AMI Semiconductor
0.35µm CMOS, Alcatel Microelectronics.

[2] S. Asai, “Semiconductor memory trends,” Proceedings of the IEEE, vol. 74,
no. 12, pp. 1623–1635, Dec. 1986.

[3] U. Banerjee, Loop Transformations for restructuring compilers: The foun-
dations. Kluwer Academic Publishers, 1993.

[4] A. Berkeman and V. Öwall, “A configurable divider using digit recur-
rence,” submitted to IEEE International Symposium on Circuits and Sys-
tems, 2003.

[5] ——, “Custom silicon implementation of a delayless acoustic echo canceller
algorithm,” in preparation.

[6] ——, “Efficient implementation of an FFT-FIR structure using a dis-
tributed arithmetic multiplier,” submitted to IEEE Transactions on Very
Large Scale Integration (VLSI) Systems.

[7] ——, “Architectural tradeoffs for a custom implementation of an acoustic
echo canceller,” in Proceedings of the Nordic Signal Processing Symposium,
Hurtigruten from Tromsø to Trondheim, Norway, Oct. 2002.

[8] A. Berkeman, V. Öwall, P. Nilsson, P. Åström, and M. Torkelson, “A
bit-serial implementation of a wavelet filter-bank,” in Proceedings of the
Nordic Signal Processing Symposium, Espoo, Finland, Sept. 1996.

[9] A. Berkeman, V. Öwall, and M. Torkelson, “A fast complex tree multiplier
using distributed arithmetic,” in Proceedings of the NORCHIP Conference,
Tallin, Estonia, Nov. 1997.

[10] ——, “A complex multiplier with low logic depth,” in Proceedings of the
5th IEEE International Conference on Electronics, Circuits, and systems,
Lisbon, Portugal, Sept. 1998.

85

86 Bibliography

[11] ——, “A low logic depth complex multiplier,” in Proceedings of the 24th
IEEE European Solid-State Circuits Conference, The Hague, The Nether-
lands, Sept. 1998.

[12] ——, “An adder tree based complex multiplier,” in Proceedings of RVK
Radio Science Conference, Karlskrona, Sweden, June 1999.

[13] ——, “Implementation issues for acoustic echo cancellers,” in Proceedings
of the 42th Midwest Symposium on Circuits and Systems, Las Cruses NM,
USA, Aug. 1999.

[14] ——, “Implementation of delayless echo cancellers for acoustic echoes,” in
Proceedings of RVK Radio Science Conference, Karlskrona, Sweden, June
1999.

[15] ——, “A prestudy of an echo canceler implementation,” in Proceedings of
the International Conference on Signal Processing Applications and Tech-
nology, Orlando FL, USA, Nov. 1999.

[16] ——, “Co-optimization of FFT and FIR in a delayless acoustic echo can-
celler implementation,” in Proceedings of IEEE International Symposium
on Circuits and Systems, Geneva, Switzerland, May 2000.

[17] ——, “A low logic depth complex multiplier using distributed arithmetic,”
IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 656–659, Apr.
2000.

[18] J. Bhasker, A VHDL Primer, 2nd ed. Prentice-Hall, 1995.

[19] ——, A Verilog HDL Primer, 2nd ed. Star Galaxy, 1999.

[20] G. M. Blair, “A review of the discrete Fourier transform. Part 1: Manipu-
lating the powers of two,” IEE Electronics and Communication Engineer-
ing Journal, vol. 7, no. 4, pp. 169–177, Aug. 1995.

[21] C. Breining, P. Dreiscitel, E. Hansler, A. Mader, B. Nitsch, H. Puder,
T. Schertler, G. Schmidt, and J. Tilp, “Acoustic echo control: An applica-
tion of very-high-order adaptive filters,” IEEE Signal Processing Magazine,
vol. 16, no. 4, pp. 42–69, July 1999.

[22] J. R. Brews, K. K. Ng, and R. K. Watts, “The submicrometer silicon
MOSFET,” in Submicron Integrated Circuits, R. K. Watts, Ed. John
Wiley & Sons, 1989.

[23] F. P. Brooks, Jr, The Mythical Man Month: 20th Anniversary Edition.
Addison-Wesley, 1995, ch. 1,2,3,4,8.

Bibliography 87

[24] M. Büttner and H.-W. Schüßler, “On structures for the implementation
of the distributed arithmetic,” Nachrichtentechnik, pp. 472–477, 1976.

[25] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecapelle, Custom Memory Management Methodology. Kluwer
Academic Publishers, 1998.

[26] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low power CMOS digital
design,” IEEE Journal of Solid-State Circuits, vol. SC-27, no. 4, pp. 1082–
1087, Apr. 1992.

[27] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498–523, Apr. 1995.

[28] ——, Low Power Digital CMOS Design. Kluwer Academic Publishers,
1995.

[29] P. M. Clarkson, Optimal and Adaptive Signal Processing. CRC Press,
1993.

[30] D. Cohen, “Simplified control of FFT hardware,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-24, pp. 577–579, Dec.
1976.

[31] R. E. Crochiere and A. V. Oppenheim, “Analysis of linear digital net-
works,” Proceedings of the IEEE, vol. 63, no. 4, pp. 581–595, Apr. 1975.

[32] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Riso, “Digital filter for
PCM encoded signals,” US patent 3777130, Dec. 1973.

[33] J. M. de Haan, N. Grbić, I. Claesson, and S. Nordholm, “Design of over-
sampled uniform DFT filter banks with delay specification using quadratic
optimization,” in Proceedings of IEEE International Conference on Acous-
tics, Speech, and Signal Processing, May 2001.

[34] M. Dörbecker and P. Vary, “Reducing the delay of an acoustic echo can-
celler with subband adaption,” in 4th International Workshop on Acoustic
Echo and Noise Control, 1995.

[35] P. Duhamel, “Implementation of “split-radix” FFT algorithms for com-
plex, real, and real-symmetric data,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-34, no. 2, pp. 285–295, Apr.
1986.

88 Bibliography

[36] J. W. Eaton, GNU Octave: A high-level interactive language for numerical
computations: edition 3 for Octave version 2.0.5, Free Software Founda-
tion, http://www.octave.org, Feb. 1997.

[37] E. B. Eichelberger, E. Lindbloom, J. A. Waicukauski, and T. W. Williams,
Structured Logic Testing. Prentice-Hall, 1991.

[38] T. Gänsler, M. Hansson, C.-J. Ivarsson, and G. Salomonsson, “A double-
talk detector based on coherence,” IEEE Transactions on Communica-
tions, vol. 44, no. 11, pp. 1421–1427, Nov. 1996.

[39] S. He and M. Torkelson, “A complex array multiplier using distributed
arithmetic,” in Proceedings of IEEE Custom Integrated Circuits Confer-
ence, 1996, pp. 71–74.

[40] ——, “A new approach to pipeline FFT processor,” in Proceedings of the
International Parallel Processing Symposium, 1996.

[41] ——, “Design and implementation of a 1024-point pipeline FFT proces-
sor,” in Proceedings of IEEE Custom Integrated Circuits Conference, 1998.

[42] J. L. Hennesey and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, 1990.

[43] IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable
Coherent Interface (SCI), IEEE Standards Board, Mar. 1996.

[44] P. Ingelhag, B. Johnsson, B. Sikström, and L. Wanhammar, “A high-speed
bit-serial processing element,” in Proceedings of ECCTD’89, Brighton,
UK, Sept. 1989, pp. 162–165.

[45] OCAPI/RT User Manual version 0.81, Interuniversity Micro-Electronics
Centre, Kapeldreef 75, B-3001 Leuven, Belgium.

[46] K. Itoh, “Trends in megabit DRAM circuit design,” IEEE Journal of Solid-
State Circuits, vol. 25, no. 3, June 1990.

[47] W. Kellerman, “Analysis and design of multirate systems for cancellation
of acoustical echoes,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1988.

[48] B. W. Kernighan and R. Pike, The UNIX programming environment.
Prentice-Hall, 1984.

[49] B. W. Kernighan and P. J. Plauger, The elements of programming style.
McGraw-Hill, 1978.

Bibliography 89

[50] B. W. Kernighan and D. M. Ritchie, The C programming language.
Prentice-Hall, 1978.

[51] D. E. Knuth, The Art of Computer Programming, 2nd ed. Addison-
Wesley, 1981, vol. 2 / Seminumerical Algorithms.

[52] F. Kristensen, P. Nilsson, and A. Olsson, “A flexible FFT processor,” in
Proceedings of the NORCHIP Conference, 2002.

[53] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamen-
tals: Architectures and Features. Berkeley Design Technology, 1996.

[54] Y. Ma and L. Wanhammar, “A hardware efficient control of memory ad-
dressing for high-performance FFT processors,” IEEE Transactions on
Signal Processing, vol. 48, no. 3, pp. 917–921, Mar. 2000.

[55] D. Mansour and A. Gray, “Unconstrained frequency-domain adaptive fil-
ter,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 30, no. 5, pp. 726–734, 1982.

[56] Using Matlab, The Math works.

[57] M. Matsui et al., “A 200 MHz 13 mm2 2-D DCT macrocell using sense-
amplifying pipeline flip-flop scheme,” IEEE Journal of Solid-State Cir-
cuits, vol. 29, no. 12, pp. 1482–1490, Dec. 1994.

[58] M5M5W816TP-55HI Datasheet, 6th ed., Mitsubichi Electric, Apr. 2002.

[59] G. E. Moore, “Cramming more components onto integrated circuits,” Elec-
tronics, vol. 38, no. 8, Apr. 1965.

[60] D. R. Morgan and J. C. Thi, “A delayless subband adaptice filter archi-
tecture,” IEEE Transactions on Signal Processing, vol. 43, no. 8, Aug.
1995.

[61] S. D. Naffziger and G. Hammond, “The implementation of the next gen-
eration 64b ItaniumTM microprocessor,” in Digest of Technical Papers,
IEEE International Solid-State Circuits Conference, 2002.

[62] P. Nilsson, S. He, V. Öwall, A. Berkeman, S. Johansson, P. Åström, and
M. Torkelson, “An FFT/IFFT chip for the european DVB system,” De-
partment of Applied Electronics, Lund University, Tech. Rep., Aug. 1997.

[63] P. Nilsson, M. Torkelson, M. Vesterbacka, and L. Wanhammar, “A bit-
serial realization of a lattice wave digital intermediate frequency filter for
mobile radio systems,” in Sixth Annual IEEE International ASIC Confer-
ence and Exhibit, Sept. 1993, pp. 108–111.

90 Bibliography

[64] Z. Ning and R. W. Brodersen, “Architectural evaluation of flexible digi-
tal signal processing for wireless receivers,” in Conference Record of the
Thirty-Fourth Asilomar Conference on Signals, Systems and Computers,
vol. 1, 2000, pp. 78–83.

[65] V. Öwall et al., “Custom DSP design of a GSM speech coder,” Journal of
VLSI Signal Processing, vol. 11, no. 3, pp. 213–228, 1995.

[66] V. Öwall, M. Torkelson, and P. Egelberg, “A custom image convolution
dsp with a sustained calculation capacity of > 1 GMAC/s and low I/O
bandwidth,” Journal of VLSI Signal Processing, pp. 335–349, Nov. 1999.

[67] V. Öwall, “Synthesis of controllers from a range of controller architec-
tures,” Ph.D. dissertation, Lund University, Department of Applied Elec-
tronics, 1994.

[68] B. Parhami, Computer Arithmetic: Algorithms and hardware designs. Ox-
ford University Press, 2000.

[69] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Imple-
mentation. John Wiley & Sons, 1999.

[70] M. C. Pease, “Organization of large scale Fourier processors,” Journal of
Association for Computing Machinery, vol. 16, pp. 474–482, July 1969.

[71] A. Peled and B. Liu, “A new hardware realization of digital filter,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-22,
no. 6, Dec. 1974.

[72] P. Pirsch, Architectures for Digital Signal Processing. John Wiley & Sons,
1996.

[73] J. M. Rabaey, Digital Integrated Circuits: a design perspective. Prentice-
Hall, 1996.

[74] E. S. Raymond, Ed., The New Hackers Dictionary. MIT Press, 1996.

[75] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. John
Wiley & Sons, 2000.

[76] D. M. Samani, J. Ellinger, E. J. Powers, and E. E. S. Jr., “Implementation
of several RLS nonlinear adaptive algorithms using a commercial float-
ing point digital signal processor,” in Conference Record of The Twenty-
Seventh Asilomar Conference on Signals, Systems and Computers, 1993,
pp. 1574–1578.

Bibliography 91

[77] C. B. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srivastava, B. C.
Richards, E. Lettang, S. K. Azim, L. Thon, P. N. Hilfinger, J. M. Rabaey,
and R. W. Brodersen, “An integrated CAD system for algorithm-specific
IC design,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. Vol. CAD-10, pp. 447–463, Apr. 1991.

[78] M. M. Sondhi, “An adaptive echo canceller,” Bell Systems Technical Jour-
nal, vol. XLVI, no. 3, pp. 497–510, Mar. 1967.

[79] M. M. Sondhi and W. Kellerman, “Adaptive echo cancellation for speech
signals,” in Advances in Speech and Signal Processing, S. Furui and M. M.
Sondhi, Eds. New York: Marcel Dekker, 1992, ch. 11.

[80] S. Theodoridis and M. G. Bellanger, “Adaptive filters and acoustic echo
control,” IEEE Signal Processing Magazine, vol. 16, no. 4, pp. 42–69, July
1999.

[81] S. I. Uramoto et al., “A 100-MHz discrete cosine transform core processor,”
IEEE Journal of Solid-State Circuits, vol. 27, no. 4, Apr. 1992.

[82] P. P. Vaidyanathan, Multirate Systems and Filterbanks. Prentice-Hall,
1993.

[83] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits,” IEEE Journal of Solid-State
Circuits, vol. 19, no. 4, pp. 468–473, 1984.

[84] L. Wanhammar, DSP Integrated Circuits. Academic Press, 1999.

[85] B. Widrow and S. D. Sterns, Adaptive Signal Processing. Prentice-Hall,
1985.

[86] W. Wolf, Modern VLSI Design: A Systems Approach. Prentice-Hall,
1994.

[87] D. J. Yang, “On Moore’s law and fishing: Gordon Moore speaks out,”
U.S. News, Oct. 2000.

[88] K. Yano et al., “A 3.8-ns CMOS 16×16-b multiplier using complementary
pass-transistor logic,” IEEE Journal of Solid-State Circuits, vol. 25, no. 2,
Apr. 1990.

Part II

Included Papers

Paper I

Paper I

A Prestudy of an
Echo Canceller Implementation

The high computational complexity of acoustic echo cancellation algorithms
requires application specific implementations to sustain real time signal pro-
cessing with affordable power consumption. This is especially true for systems
where a delayless approach is considered important, e.g. wireless communi-
cation systems. The proposed paper presents architectural considerations to
reach a feasible hardware solution.

Based on: A. Berkeman, Viktor Öwall, and Mats Torkelson, “A Prestudy of an Echo

Canceller Implementation,” in Proceedings of the International Conference on Signal

Processing Applications and Technology (ICSPAT), Orlando FL, USA, Nov. 1999.

97

Section 1. Introduction 99

1 Introduction

This paper presents implementation aspects of an Application Specific Digital
Signal Processor (ASDSP) designed to perform acoustic echo cancellation. The
need for acoustic echo cancellers arises in systems where two or more people
positioned at different locations are having a conversation using loudspeakers
and microphones, for example a teleconferencing system. The problem is the
acoustic path from loudspeaker to microphone. When the far end talker is
speaking, the speech signal is fed to the near end loudspeaker, it enters the
room and goes back to the far end through the microphone. Due to the various
delays in the signal path, such as the acoustic delay from loudspeaker to micro-
phone, coding delay, transmission delay etc, this returned signal is percepted
as an annoying echo. The acoustic impulse responses considered have a dura-
tion in the order of hundreds of milliseconds. With a sample rate of 16 kHz
this corresponds to roughly 2000-4000 samples. Such long impulse responses
make a fullband approach unattractive for both convergence and complexity
considerations and a subband approach is investigated [1].

There are two major candidates for implementation, where the first one is
performing cancellation in the subband domain [2]. This algorithm is depicted
in figure 1.1. The signals from the far end, x(n), and from the microphone,

LMS
LMS

LMS

LMS

fil
te

rb
an

k

fil
te

rb
an

k

synthesis filterbank

e(n)

x(n)

y(n)
s(n)

Figure 1.1: The echo cancellation algorithm from [1]. The signals to
the loudspeaker, x(n), and from the microphone, y(n), are split into sub-
bands, and cancellation is performed in each subband prior to fullband
reconstruction.

100 Paper I A Prestudy of an Echo Canceller Implementation

Σ

IFFT
stack / conjugate

FFT FFT FFT FFT

LMS
LMS

LMS

LMS

fil
te

rb
an

k

fil
te

rb
an

k
e(n)

ŷ(n)

y(n)

x(n)

ĥ

s(n)

AFIR

Figure 1.2: The subband echo cancellation algorithm, from [2]. Echo
cancellation is done in the time domain.

y(n), are filtered through filterbanks. Impulse response estimation is done
on the corresponding subband signals, and the error signals for each subband
adaptive filter are put together to a fullband signal using a synthesis filterbank.
In this algorithm, there is a delay in the signal path of at least one filterbank
delays.

The second candidate performs the actual echo cancellation in the time
domain [1], see figure 1.2. This is achieved by a fullband finite impulse response
(FIR) filter that convolves the input signal with the estimate of the room
acoustic impulse response. In this algorithm, there is no delay in the signal
path, but the estimate of the room acoustic impulse response is lagged. Due
to the extra fullband FIR filter, this solution has higher complexity than the
algorithm in figure 1.1. There is also a third approach which is a combination
between the two [3].

In wireless and multimedia applications, delay in the signal path is a serious
obstacle. Therefore, the delayless cancellation algorithm will be investigated.
The computational complexity of the algorithms makes a standard digital sig-
nal processor implementation difficult, especially in a mobile terminal scenario
were power consumption is a key parameter. Therefore, an application specific

Section 2. The Cancellation Algorithm 101

solution is investigated to increase the throughput at the same time as the
power consumption is reduced.

2 The Cancellation Algorithm

The main parts of the algorithm are shown in figure 1.2. To the upper left the
far end signal x(n) enters and connects to the canceller and to the loudspeaker.
The signal from the microphone y(n) is the other input to the canceller. Be-
tween the loudspeaker and the microphone is the acoustic signal path, where
echo and a near end talker signal v(n) is added. After the microphone, the far
end signal with estimated echoes are subtracted, optimally leaving nothing but
the near end talker. This signal e(n) is then fed back to the far end.

The heart of the algorithm is a number of adaptive Least-Mean-Square
(LMS) filters that track the frequency response from speaker to microphone.
Each adaptive filter acts on a small frequency band of the x and y signals. If
the number of subbands is large, each subband has a narrow bandwidth with
near flat frequency response, and therefore convergence of the adaptive filters
is fast.

The estimated filter taps from one adaptive filter represent a part of the
total impulse response in a certain frequency band. To make a fullband impulse
response, these taps have to be Fourier transformed, stacked in frequency and
inverse transformed. This fullband impulse response is, due to the delays in
the filterbanks, adaptive filters and FFTs, a delayed estimate of the room
acoustics. It is used to filter the far end signal to simulate the effect of the
sound traveling through the room. The difference between this filtered signal
and the microphone signal should be close to zero, except for the sound added
in the near end.

For the echo cancellation algorithm to work properly, the adaptive filters
should try to make an estimate of the room acoustics only when there is energy
in the far end signal, and when there is no double-talk. Double-talk is when
the near and far end speakers are talking simultaneously, a case when it is
impossible to estimate a transfer function from speaker to microphone. This
situation is monitored by a signal coherence detector that turns off estimation
as long as the double-talk situation lasts. The problem with silent far end is
solved by an energy detector that switch off the adaption when the far end
signal energy goes below a certain threshold.

102 Paper I A Prestudy of an Echo Canceller Implementation

3 Analysis of the Algorithm

3.1 the filterbanks

An M band filterbank consists of M finite impulse response (FIR) filters of
length K, where each filter selects a part of the signal spectrum. For every
input sample, KM multiplications are executed in the filters, and M outputs
are calculated, one for each subband. This can be seen as an upsampling by
a factor M in each band. All these extra samples have to be processed by
the following parts of the algorithm, giving a large overhead in the number of
operations per sample. To reduce the amount of data, the outputs from the
filterbank are downsampled by a factor M/α.

Applying downsampling at the output decreases the computational burden
in the filterbanks, since every filter only has to be updated every M/α sample.
Furthermore, if the M frequency functions of the filters are chosen as shifted
versions of one prototype filter H, the polyphase filterbank approach can be
used [1], [4]. The number of taps in each filter can then be decimated from
K to K/M . The price for this reduction is an extra IFFT of size M at the
outputs of the filters, updated every α/M input sample period, but the total
number of operations in the filterbank is reduced considerably.

3.2 the lms filters

For each input sample, the output from one band of the filterbank is α/M
samples. Due to symmetry in the frequency plane, only M/2+1 bands contain
unique information [1], and thus there are M/2 + 1 LMS filters to be updated,
each every α/M input sample period. This results in a total of

α

M
(
M

2
+ 1) = α(

1
2

+
1
M

) (3.1)

LMS filters to be updated every sample period. If M is reasonably large, the
expression is close to α/2 and does not vary much with M .

3.3 generation of fullband filter taps

The adaptive weights calculated in the M/2 + 1 LMS filters are combined
into a fullband impulse response of length N . This is achieved by Fourier
transforming the LMS weights, stacking them in frequency into a fullband
frequency function, and inverse Fourier transform to get an impulse response.
If each adaptive filter is of length T , T/α weights are taken from the Fourier
transform of the middle M/2− 1 filters, and T/2α from the Fourier transform

Section 3. Analysis of the Algorithm 103

of the left- and rightmost filters. Together this gives

(
M

2
− 1)

T

α
+ 2

T

2α
=

M

2
T

α
=

N

2
(3.2)

bins that are combined into a fullband frequency function of length N . The
bins are stacked from position 0 to N/2−1, and then the complex conjugate is
repeated in reversed order from N/2 to N − 1. From equation (3.2) the length
of each LMS filter can be calculated as

T = α
N

M
(3.3)

3.4 complexity analysis

Combining equation (3.1) and (3.3) gives to hand that the number of LMS
weights to be processed per input sample clock period is

α2 N

M
(
1
2

+
1
M

), (3.4)

which is inverse proportional to M .
How M affects the total complexity of the algorithm is shown in table 3.1.

The table is created assuming a fullband filter length N of 2048 taps and a
constant α of two. Coherence and power detectors are not included in these
numbers.

The first column is the number of subbands, ranging from two to above
a thousand. The second column is an approximation of the required number
of real multiplications per second in millions. The number of additions in the
LMS and FIR filters are about the same as the number of multiplications, due
to the intensive use of the multiply-accumulate (MAC) operation. A multipli-
cation has several times higher complexity than an addition, and therefore only
multiplications are considered in this table. It is assumed that a complex mul-
tiplier corresponds to four real number multipliers, but their implementation
complexity can be reduced to about half that number [5]. Divisions have higher
complexity, but are not used as frequent as multiplications in this algorithm.

Column three to five show how much of the total number of calculations that
are carried out by the filterbanks, adaptive filters and the fullband FIR filter
respectively. In the simulations the filter was updated every 128th sample [1].
This corresponds to the additional percents in table 3.1 and goes from 2% for
M = 2 to 17% for M = 1024. If a higher update rate is desired, this will
increase the total complexity considerably making an ASDSP solution even
more advantageous.

104 Paper I A Prestudy of an Echo Canceller Implementation

Table 3.1: The number of operations for the echo canceller as a function of
the number of subbands, M , in millions of multiplications per second. The
three columns to the right shows the percentage of the multiplications spent
by the filterbanks (FB), adaptive filters (LMS) and fullband time domain filter
(FIR) respectively. The remaining percents are due to the fullband impulse
response reconstruction.

M Mmul/s FB(%) LMS(%) FIR(%)

2 889 4 90 4
4 366 5 82 9
8 179 5 69 18

16 105 4 53 32
32 72 4 36 46
64 57 3 22 58

128 49 3 13 67
256 45 3 7 72
512 43 3 4 76

1024 42 3 2 78

A large number of subbands M gives a low overall complexity of the imple-
mentation. It can be seen from the table that as the number of subbands
increase the dominating factor becomes the time domain fullband filter as
contrary to the adaptation algorithm for a lower number of subbands. The
drawback is the increased requirements on the prototype filter in the subband
filterbanks, since the frequency response of the filter must have a more high
defined selectivity. As the signal is never reconstructed from the subband de-
composition, there are no “perfect reconstruction” criteria. Since the frequency
response of the filters in a filterbank are abutted, care has to be taken in the
transition part of the prototype filter to make the group delays between two
filters equal.

For large values of M , the passband region for each filter in the filterbank
becomes very narrow. Therefore, a signal filtered by such a filterbank can be
considered to have a near flat power spectrum, see figure 3.1. This is benefi-
cial for the convergence of the adaptive filters. So, not only does a large M
reduce the number of operations, but the echo canceller will also have a faster
convergence time. Simulations have shown that for a fullband filter length of
N = 2048 taps, an M value of 256 to 512 is suitable.

As shown in table 3.1, for M greater than 32 the heaviest computational
burden is in the fullband FIR filter. For every input sample, this filter calculates

Section 4. Optimizations 105

narrow subbands

f

|H(f)|

wide subbands

Figure 3.1: Having many subbands result in a near flat spectrum in
each subband.

2000-4000 multiplies and accumulations. For a sample rate of 16 kHz, this
corresponds to 32 to 64 million multiplies and accumulates per second. Also,
the taps in this filter are updated hundreds of times per second to keep track
of changes in the room acoustics.

4 Optimizations

4.1 wordlengths

Wordlength affects performance in several ways. Small lengths consume less
power and chip area, i.e. buses, computational units and memories should have
minimum widths. On the other hand, the wordlengths also determine the per-
formance in terms of resolution and dynamic range. Therefore, it is important
to keep signals wide enough to keep overflow and rounding errors at a min-
imum. These optimizations are performed on each bus, arithmetic unit and
memory, so that different hardware units can have different wordlengths. The
effects of this truncation into fixed point are investigated using simulations.

106 Paper I A Prestudy of an Echo Canceller Implementation

4.2 memory management

Memories are often a bottle-neck in digital signal processors (DSPs), since a
memory has a certain number of ports and a limited access frequency. Fur-
thermore, every access has a cost in energy. The larger the memory, the larger
energy consumption. In a typical ASDSP the power consumed by memory
accesses is a substantial part of the total consumption. By memory manage-
ment the number of accesses to large memories is reduced by rescheduling the
arithmetic operations and utilizing memory hierarchies [6].

4.3 the subband filterbank

There are two filterbanks in the algorithm, one filtering the signal x that comes
from the far end, and one filtering the signal y from the near end. These two
filterbanks are equal and consists of a bank of FIR filters followed by an IFFT.
The coefficients of the FIR filters are real valued in the application, making the
inputs to the IFFT real. Fourier transforms of real sequences can be reduced in
the number of operation as compared to complex transforms. Since there are
two real valued transforms in the algorithm, one solution is to feed the outputs
of one FIR bank to the real input of a complex IFFT, and the outputs from
the other FIR bank to the imaginary IFFT input. The output of the IFFT
can then be separated into the transform of the two real data sequences by
two additions and one complex conjugation operation per output bin [7]. This
reduces the number of computations in the IFFTs by slightly less than a half.

4.4 updating the lms filters

The subband structure of the algorithm is well-suited for the necessary energy
and coherence detectors. These detectors could work independently in each
subband, giving the freedom to turn off adaption at only those frequencies
where the far end signal does not contain any energy or has no coherence to
the near end signal. This gives better convergence of the LMS filters and a
lower number of operations in average.

4.5 the fullband fir filter

Since the taps are an estimate of a room acoustic impulse response, they have
a certain shape. By exploring the properties of typical impulse responses,
some optimizations of the fullband FIR filter can be made. Figure 4.1 shows
a recorded impulse response. It begins with zeros for a time corresponding to
the shortest distance from speaker to microphone, and then a set of peaks with

Section 5. Hardware Mapping 107

time

am
pl

it
ud

e

40003500300025002000150010005000

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Figure 4.1: A typical acoustic impulse response of a conference room.
The numbers on the horizontal axis is sample number at a sample rate
of 16384 Hz. Note the different amplitude characteristics along the hor-
izontal axis.

high amplitude, created by the direct wave and the first main reflections. From
there on, the amplitude is decreasing.

To cover the full dynamics of the impulse response, a multiply and accu-
mulate unit with very large dynamic is required. If, on the other hand, the
amplitude pattern of the impulse response is explored the filter can be split in
parts, where each part has its own multiply and accumulate unit with certain
dynamics. This gives a significant decrease in the number of bit transitions per
sample, and a corresponding decrease in power consumption.

5 Hardware Mapping

One extreme implementation would be to map the algorithm directly onto
hardware, i.e. each operation is directly mapped onto a dedicated hardware
module. Due to the high complexity of the algorithm the number of computa-
tional units would be very large at the same time as the clock frequency would
be extremely low, and therefore this is not an attractive solution.

One solution is to reuse hardware and have a few components that perform

108 Paper I A Prestudy of an Echo Canceller Implementation

several different operations for each input sample. For example one adaptive
filter circuit can be used to calculate the filter coefficients for all the subbands.
The extreme here is a standard signal processor with only a single multiplier
and adder, performing all computations sequentially. The challenge is to find
a trade-off between speed, power and flexibility in order to find a solution with
good characteristics.

A modest clock rate should be used, since a low clock rate gives the oppor-
tunity to lower the supply voltage and thereby reduce power [8]. A sample rate
of 16 kHz and a clocking frequency of the processor of 16 MHz gives 1000 clock
cycles per sample, which is reasonable for the algorithm. Thus, the application
specific architecture enabling the low clock frequency and parallel processing
reduce power consumption.

When hardware is reused for different tasks, there is a need for a controller
to schedule the operations to the correct computation unit at the correct mo-
ment. For this scheduling to be as effective as possible, careful investigation of
the memory access pattern for various algorithmic transformations is done [6].
There is also a need for a microprogrammed approach where the controller is
synthesized from a high level description will facilitate flexibility during the
implementation process [9].

6 Summary

For a hardware implementation of an acoustic echo canceller, an application
specific digital signal processor solution is chosen. This solution gives a stream-
lined architecture in terms of hardware utilization and costly memory accesses,
yielding realtime signal processing at an affordable overall power consumption.
This is especially important in wireless multimedia systems.

Important aspects for the implementation are optimization of wordlength
for buses and arithmetic units, determining of crucial parameters such as
the number of subbands and construction of the control unit for steering the
dataflow such that a good memory management is achieved.

References 109

References

[1] D. R. Morgan and J. C. Thi, “A delayless subband adaptice filter architec-
ture,” IEEE Transactions on Signal Processing, vol. 43, no. 8, Aug. 1995.

[2] M. M. Sondhi and W. Kellerman, “Adaptive echo cancellation for speech
signals,” in Advances in Speech and Signal Processing, S. Furui and M. M.
Sondhi, Eds. New York: Marcel Dekker, 1992, ch. 11.

[3] M. Dörbecker and P. Vary, “Reducing the delay of an acoustic echo canceller
with subband adaption,” in 4th International Workshop on Acoustic Echo
and Noise Control, 1995.

[4] J. E. R. Ferrara, “Frequency-domain adaptive filtering,” in Adaptive Filters,
C. F. N. Cowan and R. M. Grant, Eds. Prentice-Hall, 1985, ch. 6.

[5] A. Berkeman, V. Öwall, and M. Torkelson, “A low logic depth complex
multiplier,” in Proceedings of the 24th IEEE European Solid-State Circuits
Conference, The Hague, The Netherlands, Sept. 1998.

[6] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecapelle, Custom Memory Management Methodology. Kluwer Aca-
demic Publishers, 1998.

[7] H. V. Sorensen, D. L. Jones, M. T. Heideman, and S. Burrows, “Real-
valued fast Fourier transform algorithms,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. ASSP-35, 1987.

[8] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption
in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–
523, Apr. 1995.

[9] V. Öwall et al., “Custom DSP design of a GSM speech coder,” Journal of
VLSI Signal Processing, vol. 11, no. 3, pp. 213–228, 1995.

Paper II

Paper II

Custom Silicon Implementation of a
Delayless Acoustic Echo Canceller Algorithm

An acoustic echo canceller is a necessary device in handsfree telecommunication
systems. This paper presents a hardware implementation of an acoustic echo
canceller for high quality applications using handheld devices. The implemen-
tation is based on an algorithm with no delay in the signal path, attractive for
telecommunication systems where low signal path delay is crucial. However,
the zero delay comes with the price of increased complexity. A custom silicon
implementation fulfills quality and realtime operation while sustaining a low
power consumption. The fabricated chip contains two million transistors, and
occupies 29 mm2 in a 0.35 µm CMOS process. At 16 MHz clock frequency, the
chip processes 16 bit samples at a rate of 16 kHz, while consuming 55 mW for
uncorrelated input data. The main algorithm as well as optimizations on the
architecture and arithmetic level are presented together with measurements on
the fabricated chip. The custom implementation is compared to two standard
DSPs, and it is estimated that power consumption is reduced more than one
order of magnitude using the dedicated echo canceller chip.

Based on: A. Berkeman and Viktor Öwall, “Custom Silicon Implementation of a

Delayless Acoustic Echo Canceller Algorithm,” in preparation.

113

Section 1. Introduction 115

1 Introduction

Acoustic echo cancellers are necessary for communication systems where there
is a direct acoustic path from the loudspeaker to the microphone of the com-
munication device. Examples of such applications are conference telephones,
hands-free sets, and future applications such as communication using station-
ary or handheld computers, where earphones, cables and external microphones
will be considered circumstantial.

This paper presents an Application Specific Digital Signal Processor (AS-
DSP) implementation of an acoustic echo canceller algorithm. The implemen-
tation is targeted towards high quality communication applications, as it has
high dynamics, allows high sample rates, offers a low power consumption, and
has no delay in the signal path. Signal path delay is a serious problem in
telecommunications, since the turnaround time of such systems is large, due to
delay in speech codecs, channel codecs, etcetera. The algorithm chosen for the
implementation is based on subband estimation and time domain cancellation,
providing a zero delay in the signal path at a higher implementation complexity
compared to other canceller solutions.

The increased complexity leads to a high power consumption and device
usage in a general purpose DSP implementation. An important aspect for
handheld, battery powered devices, is the power consumption — the lower
power consumption, the more longevity. High performance and low power
consumption are major advantages of an Application Specific Integrated Circuit
(ASIC), and is therefore favored.

Section 1.1 gives an initial description of the chosen algorithm, together
with a complexity analysis. In section 2, more detailed descriptions of the
operations and optimizations of the involved sub-modules are given. There-
after, the architecture and implementation of the sub-modules is presented in
section 3. Here, implementation issues regarding memory and controllers are
explained. Section 4 contains details of the actual hardware implementation,
design methodology, and results. Furthermore, the verification strategy used
for the design is described. Finally, conclusions appear in section 5.

1.1 the echo canceller algorithm

The echo canceller algorithm chosen for implementation is presented in [1], and
a block diagram is shown in figure 1.1. To the upper left the far end signal x(n)
enters and connects to both the canceller and loudspeaker. The signal from
the microphone y(n) is the other input to the canceller. An estimate, ĥ, of the
impulse response of the acoustic path between loudspeaker and microphone is
computed by the canceller. In the acoustic path, a near end talker signal s(n)

116 Paper II Custom Silicon Implementation of a Delayless . . .

fil
te

rb
an

k

fil
te

rb
an

k

IFFT

conjugate, mirror and stack

︸ ︷︷ ︸
h(n)

s(n)

Σ

LMS
LMS

LMS

LMS

x0

x1

x2

y0

y1

y2

FFT FFT FFTFFT

ŷ(n)

w0 w1 w2

ĥ(n)

y(n)
x(n)

e(n)

xM−1 yM−1

wM−1

−

adaptive FIR

Figure 1.1: Schematic diagram of the delayless acoustic echo canceller.

plus noise is added. After the microphone, the far end signal with estimated
echoes are subtracted, optimally leaving nothing but the near end talker. The
cancelled signal e(n) is then fed back to the far end. The subtraction operation
is the only operation in the signal path, and does not contribute to any output
sample delay.

Two analysis subband filterbanks are used to divide the input signals x and
y into uniform subbands. The subband signals are input to a set of adaptive
Least Mean Squares (LMS) filters, one for each subband, tracking the frequency
response from speaker to microphone. If the subband filterbanks are designed
with care, adaption rate of the LMS filters will be high, because the spectral
range is reduced in each subband [1, 2].

The time domain impulse response is created by transforming all M sub-
band impulse responses to the frequency domain, and assembling a frequency

Section 1. Introduction 117

function from parts of all the subbands. Thereafter, the assembled estimate
is transformed back to the time domain. Transformation to the frequency do-
main and back again is done by the Fourier transform. Assembling of the
transformed filter taps is performed in a way that assures the estimate of the
time domain impulse response is real valued.

In order for the canceller to estimate the acoustic path from loudspeaker to
microphone, it is important that update of the LMS filters is performed only
when the near end talker is silent. Furthermore, for the adaption algorithm
to work, there has to be energy in the loudspeaker signal. To solve the first
problem, denoted double-talk, a double-talk detector is used. The detector
can be implemented as a coherence detector between the near and far end
signals [3], with the ability to freeze the LMS update when the far and near
end speaker talks at the same time [3]. An energy detector halting adaption
when the loudspeaker signal energy is too low solves the second issue.

Compared to traditional subband cancellers based on synthesis and analysis
filterbanks [4], the complexity added by the fullband impulse response update
and adaptive filter is substantial. In the compared algorithms, cancellation is
performed in the subband domain, and the error signal e(n) is generated by a
synthesis filterbank, collecting the estimation error from each subband into a
time domain signal. However, the chosen algorithm provides a zero signal path
delay, whereas the other algorithms have a significant delay from one analysis
and one synthesis filterbank connected in series.

Another canceller approach with no delay in the signal path is proposed
in [5]. Here, part of the cancellation is performed in the subband domain,
and part in the time domain. For a hardware implementation, this algorithm
requires both a time domain and a subband domain cancellation unit plus
the additional conversion of some taps from subband to time domain, and is
considered to be unnecessary complicated and irregular.

1.2 complexity analysis

The parameter having most impact on the overall computational complexity
of the algorithm is the number of subbands, M [6]. The affect of M on the
total complexity of the algorithm is shown in table 1.1. The table is created
assuming a time domain adaptive filter length N = 1024, a length of the
filterbank impulse response K = 512, a sample rate FS = 16384Hz, and an
update rate of the fullband filter of every 32nd sample. Furthermore, operations
related to double-talk and power detectors are not included in the analysis. The
parameters are the same as chosen for the hardware implementation. As will
be discussed later, the implementation is written in a hardware description
language, with all parameters generic. A canceller with any set of parameters

118 Paper II Custom Silicon Implementation of a Delayless . . .

Table 1.1: Number of million multiplications per second for the echo canceller,
assuming a fullband filter length N = 1024 taps, a filter update rate of once
every 32nd sample, and a sample rate of 16384 Hz. The four columns to the
right shows the relative number of multiplications spent in the filterbanks (FB),
estimation filters (LMS), fullband filter update (UPDATE), and fullband time
domain filter (FIR) respectively. The FIR operation is not a function of M , and
sets a lower bound on complexity. Note that the numbers for the filterbanks
are calculated given a polyphase implementation, see text.

relative #muls/second (%)

M Mmul/s FB LMS UPDATE FIR

2 474 7 85 4 4
4 205 8 74 10 8
8 107 8 59 18 16

16 68 7 42 26 25
32 50 6 27 34 34
64 41 4 16 39 41

128 36 4 9 41 46
256 33 4 5 41 50
512 31 4 3 40 53

can be elaborated and manufactured from the same description. Having a filter
length of 1024 taps is sufficient to prove the concept while keeping the test chip
to a reasonable size in the current silicon manufacturing process.

The table data was created by making two assumptions regarding the com-
plexity of the filterbanks. First, “half critical downsampling” is applied, affect-
ing the overall computational rate of the algorithm [1]. Second, the filterbanks
are implemented using a polyphase technique, which significantly reduces the
number of multiplications per second [7]. Downsampling and polyphase imple-
mentation are further discussed in section 2.1.

Since a multiplication has several times higher implementation cost than an
addition, only multiplications are considered in table 1.1. Due to the nature of
the involved signal processing algorithms, the multiply and accumulate (MAC)
operation is frequently used and the number of additions is in the same order of
magnitude as the number of multiplications. It is assumed that a complex mul-
tiplier corresponds to four real number multipliers, but their implementation
complexity can be reduced to about half that number using special arithmetic
operations possible to realize in an application specific device [8]. The division
operation used by the normalized LMS has high complexity, but is not used as

Section 2. Sub-Module Analysis 119

frequent as multiplication in the algorithm, and is therefore not considered in
the analysis.

The first column of table 1.1 is the number of subbands, ranging from
two to five hundred. The second column is an approximation of the required
number of real multiplications per second in millions. The third to sixth show
the relative number of multiplications (in percent) performed in the filterbanks,
LMS filters, update of the time domain impulse response estimate, and fullband
FIR filter respectively. As seen in the table, for a large number of subbands,
the dominating factor is the adaptive fullband FIR filter. To the contrary, for
few subbands, the least mean squares filters dominate. The larger the number
of subbands, M , the lower the total complexity.

A disadvantage of having many subbands is the increased requirements on
the prototype filter in the subband filterbanks [2]. A division into more nar-
row subbands requires the filter to have well defined selectivity characteristics.
Since the frequency response of the filters in a filterbank are abutted, care has
to be taken in the transition part of the prototype filter to make the group de-
lays between two filters equal [1]. However, as the signal is never reconstructed
from the subband decomposition, there are no “perfect reconstruction” criteria
to meet. Since only a fraction of the computations are due to the filterbanks,
the prototype filter can be realized using a large number of taps with a high
resolution, without having much impact of the total implementation complex-
ity. The limit of the filter length is instead the tolerable amount of filterbank
delay.

For M greater or equal to 32 the heaviest computational burden is in the
fullband FIR filter. In an echo canceller implementation running at a sample
frequency of 16 kHz, a sufficient value of N would be in the range of 1000 to
4000 taps [2]. For every input sample, this fullband FIR filter calculates 1000-
4000 multiplies and accumulations. Also, the taps in this filter are updated
hundreds of times per second to keep track of changes in the room acoustics.
Considering the number of multiplications per second only, an implementation
on a standard DSP would require a rather high performance processor, having
correspondingly high power consumption.

2 Sub-Module Analysis

The echo canceller algorithm consists of a number of sub-algorithms, or sub-
modules. In this section, four different sub-algorithms are described in more
detail: the filterbanks, LMS filter, the impulse response update, and the time
domain adaptive filter.

120 Paper II Custom Silicon Implementation of a Delayless . . .

2.1 filterbanks

A uniform M band filterbank consists in its most basic form of M finite im-
pulse response (FIR) filters of length K, where each filter selects a part of the
signal spectrum. For every input sample, KM multiplications are executed to
calculate one output sample for each of the M subbands. The operation can
be seen as an upsampling by a factor of M , since M outputs are generated
for each input sample. All these new output samples have a large redundancy,
and have to be processed by the algorithm parts succeeding the filterbanks,
giving a large overhead in the number of operations per sample. In order to
reduce the amount of data and computations, the outputs from the filterbank
are downsampled by a factor M/α, where α = 1 corresponds to critical down-
sampling. Downsampling decreases the computational burden in the adaptive
LMS filters operating on filterbank output data, since every LMS filter has to be
updated only every α/M sample after downsampling. For the implementation,
“half-critical” downsampling, corresponding to α = 2, is applied [1].

There are two M -band filterbanks in the algorithm, filtering the input signal
x(n) that comes from the far end, and the input signal y(n) from the near end.
The characteristics of the two filterbanks are equal, and therefore the same
filter kernel coefficients can be used for both banks. Actually, as will be shown
in section 3.1, both the x and the y filterbanks can be computed using the same
hardware unit.

Initial studies of the computational burden for the different parts of the
algorithm revealed that the two filterbanks required a large amount of compu-
tations per input sample. A way to significantly reduce the number of arith-
metic operations per input sample for the filterbanks is to implement them
using a polyphase approach [7]. The polyphase filterbank can be used if the
M frequency functions of the subband filters are chosen as frequency-shifted
versions of one prototype filter H [1, 7]. Assuming that filter H consists of K
filter taps, total number of FIR multiplications to update all filterbank outputs
can then be decimated from KM to K. The reduction comes at the expense
of a size-M inverse discrete Fourier transform at the outputs of the FIR filters.
Therefore, the algorithm is particularly efficient when M is a power of 2, and
a fast Fourier transform algorithm can be used. For a radix–2 implementa-
tion, the total number of multiplications for the filterbank operation is reduced
from KM to K + M/2 log(M). Thus, by the polyphase technique, the total
number of operations in the filterbank is reduced considerably. Note that the
number of multiplications per sample is even lower, since the filterbanks are
downsampled, and updated only every α/M input sample.

The coefficients of the prototype filter H are real valued in the application,
making the inputs to the IFFTs real. Fourier transforms of real sequences

Section 2. Sub-Module Analysis 121

can be reduced in the number of operation compared to complex valued trans-
forms [9]. Since there are two real valued transforms in the algorithm, one for
the x and one for the y data, one solution is to feed the outputs of the two FIR
banks to the real respectively imaginary data input of one complex IFFT. The
output of the IFFT can then be separated into the transform of the two real
data sequences by two additions and one complex conjugation operation per
output bin [9]. This reduces further the number of computations in the IFFTs
by slightly less than a half.

2.2 lms filters

Adaption is implemented using the Least Mean Squares (LMS) algorithm,
which has reasonable complexity and accuracy, and is known to be stable. Rate
of convergence is an important performance issue. The LMS filters suffer from
non-uniform convergence for correlated input data, such as speech signals [10].
The problem is reduced by letting the LMS filters operate on subband domain
signals [2, 10]. To further increase adaption rate, a common enhancement to
the LMS algorithm is to normalize the input signal by its energy, yielding
the Normalized LMS (NLMS) algorithm, which has a dramatically improved
convergence rate.

Since the inputs to the filterbanks are real valued, only M/2 + 1 bands
contain unique information [1], and thus there are M/2 + 1 LMS filters to be
updated, each every α/M input sample period. This results in a total of

α

M
(
M

2
+ 1) = α(

1
2

+
1
M

) (2.1)

LMS filters to be updated every sample period. If M is reasonably large, the
expression is close to α/2.

The subband structure of the algorithm is well-suited for the necessary
energy and double-talk detectors. These detectors could work independently
in each subband, making it possible to turn off adaption in frequency bands
where the far end signal does not contain any energy or has no coherence to the
near end signal. This gives better convergence of the LMS filters and a lower
number of operations in average. However, the hardware implementation has
to be designed for the worst case, leaving enough time to update all the LMS
filter if necessary.

For an implementation of the LMS algorithm using a fixed point number
representation with limited dynamics, special care has to be taken. With a
strong input signal, convergence will be fast and precise. With a weaker signal
however, adaption will likely proceed in the wrong direction, and performance
will be poor. Therefore, an energy threshold circuit is implemented as part of

122 Paper II Custom Silicon Implementation of a Delayless . . .

the NLMS unit. For every subband, the energy is checked against a threshold.
If the energy is too low for adaption, the LMS filter will be turned off for that
subband.

2.3 obtaining the fullband filter coefficients

The adaptive weights calculated in the M/2 + 1 LMS filters are combined
into a fullband impulse response of length N . This is achieved by Fourier
transforming the LMS weights to the frequency domain, assembling them in
frequency into a fullband frequency function, and inverse Fourier transform to
get a time domain impulse response [1].

The time domain impulse response estimate consists of N taps, and thus
N unique bins in the frequency domain. Due to the downsampling of a factor
M/α, each subband need α/M · N unique taps. This number is denoted T ,
thus

T =
α

M
N. (2.2)

According to [1], T/α frequency bins are taken from the Fourier transform of
the middle M/2 − 1 filters, and T/2α from the Fourier transform of the left-
and rightmost filters. Together this gives that

(
M

2
− 1)

T

α
+ 2

T

2α
=

M

2
T

α
=

N

2
(2.3)

unique bins that are combined into a fullband frequency function of length N .
The bins are assembled from position 0 to N/2 − 1, and then the complex
conjugate of the bins is repeated in reversed order from N/2 + 1 to N − 1. Bin
N/2 is set to zero.

Figure 2.1 depicts how the assembly is implemented. Diagrams (a) to (c)
show the frequency spectrum of the three first subbands, while diagram (d)
illustrates the fullband spectrum, assembled from frequency contents from sub-
band 0 to M/2. Each subband spectrum is downsampled a factor M/α, which
is equal to N/T according to equation (2.2). Therefore, the Fourier transform
of the subband impulse responses will have T unique taps only, since the full-
band impulse response is of length N . In the diagrams (a) to (c), these T taps
are repeated periodically to fill the range from 0 to N/2. The assembling of
the fullband response is implemented for α = 2 by taking half the number of
unique taps from each subband, except the first and last, where only a quarter
of the information is used.

Section 3. Architecture 123

2 2(c)

T0

2

N/2− 12T

3 4

0 2T

(d)

T

M
2

N/2− 1· · ·

...
...

0 0(a) 0

11(b)

0

1

2

20 1

Figure 2.1: Assembly of the fullband impulse response estimate from
a set of FFT transformed subband estimates. (a) to (c) show subbands
zero, one, and two, with periodic aliases. Due to downsampling, the
spectrum of the subbands have T unique taps. The bottom graph (d)
shows the assembled spectrum of the impulse response. There are N
unique taps in this spectrum, and the N/2 taps not shown in the image
are mirrored conjugate copies of taps 0 to N/2. The thicker bands show
what parts that are copied from each subband to the fullband spectrum.

2.4 adaptive time domain fir filter

The adaptive time domain FIR filter performs a time domain convolution of
the input signal x(n) and the estimated impulse response ĥ. As shown in
table 1.1, the dominating computational complexity is in the adaptive filter.
Therefore, it is reasonable to assume that a large quantity of the dynamic power
consumption is due to the arithmetic operations performed in the filter. For a
low power implementation, it needs to be carefully designed. Implementation
is further discussed in section 3.4.

3 Architecture

As part of the ASDSP design process, an efficient hardware architecture is
developed. The architecture has to be designed to make hardware mapping
of the algorithm straightforward. In one end of the design space of possible
architectures, is the hardware-mapped approach, where the signal-flow graph
of the algorithm is mapped directly to arithmetic hardware units and wires.

124 Paper II Custom Silicon Implementation of a Delayless . . .

input
buffer

fullband
FIR

NLMS
butterfly
datapath

x, y

e

filterbank

fullband assemble

Figure 3.1: The top-level block diagram of the implementation.

In the other end of the design space is the generic datapath approach, where
a programmable controller is used to execute operations on data using one
flexible datapath. The datapath is designed to cover all possible arithmetic
operations of the algorithm, and is time-shared between the operations.

For the echo canceller algorithm, operating on speech data with a relatively
low sample rate, the hardware-mapped approach is infeasible. Consider for
example the adaptive fullband filter, having a thousand taps. If each filter
tap is implemented as a unique hardware multiplier, the implementation will
be extremely parallel while operating at a low clock frequency. On the other
hand, the generic datapath is required to run at a high clock frequency, to
be able to execute all operations necessary per input sample using only one
time-shared datapath.

The best solution lies somewhere in-between. A suitable system clock fre-
quency can be found by looking at the fullband adaptive filter. The adaptive
filter is, from a computational complexity perspective, the dominating part of
the algorithm. If the filter is implemented using a single filter-tap processor,
computing one filter-tap per clock cycle, the system clock speed is required to
be at least N cycles per input sample. For a sample rate of 16 kHz, this cor-
responds to a clock frequency of 16 MHz, which is easily attained in the used
silicon manufacturing process. All datapaths are then designed based on the
constraint of N clock cycles per sample.

The architecture developed for the echo canceller implementation is shown
as a block diagram in figure 3.1. A more detailed image is shown in figure 3.4.
The architecture is composed of six major sub-modules, discussed in detail
next.

Section 3. Architecture 125

3.1 filterbank

The filterbank sub-module performs filterbank operations on both the x(n) and
y(n) input signals. As mentioned in section 2.1, both filterbanks are identical
in functionality and can therefore be computed using one shared hardware
unit. The filterbank unit is implemented using three sub-blocks, an FIR filter,
an IFFT, and a real-imaginary transform splitter. Convolution of the input
signals and the prototype filter kernel is performed in the FIR filter. The
x(n) and y(n) input signals are alternatingly fed in bursts of K/M samples
to the FIR filter, generating two output signals, one written to the real part
input of the IFFT processor, and the other at the imaginary part input as
described in section 2.1. When all samples are convolved, the IFFT performs
only one transformation, and the real-imaginary transform splitter reads the
complex IFFT output, and converts it to the independent IFFTs of two real
valued input signals. The IFFT processor takes advantage of a central butterfly
processor sub-module, described further in section 3.5, in order to reduce the
amount of redundant hardware.

3.2 nlms module

The NLMS module consists in turn of four sub-modules. Two sub-modules
for the LMS algorithm itself, a FIR filter and a LMS filter coefficient update
module; and two sub-modules for energy calculation and energy normalization.

The energy calculator keeps track of the energy of the last T taps in each
subband, and sets a flag for all subbands having an energy too low for adaption,
used to temporary stall estimation in a subband. This efficiently prevents the
LMS from doing an iteration step in the wrong direction due to a too low
or quantized signal. This is also the location of the double-talk detectors.
However, there are no double-talk detectors implementation in the first version
of the silicon chip.

The normalizer is implemented as a fixed point divider, using an efficient
implementation of the SRT algorithm [11], dividing the input samples to the
adaptive circuit by their energy.

3.3 fullband assemble

The fullband assemble module updates the filter kernel of the adaptive FIR
filter using information from all subband LMS filter taps. The module consists
of three parts: a small T sized FFT, a data reorder and conjugate module,
and a large N point IFFT. The data reorder module performs the frequency
stacking and data conjugation described in section 2.3. The FFT and IFFT

126 Paper II Custom Silicon Implementation of a Delayless . . .

time

am
pl

it
ud

e

40003500300025002000150010005000

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Figure 3.2: A typical acoustic impulse response of a conference room.
Note the different amplitude characteristics along the time axis.

modules only contain the necessary transform controllers, since the modules
rely on the central butterfly processor resource, which it further shared with
the filterbank IFFT processor, and the topic of section 3.5. Since the fullband
assemble module can not be run more often than the filterbanks, there is no
danger of collision when sharing the butterfly processor with the filterbank
sub-module.

3.4 fullband fir filter

As shown previously in section 1.2, the output time domain adaptive FIR
filter alone consumes about 50% of the total number of multiplications of the
canceller algorithm when M is reasonably large, i.e. M ≥ 32 [6]. Therefore,
it is beneficial to implement the FIR filter in a way that has a low switching
activity and thus a low power consumption. This is achieved by using a tree
compressor for the multiplier, and a carry save adder for the accumulator.
The tree compressor has a low logic depth, and the carry save adder performs
addition using a redundant number format, with no power consuming carry
ripple transitions. To have a non-redundant output of the filter, the result has
to be carry-rippled only once. Only one carry ripple operation for every Nth
addition in the FIR filter is a significant reduction in signal activity.

Section 3. Architecture 127

Since the filter taps are an estimate of a room acoustic impulse response,
they have a certain shape. By exploring the properties of typical impulse re-
sponses, some optimizations of the fullband FIR filter can be made. Figure 3.2
shows a recorded impulse response. It begins with zeros for a time correspond-
ing to the shortest distance from speaker to microphone, and then a set of peaks
with high amplitude, created by the direct wave and the first main reflections.
From there on, the amplitude is decreasing.

To cover the full dynamics of the impulse response, a multiply and ac-
cumulate unit with large wordlength is required. If, on the other hand, the
amplitude pattern of the impulse response is explored the filter can be split in
parts, where each part has its own multiply and accumulate unit with unique
dynamics. This gives a significant decrease in the number of bit transitions
per sample, and a corresponding decrease in power consumption. This has not
been implemented in the test chip, though.

By utilizing the input-output characteristics of a second order distributed
arithmetic multiplier, the fullband FIR and IFFT can be optimized, resulting in
a solution with less power consumption. The idea is to replace the N multipliers
in the fullband FIR filter with N/2 distributed arithmetic multipliers, at the
same time making the last butterfly stage of the IFFT unnecessary [12]. This
reduces the arithmetic switching in the FIR and IFFT, as well as the number
of accesses to the large memory addressed by the IFFT, thereby lowering the
power consumption. However, this co-optimization has not been included in
the first version of the chip.

An FIR filter with a high number of operations per sample, as the fullband
filter, has a high requirement on data throughput. For every filter tap, one
coefficient and one sample value has to be read. This sets special constraints
on how the coefficients and sample data are stored. For the echo canceller chip,
based on single-port memory technology, the fullband filter memory access
count sets a lower bound on the clock rate of the design, as long as only one
memory instance is used for storage of the estimate.

The location of the FIR filter in the canceller architecture is depicted in
figure 3.3. The FIR filter convolves data read form the input buffer and the
fullband assemble sub-modules. The situation is complicated for two reasons:

The sample data in the input buffer is also read and used by the filterbank.
Every M/α input sample, when the filterbank is executing, there is a
possible collision situation.

The filter coefficients are generated by the fullband assemble sub-module,
intermittently writing new coefficients to the memory that the fullband
FIR filter is reading from. The impulse response estimate used in the

128 Paper II Custom Silicon Implementation of a Delayless . . .

∗

∗

x(n)

FIR

filterbankinput buffer

fullband assemble

{x(n)}N

e(n) {ĥ(n)}N

Figure 3.3: The fullband FIR filter convolves data from the input buffer
and from the update sub-block. The blocks with an asterisk denote FIR
filters, and {x(n)}N refers to a memory containing the last N samples
of x(n).

filter has to be updated between filter operations, to avoid “clicking”
sounds in the output.

The system clock rate could be increased to have more memory accesses
per input sample, thereby time-sharing the memory accesses between modules.
However, this solution is not attractive for power consumption reasons. Instead,
there are other efficient solutions to the problem. The first problem is solved
as follows. The data in the input buffer is accessed on every new input sample
by the fullband FIR filter. When the filterbank is executing, it listens to the
data stream between the input buffer and the FIR filter. This can be arranged
if the filterbank and the FIR filter process the same data at the same pace.

The second problem has to be solved by inserting an extra memory instance,
since the impulse response estimate is generated by an IFFT processor, com-
puting output data at a significantly slower pace than processed by the FIR
filter. Without the extra memory, there would be a loss in sound quality when
the filter coefficients are updated simultaneously to a filter computation. The
solution is presented in more detail when investigating cache memory possibil-
ities in section 3.6.

Section 3. Architecture 129

3.5 fft butterfly

There are two modules in the architecture that use either the FFT or IFFT: the
fullband impulse response reconstruction described in section 2.3, actually con-
taining both an FFT and an IFFT, and the polyphase filterbank sub-module.
These three transforms are all of different size and wordlength, one is forward
transform while the other two are inverse transforms. Implementing the trans-
form processors with small and efficient controllers, the dominating hardware
in terms of area and power is the butterfly datapath. The overall timing of the
design allows for the three transforms to share the same butterfly hardware,
thereby reducing chip area. Resource sharing is achieved by scaling the butter-
fly datapath to the largest used wordlength, and by implementing the ability
to do the required IFFT integer downscaling. Furthermore, the transforms can
also share the same coefficient ROM if the twiddle factors can be conditionally
conjugated when performing inverse transformations.

3.6 memory considerations

Memories are often a bottle-neck in digital signal processors (DSPs), since a
memory has a certain number of ports and a limited access frequency. One
example is the fullband FIR filter described in section 3.4. Every access has
a cost in energy, the larger the memory, the larger energy consumption. In a
typical application specific DSP, the power consumed by memory accesses is a
substantial part of the total consumption [13].

To have a more power efficient solution, a memory management methodol-
ogy has to be applied. A goal of the methodology is to have the most number
of accesses to smaller memories, giving a higher throughput and a lower overall
power consumption. This is achieved by rescheduling arithmetic operations
and utilizing memory hierarchies [13]. Memory instantiation was investigated
during the implementation process. There are three ways to instantiate a mem-
ory:

Global, or accessible to any sub-module in the design.

Local, that is, accessible only to one block. This is equal to embedding
the memory instance inside a sub-module.

Partially global, accessible to a few sub-modules only.

The design strategy for the echo canceller implementation has been to keep
independent data separated in different memories, and to keep data as close
to the data path as possible. This strategy has several benefits: it increases
memory bandwidth, since all disjoint memories can be accessed independent of

130 Paper II Custom Silicon Implementation of a Delayless . . .

each other; it simplifies control circuitry, since bus arbitration can be neglected;
it reduced power consumption since most accesses are to small memories and
follow localized access patterns since all data in a memory is related. Further-
more, a division into several smaller memory instances does not affect the total
amount of data storage in the design.

Cache memories or cache memory hierarchies is a means to increase data
bandwidth and reduce power [13]. The idea is to have one or a set of smaller
memories that mirrors a part of the contents of a large memory. If the large
memory is accessed frequently in a certain address range, power is saved if
this range is copied to a smaller memory, and read from there instead. The
total number of reads to the memory hierarchy becomes unchanged, but most
accesses target the smaller memory only.

Possible cache memory instantiation has been investigated, and two mem-
ories have been identified as candidates for caching. The first is the memory
where the subband information of x(n) are stored after the filterbank. This
memory has T words of complex data for M/2 subbands. The memory is read
twice in a short address range of T words, once by the NLMS FIR filter, and
once by the NLMS update circuit. A cache memory of T words would decrease
the number of accesses to the larger memory by 50%, while increasing through-
put of the NLMS with 100%, since the FIR and update circuitry could work
in parallel for consecutive subbands. However, hardware for the NLMS is “fast
enough”, and the gain in throughput is negligible in this application.

The second candidate for caching is the memory that contains the time-
domain impulse response estimate. This memory is read continuously by the
convolution unit of the fullband FIR filter. For every new input sample, N
read accesses are targeting the memory. Every time a new impulse response
estimate is calculated, the same memory is written to by the fullband assemble
unit. Thus, there are two units addressing the same memory. The scheme is
introduced in section 3.4, and depicted in figure 3.3.

Furthermore, the update of the estimate is generated by an IFFT proces-
sor, implemented using a time-shared architecture, executing the transform
in-place. The IFFT processor requires approximately 2N log2 N clock cycles
to perform one transform. Thus, if the IFFT and FFT share one memory in-
stance, clock rate has to be at least N +2N log2 N times the input sample rate.
Since the IFFT is operating only once every M/α input sample, the overhead
in clock frequency is unacceptable.

Instead, the solution is to use an additional cache memory from which the
FIR filter reads the impulse response estimate. When a new estimate is updated
and written by the IFFT, the FIR filter instead address the IFFT memory for
N clock cycles, performing the convolution while simultaneously updating the
cache memory. This extra memory is redundant and increases the total chip

Section 3. Architecture 131

DIVEcalsplitIFFTFIR

AFIR Fullband assemble

Polyphase Filterbank NLMS

e

x, y

FIR LMSFIRFFTassm.IFFT

Input Buf.

main
control

Figure 3.4: The echo canceller hardware architecture. Parts belonging
to the controller hierarchy are shaded gray.

area by approximately 5%.

3.7 controller hierarchy

With an increasing number of components in a datapath, control becomes
more difficult. A way to keep the complexity of the control circuitry low is to
distribute the controller locally in the design, that is, a specific data path is
steered from a local controller unit close by. However, with several controllers
interacting, intercommunication problems such as deadlocks may arise.

Although the echo canceller consists of a number of different functional
modules realizing more or less complicated algorithms, data flows in a “left to
right” manner between modules, which simplifies inter-controller communica-
tions. In particular, most modules in the design have only two input control
signals, input signal DO and output IDLE. If a module is signaling IDLE, it can
be trigged to run by asserting the DO signal synchronously for one clock cycle.

In figure 3.4, a more detailed structure of the architecture is revealed. The
controllers are arranged in a three level hierarchy, and is visualized as the
shaded boxed and wires in the image. The master controller is located in the
input buffer module. When the input buffer receives a new pair of input sig-
nals, the master controller sends a sequence of DO signals to the other four main
modules. After a number of clock cycles, all involved modules have computed
their part of the calculation, and the master controller is notified that all mod-
ules are idle and ready for a new input sample. In this fashion, the system

132 Paper II Custom Silicon Implementation of a Delayless . . .

D

A A

D D

A A

D

active passive

Figure 3.5: The two kinds of modules. The active module contains an
addressing controller that access the neighboring blocks when reading
and writing input and output data. The passive module operates on
data stored in its internal memory, and relies on its neighbors to read
and write data to the memory.

clock rate is arbitrary, as long as it provides enough clock cycles for each input
sample.

Sub-modules containing a datapath, a controller, and possibly a RAM mem-
ory are divided into two disjoint groups based on behavior: active and passive
modules, see figure 3.5. The active module contains a controller that upon
activation reads its input from a neighboring module or memory. It performs
some computation, either on the fly or on buffered data, and writes out the
result in another neighboring module or memory. The passive module, on the
other hand, looks to its neighboring modules similar to a memory. When ac-
tivated it performs some computation on the contents of its internal memory,
and goes back idle while setting the IDLE signal.

An FFT processor module is depicted in figure 3.6. The module is passive,
and has two interfaces to its internal memory, write interface A and read in-
terface B. The interfaces look like any other memory interface in the design,
and can be used to read and write data to and from the internal memory. To
avoid collision, both interfaces can not be used simultaneously, and a control-
ling device operates a set of multiplexers, connecting the memory to one of
the interfaces or to the internal datapath. Communication with the controller
from outside the module is done by the two signals, DO and IDLE. The first ini-
tializes a series of operations of the module, in this case, performs an in-place
FFT of the data in the internal memory. The IDLE is inactive during the FFT
computation, but goes active upon completion, signaling that the transformed
data is ready to be read out.

3.8 wordlength optimization

Unnecessarily large signal wordlengths result in larger arithmetic components
and larger memories for data storage. Additionally, such extra hardware con-

Section 4. The Chip 133

se
le

ct
or

IDLE

mem. interface A (write)

mem. interface B (read)

DO

D/Q
Acontrol

A
SEL

radix–2
butterfly RAM

Figure 3.6: Example of a hardware accelerator. This is an FFT proces-
sor with two memory bus interfaces to neighboring modules. The bold
lines represent data in and out, and the thin lines represent address bus,
select and read write signals. To the left is the external control interface.

sume power without any gain in performance. Therefore, all signals should
have a minimum wordlength. Since wordlengths also determine resolution and
dynamic range, it is important to keep signals wide enough to avoid overflow
and rounding errors, and maintain acceptable signal to noise ratios.

Wordlength optimizations are performed on each bus, arithmetic unit and
memory instance, so that different hardware units can have different word-
lengths. The effects of this truncation into fixed point are investigated using
simulations. Input and output speech sample wordlengths are set to 16 bits.
The internal signal wordlength ranges from 16 to 32 bits, where the highest
dynamics is used for intermediate frequency domain variables in the fullband
assemble unit. The taps of the NLMS filters are stored with an accuracy of
29 bits, and the adaptive FIR filter accumulator is 31 bits wide. The imple-
mentation of the adaptive FIR filter can be reduced in complexity as explained
in 3.4.

4 The Chip

This section is divided into four parts: a description of the verification interface
of the chip, short summary of the design methodology used, results, and a
comparison to implementation on existing generic DSP processors.

134 Paper II Custom Silicon Implementation of a Delayless . . .

64 64

32 32
D

64→32 32→64

RAM

Q
D
WE

Q D WE

Q LOHI DBGWE︸ ︷︷ ︸

interface
RAM

internal

verrfication interface

︷︸
︸︷

Figure 4.1: Verification encapsulation of the memories.

4.1 verification interface

The fabricated chip is a research design, requiring extensive verification possi-
bilities. A test strategy aiming at a high fault coverage indicating if the design
has a failure is not sufficient. The failure should be locateable. Also, if one
part of the design has a failure, testing of the remaining design should still be
possible.

Thus, if parts of the chip malfunction, it should be possible to observe inter-
nal signals in the design, and additionally to stimulate some internal circuitry
form the outside, giving a chance to verify different modules in the design inde-
pendent of each other. The ability to observe and stimulate internal circuitry
in the design requires extra pads on the chip. The total number of pads in a
design is limited by the available chip packages and the associated cost. Thus,
facilities for observability and controllability have to share pads with the inputs,
outputs and power supply required by the design.

Scan chains are popular for reading and writing the contents of the on chip
flip-flops, but were discarded for the test chip for two reasons: it is difficult
to include memory in the scan chain and the chains have a limited data rate.
Instead, the test chip relies on a verification bus that connects to all RAM
instances and other interesting signals. Each RAM is encapsulated in a small
verification bus interface unit, see figure 4.1. With select signals, the contents
of the RAM could be read or written at a high data rate using the verification
bus.

In total there are ten RAMs in the design, ranging from 16 to 1024 words,
with wordlengths of 16 to 64 bits. The largest wordlengths are used to store

Section 4. The Chip 135

complex numbers with 32 real and 32 imaginary bits of data. A parallel inter-
face, consisting of 10 bits address bus, 32 bit input and output data bus, and
signals for read/write and real/imaginary select was implemented. Addition-
ally, four bits input is used to select which of the RAMs that is currently being
accessed.

The verification bus is also used for transferring speech sample data to and
from the chip. Thereby, the audio sample interface is hidden in the verification
interface, and requires no pads of its own.

Using the verification interface, it is possible to read and write to every
RAM in the design. Every sub-module can be tested independently by writing
data to its source RAM, and after operation reading back the result from
the destination RAM. Other interesting possibilities is realtime readout of
the energy in each subband, or realtime readout of the time domain impulse
response estimate, for the purpose of making a visual presentation of how the
impulse response changes with time and acoustic path. Another feature is that
it is possible to eavesdrop on the output of each RAM in realtime without
affecting the operation of the chip.

4.2 methodology

As the design is written in a hardware description language, all parameters are
kept generic. As a consequence, a chip with any configuration of wordlengths,
number of subbands, or FIR filter length can be elaborated and manufactured
from the same source description.

Initial modeling was performed using Matlab. When the algorithm was de-
veloped, add sub-algorithm were one at a time rewritten in the C programming
language. By linking the C code dynamically into Matlab, it could be verified
together with the original high level code.

The C description of the algorithm was then subject to loop transforms and
memory access pattern investigations [13] to find efficient memory addressing
schemes. A C++ class overloading arithmetic operations was used to convert
the description into a fixed point representation, with a minimal wordlength
on all signals. Finally, an architecture was developed, and the design rewritten
using a hardware description language.

During the lower level design process, a strict hierarchical design methodol-
ogy was used. The complete design was modeled on a high level top-down, and
sub-modules were designed and thoroughly verified bottom-up. The resulting
description of the design consist of a top level, and a number of instantiated
functional sub-modules, which in turn may be composed of further levels of
sub-modules in the hierarchy. The hierarchical methodology simplifies design,
verification, and maintenance.

136 Paper II Custom Silicon Implementation of a Delayless . . .

Figure 4.2: Micro photograph of the manufactured echo canceller chip.
The size is 5.02× 5.76 square millimeters.

4.3 results

The echo canceller is implemented using a standard cell library and synthesis
tools. The chip is manufactured in a 0.35µm CMOS process with five metal
layers. It contains 120 pads and twelve memory instances, two ROMs and ten
RAMs. In total, about 250 kbit RAM and 30 kbit ROM is instantiated. The
chip has an advanced interface for verification purposes, where the content of
every RAM can be read or altered at full clock rate. The size of the chip is
about 29 mm2 in area, consisting of more than two million transistors. A micro
photograph is shown in figure 4.2.

The chip is targeted towards a clock frequency of 16 MHz, operating on
16 kHz audio samples. Due to the pipelined architecture of the datapaths, the
design was synthesized to a maximum frequency of 50 MHz without difficulties.
This speed margin is used to save power consumption by lowering the supply
voltage [14].

The manufactured chip has full operating functionality, and power measure-
ments during operation has been measured for a number of clock frequencies.
The power measurement numbers are presented in table 4.1. The numbers

Section 4. The Chip 137

Table 4.1: Power Consumption versus frequency.

Audio Sample Rate Clock Frequency Power Consumption

8 kHz 8 MHz 23 mW
16 kHz 16 MHz 55 mW
32 kHz 32 MHz 168 mW
50 kHz 50 MHz 493 mW

are measured using white noise input signals, resulting in a higher switching
activity than for more correlated speech signals, and a correspondingly higher
power consumption.

4.4 compare with standard dsps

In order to compare the application specific implementation with an imple-
mentation on a standard processor, a number of issues have to be investigated.
Since the semiconductor manufacture process has a great impact on perfor-
mance, it has to be established what processes the compared circuits are fabri-
cated in. Also, for a fair comparison, the standard DSP should be able to hold
the intermediate data in its internal memory, since external accesses are costly,
and difficult to estimate. Furthermore, the wordlength of the datapaths must
be investigated. The presented chip operates on 16 bit sample data, making
16 bits a minimum internal wordlength. As shown in section 3.8, most signals
have a significantly larger wordlength. Since most fixed point DSPs operate on
a 16 bit wordlength, implementation on such a processor will be complicated.

The first comparison is made to the TMS320LC54x low power fixed point
processor family. Implemented in a 0.35 µm process, power consumption is
claimed to be 1.95 mW/MIPS [15]. Counting the multiplications only, the
power consumption would be about 60 mW for 16 kHz sample rate, but a large
number of instructions is required to perform Fourier transforms etcetera. In
the benchmarks, it is claimed that more than 8500 instructions are required for
a 256 point FFT. The fullband update has to perform an 1024 point every 32
samples, which will translate to more than 17 MIPS (8500× 4× 16384/32), or
34 mW for the IFFT only at 16 kHz sample rate. Also, the processor has a 16 bit
data wordlength, witch is far from enough for the 16 bit sample input/output
canceller with intermediate wordlengths of 32 bits. For implementation on the
fixed-point processor with a 16× 16 bits multiplier, this would require iterated
use of the multiplier for every multiplication operation, significantly increasing
the number of MIPS.

138 Paper II Custom Silicon Implementation of a Delayless . . .

Instead, comparing to the floating point TMS320VC33, with a stated power
consumption of less than 200 mW@75 MIPS [16], the algorithm might just fit.
But as the DSP is implemented in a high performance 0.18 µm CMOS process,
power consumption has to be adjusted to be compared to the 0.35µm pro-
cess used of the presented chip. It is difficult to present exact numbers on the
performance difference between the two processes. By applying general scal-
ing or full scaling [17], energy per operation grow cubic with the scale factor.
Thus, the custom ASDSP echo canceller has more than a decade less power
consumption than the standard DSP.

5 Conclusions

A delayless acoustic echo canceller chip has been implemented and fabricated
in a 0.35 µm silicon CMOS process with five metal layers. Optimizations on
the algorithm and architecture levels are presented, reducing implementation
complexity and power consumption.

The manufactured chip is verified for functionality, and at a audio sample
rate of 16 kHz, it consumes 55 mW power for white noise input. The chip
contains more than two million transistors and occupy an area of 29 mm2.
On-chip memory storage is 250 kbit RAM and 30 kbit ROM, divided into ten
RAMs and two coefficient ROMs. An advanced verification interface is built-in,
making it possible to read and alter contents of any RAM at full clock rate.

Compared to a standard DSP, it is shown that the custom wordlengths of
the design are difficult to apply to a fixed point DSP with a reasonable number
of MIPS. Comparing to a floating point DSP, power consumption is estimated
to be more than a decade lower for the custom implementation.

References 139

References

[1] D. R. Morgan and J. C. Thi, “A delayless subband adaptice filter archi-
tecture,” IEEE Transactions on Signal Processing, vol. 43, no. 8, Aug.
1995.

[2] M. M. Sondhi and W. Kellerman, “Adaptive echo cancellation for speech
signals,” in Advances in Speech and Signal Processing, S. Furui and M. M.
Sondhi, Eds. New York: Marcel Dekker, 1992, ch. 11.

[3] T. Gänsler, M. Hansson, C.-J. Ivarsson, and G. Salomonsson, “A double-
talk detector based on coherence,” IEEE Transactions on Communica-
tions, vol. 44, no. 11, pp. 1421–1427, Nov. 1996.

[4] W. Kellerman, “Analysis and design of multirate systems for cancellation
of acoustical echoes,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1988.

[5] M. Dörbecker and P. Vary, “Reducing the delay of an acoustic echo can-
celler with subband adaption,” in 4th International Workshop on Acoustic
Echo and Noise Control, 1995.

[6] A. Berkeman, V. Öwall, and M. Torkelson, “A prestudy of an echo canceler
implementation,” in Proceedings of the International Conference on Signal
Processing Applications and Technology, Orlando FL, USA, Nov. 1999.

[7] P. P. Vaidyanathan, Multirate Systems and Filterbanks. Prentice-Hall,
1993.

[8] A. Berkeman, V. Öwall, and M. Torkelson, “A low logic depth complex
multiplier,” in Proceedings of the 24th IEEE European Solid-State Circuits
Conference, The Hague, The Netherlands, Sept. 1998.

[9] H. V. Sorensen, D. L. Jones, M. T. Heideman, and S. Burrows, “Real-
valued fast Fourier transform algorithms,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. ASSP-35, 1987.

140 Paper II Custom Silicon Implementation of a Delayless . . .

[10] C. Breining, P. Dreiscitel, E. Hansler, A. Mader, B. Nitsch, H. Puder,
T. Schertler, G. Schmidt, and J. Tilp, “Acoustic echo control: An applica-
tion of very-high-order adaptive filters,” IEEE Signal Processing Magazine,
vol. 16, no. 4, pp. 42–69, July 1999.

[11] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers, 1994.

[12] A. Berkeman, V. Öwall, and M. Torkelson, “Co-optimization of FFT and
FIR in a delayless acoustic echo canceller implementation,” in Proceed-
ings of IEEE International Symposium on Circuits and Systems, Geneva,
Switzerland, May 2000.

[13] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecapelle, Custom Memory Management Methodology. Kluwer
Academic Publishers, 1998.

[14] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498–523, Apr. 1995.

[15] A. Fishman and P. Rowland, “Designing low-power applications with the
320LC54x,” Texas Instruments, Tech. Rep., 1997.

[16] 320VC33 Datasheet, Texas Instruments, July 2002.

[17] J. M. Rabaey, Digital Integrated Circuits: a design perspective. Prentice-
Hall, 1996.

Paper III

Paper III

A Low Logic Depth Complex
Multiplier using Distributed Arithmetic

A combinatorial complex multiplier has been designed for use in a pipelined fast
Fourier transform processor. The performance in terms of throughput of the
processor is limited by the multiplication. Therefore, the multiplier is optimized
to make the input to output delay as short as possible. A new architecture
based on distributed arithmetic, Wallace-trees and carry-lookahead adders has
been developed. The multiplier has been fabricated using standard cells in
a 0.5 µm process and verified for functionality, speed and power consumption.
Running at 40 MHz, a multiplier with input wordlengths of 16+16 times 10+10
bits consumes 54% less power compared to an distributed arithmetic array
multiplier fabricated under equal conditions.

Based on: A. Berkeman, Viktor Öwall, and Mats Torkelson, “A Low Logic Depth

Complex Multiplier using Distributed Arithmetic,” IEEE Journal of Solid-State Cir-

cuits, vol. 35, no. 4, pp. 656-659, Apr. 2000.

c© IEEE. Reprinted, with permission, from IEEE Journal of Solid-State Circuits.

143

Section 2. The FFT Processor 145

1 Introduction

Complex multiplication is one of the most time-critical and area consuming
operation in a digital signal processor. Therefore, effort has to be made to
decrease the number of multipliers and to increase their speed. A pipelined Fast
Fourier Transform (FFT) processor has been designed for use in an Orthogonal
Frequency Division Multiplex (OFDM) system. In the designed FFT processor
the critical path consists of a complex multiplier in series with a butterfly unit
performing addition and subtraction. A part of the FFT pipeline is shown in
figure 2.1. Since the butterfly processors are much faster than the complex
multiplier, the maximum clock frequency of the processor strongly depends of
the multiplier delay. This paper present a novel multiplier architecture based on
distributed arithmetic and Wallace trees. The multiplier is fully parameterized,
so any configuration of input and output wordlengths could be elaborated.

2 The FFT Processor

In the early versions of the FFT-processor, a complex array multiplier was
used [1]. The array multiplier is a highly regular structure resulting in a min-
imal wire-length, which is important for high-speed design in sub-micron pro-
cesses where wiring delay gives a significant contribution to the overall delay.
However, in a process where cell delay dominates wire delay, the logic depth
of the design is more important than regularity. In the complex array multi-
plier the logic depth is O(N), where N is the input wordlength. In the adder
tree multiplier, on the other hand, the depth is O(log N) [2]. Even for short
wordlengths this leads to a substantial reduction in delay.

A way to decrease the critical path of the FFT processor would be to pipeline
the multiplier into two or more stages. However, due to the pipelined structure
of the FFT processor, complexity of the controlling hardware would increase [3].
Furthermore, the wordlengths of the datapaths are wide, due to the application
of the processor, and all operators use complex arithmetic. A multiplier in this
application has between 44 and 52 input bits, and a pipeline register inserted
somewhere in the middle of the multiplier would need a word length of more
than a hundred bits, due to the internal “carry save” number representation.
This would increase area, routing and clock load and is not a preferable solution.
Instead, the multiply operation is entirely combinatorial.

The FFT processor is implemented using the R22DIF FFT-algorithm [3].
In this algorithm, every second multiplication can be exchanged to a multiply
by −j, which for an 8192-point FFT leaves only six complex multipliers. This
is to be compared to twelve using a straightforward radix-2 implementation.

146 Paper III A Low Logic Depth Complex Multiplier . . .

W k
N

FIFO FIFO

BF IIBF I

Figure 2.1: Part of the R22DIF FFT processor pipeline. The butterfly
processors are combinational and named “BF I” and “BF II”. The FIFOs
are synchronous.

The multiplication by −j is realized without a multiply by real-imaginary swap
and negation of the imaginary part. This is the reason for the two different
butterfly processors, “BF I” and “BF II”, in figure 2.1. By using this algorithm,
the number of instantiated multipliers is minimized compared to an ordinary
radix-2 FFT without any loss in throughput.

3 Multiplier Algorithm

A complex multiplier calculates two inner products,{
ZR = ARWR − AIWI

ZI = ARWI + AIWR. (3.1)

In the case of the FFT-processor, W = WR + jWI are the twiddle-factors
stored in a ROM. The wordlength of WR and WI is denoted M . According
to equation (3.1), four real multiplications and two additions are required.
With the exception of logic minimization, there are two methods to decrease
multiplication logic depth if it is assumed that multiplication is performed by
summation of partial products. The first is to reduce the number of partial
products, and the second is to use a faster adder strategy to sum all the partial
products together [2]. Both methods have been combined in the presented
architecture. Distributed arithmetic [4, 5, 6] was chosen as a means to reduce
the number of partial products. A Wallace tree adder was selected for adding
the partial products together, since it has a low logic depth resulting in fast
addition.

Section 3. Multiplier Algorithm 147

Table 3.1: Relation between the bits aRi
, aIi

, and the partial products.

αRi
αIi

aRi
aIi

WIαRi
+ WRαIi

WRαRi
−WIαIi

−1 −1 0 0 −WΣ −W∆

−1 1 0 1 W∆ −WΣ

1 −1 1 0 −W∆ WΣ

1 1 1 1 WΣ W∆

By using distributed arithmetic the complex multiplication is treated as
two independent inner products ZR and ZI . Each of the two inner products
will be calculated using one distributed arithmetic multiplier, as compared to a
direct realization of equation (3.1) which requires four real multipliers. In the
equations that follow, a bit-variable is treated as an integer variable holding
the arithmetic value of zero or one. In this way, bits can be used together
with arithmetic variables and operators. If A is an N -bit fractional number in
two’s complement, the value of A is calculated according to

A = −a0 +
N−1∑
i=1

ai 2−i. (3.2)

By using the identity

A =
1
2
(
A− (−A)

)
(3.3)

and the rule for negating a two’s complement number, −A = A + 2−(N−1),
equation (3.2) can be written as

A = −(a0 − a0) 2−1 +
N−1∑
i=1

(ai − ai) 2−i−1 − 2−N . (3.4)

Introduce α0 = (a0 − a0), and for k 6= 0, αk = (ak − ak), note that all αk ∈
{−1,+1}. Using this notation, A can be written as

A =
N−1∑
i=0

αi 2−i−1 − 2−N . (3.5)

The relationship between ai and αi is shown in table 3.1. Using this encoding

148 Paper III A Low Logic Depth Complex Multiplier . . .

the complex product can be expressed as

ZR =
N−1∑
i=0

(WRαRi
−WIαIi

) 2−i−1 − (WR −WI) 2−N (3.6)

ZI =
N−1∑
i=0

(WIαRi
+ WRαIi

) 2−i−1 − (WI + WR) 2−N , (3.7)

where αi = αRi
+ jαIi

. The expressions WRαRi
−WIαIi

and WIαRi
+ WRαIi

are for i 6= 0 examined in table 3.1, where the twiddle-factors have been trans-
formed from WR and WI to WΣ and W∆ according to{

WΣ = WR + WI

W∆ = WR −WI .
(3.8)

This transformation does not cause any problems in the implementation, since
the twiddle-factors are pre-calculated in the WΣ and W∆ format before real-
ization. From table 3.1 it is clear that pi = (aRi

⊕ aIi
) can be used to select

WΣ or W∆. Treating pi as integers holding the values 0 or 1 and ∨ as a bitwise
inclusive-or operator, equation (3.7) and (3.7) can be written as

ZR =
N−1∑
i=0

(
aRi
⊕ (piWΣ ∨ piW∆) + aRi

)
2−i−1 −W∆ 2−N (3.9)

ZI =
N−1∑
i=0

(
aIi
⊕ (piW∆ ∨ piWΣ) + aIi

)
2−i−1 −WΣ 2−N . (3.10)

When evaluating the sums, the powers aRi
and aIi

should be replaced with
aRi

and aIi
for the case i = 0, since these bits have negative weight in two’s

complement representation. The partial inner products

aIi
⊕ (piW∆ ∨ piWΣ) + aIi

(3.11)

and

aRi
⊕ (piWΣ ∨ piW∆) + aRi

(3.12)

are suitable for hardware mapping. They are realized as multiplexers selecting
WΣ or W∆, depending on the value of pi. The bits aRi

and aIi
conditionally

negates the outputs of the multiplexers by inverting and adding a one in the
least significant position. Figure 3.1 shows all the partial product bits that has
to be added to generate ZR or ZI . The wordlength for the twiddle factor, W , is

Section 4. Implementation 149

N − 1 M

N

Figure 3.1: Partial product bits by significance for ZR or ZI . Input
wordlength is N and coefficient wordlength is M . Each dot represents
one partial product bit.

M bits and for the data, A, it is N bits, in this case 10 and 16 bits respectively.
The top sixteen lines in the figure is the partial products generated inside the
sum of equation (3.10) or (3.10), and the third line from bottom is the ones
that form the corresponding two’s complement of these products. The last two
lines is the −WΣ or −W∆ times 2−N term.

As an alternative to distributed arithmetic, modified Booth-encoding was
considered [7, 8]. However, as the number of partial products are about the
same for both methods, modified Booth-encoding requires more logic gates to
implement. This is due to that in the modified Booth algorithm, three variables
have to be decoded to select the proper partial product. In a complex multiplier
based on distributed arithmetic, a simple two-input xor-gate implements the
selection.

4 Implementation

The proposed multiplier consists of two distributed arithmetic blocks, one cal-
culating ZR, and the other ZI . The two blocks are similar and the difference
is basically the minus in equation (3.1). Each block is divided into three parts,
partial inner product generator, adder tree and carry lookahead adder, see
figure 4.1.

150 Paper III A Low Logic Depth Complex Multiplier . . .

W∆

WΣ

AR
AI

ZR ∨ ZI

Figure 4.1: The multiplier for ZR or ZI , the complete complex multi-
plier consists of two of these. Partial inner product generator at the top,
adder tree in the middle, and fast carry-lookahead adder at the bottom.

When designing the adder tree, a generic tree generator was used. This
generator produces a tree with y inputs of wordlength x, that is a rectangle
of x by y input bits. This rectangle has to be large enough to cover all the
partial product bits of figure 3.1, i.e. x = M + N − 1 and y = N + 3. For
certain sizes of N and M , the two last lines in figure 3.1 can be joined with
two of the N first lines, minimizing y to N + 1. Unfortunately, almost 50%
of the inputs to the adder tree are unused or used for sign extension only,
and extra logic will be generated. Therefore, the area for the tree multiplier is
approximately 75% larger than for the array multiplier. The number of gates for
the array multiplier is 3000, while the tree multiplier uses 6200 gates, of which
4400 belongs to the two adder trees. Theoretically, the area for a dedicated
tree generator should be only slightly larger than for the array multiplier.

When data flows through the pipeline of the FFT processor, the wordlength
has to increase to keep accuracy in the calculations. For the current applica-
tion the input wordlength is 12+12 bits (real + imaginary) and the output
wordlength is 16+16 bits. The twiddle-factors are kept constant at 10+10 bits
at all stages of the pipeline. Different wordlengths in the datapath means that a

Section 4. Implementation 151

set of multipliers of different wordlengths have to be instantiated if the longest
wordlength is not to be used for all multipliers with a corresponding increase in
area. Also, as FFT processors will be built for different applications the word-
length is subject to change. Therefore, the multiplier is fully parameterized
and a multiplier of specific wordlength can be elaborated when needed.

For the FFT application, the output wordlength should equal the input
wordlength, i.e. some of the least significant bits of the result are cut away.
A simple rounding scheme is applied to lower the distortion when the output
is truncated. A rounding bit is added to the right of the rightmost bit to be
kept after truncation, causing a carry to propagate when the most significant
position of the bits cut away is a one. A feature of the adder tree is that this
bit can be inserted together with the partial inner products at the top of the
tree, see figure 3.1. In the array multiplier, an additional row of half-adders
had to be included to handle rounding. As rounding includes addition of a one
with the product, arithmetic overflow at the output is possible. Therefore, a
saturation unit is placed at the output of the carry-lookahead adder. This unit
checks the most significant bits of the result and saturates the output if an
overflow has occurred.

Both the proposed multiplier and a multiplier based on a regular adder
array have been fabricated under equal conditions for comparison. Chip micro
photograph for the tree multiplier is shown in figure 5.1. The multipliers were
fabricated using a three metal layer 0.5 µm cell library that does not contain any
dedicated half or full adder cells. Such cells could be beneficial in a multiplier
architecture due to the large amount of additions in the algorithm. Instead,
adders are realized using basic gates such as two-input xor-gates.

Simulations show that 55% of the total delay in the critical path is due
to the adder tree. The partial inner-product generator contributes with 20%
and the carry-lookahead adder 25% of the total delay. Simulation results have
been presented in [9]. Most of the delay is spent in the adder tree, and by
using dedicated adder cells this delay can be decreased. However, the target
cell library does not contain any such cells and such improvements have not
been implemented, which is the case for both designs.

152 Paper III A Low Logic Depth Complex Multiplier . . .

treemult
arraymult 2.8 V

3.3 V

1.3 V1.3 V

frequency (MHz)

po
w

er
(m

W
)

605040302010

200

160

120

80

40

0

Figure 4.2: Power versus frequency for the tree and the array multipliers.

treemult
arraymult

VDD (V)

fr
eq

ue
nc

y
(M

H
z)

3.43.232.82.62.42.221.81.61.41.2

70

60

50

40

30

20

10

0

Figure 4.3: Frequency versus supply voltage for the tree and array
multipliers.

Section 5. Results 153

Figure 5.1: Chip micro photograph of the proposed multiplier. The
pad-frame is 3.2x2.9 mm2 and equal for both designs. Core size is
3.59 mm2.

5 Results

Both the array multiplier [1] and tree multiplier were fabricated on the same
wafer in a 3.3 V 0.5µm three metal layer CMOS process using standard cells.
This process is neither a dedicated low power or high speed process, but the
enhanced performance is due to the architectural solution and should be appli-
cable to more advanced processes as well. To keep the number of IO pads to
a reasonable amount, the input was chosen to 16 real plus 16 imaginary times
10 real plus 10 imaginary bits. The most significant 16 real plus 16 imaginary
product bits were output.

Power consumption and maximum operating frequency was measured over
a supply voltage range from 1.3 to 3.3 volts in steps of 100 mV. None of the
circuits worked below 1.3 V. Power consumption was measured as the power
dissipated in the core when the chip ran at maximum operational frequency
for a given voltage. The measured results are plotted in figure 4.2 and 4.3.
Figure 4.2 shows power consumption versus operating frequency, and figure 4.3
shows maximum operating frequency versus supply voltage.

Maximum speed for the array multiplier was 41 MHz at 3.3 volts, while the
tree multiplier exceeded the 60MHz limit of the test instrument when driven

154 Paper III A Low Logic Depth Complex Multiplier . . .

with 2.8 volts. Due to the trade-off between power and speed [10], the proposed
multiplier is either faster than the array multiplier, or, at equal speed, it is less
power consuming.

6 Conclusion

A Wallace-tree based complex multiplier using distributed arithmetic has been
designed, fabricated and verified for functionality, speed and power consump-
tion. The multiplier is compared to a complex multiplier based on a regular
array adder fabricated under equal conditions. The multipliers were fabricated
in a three metal layer 0.5 µm process on the same wafer using a standard cell
library. This library does not contain any full or half adder cells that could be
beneficial in a multiplier architecture, but all adders are built with basic gates.

At a frequency of 40 MHz, the proposed tree multiplier consumes 66 mW,
which is 54% less than the array multiplier. Operating at same voltage, the
tree multiplier is 54% faster than the array multiplier. Maximum speed for
the proposed multiplier is beyond 60 MHz at 3.3 volts. Enhanced performance
comes from a novel architecture and is transferable to more advanced processes.
Performance could be further improved by using a dedicated adder tree. Since
the multiplier dominates the critical path, the delay contribution from the
adder or subtracter can be ignored and throughput of the FFT-processor is
expected to increase by approximately 80%. The multiplier is fully parameter-
ized so any configuration of input and output wordlengths can be elaborated
and synthesized.

References 155

References

[1] S. He and M. Torkelson, “A complex array multiplier using distributed
arithmetic,” in Proceedings of IEEE Custom Integrated Circuits Confer-
ence, 1991.

[2] C. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, vol. EC-13, Feb. 1964.

[3] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in
Proceedings of the International Parallel Processing Symposium, 1996.

[4] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Riso, “Digital filter for
PCM encoded signals,” US patent 3777130, Dec. 1973.

[5] S. Smith and P. Denyer, “Efficient bit-serial complex multiplication and
sum-of products computation using distributed arithmetic,” in Proceed-
ings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1986.

[6] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Imple-
mentation. John Wiley & Sons, 1999.

[7] A. D. Booth, “A signed binary multiplication technique,” Quarterly Jour-
nal of Mechanics and Applied Mathematics, vol. 4, pp. 236–240, 1951.

[8] L. P. Rubinfield, “A proof of the modified booth algorithm for multiplica-
tion,” IEEE Transactions on Computers, Oct. 1975.

[9] A. Berkeman, V. Öwall, and M. Torkelson, “A low logic depth complex
multiplier,” in Proceedings of the 24th IEEE European Solid-State Circuits
Conference, The Hague, The Netherlands, Sept. 1998.

[10] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498–523, Apr. 1995.

Paper IV

Paper IV

Efficient Implementation of an FFT-FIR Structure
Using a Distributed Arithmetic Multiplier

When mapping algorithms to hardware, arithmetic optimizations traditionally
deal with increasing performance on a block level and not in the connection
between blocks. This paper present an arithmetic optimization applicable in
situations where an FFT is used to compute coefficients for an FIR filter.
The optimization is made possible by utilizing the properties of a distributed
arithmetic multiplier. A zero signal path delay echo canceller is used as an
application example. For the application, the number of arithmetic operations
in the optimized part is reduced by more than 50%. Furthermore, if a time-
shared architecture is used, all memory accesses in the last butterfly stage are
removed. This reduced complexity will increase the throughput and/or lower
the power consumption.

Based on: A. Berkeman and Viktor Öwall, “Efficient Implementation of an FFT-FIR

Structure Using a Distributed Arithmetic Multiplier,” Submitted to IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems.

and A. Berkeman, V. Öwall, and M. Torkelson, “Co-Optimization of FFT and FIR

in a Delayless Acoustic Echo Canceller Implementation,” in Proceedings of IEEE In-

ternational Symposium on Circuits and Systems, Geneva, Switzerland, May 2000.

159

Section 1. Introduction 161

1 Introduction

In order to achieve efficient implementation of an algorithm, it is important that
hardware aspects are considered at all levels of the design process. Implementa-
tion style of arithmetic operations is such an aspect. Traditionally, arithmetic
optimization primarily deals with the problem of decreasing the complexity on
a block by block basis. This paper present a complexity reduction achieved
by applying arithmetic optimization in the border between two blocks, a Fast
Fourier Transform (FFT) and a Finite Impulse Response (FIR) filter.

A structure where the optimization is applicable is shown in figure 1.1,
where an IFFT is used to calculate the coefficients of an FIR filter. One ex-
ample of such a case is a delayless echo canceller [1] which has been used as
an application example. The optimization can be applied to structures where
a butterfly lattice precedes a multiply and accumulate unit, figure 1.2(a).

The optimization is based on a special arithmetic function, a combinational
inner product multiplier calculating P = AX + BY . The implementation of
this operation is particularly efficient if it is built using distributed arithmetic
and offset binary coding [2, 3]. The distributed arithmetic multiplier requires
one of the pairs (A,B) or (X,Y) to be coded in sum and difference form, i.e.

(A + B,A−B) or (X + Y,X − Y) (1.1)

which might be regarded as a drawback in the general case. However, in the
presented optimization process, the sum and difference form is utilized to re-
duce the algorithmic complexity. Distributed arithmetic in FIR filter appli-
cations is often considered to require extra memory storage of pre-calculated

h(n)

H(k)

x(n) y(n)FIR

IFFT

Figure 1.1: An IFFT transforms a frequency response H(k) into an
impulse response h(n), used to filter a sequence s(n).

162 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

(b)

(a)

P

P

BA

Y
y

B

A

X
x

y

x

−1

Figure 1.2: (a) A structure calculating P = AX + BY = A(x + y) +
B(x− y). (b) Equivalent functionality using a distributed arithmetic

coefficients [3]. However, in this application the multiplier is not used in a tra-
ditional distributed arithmetic FIR fashion and no extra memory is required.

2 Echo Canceller Application

In wireless communication systems, delay in the signal path is a serious obstacle
and care has to be taken to reduce it. This motivates a canceller with no delay
in the signal path, although such algorithms have a more complex realization
in terms of operations per second [4]. An echo canceller fulfilling the zero
delay criteria is introduced in [1]. This section gives a brief description of the
algorithm.

A block diagram is shown in figure 2.1. The far end signal s(n) is filtered
by an estimate of the echo path impulse response ĥ(n), and subtracted from
the near end signal y(n). The subtraction is the only operation performed in
the signal path of the microphone to output signal, therefore, the algorithm is

Section 2. Echo Canceller Application 163

IFFT

conjugate, mirror and stack

fil
te

rb
an

k

Σ

fil
te

rb
an

k

e(n)

LMS
LMS

LMS

LMS

FFT FFT FFTFFT

y(n)
x(n)

ŷ(n)

s(n)

−
adaptive FIR

Figure 2.1: The subband echo cancellation algorithm [1].

a “zero signal path delay” echo canceller.
The estimated impulse response ĥ is assembled from the output of a set of

Least Mean Square (LMS) filters, operating on subbands of the near and far
end signals. Two uniform filterbanks compute these subband signals. In order
to create a full band time domain impulse response, the approximated filter
taps from each LMS is transformed to the frequency domain by a set of FFTs.
Information from each FFT output is permuted and stacked together according
to a certain scheme, and transformed back to time domain by a large IFFT.
The permutation of the transformed filter taps assures that the estimate of the
time domain impulse response is real valued. The presented optimization is
applicable on this IFFT together with the fullband FIR filter.

The taps of ĥ are denoted ĥ(0), ĥ(1), . . . ĥ(N − 1). These N taps are used
to filter the audio signal from the far end speaker to estimate the impact of the
acoustic signal path to the signal from the far end. The filtered signal ŷ(n) is

164 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

−1

−1−1

−1

−1

−1

−1−1−1

−1

W 0
8

W 0
8

W 0
8

W 2
8

W 2
8

W 0
8

W 0
8

W 3
8

W 2
8

W 1
8

W 0
8

−1

−1

Figure 2.2: Eight bin decimation in frequency (DIF) FFT. WN denotes
e−j2π/N . Note that W 0

N ≡ 1,∀N and thus the last stage is without
twiddle multiplication.

created according to the convolution

ŷ(n) =
N−1∑
k=0

ĥ(k)s(n− k). (2.1)

This filter is run on every input sample, typically at a rate of 16kHz. To be able
to cancel out long echoes associated with acoustic signals, the length N of the
estimated impulse response has to be in the range of 500–4000 taps. The output
FIR filter alone consumes about 50% of the total number of computations in
the canceller algorithm when M is reasonably large, i.e. M > 64 [5].

2.1 the fft-fir constellation

The proposed optimization is intended for radix–2 FFTs or IFFTs, but also
works on radix–4 or split radix–2/4. Generally, it works on any FFT where

Section 3. Utilizing the Distributed Arithmetic Multiplier 165

there are no twiddle multiplications on the outputs of the last butterfly stage,
independent of radix and decimation in time or frequency. As an example,
twelve butterflies of a radix–2 FFT are depicted in figure 2.2. The last butterfly
stage only consists in additions, subtractions and trivial multiplications, since
the twiddle factors are W 0

N = ej2π·0/N = 1.
Figure 2.3 shows the last stage of an FFT and the preceding FIR filter, both

of size N . The signals ĥpre are introduced as intermediate results inside the
FFT, that is, before the last butterfly. The relationship between ĥ and ĥpre is{

ĥ(2k) = ĥpre(2k) + ĥpre(2k + 1)
ĥ(2k + 1) = ĥpre(2k)− ĥpre(2k + 1)

(2.2)

or, the other way around{
ĥpre(2k) = 1

2

(
ĥ(2k) + ĥ(2k + 1)

)
ĥpre(2k + 1) = 1

2

(
ĥ(2k)− ĥ(2k + 1)

)
.

(2.3)

This can be compared to the sum and difference form of equation (1.1). Due
to the stacking at the input of the IFFT, mentioned early in this section, the
signals ĥ(k) are real. Accordingly, the signals ĥpre(k) must be real.

The last stage of butterflies partitions the FIR filter into N/2 partial con-
volvers, each computing

ŷk(n) = ĥ(2k)s(n− 2k)
+ ĥ(2k + 1)s(n− (2k + 1)),

such that the complete convolution (2.1) can be written as

ŷ(n) =

N
2 −1∑
k=0

ŷk(n), (2.4)

see figure 2.3. In the following, it is shown how the calculations of equa-
tions (2.2) and (2.1) can be implemented in an efficient way using a combina-
tional inner product multiplier using distributed arithmetic.

3 Utilizing the Distributed Arithmetic Mul-

tiplier

Distributed arithmetic was presented in [2]. This section will give a theoretical
background to how a distributed arithmetic multiplier can be used to realize

166 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

FIR

ĥ(N − 1)

ĥ(N − 2)

s(n−N + 1)

s(n−N + 2)

ĥpre(N − 1)

ĥpre(N − 2)

ĥpre(1)
−1

ĥpre(0)

ĥ(1)

ĥ(0)

s(n− 1)

s(n)

−1

ŷN
2 −1(n)

ŷ(n)

FFT/IFFT

ŷ0(n)

Figure 2.3: FIR filter preceded by the last stage of an FFT/IFFT.

equation (2.1) in a hardware efficient way. Why the algorithmic transformation
in the following section is performed might seem unclear until the final point
of showing the hardware implementation. The most basic butterfly structure,
depicted in figure 1.2(a), will be used to present the proposed optimization. As
stated previously it is assumed that all parameters are real valued, which is the
case for the acoustic echo canceller. However, it is straightforward to extend
the optimization to work on complex numbers. In figure 1.2(a) the output P
is equal to

P = AX + BY. (3.1)

Distributed arithmetic is working on a bit by bit level. Therefore, a trans-
formation to a bit level representation is performed. If A is an L-bit fractional
number in two’s complement, the value of A can be expressed as

A = −a0 +
L−1∑
`=1

a` 2−`, (3.2)

Section 3. Utilizing the Distributed Arithmetic Multiplier 167

ĥpre(N − 2)

ĥpre(1)

ĥpre(0)

ŷN
2 −1(n)

ŷ(n)

s(n−N + 1)s(n−N + 2)

ŷ0(n)

s(n) s(n− 1)

ĥpre(N − 1)

Figure 2.4: Same function as in figure 2.3, with distributed arithmetic
multipliers.

where a0 represents the sign bit. By using the identity

A =
1
2

(
A− (−A)

)
(3.3)

and the rule for negating a two’s complement number

−A = A + 2−(L−1), (3.4)

equation (3.2) can be written as

A = −2−L − (a0 − a0) 2−1 +
L−1∑
`=1

(a` − a`) 2−`−1. (3.5)

Introduce α0 = (a0−a0), and for ` 6= 0, α` = (a`−a`). Then α` ∈ {−1,+1} [3].
The relationship between a` and α` becomes

α` =
{

+1 , if a` 6=0 = 1 or a0 = 0
−1 , if a` 6=0 = 0 or a0 = 1. (3.6)

168 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

Table 3.1: Expression Xα` + Y β` as a function of the bits a` and b`.

a` b` α` β` p` q` Xα` + Y β`

0 0 −1 −1 0 1 −(X + Y)
0 1 −1 1 1 1 −(X − Y)
1 0 1 −1 1 0 (X − Y)
1 1 1 1 0 0 (X + Y)

Using this notation, A can be written as

A = −2−L +
L−1∑
`=0

α` 2−`−1. (3.7)

Following the notation of equation (3.7), B can be expressed using a sum of
β`. With this encoding of A and B, equation (3.1) can be written as

P = −(X + Y) 2−L +
L−1∑
`=0

(Xα` + Y β`) 2−`−1. (3.8)

A hardware efficient implementation of equation (3.8) can be achieved by
introducing p` and q` according to{

p` = a` ⊕ b`

q` = a`,
(3.9)

where ⊕ is the boolean exclusive-or operator. The expression Xα` + Y β` of
equation (3.8) is examined in table 3.1 for ` 6= 0. From the table it is clear
that p` and q` can be used to control a multiplexer, i.e. p` is selecting either
(X + Y) or (X − Y) and q` is selecting the preceding sign.

The variables X and Y can be expressed using the inputs x and y of fig-
ure 1.2(a) as {

X = x + y
Y = x− y.

(3.10)

Then it is clear that the expressions (X + Y) and (X − Y) of table 3.1 can be
written as 2x and 2y respectively, since{

X + Y = 2x
X − Y = 2y.

(3.11)

Section 3. Utilizing the Distributed Arithmetic Multiplier 169

p,q gen.

muxbank cpr. CPA

A
B

x

y
P

x

y

p q

Figure 3.1: Structure view of the distributed arithmetic multiplier.
Inputs A and B are fed to a p, q-generator. Signals x, y and their inverses
are input to a bank of multiplexers, controlled by p and q. The selected
signals are added together in a compressor (cpr.) to a redundant carry-
save format, and finally carry propagate added (CPA).

Therefore, the core expression Xα` + Y β` of equation (3.8) can be imple-
mented by a four-input multiplexer selecting one of {x,−x, y,−y}. The neg-
ative versions of x and y are represented in two’s complement according to
equation (3.4). If the multiplexer is described mathematically as a function F ,
equation (3.8) can be expressed as

P = −2x 2−L +2
L−1∑
`=0

F
(
x, y, x, y, p`, q`

)
2−`−1

+2
L−1∑
`=0

q`2−(K−1)2−`−1, (3.12)

where the one’s complement numbers x and y are pre-calculated. The constant
2 from equation (3.11) has been moved outside of the summation. According to
table 3.1, the function F is realized as a four-input multiplexer selecting x, y,
x, y depending of p` and q`. When q` is a one, negative x or y should be chosen.
This is implemented by selecting their bitwise complements in the multiplexer,
and adding a one to the carry-in of the least significant position of the sum,
represented by the last summation term of equation (3.12). Here, q` is treated
as a real variable having the value 0 or 1, and it is assumed that 2−(K−1) is
the least significant weight of x and y. An illustration of the structure of the
multiplier can be seen in figure 3.1. The multiplier is described in more detail
in [6].

Equation (3.12) describes a construct similar to an ordinary multiplier in
terms of the “shift and add” structure, but with extra multiplexers and control
logic. Specificly, one extra xor-gate to calculate p` and a conditional addition

170 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

Table 4.1: Optimization results for the last stage of the FFT/IFFT and the
FIR filter.

Element without optimization with optimization

Butterfly adders
and subtracters

N 0

FIR adders N − 1 N
2 − 1

FIR multipliers N 0

Distributed arithmetic
multipliers

0 N
2

of a least significant bit per index `. When evaluating the sums, q` should be
replaced with q` for the case ` = 0, since the most significant bit has negative
weight in two’s complement representation.

Since A and B maps to p` and q`, the inner product P = AX + BY
can be calculated according to equation (3.12) using x and y. Thus, the basic
butterfly stage of figure 1.2(a) can be implemented by the introduced multiplier
structure. This equivalent implementation is shown in figure 1.2(b).

The structure of figure 1.2(a) can be identified in figure 2.3. Thus, a dis-
tributed arithmetic multiplier can be used to calculate the partial convolutions
ŷk(n) of equation (2.1), if its inputs are s(n − 2k), s(n − (2k + 1)), and the
sums and differences of ĥ(2k) and ĥ(2k + 1). These sums and differences are
visible in equation (2.3), as ĥpre(2k) and ĥpre(2k + 1). The factor of 1/2 is
compensated by an arithmetic shift. Therefore, all butterflies in the last stage
of the IFFT can be removed, and every pair of multipliers replaced by one
distributed arithmetic multiplier, as depicted in figure 2.4.

4 Complexity Analysis

This section will compare the complexity of the two structures of figures 2.3
and 2.4, and the results are presented in table 4.1 and 4.2. The original imple-
mentation of the butterfly structure of figure 1.2(a) requires two multiplications
and three add/subtract operations. Following the derivation of section 3, the
optimized version requires only one distributed arithmetic multiplier. Accord-
ingly, in figure 2.3, two adders, one subtracter and two multipliers are replaced
by one distributed arithmetic multiplier. Assuming the FFT and FIR filter
are of size N , this will reduce the number of butterfly adders and subtracters

Section 4. Complexity Analysis 171

Table 4.2: Number of additions and multiplications for an N -sized FFT/IFFT
preceding an N tap FIR filter.

no opt. with opt. reduction (%)

N add mul add mul add mul

4 6 11 4 5 33.3 54.5
8 16 31 12 19 25.0 38.7

16 40 79 32 55 20.0 30.4
32 96 191 80 143 16.7 25.1
64 224 447 192 351 14.3 21.5

128 512 1023 448 831 12.5 18.8
256 1152 2303 1024 1919 11.1 16.7
512 2560 5119 2304 4351 10.0 15.0

1024 5632 11263 5120 9727 9.1 13.6
2048 12288 24575 11264 21503 8.3 12.5
4096 26624 53247 24576 47103 7.7 11.5

from N to zero and the number of products to be added in the filter is reduced
from N − 1 to N/2 − 1. Furthermore, the N multipliers are replaced by N/2
distributed arithmetic multipliers.

Table 4.1 summarizes how the number of arithmetic operations change in
the combined last stage of the IFFT and the FIR filter when the optimization
is applied. Total and relative reduction of the number of additions and mul-
tiplications for the complete IFFT and FIR filter instances are presented in
table 4.2. In this table, a multiplier and distributed arithmetic multiplier are
considered to be of the same implementation complexity. This will be further
discussed in section 4.1. In table 4.2, it can be seen that the relative impact of
the optimization is smaller with increasing N . For the echo canceller case with
an N greater or equal to 1024, a reduction of at least 10% is gained.

In the echo canceller algorithm the length of the filter, N , has to be in
the range of 500–4000 taps and is running at the relatively low sampling fre-
quency of 16kHz. Therefore, it is advantageous to make a time-multiplexed
architecture instead of a fully parallel implementation, that is, the IFFT is im-
plemented by hardware reuse and one butterfly unit is used for all stages of the
computation. Such a time-multiplexed architecture requires temporary storage
of intermediate data. By removal of the last addition and subtraction stages
of the IFFT, both the number of loads and stores are reduced by N , or for
the whole IFFT by a factor of 1/ log2 N . Load and store operations consume
energy for memory access, address calculation and bus driving. Reduction of

172 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

the number of memory accesses is a means to reduce power in an application
specific integrated circuit [7].

4.1 hardware implementation complexity

To compare the hardware complexity of the original scheme using standard
multipliers and adders/subtracters to the one using distributed arithmetic mul-
tipliers, consider the case when A and B are L-bit fixed point representations
of real valued numbers, and x and y are K-bit numbers, see figure 1.2(a). In
the first case, X and Y needs to be created from x and y by one addition and
one subtraction according to equation (3.11). In order to prevent overflow, a
one bit extension is performed and the wordlengths of X and Y are set to K+1
bits. This results in

2L(K + 1) (4.1)

partial product bits to be added. These partial products can be added in one
adder tree [6, 8] or one adder array structure, but it is common to use two
partial product adders, one per multiplier, followed by a carry propagate adder
to generate the output P .

The distributed arithmetic multiplier, on the other hand, is fed by x and
y directly, together with A and B, figure 2.4. The number of partial inner
product bits is in this case equal to

(L + 1)(K + 1). (4.2)

Thus the number of partial bits to add compared to the two multiplier case is

(L + 1)(K + 1)
2L(K + 1)

=
L + 1
2L

, (4.3)

which is approximately equal to 1/2 for large values of L.
The use of modified Booth-encoding on ordinary multipliers reduce the

number of partial bits to about one half [9, 10] thus being comparable to the
gain presented in equation (4.3). However, the complexity for implementing the
selection logic in Booth-encoding is significantly larger than for the distributed
arithmetic multiplier. Also, the presented reduction in arithmetic complexity,
and a possible reduction in the number of memory accesses as mentioned in
section 4, is made possible due to use of the distributed arithmetic multiplier.

Section 5. Conclusion 173

5 Conclusion

An optimization of a combined FFT and FIR structure has been presented
which reduce the number of arithmetic operations by more than 50% in the
last butterfly stage. Furthermore, memory accesses are removed if a time-
multiplexed architecture is used. The optimization is achieved by utilizing the
properties of a distributed arithmetic multiplier and it adds no extra complexity
or memory requirement.

A delayless acoustic echo canceller has been used as a target application of
the optimization process. For the N tap IFFT-FIR structure of the canceller,
the combined last stage of the IFFT and the FIR filter have been optimized.
The number of adders and subtracters are reduced by approximately 1.5N ,
and all FIR multipliers are removed at the cost of N/2 distributed arithmetic
multipliers of comparable size. In the application N is in the range of 500 to
4000 taps, leading to a substantial overall complexity reduction. The presented
optimization will save power and/or throughput at no extra overhead or loss
in algorithmic performance.

174 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

References 175

References

[1] D. R. Morgan and J. C. Thi, “A delayless subband adaptice filter archi-
tecture,” IEEE Transactions on Signal Processing, vol. 43, no. 8, Aug.
1995.

[2] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Riso, “Digital filter for
PCM encoded signals,” US patent 3777130, Dec. 1973.

[3] A. Peled and B. Liu, “A new hardware realization of digital filter,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-22,
no. 6, Dec. 1974.

[4] W. Kellerman, “Analysis and design of multirate systems for cancellation
of acoustical echoes,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1988.

[5] A. Berkeman, V. Öwall, and M. Torkelson, “A prestudy of an echo canceler
implementation,” in Proceedings of the International Conference on Signal
Processing Applications and Technology, Orlando FL, USA, Nov. 1999.

[6] A. Berkeman, V. Öwall, and M. Torkelson, “A low logic depth complex
multiplier using distributed arithmetic,” IEEE Journal of Solid-State Cir-
cuits, vol. 35, no. 4, pp. 656–659, Apr. 2000.

[7] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecapelle, Custom Memory Management Methodology. Kluwer
Academic Publishers, 1998.

[8] C. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, vol. EC-13, Feb. 1964.

[9] A. D. Booth, “A signed binary multiplication technique,” Quarterly Jour-
nal of Mechanics and Applied Mathematics, vol. 4, pp. 236–240, 1951.

176 Paper IV Efficient Implementation of an FFT-FIR Structure . . .

[10] L. P. Rubinfield, “A proof of the modified booth algorithm for multiplica-
tion,” IEEE Transactions on Computers, Oct. 1975.

Paper V

Paper V

A Configurable Divider using Digit Recurrence

The division operation is essential in many digital signal processing algorithms.
For a hardware implementation, the requirements and constraints on the di-
vider circuit differ significantly with different applications. Therefore, it is
not possible to design one divider component having optimal performance and
cost for all target applications. Instead, the presented divider has a modu-
lar architecture, based on instantiation of small efficient divider sub-blocks.
The configuration of the divider architecture is set by a number of parameters
controlling wordlength, number of quotient bits, number of clock cycles per
operation, and fixed or floating point operation. Digit recurrence algorithms
with carry save arithmetic and on-the-fly two’s complement output quotient
conversion are used to make the sub-blocks small, fast and power efficient.
The modularity gives the designer freedom to elaborate different parameters
to explore the design space. Two applications using the proposed divider are
presented. Furthermore, an example divider circuit has been fabricated and
performance measurements are included.

Based on: A. Berkeman, Viktor Öwall, and Mats Torkelson “A Configurable Divider

using Digit Recurrence,” Submitted to IEEE International Symposium on Circuits

and Systems, 2003.

179

Section 1. Introduction 181

1 Introduction

Division is a common operation in digital signal processing algorithms. A hard-
ware implementation of the division operation is complicated, and depends on
the environment of where the device is instantiated. For example, in some
none time-critical applications, area can be saved by hardware reuse and the
divider can be based on iterative execution. In other applications, the divider
has maximum throughput, computing one result per clock cycle. Also, the
quotient output of the divider has high dynamics, depending on the input data
and wordlength, and an accuracy depending on how many recurrences or it-
erations the divider algorithm is run. For a fixed point implementation, it is
likely that only a subrange of the quotient bits are used, while the others are
discarded. Altogether, to get an optimal divider implementation, a thorough
examination of the target application has to be performed. To cover the dif-
ferent cases, it would be necessary to have a set of divider implementations
to choose from. This can be achieved by either having several implementa-
tions for various conditions or by having a reconfigurable divider with several
configuration options.

The presented divider architecture is configurable and modular, written
in a hardware description language, keeping parameters as word lengths and
number of iterations generic until synthesis. This gives the designer freedom
to explore the design space for each target application. Parameters can be set
controlling important properties such as maximum clock cycle period, accuracy
of the quotient, number of clock cycles per operation, and area. It is also pos-
sible to instantiate the divider with either a fixed or a floating point interface.
Furthermore, effort has been made to achieve a power efficient solution.

The divider is based on several low complexity sub blocks, implemented
using digit recurrence [1]. In this particular case the SRT algorithm [1, 2, 3]
has been chosen. However, any digit recurrence algorithm could be used. The
sub blocks are highly optimized, using carry save arithmetic to shorten the
critical path and reducing power consuming switching. Each sub block has an
on-the-fly output conversion unit, so that the quotient is always represented in
two’s complement.

The presented divider is currently used in two designs. One is an acoustic
echo canceller where the divider is used in a Normalized Least Mean Squares
(NLMS) implementation. The other application is a random number generator
for a turbo codec interleaver. An example circuit has been fabricated as a
stand-alone component to verify functionality and measure performance.

182 Paper V A Configurable Divider using Digit Recurrence

2 Divider Architecture

The flexibility of the divider architecture comes from instantiating small and
efficient divider sub blocks. The sub block architecture is based on the SRT
algorithm, but in fact any digit recurrence algorithm could be chosen. By
connecting the sub blocks in different constellations, a set of different divider
architectures conforming to various time and throughput constraints is con-
structed.

The architecture has two main levels of hierarchy. The lower level is the
divider core, consisting of instantiations of the divider sub blocks. The higher
level instantiates the divider core and the interfaces to the input and output
signals. The interfaces can be either configured for fixed or floating point
representation of numbers.

2.1 divider core

As will be shown in section 3, only one quotient bit is computed in the SRT
recurrence. Thus, computation of several output bits require iterated use of the
SRT operation. In a hardware implementation, this can be achieved either by
hardware reuse or hardware duplication, that is, data can be looped through the
SRT block in an iterative fashion, or several identical blocks can be connected
in cascade for higher throughput. Due to the low complexity of the presented
carry save SRT sub block, the implementation is built up of rather few gates.
The carry save logic together with the low radix of the SRT algorithms assures
a low gate depth and thereby a short critical path. Therefore, it is beneficial in
most cases to connect several sub blocks in series. This increases the number
of output quotient bits per clock cycle, while adapting the computational delay
to the system clock speed. The architecture of a divider sub block is described
in detail in section 3.1.

A parameter controls how many SRT sub blocks that will be connected
in cascade, and how many iterations that will be performed on them. The
number of iterations can be set so that no looping of the data is performed. In
figure 2.1(a), a constellation optimized for maximal throughput is shown. It
consists of P pipeline stages with N SRT blocks per stage, yielding PN output
quotient bits per clock cycle. Figure 2.1(b), on the other hand, depicts a divider
core with a loop over N SRT sub blocks, which in T clock cycles will produce
NT output quotient bits.

Saving the decision of which constellation to use until the actual instantia-
tion from a higher level of hierarchy ensures maximal flexibility for the designer.
Also, it is easy to modify the parameters of the instantiated multiplier to ex-
plore the design space. A feature of the configuration in figure 2.1(b) is that

Section 2. Divider Architecture 183

S+

C+

Q+

Q̂+

S

C

Q

Q′

Q̂

±d

(a)

(b)

di
vi

de
r

st
ag

e

di
vi

de
r

st
ag

e

di
vi

de
r

st
ag

e

di
vi

de
r

st
ag

e
di

vi
de

r
st

ag
e

di
vi

de
r

st
ag

e

di
vi

de
r

st
ag

e

di
vi

de
r

st
ag

e

S

C

Q

±d

S+

C+

Q+

Q′+

Figure 2.1: The two basic configurations of the divider.

it is possible to quit execution at run time when a pre-determined accuracy
is attained. This results in a faster execution on average, while additionally
lowering the power consumption.

2.2 top level architecture

The implemented SRT division algorithm requires the divisor and dividend to
be initially normalized. Furthermore, the output is generated in a normalized
fashion. With little extra logic, this is suitable for interfacing signals using a
floating point number representation scheme, since the significand of a floating
point number is in general normalized.

For fixed-point input numbers, however, additional logic has to be added
at the input and output of the divider core. To be specific, normalization
stages are added to the x and d inputs and a corresponding de-normalization

184 Paper V A Configurable Divider using Digit Recurrence

core
divider

x

d

−1
norm

norm
expcal

qnorm−1

Figure 2.2: A top level of the fixed point divider architecture, having
fixed to floating point normalizers to the left, and float to fixed point
de-normalizer to the right. The core block contains the divider sub
blocks and the expcal generates the correct number of shifts to the de-
normalizer.

unit is added at the quotient output of the divider core, see figure 2.2. The
normalization stage locates the least precision sign bit of the input words,
and shifts left to put the sign bit in the most significant position. It also
generates the corresponding exponents of the inputs before shifting. These
exponents are subtracted and fed to the output de-normalizer after a delay that
corresponds to the latency in clock cycles of the divider core. The inclusion
of this normalization logic can be controlled by setting a parameter during
synthesis.

3 Divider Sub Blocks

The divider sub blocks are based on the well-known SRT algorithm. This
algorithm computes only one quotient bit per recurrence, but in a hardware
implementation perspective, it is compact, straightforward, and efficient. Di-
vision of the number x by the number d is defined by{

x = qd + rem
|rem| < |d| · ulp

where q is the quotient and rem is the remainder. The unit with least precision
(ulp) is equal to 1 for integers and to r−N for N -bit radix–r fractional numbers.
Digit recurrence division is performed based on the equation

wj+1 = rwj − qjd, (3.1)

where wj+1 is the next residual calculated from the current residual wj , the
radix r, current quotient digit qj , and the dividend d. Initial residual w0 = x.

Section 3. Divider Sub Blocks 185

It is assumed that x and d are normalized such that 1/2 ≤ |x|, |d| < 1. To
ensure convergence of the algorithm, the quotient digit qj has to be selected
such that wj conform to the error bound

|wj | < d, ∀j.

This selection is performed by a selection function SEL,

qj = SEL(rwj , d).

Derivation of the selection function is based on selection intervals, defined by
pairs {Ln(d), Un(d)} such that if

Ln(d) ≤ rwj ≤ Un(d),

it is possible to select qj = n. The complexity of the selection function for a
given radix depends strongly on the quotient digit set and the number system
used to represent the residual. In order to make an efficient implementation of
equation (3.1), there are three main points that have to be considered:

1. Calculation of the products rwj and qjd

2. The full scale subtraction rwj − qjd

3. Full scale comparison of rwj and d in the selection function

The SRT algorithm gives an elaborate solution for the radix–2 case. Let qj

belong to the redundant radix–2 digit set

qj ∈ {−1, 0, 1}. (3.2)

For this digit set, selection intervals are derived [4], and presented in the table
in figure 3.1. Due to the redundant digit set, there is always one or two choices
for qj . The situation is depicted in figure 3.1. Since d and x are normalized,
the interesting range for d in the diagram is between 1/2 and 1. For example,
in the region limited horizontally by d = 1/2 and d = 1 and vertically by L0

and U0 it is legal to select qj = 0. However, in the upper half of this area it
is equally possible to select qj = 1, and in the lower half qj = −1 due to the
redundancy.

The digit set in (3.2) implies a solution to point 1 mentioned earlier. The
product qjd becomes trivial, qjd ∈ {−d, 0, d}, where the −d has to be calcu-
lated only once. Furthermore, the product rwj corresponds to a logic shift left
operation since r = 2. The subtraction mentioned in point 2 is simplified by

186 Paper V A Configurable Divider using Digit Recurrence

m1 = 0

m0 = − 1
2

−1

1
2

1

rwj

D

U0

U1

L0

L−1

1 L1

U−1

1/2

Upper limit Lower limit qj

U1 = 2d L1 = 0 1
U0 = d L0 = −d 0
U−1 = 0 L−1 = −2d −1

Figure 3.1: Selection intervals for qj ∈ {−1, 0, 1}. Selection interval i
is defined by the tuple (Li, Ui).

utilizing carry save (CS) arithmetic, by representing the residual implicitly in
a redundant format as a carry and a sum signal, that is,

rwj = S + C. (3.3)

Now, subtraction latency and power consumption can be significantly reduced.
However, as the original selection function relies on the exact residual as stated
in point 3, it has to be simplified. It can be proven that S and C can be stored
with three integer bits plus a number of fraction bits depending on the word
length of the inputs x and d [4]. If ŷj is an approximation of rwj , calculated by
adding the t most significant bits of S and C, it is shown that the minimal but
sufficient value of t is four. That is, three integer bits and the most significant
fractional bit of ŷj are enough input to the selection function. This solves the
issue of point 3. The range of ŷj can be calculated to

−5
2
≤ ŷj ≤ 3

2
, (3.4)

Section 3. Divider Sub Blocks 187

selection
function

C+
S+

Q+

S
C

Q
Q′

0d −d

Q′+

adder
save
carry

on-
the-
fly-

conv.

Figure 3.2: Schematic of an SRT sub block.

and the associated error

εj = rwj − ŷj (3.5)

is always positive, and less than a least significant bit of ŷ, that is

0 ≤ εj < 1/2. (3.6)

The corresponding selection function is

qj+1 =




1 : 0 ≤ŷj≤ 3/2
0 : ŷj= −1/2
−1 : −5/2 ≤ŷj≤ −1.

The selection intervals are visible in figure 3.1 as the thick lines m0 = −1/2 and
m1 = 0, and can be explained as follows. If the approximation ŷj is positive
(or zero), y is also positive, following equations (3.5) and (3.6). Then it is safe
to select qj = 1 according to the selection interval [L1(d), U1(d)]. If ŷj = −1/2,
on the other hand, y is larger or equal to −1/2, but less than 0. Then qj can be
selected to 0 as shown in figure 3.1. Similarly, if ŷj ≤ −1, qj can be selected to
−1. Note that this selection function is independent of d, i.e. SEL = SEL(rwj).

3.1 architecture of the srt sub block

A block diagram of the resulting SRT divider sub block is shown in figure 3.2.
The inputs are the residual in S,C format, a positive and negated version of
the dividend, and a partial quotient Q in two’s complement representation.

The quotient is calculated on-the-fly from the {−1, 0, 1} set into two’s com-
plement given the current quotient digit qj , current partial quotient Q, and

188 Paper V A Configurable Divider using Digit Recurrence

Table 3.1: Power consumption versus clock frequency.

Frequency Vcore Power

73 MHz 3.3 V 27 mW
47 MHz 2.0 V 4.8 mW
37 MHz 1.8 V 3.6 mW

a complementary signal Q′. This on-the-fly conversion is further described
in [5]. Outputs from the core block are the new residual S+, C+ and quotient
Q+, Q′+. The main blocks of the divider circuit are:

The selection function, operating on a total of eight bits from S and C,
as explained in the previous section

Selection of d, −d or 0 by a multiplexer (qjd multiplier)

Carry save adder to subtract qjd from the residual

On-the-fly converter. Consists of a number of fast multiplexers and low
logic depth lookup tables [5]

As the sub block is small and has a low complexity, it can be realized using
full-custom techniques. While a number of cascade connected sub blocks are
used for most applications, the layout of the divider core will be regular. Per-
formance in power and speed of such a regular full custom implementation will
be significant at a rather low additional design cost.

4 Application Examples

The divider is currently instantiated in two different designs, an acoustic echo
canceller and a turbo decoder. The adaptation part of the echo canceller is
implemented using the Least Mean Squares (LMS) algorithm, which has rea-
sonable complexity and accuracy, and is known to be stable. Convergence speed
of the adaption is crucial to get a high signal quality. A common enhancement
to the LMS algorithm is to normalize the input signal by its energy, yielding
the Normalized LMS (NLMS), which has a dramatically improved convergence
rate. A divider with seven SRT sub blocks looped thrice was instantiated in
the echo canceller design. Seven sub blocks cope well with the clock frequency
used for the rest of the chip, and the necessary accuracy was about 20 bits.

The second application is for the interleaver of a turbo channel coder. In
this system, a large number of interleaver schemes are evaluated, and a lookup

Section 6. Conclusion 189

Figure 4.1: Chip micro photograph of the divider test chip.

table solution is infeasible. Instead, table data is calculated on-the-fly using
a controllable random number series generator. This generator requires the
modulo, or integer remainder, of two integers. The remainder is extracted
from the divider in integer S,C-format, and is carry ripple added to get a non-
redundant format. If the number is less than zero, a value of d is added to
make the remainder positive.

5 Measured Results

A test chip has been fabricated to verify the operation of the divider in a real
time environment. The divider operates on 16 bit integer inputs and generates
a 16 bit quotient in four clock cycles by the use of a loop over four SRT sub
blocks in cascade. The circuit was fabricated in a 0.35 µm three metal layer
standard cell CMOS process. Initial measurements have been performed and
power consumption figures for the divider core are presented in table 3.1.

6 Conclusion

A flexible divider architecture based on efficient digit recurrence sub blocks
is presented. The divider is written in a hardware description language, and

190 Paper V A Configurable Divider using Digit Recurrence

is configurable at synthesis so that a wide range of the design space can be
explored, including both iterated and pipelined architectures, and fixed or
floating point operation. A test chip has been fabricated and performance
measurements are presented. The design based on efficient sub blocks results
in a small, regular, fast and power efficient solution, with a wide range of con-
figuration options that makes it attractive for a number of target applications
with different requirements.

References 191

References

[1] J. E. Robertson, “On the design of very high speed computer,” Computer
Science Department, University of Illinois at Urbana-Champaign, Tech.
Rep. 80, 1957.

[2] J. Cocke and D. W. Sweeney, “High speed arithmetic in a parallel device,”
IBM, Tech. Rep., 1957.

[3] T. Tocher, “Techniques of multiplication and division for binary comput-
ers,” Quarterly Journal of Applied Math, vol. 2, pp. 364–384, 1958.

[4] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers, 1994.

[5] M. Ercegovac and T. Lang, “On-the-fly conversion of redundant into con-
ventional representations,” IEEE Transactions on Computers, 1987.

	Preface
	Acknowledgments
	Abbreviations
	1 Motivation
	1.1 Implementation Technologies
	1.2 Application Specific DSPs
	1.3 Overview of the Thesis

	2 Introduction to Echo Cancellation
	2.1 Typical Echo Canceller Scenario
	2.2 Echo cancellers
	2.3 Theoretical Background
	2.4 Signal Estimation
	2.5 Polyphase Filterbanks
	2.6 Summary

	3 ASDSP Design Methodology
	3.1 Design Space Exploration
	3.2 Hierarchy
	3.3 Datapath, Memory, and Controller
	3.4 Synthesis and Standard-Cell Libraries
	3.5 Example: FFT Architecture Exploration
	3.6 Low Power Optimizing Strategies
	3.7 ASDSP Design Flow
	3.8 A Design Methodology
	3.9 Summary

	4 CMOS Technology
	4.1 Power Dissipation in CMOS
	4.2 Memory Technology
	4.3 Summary

	5 Arithmetic
	5.1 Fixed and Floating Point Number Systems
	5.2 Bit Serial and Bit Parallel Arithmetic
	5.3 Arithmetic for Digital Signal Processing
	5.4 Distributed Arithmetic
	5.5 Offset Binary Coding
	5.6 Summary

	6 Conclusion and Summary of Papers

	Bibliography
	I A Prestudy of an Echo Canceller Implementation
	1 Introduction
	2 The Cancellation Algorithm
	3 Analysis of the Algorithm
	4 Optimizations
	5 Hardware Mapping
	6 Summary
	7 References

	II Custom Silicon Implementation of aDelayless Acoustic Echo Canceller Algorithm
	1 Introduction
	2 Sub-Module Analysis
	3 Architecture
	4 The Chip
	5 Conclusions
	6 References

	III A Low Logic Depth ComplexMultiplier using Distributed Arithmetic
	1 Introduction
	2 The FFT Processor
	3 Multiplier Algorithm
	4 Implementation
	5 Results
	6 Conclusion
	7 References

	IV Efficient Implementation of an FFT-FIR StructureUsing a Distributed Arithmetic Multiplier
	1 Introduction
	2 Echo Canceller Application
	3 Utilizing the Distributed Arithmetic Multiplier
	4 Complexity Analysis
	5 Conclusion
	6 References

	V A Configurable Divider using Digit Recurrence
	1 Introduction
	2 Divider Architecture
	3 Divider Sub Blocks
	4 Application Examples
	5 Measured Results
	6 Conclusion
	7 References

