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Abstract

Conventional surveillance systems are omnipresent and most are still based on analog
techniques. Migrating to the digital domain grants access to the world of digital im-
age processing enabling automation of such systems. In this thesis, automation of a
surveillance system means extracting information from the image stream without hu-
man interaction. In the intended surveillance applications, the target property of the
objects of interest is motion. Therefore, motion detection, i.e. segmentation, is applied
on the image stream distinguishing the objects in the scene. After segmentation, addi-
tional image processing is applied, e.g. filtering, labeling, feature extraction, tracking,
etc. The goal is to be able to keep track of the objects in consecutive frames. Acceler-
ating key operations and complex calculations in hardware is an effort to address the
high data rate from the sensor together with the high memory bandwidths imposed by
the image processing. Furthermore, decoupling the general purpose processor from the
image stream by using features can effectively reduce the amount of data needed to be
processed in SW, which is crucial to sustain real-time performance. This thesis high-
lights and is an effort to address some issues encountered during the automation process.

In this thesis, implementation details of two hardware accelerators are presented: a low
complexity morphology unit and a labeling unit based on contour tracing. The mor-
phology architecture performs erosion or dilation on binary images and takes advantage
of decomposition of rectangular structuring element supporting arbitrary sizes up to
15 x 15. Due to its low complexity and memory requirement, multiple instances can be
connected in series enabling other fundamental morphological operations, e.g. opening
and closing. In our application, the unit is used to filter noise (opening) and to recon-
nect split objects in the motion mask generated by prior steps in the processing chain.
Furthermore, implementation details of a labeling unit with low memory requirements
based on contour tracing is presented. Both accelerators have been successfully verified
and integrated into a prototype of an automated digital surveillance system for which
implementation aspects are also presented. The system has been implemented and ver-
ified on an FPGA development board using a CMOS sensor for image acquisition. The
prototype currently has segmentation, filtering, and labeling accelerated in hardware.
Additional image processing is performed by SW running on an embedded processor.
The system has a resolution of 320 x 240 and a frame rate of 25 fps.
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Chapter 1

Introduction

Ever since the introduction of television, real-time monitoring has been a growing mar-
ket. Adding a video recorder opened up a new world for the security industry. Video
surveillance soon made its way into the court rooms and became convicting evidence.
Today, video surveillance systems are omnipresent and part of everyday life and can
be found in department stores, banks, buss terminals, etc. They are not only used in
crime preventing purposes but also play their role in more social and industry related
applications, e.g. traffic monitoring, processing monitoring, etc. With continuously in-
creasing fields of application and integration into our lives, a bunch of serious questions
arises: Will every move one makes be monitored? How will this information be used?
What if Big Brother is evil? Naturally, none of these questions will be answered in this
thesis but rather highlight the connection between the presented technology and social
interests that might be attached to this field of research. The only conclusion that
can be drawn is that some of these applications are easier to accept than others, and
the threshold of where they are acceptable is of course subjective. Without knowing
what the future of automated surveillance will bring and without taking a stand, this
statement is left with two questions from both sides of the debate: How would you feel
if someone is monitoring your path through town a dark night? How would you feel if
somebody is constantly watching you?

Conventional real-time surveillance systems are known as Closed Circuit Televi-
sion (CCTV) systems. A typical system supports multiple cameras, event recording,
auto-focusing, zooming, etc, and is traditionally controlled by an human operator. Au-
tomating such a system would not only reduce the time spent on monitoring the system
itself but can also increase the number of attached cameras in the system, thus increas-
ing surveillance efficiency. Using digital image processing enables automation of such
systems which means extracting information from the image stream without human
interaction. In our surveillance application, the objects of interest share at least one
common property, i.e. motion. Revealing the motion in a scene is achieved by applying
a motion detection algorithm on the image stream which transforms the original image
stream into a motion mask. This process is called segmentation and the reliability of
the automation is somewhat dependent on the result from this step since if an object
is not included in the motion mask, it will not be further processed by the system.
After segmentation, various image processing steps are applied to the image stream
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and motion mask, e.g. filtering, labeling, feature extraction, tracking, etc. The goal of
the automation is to be able to track the objects in consecutive frames. Taking the
system intelligence a step further, i.e. adding a classification unit, the system should
be able to detect what is being tracked, e.g. humans, cars, aeroplanes, etc. Including
such a unit, the system can start to store data if there are objects of interest present
in the scene. A step further would be a system that can identify anomalies or devia-
tions in the motion pattern within a scene, e.g. running, fighting, etc. Finally, one of
the most interesting but at the same time controversial additions in system features
is face recognition. Possibly, a future intelligent surveillance system might be able to
search for and track a person in a camera network recording the persons trajectory
within the network. However, before being able to perform any kind of tracking or
classification, the automation process will encounter many difficulties that needs to be
addressed. The amount and nature of these issues are dependent on the application
environment, e.g. varying lighting conditions, object occlusion, static objects, periodic
motion (e.g. swaying trees), etc. However, they will in any case certainly require ex-
tensive calculation that poses special demands on the image processing, especially on
the segmentation process. Many of these issues are related to the lighting conditions in
the scene since it affects the dynamic range of the image stream. A low dynamic range
in the image stream results in increased noise in the motion mask, i.e. falsely detected
objects. Therefore, a distinction between indoor and outdoor applications is usually
made, since indoor environments typically has a more static illumination than outdoor
due to the weather, time of the day, etc. Based on these facts, the primary objective of
the system presented in this thesis is to detect humans in an indoor office environment.

Any application environment, both indoors and outdoors, imposes extensive image
processing, resulting in a high bandwidth not possible to handle only in software on
an embedded platform to achieve real-time performance, i.e. >25 frames per second.
Bandwidth (BW), measured in bytes per second (Bps), is an important issue in any
image system but especially in surveillance applications due to the constrained execution
time. As an example, a typical uncompressed image in the RG'B color space consists of
three color channels per pixel, c.panneis, €ach represented with 8 bits, ¢, and a resolution
of 640 x 480 (Video Graphics Array (VGA)). A system with a frame rate, f,qze, of 25
frames per second, has a bandwidth equal to

BW = cchannels " Cb * (imwidth ' imheight) : fTate =3-8- (640 : 480) - 25 &~ 23 MBps.

Therefore, a design challenge in any automated surveillance system is to handle or
reduce the bandwidth. This can be done on different abstraction levels and various
techniques can be applied. In this thesis, to be able to address the high bandwidth, the
system is implemented as an embedded system, i.e. a system with one purpose. The
main idea is to have key operations and complex calculations accelerated in hardware
which results in that the amount of data needed to be processed in software is reduced,
which is crucial to sustain real-time performance. The remainder of this thesis describes
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Figure 1.1: A conceptual overview of the automated digital surveillance system
addressed in this thesis. The system includes key operations accelerated in HW
and feature extraction, tracking and classification performed in SW.

how this can be archived in detail starting with a system overview.

1.1 System overview

A conceptual overview of the embedded automated digital surveillance system addressed
in this thesis is depicted in Figure 1.1. The system is partitioned into hardware (HW)
and software (SW), having key operations accelerated in HW and feature extraction,
tracking and classification performed in SW running on a general purpose processor.

Starting at the input, a sensor captures an image stream that constitutes the input
to the system. After image acquisition, the frame is sent to a segmentation step, which
is used to separate the objects of interest from the rest of the image. The next step is
to apply post segmentation processing in order to reduce noise generated in the image
acquisition step and by the segmentation step, e.g. using a morphology unit. Before
sending the filtered binary image to the feature extraction unit, each object is assigned
a unique label. This procedure enables the system to distinguish between detected
objects. Furthermore, combining the labeled result and the original video sequence, the
SW now only needs to process certain parts in the original sequence from which features
are extracted, e.g. location, size. Based on the extracted features, the system can track
and classify objects in consecutive frames.

1.1.1 Specification

The implemented system is intended to be used in a single self contained network
camera. The blocks are described in Very High Speed Integrated Circuit Hardware
Description Language (VHDL) and verified on an Field Programmable Gate Array
(FPGA) platform. The system timing specification is given with hierarchal constraints
with frame rate and resolution as global constraints. The frame rate is the number of
complete frames the system can process per second, measured in frames per second (fps).
The constraints are given as parameters configuring the sensor to produce output values
at a rate of f,;,; MHz. This timing specification propagates down in the constraint
hierarchy, i.e. decides the individual timing specifications for every block in the data-
path , e.g. segmentation unit, morphology unit, labeling, illustrated in Figure 1.2. The
global constraints are set to
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Figure 1.2: An overview of how the hierarchical constraints propagate in the system.

e Resolution: > 320 x 240.

e Frame rate: > 25 fps.

Both these constraints are set as minimum requirements for the implemented system,
i.e. the prototype. The frame rate is considered real-time due to limitations in the
human vision and gives the system predictions sufficient accuracy, discussed further
in Section 3.5. However, compared to other modern image processing systems, the
resolution should be increased to at least 640 x 480, especially in a commercial product.

1.1.2 Design Space Exploration

A general implementation design space includes design time, cost, speed or throughput,
power and area (flexibility is excluded since it is hard to measure), illustrated in Fig-
ure 1.3 as two separate diagrams. However, neither of these constraints are orthogonal,
e.g. increasing the throughput can result in increased power dissipation and area, less
design time and limited budget can result in a general purpose processor implementa-
tion, thus increased power dissipation. Design time and cost are considered to be more
on the project management level as opposed to throughput, power, and area, which are
more on the implementation level. In reality, design time and cost are often considered
equivalent and are probably the most vital design constraints since they not only involve
which technology to choose but also the actual decision which blocks to implement in
hardware, i.e. HW/SW partitioning. Furthermore, if the implementation is to be mass
produced, implementing an Application Specific Integrated Circuit (ASIC) can be cost
effective (even if maximum performance is not required) since the production cost per
chip will decrease. However, if power is not constrained and the system is intended for
development purposes, rapid prototyping, or will be produced in low volumes, choosing
an FPGA implementation seems like the obvious choice. Finally, functional verification
on an FPGA before manufacturing an ASIC is always advisory since many errors can
be avoided and gives an opportunity to simulate long term effects.

In Figure 1.3(a), as a function of design time and cost, the choice of technology
stretches from a full custom ASIC to an FPGA, and at the end, a software implemen-
tation running on a general purpose processor. Furthermore, an Hardware Description
Language (HDL) implementation can be targeted for either ASIC or FPGA and a soft-
ware implementation can run either as an embedded processor on an FPGA or on a
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Figure 1.3: (a) Time and cost versus technology, implementation, and perfor-
mance, (b) a typical hardware design space on the implementation level.

general purpose processor. Naturally, performance in terms throughput, power and area
increases together with design time and cost. The decision where to place a design in
Figure 1.3(a) can also be physical size dependent, e.g. software running on a workstation
is not an issue for the system described in this thesis, since it intended for use in a self
contained network camera.

A typical procedure when choosing a point in a hardware design space is to first
partition the system into HW and SW by identifying key operations by SW modeling
using a software description language, e.g. C, C++, Matlab, etc. The SW modeling
includes timing and complexity analysis of the system on which the partitioning de-
cisions are based. After SW modeling and partitioning, the execution time for each
block is distinguished, resulting in a throughput constraint specific for each part of the
system. When this constraint is set, focus can be spent on the implementation level,
i.e. choosing architecture and exploring the throughput, power and area parameters in
the design space, shown in Figure 1.3(b). The boxes in the figure illustrates that there
are limitations on each axle, e.g. the maximum power it is allowed to consume, how fast
it must at least run to still keep the specification, etc. Assuming constrained execution
time, the design challenge is reduced to: given a throughput constraint, minimize power
dissipation and area.

In our application, since the implemented system is intended to be used in a network
camera, the following priority order in the design space can be distinguished

1. Throughput — Measured in bandwidth and is set by the system specification.
2. Power — Reduced at the cost of area.

3. Area — Reduced but not at the cost of either throughput or power dissipation.

Assuming that the global constraints are met, low power is the main design objective
since the system is intended for use in a self contained network camera, i.e. in order to
avoid heat problems in the camera or possible future use in a hand held device. Any
time slack in the timing model is used to decrease the power consumption.
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1.1.3 Low power FPGA system design

The total power dissipation Py, in hardware design, i.e. both ASIC and FPGA, consists
of three parts [3]: static power Py, dynamic power Py, and direct-path power Pp.
The static power dissipation is mainly due to leakage currents, Ij..x, which are technol-
ogy dependent and increasing as the threshold voltages in the transistors are lowered as
the technology is scaled down. The dynamic power consists of two contributions. The
first part is due to the charging and discharging of capacitive loads, C;. The third part
is due to the nature of CMOS design in which a direct path between the supply voltage
and ground is present during the switching phase of the gates. This direct path results
in a short circuit current, Igop, present during the time, ¢5, when both transistors are
conducting.

Both power contributions, i.e. Pt and Py, are dependent on the supply voltage,
Viq, but only the dynamic part is proportional to the clock frequency f. The total
power dissipation in a design can be written as

Prot = Pstar + den + Pdp = Via - (Ileak + f : (Cl *Vid + Lshort - ts))' (1'1)

The dynamic power dissipation is design specific and most traditional low power
design techniques and tools are aimed at minimizing this part of the power contribu-
tion. Typical low power design techniques are: lowering the supply voltage, the use of
low power cell libraries, clock gating, etc. In FPGA design, these power contribution
principles still holds. But in our application, since many design parameters are limited
(e.g. supply voltage, cell library, etc), the low power techniques are basically restricted
to:

e System level — Which includes clock or block gating, i.e. manipulate the switch-
ing activity.

e Algorithmic level — Reduce the number of memory accesses, arithmetic opera-
tions, and explore resource utilization.

A typical system level power saving technique is to optimize the throughput power
balance. This means minimizing the operating frequency of the individual blocks but
still keeping the throughput constraint. This procedure will save power since the clock
tree has the high switching activity together with large capacitances, f and C7 in Equa-
tion 1.1. This can be achieved since the FPGA typically supports multiple clock do-
mains. Clock gating can effectively reduce the switching activity in the clock tree by
not letting the clock toggle inside unused blocks. Block gating is an alternative to clock
gating and is applied to the input of the blocks. If a block is unused, gating the input
prohibits unnecessary switching activity in the combinatorial parts of the block, thus
signals to further propagate through the system, dissipating unnecessary power. But
since the implemented hardware accelerators are processing the incoming data stream
directly (without exception) and are used in a real time system, this technique is not
applicable in the system.
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On the algorithmic level, memories and memory accesses are power consuming since
they typically have high switching activity and large capacitances on the bit-lines. This
is especially true for off-chip memories which have additional capacitances on the I/O-
ports. Thus, in any FPGA system design, much effort should be spent on minimizing
and developing low memory requirement algorithms. Furthermore, there are numerous
ways to implement arithmetic operands, e.g. adders, multiplier, etc. From a low power
perspective, the basic rule is: less complexity and number of operands, results in less
power dissipation. This can be shown by a simple example, e.g. a(b + ¢) is preferred
to ab + ac, since one multiplier less is used and will therefore consume less power [4].
Therefore, in our application, low complexity algorithms are preferable and traded for
flexibility. Exploring the resource utilization, i.e. a time-multiplexed versus a direct
mapped architecture, no clear answer can be given of which architecture will consume
the least power. As an example, a time-multiplexed architecture can result in a need for
higher clock frequency to keep the throughput constraint, thus an increased switching
activity. Since traditional low power ASIC techniques, e.g. pipelining or parallelization,
to lower the supply voltage [5], are not applicable in an FPGA, these techniques’ ap-
plicability in our application is hard to define. However, a good design strategy is to
weigh different trade-offs and explore time-multiplexing where possible, still keeping the
throughput constraint.

1.2 Research project

The research presented in this thesis is part of the development and implementation
of a complete automated surveillance system based on a single self contained network
camera in hardware. The aim is to be able to detect, track and classify objects in
consecutive frames. Such a system not only compete in terms of a higher frame rate
and higher system resolution compared to other general processor solutions but also a
reduced power dissipation due to higher hardware resource utilization. Combining a
single camera system with e.g. more cameras, sound, etc, would certainly increase the
accuracy of the system but is beyond the scope of this thesis.

Three PhD. students are currently involved developing different parts of the system.
The author is responsible for the morphology and labeling part. J. Hongtu for the
implementation of the sensor interface and the segmentation unit [6]. F. Kristensen
is responsible for the feature extraction and tracking SW but also the implementation
of additional HW units, e.g. the PPC interface. Furthermore, he also performed an
investigation of the impact different color spaces have on shadows [7]. All three are
involved in developing the system architecture and integration. The work is initiated
and carried out in close collaboration with Axis Communication AB [8].

1.2.1 Main contribution and thesis statement

The main contribution of this thesis is to present implementation aspects of two hard-
ware accelerators: a low complexity morphology unit, and a labeling unit based on
contour tracing. A general overview of a complete automated system will be presented
outlining and setting the goals for this research project. Additional implementation
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aspects of such a system, a prototype, will also be presented but is not considered to be
a part of this thesis main contribution. Furthermore, incorporating the two hardware
accelerators in the prototype, the following thesis statement can be derived:

e Accelerating key operations in hardware is crucial to achieve realtime performance
in an automated digital surveillance system. This should be done under strict
power and complexity considerations.

1.3 Thesis outline

The thesis is organized as follows. In Chapter 2, basic digital image processing defini-
tions and concepts are presented, needed as reference throughout the thesis. Chapter 3
presents an overview of a complete system in order to get acquainted with the included
blocks. Chapter 4 presents implementation aspects of a low complexity morphology
unit. Chapter 5 presents implementation aspects of a labeling unit based on contour
tracing. System integration together with implementation details of the prototype are
presented in Chapter 6. Finally, conclusions and future work are presented in Chapter 7
and Chapter 8 respectively.



Chapter 2

Digital Image Processing

This chapter presents a brief introduction to common sensor techniques together with
basic digital image processing concepts and definitions used throughout the thesis.

2.1 Image Acquisition

A first step in any digital image processing system is to capture an input image or frame.
Each frame is divided into picture elements referred to as pixels, which are aligned to
a grid with R rows and C' columns, i.e. spatial sampling. Image resolution is defined
as the number of pixels per frame, e.g. C'x R (or R x C'). The origin with coordinates
(0,0) is defined as the upper left corner, as depicted in Figure 2.1. Furthermore, each
pixel p in the grid has a certain value corresponding to the light intensity level. This
value is quantized and taken from a set of discrete values I € {imin,imaz}. Without
color processing, the number of intensity values in I corresponds to the number of gray
levels in the frame, typically a power of two, e.g. 2 = 2 or 28 = 256. The binary
representation of 7,,,, determines how many bits are required to represent each pixel
value in hardware. Therefore, a binary image, I, in which the pixel values p € 0,1,
requires only one bit per pixel to represent the content in hardware.

Repeating the image capturing process producing consecutive frames results in an
image stream, i.e. video sequence. In a video sequence, the number of images per second
is defined as the frame rate, f,q, measured in frames per second (fps). In this thesis,
real-time video performance is defined as f,qe > 25 fps.

A color is a light source with a certain wavelength distribution, where wavelengths
stretching from about 400 to 700 nm lies within the human visual spectrum [9]. A
light source with a rectangular wavelength distribution within the visual spectrum is
referred to as white and a light source containing only one wavelength is monochromatic
(dirac distribution). The sum of the wavelength distribution is equal to the intensity.
Furthermore, since a sensor only measures spatial light intensity, it becomes gray scale
by nature. However, to be able to keep the wavelength distribution information, a color
space is inferred splitting the intensity into different wavelength contributions: each
pixel color is represented as a point in the color space. A common technique to create
multiple dimensions, e.g. RG B, is to separate the wavelengths of the incoming light by
inferring a color filter on top of the pixel grid. The filter, called a Color Filter Array
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Figure 2.2: An illustration of a Bayer mask together with examples of various
pixel setups, (a) is used in our system.

(CFA), is periodic and the actual colors in the filter corresponds to the desired color
representation. As an example, the CFA with one red, two green, and one blue filter
component will produce the RG B color space. This filter, depicted in Figure 2.2, is of
special interest, since it commonly used by sensor manufacturers, and is named Bayer
filter after its inventor [10]. After the RGB color intensities have been measured, the
sensor output pixels are created as a set of three color components. Since there are
four color components in the CFA and only three in a pixel, a decision on how create
the three output values has to be made. When using the Bayer CFA, this is usually
done by manipulating the green components with various techniques, e.g. calculating
the mean of two green values, illustrated in Figure 2.2(a), skipping every other line of
green, illustrated in Figure 2.2(b), or by using a color value to form multiple pixels,
illustrated in Figure 2.2(c).

The human eye has two major types of receptors [11]: rods and cones. Rods are only
sensitive to incoming light intensity and cones only to color information. Furthermore,
cones are divided into three subtypes each sensitive to a specific color: blue, green, and
red. The reason for choosing two green pixels in the CFA is that the human eye is
more sensitive to green than red or blue. This is due to the fact that the sum of the
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Figure 2.3: Normalized spectrum sensitivity of the human eye for each of the
three cone receptor subtypes versus wavelength. The sensitivity is proportional
to the probability of a receptor absorbing a light quantum with a specific
wavelength.

probability of the color receptors absorbing a light quantum with a certain wavelength
has its maximum around = 550 nm, which corresponds to a greenish color, illustrated
in Figure 2.3.

2.1.1 Sensor Techniques

There are mainly two available sensor techniques: Charge Coupled Device (CCD), and
Complementary Metal Oxide Semiconductor (CMOS). Both techniques were developed
in the late 60s and early 1970s. First, CCDs became dominant due to superior image
quality and not until the 1990s could the fabrication methods deliver dimensions and
uniformity needed when using the CMOS technology. The subsequent section presents
a brief comparison between the two techniques [12] [13]. However, before going into
details some important parameters are presented that can be used to compare the two
techniques and that are of special interest in automated digital surveillance systems:

e Dynamic range — The ratio between a pixel’s saturation level and its signal
threshold, i.e. the ratio between max and min signal level and should be kept as
high as possible.

e Uniformity — Consistency in pixel response for different spatial locations under
identical illumination conditions, i.e. the same light intensity at different locations
of the sensor should result in the same output pixel value. The uniformity can
vary at different illumination intensities.

e Speed — The data rate of the sensor output pixel stream, measured in MHz.

2.1.2 CCD versus CMOS sensors

Both CCD and CMOS techniques are Metal Oxide Semiconductors (MOS) and func-
tion as spatial light samplers; they have a photon-to-electron charge converter at each
location in the pixel grid on the image sensor. The electrical charge is converted into
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Figure 2.4: (a) A typical CCD sensor, where the photon-to-charge converter is
placed inside pixel array and the charge-to-voltage converter is placed outside
of the pixel array. (b) A typical CMOS sensor, where both the photon-to-
charge and charge-to-voltage converters are placed directly in the pixels.

a voltage and finally sent to the output. However, it is the read out procedure of the
charge that is the major difference between the two techniques.

A CCD sensor transfers the charge quantum sequentially from one photon-to-charge
converter to another towards the output charge-to-voltage converter. A typical CCD
sensor with some required circuitry and logic blocks is depicted in Figure 2.4(a).

In a CMOS sensor, illustrated in Figure 2.4(b), the photon-to-charge and charge-to-
voltage conversions takes place directly in the pixel. Therefore, signal routing to each
pixel is required, reducing the pixel density to some extent.

Comparing the dynamic range between the sensor techniques, the CCD has an ad-
vantage due to less noise in the substrate. Traditionally, the uniformity was problematic
in CMOS sensors due to the output amplifier design. However, the gap is closing but
CCDs still have an advantage. The image read output speed is one of the most im-
portant parameters since at a given frame rate, a faster pixel output speed results in a
longer processing time per frame for the system. The speed is about the same for both
techniques. A unique feature of the CMOS sensor is the ability to access a region of
the pixel grid. This is important when developing an image system to maximize the
resolution without changing sensor. Another important issue is the amount of required
post processing. CMOS sensors typically have more post processing integrated on-chip,
e.g. timing generation, Analog-to-Digital Conversation (ADC), noise reduction, etc, as
opposed to the CCD which has most processing on the camera Printed Circuit Board
(PCB). This together with the fact that CMOS sensors can be manufactured in stan-
dard MOS processes makes the cost per sensor less for CMOS than CCDs. Based on
this brief evaluation, summarized in Table 2.1, together with lower power requirements,
the CMOS sensor is more suitable in our application.
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Table 2.1: A comparison of important parameters between the CCD and the CMOS
sensor techniques.

Sensor property CCD CMOS
Dynamic range Better Good
Uniformity Better Good
Speed Same Same
Windowing - Integrated
Cost More Less
n:rf_:n n\:\n:n n:rf_/i/n
n<r—p—=n nip.n nN<r—p—=n
R OO, N

Figure 2.5: (a) A pixel p and its 4-neighbors denoted Ny(p). (b) A pixel p
and its D-neighbors denoted Np(p). (c¢) A pixel p and its 8-neighbors denoted
Ns(p)-

2.2 Fundamental Pixel to Pixel based Relationships

Definitions and concepts presented in this section are taken from [14] [15] and are to
used as background knowledge for the subsequent chapters.

2.2.1 Neighborhood

A spatial pixel neighborhood in a frame is defined as a square of size 3 x 3, centered
around a pixel p at location (x,y). In digital image processing, it is often desirable to
perform a calculation based on only the underlying pixels of this geometrical window.
When moving this window from pixel to pixel, thereby shifting its underlying pixels, it
is often referred to as a sliding window.

A pixel p at location (x,y) then has two horizontal and two vertical neighboring
pixels at coordinates

(x—l,y),(x-{—l,y),(x,y—1),(x,y-{—1), (2'1)

defined as the 4-neighbors of p(x,y) and denoted Ny(p), depicted in Figure 2.5(a).
Furthermore, p(z,y) also has four diagonal neighbors at coordinates

(.%'—l,y— 1),($+1,y— 1)7(37_ 1,y+1),(w+1,y+1), (22)

denoted Np(p), depicted in Figure 2.5(b). These pixels together with Ny(p) are defined
as the 8-neighbors denoted Ng(p) € Ny(p) U Np(p). In words, a pixel and its closest



14 CHAPTER 2. DIGITAL IMAGE PROCESSING

o
o
o

0:0:0:0:0:0:0:0. 0:0:0:0:0:0:0:0. :0:0:0:0:0:0:
0:1:1:i1; 0.0 Olcicicicicf0:0 | Cpi Cpi Cpi Gy :
i1 1i0. 0]c 0fc 0. ot
1 10, 0 0. c
0 1:0. 0] :0]c) 0. -y
o 1:0. O cf 0. Cp
: 1 0:0 0i0]csicsicaicy0i0. 1: C1 C1: Cg 0:0
0: 10 0:0 0:0:0:0:0:0:0:0 10

(a) (b)

Figure 2.6: (a) An arbitrary binary image, (b) corresponding 4-connected clus-
ters, c1, ¢o and 3, (c¢) corresponding 8-connected cluster, ¢1, (d) corresponding
8-connected contour pixels, c,.

neighboring pixels in all directions, is often referred to as nearest neighbor, illustrated
in Figure 2.5(c).

2.2.2 Connectivity

Two pixels, p1 and po, in a binary image are
e 4-connected — if p; € Ny(p2)
e 8-connected — if p; € Ng(p2)

and the adjacent criterion is fulfilled. The adjacent criterion or adjacency is a predefined
pixel value condition, e.g. p1 = p2 or |p1 —p2| < Tinreshord- Connectivity is a fundamental
concept in digital image processing from which other important concepts are derived,
e.g. contours, regions, distance, etc. An example of how 4- and 8-connectivity affects
clustering is illustrated Figure 2.6(a)—(c). Notice how the 4-connectivity rule misses
diagonal transitions as opposed to the 8-connectivity rule, i.e. resulting in three clusters
instead of one.

2.2.3 Clusters

A cluster C' is defined as a set of connected pixels that are either 4- or 8-connected.
Each cluster has a contour, L, which consists of contour pixels p and is defined as

L={p|peC,3qe Nyp),q¢C}, (2-3)

which means that a contour pixel p has at least one 4-connected neighboring pixel
outside of C'. An example of 8-connected contour pixels of an arbitrary shaped cluster
is illustrated Figure 2.6(d).

2.2.4 Spatial operator

A spatial operator is a mathematical function that applies to the center pixel of the
sliding window taking input data from the pixels that which are currently covered by
the window. A spatial operator is defined as



2.2. FUNDAMENTAL PIXEL TO PIXEL BASED RELATIONSHIPS 15

g(z,y) = T[f(x,y)], (2.4)

where f(x,y) is the input pixel, T is the operator, and g(z,y) is the output image.
Simple examples of spatial operators are minimum, maximum, average, median, etc. It
is also possible to form more advanced operators such as gradients.






Chapter 3

An Automated Digital Surveillance system

This chapter presents an overview of a single camera, self contained, automated
digital surveillance system with the ability to track and classify objects without human
interaction in real-time , i.e. > 25 fps. In order to reduce the amount of data processed
by SW, the main idea is to decouple the processor from the image stream by cutting out
the interesting parts in a frame using the hardware accelerators and extracted features.

A conceptual overview of the implemented system is depicted in Figure 3.1 with
corresponding input and output to each block. The original video is captured and sent
as input to both the segmentation block and the feature extraction block, depicted in
Figure 3.1(a). The segmentation block produces a binary motion mask, illustrated in
Figure 3.1(b). This binary mask contains noise which is filtered using a morphological
unit, which also can reconnect split objects to some extent, depicted in Figure 3.1(c).
Ideally, the binary mask now only contains the objects of interest and are sent to the
labeling block. The different objects are assigned a unique label in order to distinguish
between the different clusters, illustrated in Figure 3.1(d) as different shades of gray.
Furthermore, performing a logical AN D operation on the original image stream and the
labeled output, results in that the interesting pixels in the original image stream, from
which features are extracted, can be cut out, shown in Figure 3.1(e). After the feature
extraction stage, each cluster has features assigned to them, e.g. location, size, etc,
depicted in Figure 3.1(f). These features are used to produce the final system output,
shown in Figure 3.1(g) as bounding boxes around each cluster with corresponding cluster
data. Using these cluster properties, objects can be tracked in consecutive frames.

3.1 Segmentation

A first step in any general computer vision processing system is to distinguish objects
of interest in a frame. This procedure is called segmentation and its purpose is to
create a motion mask, which is binary in our application, separating the frame into
foreground (moving objects), and background which constitutes the rest of the image
(static objects). For humans this is most natural and is embedded in our perception
but for a computer vision system, this is a matter of extensive calculation. The needed
complexity of the segmentation algorithm mainly depends on the lighting conditions
in the user environment since it affects the dynamic range of the image stream. A

17
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Figure 3.1: An overview of an automated surveillance system with an example
of corresponding input and output to each building block, (a) original video,
(b) segmented output, (c) filtered output, (d) labeled output, (e) and (f) final
tracked output with corresponding logged object features.

low dynamic range in the image stream results in increased noise in the motion mask,
i.e. falsely detected objects. Ideally, the scene lighting is static but this is not the case
even in a indoor environment. Real-life scenes include many segmentation obstacles,
e.g. varying illumination, appearance and disappearance of static objects, etc. Ideally, a
robust segmentation algorithm should be independent of camera placement and adaptive
to changes in illumination.

In an automatic surveillance system, the objects of interest share at least one com-
mon property, i.e. motion. The objects are moving or have at least moved at some
point in consecutive frames. The simplest way to distinguish inter-frame motion is to
calculate the difference frame, i.e. the absolute value of the subtraction of two consecu-
tive frames. This calculation effectively indicate any change in pixel value but will also
produce a lot of noise due to non uniformity in the image acquisition step and changes
in the lighting condition. Adding a threshold for the minimum difference will result in
that a foreground pixel will be able to handle slow illumination variations and suppress
noise and therefore improve the segmentation result. But using a global threshold will
often not be sufficient in an environment with varying illumination and can result in
that objects will be lost. Furthermore, this simple type of algorithm will encounter
problems with periodic background movement which is often found in outdoor environ-
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ments, e.g. swaying trees, a water surface, flags, etc. Therefore, an adaptive algorithm
based on pixel statistics was developed by Stauffer and Grimson [16] which is both
adaptive to varying light conditions and robust to periodic background motion.

The following section will not give a thorough investigation of various segmentation
algorithms but rather give a brief overview of the segmentation algorithm used in the
implemented system.

3.1.1 Gaussian Multi Modal algorithm

An adaptive algorithm based on a mixture of gaussian distributions was developed by
Stauffer and Grimson [16]. The basic idea is to model the variation of a pixel X over
time at a specific location (z,y) in a frame with statistical distributions with a mean
value p and variance 0. The probability of observing a certain pixel value D(z,y)> at

time ¢ can be written as

J—1
P(p(a:,y,t)> = Z Wit n(p(a:,y,t)a Hit, Zii)v (31)
=0

where J is the number of distributions per pixel and 0 < w;; < 1 is a weight factor,
increasing with the number of matches of the ith distribution, Y ¢ is the covariance
matrix of the i** distribution, and 7 is the gaussian probability density function. The
covariance matrix 3;; is assumed to have the form

Sip =07, (3.2)

where the pixel colors are assumed to be independent but have the same variances,
ait. This approximation is important and results in that each pixel distribution can
be modeled as a circle in the 2-D case and as a sphere in the 3-D color space centered
around the mean value. However, in order to reduce complexity, the circles and spheres
are approximated as squares in the 2-D case and cubes in the 3-D color space. Hence,
the matching criterion is a cube with a side of a factor K times the standard deviation,
o, for that specific distribution (K = 2.5 based on empirical evaluations). Matching a
pixel against a specific distribution is equal to evaluate if its value lies within the cube
of that distribution. A matching criterion for the 2-D and 3-D case are depicted in
Figure 3.2.

To determine wether a pixel p, , ;) is part of the foreground or the background,
it is matched against each of its corresponding distributions. The pixel is regarded as
foreground if it does not match any distribution or the matching criterion is fulfilled on
a distribution with low weight, otherwise it is regarded as background. If a pixel does
not match any distribution, the distribution with the lowest weight is replaced by a
distribution with the current pixel value as mean value and with an initial high variance
together with a low weight. If there is a match, the weight for the matching distribution
is increased, thus a new static object will eventually become background, e.g. a moving
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Figure 3.2: (a) 2 — D matching criterion, (b) 3 — D matching criterion.

car will first be detected as foreground but after it has been parked, it will eventually
become background.

The implementation of the multi modal algorithm [6] reports good segmentation
results but produces some over segmentation, shown as small isolated clusters in Fig-
ure 3.1(b). However, this noise can be effectively reduced by post processing as long
it is small and randomly distributed over the frame. The current implementation uses
three distributions per pixel and is running at 100M Hz on a Virtex IT pro FPGA.

3.2 Morphology

After segmentation, the binary mask is full of noise due to non uniformity in the image
acquisition step together with noise generated in the segmentation algorithm. There-
fore, noise reduction is crucial to avoid over-segmentation causing false objects to pass
through the system for classification and tracking. In order to reduce this over segmen-
tation, post processing is required, e.g. morphology.

Morphology is a branch within image processing that can perform logical operations
based on the shape of the clusters, i.e. filtering. Furthermore, morphology is well suited
for hardware acceleration and the result using a morphological filter on the binary
mask is shown in Figure 3.1(c). Morphology in general together with details about the
hardware implementation is further discussed in Chapter 4.

3.3 Labeling

To be able to distinguish between segmented clusters in the frame they have to be
identified or tagged. This is done in a procedure called labeling which consists of
assigning a unique label, i.e. number, to each cluster. After labeling, the system has
the ability assign features to a specific cluster which is crucial to be able to track an
object in consecutive frames. Implementation details of a labeling unit based on contour
tracing is addressed in Chapter 5.

3.4 Features

A feature is a property extracted from an object in the image stream, e.g. location, size,
etc. These features are used to describe different properties and to gather information
about the clusters. A robust feature describes each object and does not change if the
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object is scaled, rotated, or if it enters areas with different illumination. Some examples
of features are

e Coordinates: — Maximum and minimum coordinates, i.e. shape and location
information.

Size: — Number of pixels in a cluster.

COG: — Center of gravity.

Color mean value — Color mean value for each cluster.

Color histogram — Reveals the color distribution for each cluster.

Certain features are well suited for hardware acceleration since they can be extracted
by image processing blocks without inferring complex hardware units. As an example,
during the contour tracing phase in the labeling unit, coordinates, size, etc, can be
easily extracted from the binary motion mask, discussed further in Chapter 5.

Features are calculated for each object in each video frame and if several features
are used, heavy calculation is required. This means that they often are well suited to be
implemented in hardware. The features are then sent to the tracking/classification part
of the system. With robust features, the amount of data that the tracking/classification
algorithms have to handle can be reduced to a level that is suitable for a SW imple-
mentation.

In this system, three types of features will be used. First, the ones that can be
acquired from the contour tracing in the label unit, i.e. minimum and maximum = and
y coordinates, the number of pixels (size), and Center Of Gravity (COG) coordinates.
These features are often enough to track non-occluded objects in the video stream.
Secondly, color features are calculated to solve occlusions, these include color mean,
variance, and histogram of an object. These features have been chosen since they can
be calculated from streaming data without any reordering of the pixels and produce a
small number of data, i.e. low complexity and memory requirements. In addition, color
features are size invariant and with the right color space also lighting invariant, i.e. when
separating the luminescence from the color information, e.g. normalized RGB [17].
Thirdly, the tracking program calculates prediction features, such as motion and size
predictions, where the size prediction corresponds to motion prediction in the direction
towards or away from the camera. These features are used to make an initial guess of
which object from the previous frame corresponds to a certain object in the current
frame.

The described features are sufficient to perform tracking of moving objects in the
video stream during the period they are present in the view of the surveillance camera.
However, they are not reliable to track an object that disappears from the scene to
reappear at a later time. Furthermore, if two or more persons enter the scene with
similar clothing occlusion handling becomes hazardous. The obvious solution to these
problems is to include more and better features, which is currently investigated.
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Figure 3.3: Output of an an automated surveillance system, (a) original video,
(b) human and simple face detection shown as boxes around corresponding
area.

3.5 Classification and Tracking

All features discussed in Section 3.4 are assumed to be quasi stationary, i.e. they have
low variation in two consecutive frames since a cluster does not suddenly change color
or position. By combining this assumption together with the extracted features, predic-
tions of the features of the clusters in the next frame can be made. Tracking is performed
by comparing the predictions and the extracted features, matching the current objects
to the objects in the previous frame. The accuracy of the predictions are dependent
on the frame rate, i.e. the time an object is able to move in consecutive frames. Thus,
real-time performance is crucial to the overall system performance.

When classifying an object, using a single feature is not reliable and a bottom rule
is; the more extracted features, the higher system accuracy. Therefore, combining and
weighting several features is needed to classify an object. Furthermore, the system
becomes more reliable if a priori information about the objects that is searched for is
used in the tracking procedure. As example, if the system is searching for humans, the
prior knowledge can be that a human walks upright, has a head above its torso, etc. The
physical shape of the object is distinguished by comparing the coordinates together with
examining the COG, skin can be detected by partial mean value and histogram, etc.
An example of a system with human tracking and simple face recognition is depicted in
Figure 3.3.

Classification and tracking are most suitable to implement in software running on
a general purpose processor, since this process involves a lot of data administration.
Another issue is the need to update the algorithms or make them adaptive to a certain
scenario, which can be easily addressed using a software solution. However, to be
able to achieve real-time performance, the amount of data processed by SW has to be
decreased. This is achieved by decoupling the SW from the image stream with features.
Furthermore, removing the background keeping only moving objects is achieved by using
the extracted maximum and minimum coordinates for every cluster. Based on these
coordinates, the important area in the original video can be cut out, letting the software
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process only this reduced amount of data, illustrated in Figure 3.1(e).

How accurate the tracking and classification parts are depends on how reliable and
robust the features are. The question is somewhat subjective and is left unanswered but
will certainly increase with an improved segmentation result, more extracted features,
higher resolution and frame rate.






Chapter 4

Morphology

The word morphology is a combination of morphe, Greek for ”form” or "shape”, and the
suffix -ology, which means ”the study of”. Consequently, the word morphology means
the study of shapes. In digital image processing, morphology is used as designation for a
mathematical tool used to manipulate the shape or understand the structure of clusters
of connected pixels. The technique was originally developed by Matheron and Serra [18]
at the ecole des Mines in Paris in the mid sixties. Morphology is set theory based
methods of image analysis providing a quantitative description of geometrical structures.
It plays a key role in many digital image processing applications, e.g. computer vision,
object recognition, automatic surveillance, etc. Furthermore, morphology was originally
developed for binary images, i.e. the 2-D integer space Z2, but was later extended and
now applies to several image representations, i.e. 3-D gray scale and color integer space
Z3 [19] [20] [21]. However, since the input comes from a segmentation unit in our
application, only the binary image representation is considered in this thesis.

In theory, the moving parts of an image should be distinguished as independent
objects in the binary mask produced by the segmentation algorithm. However, in reality
the mask will be distorted with noise and single objects split into several, e.g. if parts
of the moving object has the same color as the background they will probably not be
detected as foreground. In order to remove noise and reconnect split objects, one or
more morphological operations are performed on the mask.

This chapter presents a low complexity morphological hardware accelerator for bi-
nary image erosion and dilation to be used in an automated real-time surveillance
system [22]. The main focus is to reduce memory requirements and the number of
memory accesses per pixel. First, a brief background on image morphology followed by
implementation aspects of the actual hardware accelerator.

4.1 Basic Set Theory Definitions

Let A be a set in the binary 2-D space Z2, representing a binary (input) image. Let B
be another set in Z? representing the sliding window, referred to as structuring element
(SE) using morphological nomenclature. The elements in the sets are the coordinates to
the pixels that constitutes the clusters. Furthermore, B is the reflection of B, defined
as

25
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Figure 4.1: (a) A set B and its geometric inverse, (b) a set B and its geometric
inverse, i.e. B = B, (c) a set A translated by z, i.e. (A),.
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which means that B constitutes of elements (coordinates) b that are equal to all elements
b € B, multiplied by —1, resulting in its geometric inverse, depicted in Figure 4.1(a).
A special case is when B is reflection invariant which occurs when the reflection is
symmetric in both the x and y direction to the original set, e.g. a square or a circle,
denoted B = B. An example of a reflection invariant set B is depicted in Figure 4.1(b).
Furthermore, a set translation by a point z = (2, 2,), denoted (A), , is defined as

(4): ={(a): [ (a): = a+z,Va € A},

which means that (A), constitutes of elements (a), that are equal to the elements a € A
translated by z, depicted in Figure 4.1(c).

4.2 Morphological Operations

A morphologic operation is equal to a spatial operator, defined in Section 2.2.4 and is
related to image convolution [23] but is more on the logic level rather than the numeric
level. A morphological operations could be performed using a convolution architec-
ture [24] but without taking advantage of that the structuring element (SE) consists
of ones and zeros, resulting in excessive hardware. Erosion and dilation are two fun-
damental operations from which many other are derived [2] [18], e.g. opening (erosion
followed by dilation), closing (dilation followed by erosion), hit-or-miss transformation,
etc. Therefore, the need for efficient erosion and dilation algorithms and implementa-
tions is evident.

4.2.1 Erosion

Let A, B € Z? represent a binary input image and a structuring element respectively.
Erosion is defined as
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AoB={z](B). C A},

which means that the erosion of A by B is a set that contains elements z such that B
translated by z is a subset of A. For an arbitrary SE, this means that the output pixel
with the same coordinates in the pixel grid as the center pixel in the SE becomes 1 if
and only if all the pixels in the input image that is covered by a 1 in the SE are equal to
1. Tt can be compared to a logical AND operation or taking the minimum of the pixels
in the input image at the coordinates where the SE is equal to 1.

An example of binary erosion using a SE of 3 x 3 is illustrated in Figure 4.2(a) — (e).
Sliding the SE over the image, from left to right, top to bottom, shifting the center pixel,
the first input pixels resulting in an output equal to 1 is depicted in Figure 4.2(a) with
corresponding output in (b) (pixels marked as ”-” have not been processed). Continuing
sliding the SE, the last pixel to produce an output equal to 1 is illustrated in Figure 4.2(c)
with corresponding output in (d). The final output for this particular input is shown
Figure 4.2(e).

4.2.2 Dilation

Let A, B € Z? represent a binary input image and a structuring element respectively.
Dilation is defined as

A®B=1{z]|(B),nA%0)},

which means that the dilation of A by B is a set that contains elements z such that the
intersection B translated by z is not a subset of (). For arbitrary SEs, this means that
the output with the same coordinates as the center pixel in the SE becomes 1 if at least
one of the pixels in the input image that is covered by a 1 in the SE is 1. This can be
compared to performing a logical OR operation, or taking the maximum of the pixels
in the grid that is currently being covered by a 1 in the SE.

An example of binary dilation using a SE of 3 x 3 is illustrated in Figure 4.2(f)
~ (j). The first and last position in the input image resulting in a one is depicted in
Figure 4.2(f) and (h) with corresponding output found in (g) and (i), respectively. Com-
pleting the scan, the final output for this particular input is illustrated in Figure 4.2(j).

4.2.3 Opening and closing

When combining erosion and dilation, one followed by the other, it is possible to form
other important morphological operations, i.e. opening, closing. Opening is an erosion

followed by a dilation and closing as a dilation followed by an erosion. An opening of
A by B is defined as

AoB= (A5 B)® B,
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Figure 4.2: (a) — (d) An example of binary erosion using a 3 x 3 SE with
corresponding output in (e), (f) — (i) An example of binary dilation using a
3 x 3 SE with corresponding output in (f). Pixels marked as ”-” have not been
processed.

which is of special interest in our application since it performs the actual noise filtering.
The filtering is achieved by first eroding the image, resulting in that isolated clusters
smaller than the SE are removed. The erosion is then followed by a dilation which
restores the remaining clusters to their original size, notice how the isolated pixels in
the input image are removed in Figure 4.2. An example of a typical noisy image together
with the result after an opening has been performed, i.e. first an erosion using a 5 x 3
SE containing ones followed a dilation with 7 x5 SE also containing ones, are illustrated
in Figure 4.3(a) and (b) respectively.

A closing of A by B is defined as

AeB=(A® B)S B,

which can be used to reconnect split objects. A is first dilated, expanding the clusters
with the size of the SE in all directions, which results in that clusters that are closer
than SEpeignt — 1 and SEy;q, — 1 pixels apart are merged. The dilation is followed by
an erosion, resulting in that the clusters are restored to their original size but leaving
the connections intact. The output after a closing, with the same SE settings as in (a),
is illustrated in Figure 4.3(c).

Opening and closing can also be combined. An opening followed by a closing can be
useful since it first filters the image and then reconnects possible split objects. Further-
more, changing the dimensions of the SE between the operations can also be useful if the
system a priori knows what is searched for. As an example, a vertically outstretched SE
used in the closing operation can be useful when detecting humans since we are mostly
longer than wider, illustrated in Figure 4.3(d).
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Figure 4.3: (a) A typical binary input, (b) corresponding output after an
opening, (c¢) corresponding output after a closing, (d) corresponding output
after performing an opening followed by a closing.

4.2 4 Structuring Element Decomposition

Erosion and dilation are associative which means that if the SE can be decomposed into
smaller SEs according to

shown in Figure 4.4, then dilating A with B, results in the same output as first dilating
A with By and then dilating the result with By according to

ABB=A® (Bl () BQ) = (A D Bl) © Bs. (4.2)

An example of an erosion using SE decomposition is illustrated in Figure 4.5. First, the
input is eroded with By, resulting in the partial output depicted in (e). This output is
then eroded using Bs resulting in the final output in (j). With a decomposed SE, the
number of comparisons per output is decreased from the number of ones in B to the
number of ones in By plus Bs. As an example, for a 3 x 5 rectangular SE consisting only
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Figure 4.4: Decomposition of 5 X 3 structuring element B into By and Bos.

Figure 4.5: Input and output of an erosion using a SE of 5 x 3 decomposed
into By 5x 1 and By 1 x 3. (a) — (c¢) First and last pixel producing an output
equal to 1 using By, (e) final output using By. (f) — (i) First and last pixel
producing an output equal to 1 using Bs, (j) final result of the erosion for this
particular input. Pixels marked as ”-” have not been processed.

of ones, illustrated in Figure 4.4, the number of bit operations per output is decreased
from 15 to 8.

Finding decompositions to a arbitrarily shaped SE is a hard problem and not always
possible [25] [26]. However, one common class of SEs that is reflection invariant, thus
easy to decompose, is rectangles of ones. This type of SE is well suited for the opening
and closing operations needed in our application since the noise is uniformly distributed
in the input image and allows reconnection of possibly split objects.

4.3 Implementation

To easily incorporate the morphology unit into the system, some requirements are set on
the architecture. First and most important, input and output data must be processed
sequentially from first to last pixel in the binary image to avoid unnecessary memory
handling. In addition, this allows for several datapath units to be placed sequentially
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after each other without any storage in between. Secondly, the architecture should be
small and fast, in order to allow as much time and hardware space for the object track-
ing/classification part of the system as possible. To increase the overall performance of
the system, it is also desirable that the size of the SE can be changed during run time.
With a flexible SE size comes the ability to compensate for different types of noise and
to sort out certain types of objects in the mask, e.g. high and thin objects (standing
humans) or wide and low objects (side view of cars).

An important property of both erosion and dilation is that one is the dual of the
other according to

A®B=(A"cBY (4.3)

AcB=(A'"®BY, (4.4)

where " is bit inversion [27]. Tt is assumed that the height and width of B are odd num-
bers, i.e. the origin of B is equal to O(z,y) = O(L%J +1, L%J +1). Furthermore,
if the SE is both reflection invariant and decomposable, i.e. B = B and B = By & Bs,
and by combining Equation 4.1, 4.2, 4.3, and 4.4, the following two equations can be
derived

A®B=(A®B)®By=(A©B;) @By (45)
= ((A'©B1)" ©By) =((A ©By) o By) '
ASB=A0 (B ®B,y) = (A& (B ®B,))
= (A @ B)®B) = ((A"© B)) @ By) (4.6)
= (A9 B1)"©By)" = (A© By) © By,

which implies that since both erosion and dilation can be expressed as an erosion; the
same hardware can be used to perform both erosion and dilation using a decomposed
SE, discussed further in Section 4.3.2.

A common issue for all kinds of sliding window operations, including erosion and
dilation, are boundary problems. These occur when the sliding window B, is centered
on the boundary of A and thus extend outside A, as shown in Figure 4.6(a). The
most common solution is to pad the input image, A, until B, centered on the original
boundary, is completely covered and a well defined answer can be obtained, as shown in
Figure 4.6(b). Padding is defined as ones if erosion is performed and as zeros if dilation
is performed [27] to not affect the output result by the padding. With these definitions,
information around the border area of A is not lost, and more complex operations,
e.g. closing and opening, will perform correct.

4.3.1 Previous work

Previous hardware implementations of binary erosion and dilation units are mostly
focused on small to medium sized SEs. In [28], a direct mapped 2D Finite Impulse
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Output stream

Figure 4.7: Simplified architecture of stage 1.

Response (FIR) type of architecture is implemented where the arithmetic operations are
replaced by logic operands, e.g. AND or OR, depending on the SE. This architecture
supports sequential pixel processing and gives the opportunity to process the pixels
covered by the SE in parallel, which results in that it supports arbitrary shaped SEs.
However, due to long delay lines between each logic row of the SE and that every logic
operand needs a control signal, i.e. depending on the SE, making it unsuitable for larger
SEs requiring additional logic. In [29], a fast implementation is presented exploring the
duality of erosion and dilation together with a decomposed SE. Processing each row in
the SE in parallel makes it fast but it requires one memory access for each row in the
SE, resulting in high memory bandwidth. Furthermore, it does not support a flexible
SE size when performing multiple operations in series, which is useful in our application
as discussed in Section 4.2.3.

4.3.2 Architecture

The implemented architecture is based on Equation 4.6 taking advantage of a decom-
posed SE, performing erosion by default. The architecture is depicted in Figure 4.8.
However, to perform a dilation, the input A and the result are inverted, according to
Equation 4.5, which is done in stage-0 and 3 respectively. Hence, the same inner kernel
is used for both operations.

With a rectangular SE of ones, erosion can be performed as a summation followed by
a comparison. To perform binary erosion, bits in A that lies directly below the current
position of B are added and compared to the size of B. If the sum is equal to the size
of B the result is one, otherwise zero. When combining this with decomposition, the
summation can be broken up into two stages. Stage-1, compares the number of ones
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Figure 4.8: Architecture of the erosion dilation unit together with the
wordlength, Wr, in each stage.

under By to the width of By and the second stage, stage-2, compares the number of
consecutive rows with B ones, i.e. the result from stage-1, to the height of Bs.

When sliding B; over a row in A, each pixel in A is used as many times as the width
of Bp to calculate the sum for every partial output value. However, if a running sum
records the number of consecutive ones in the currently processed input row, each input
is used only once. A simplified block diagram of stage-1 is shown in Figure 4.7, where
ff is the flip-flop that stores the sum of consecutive ones. When the input is one, the
sum is increased and if the input is zero the sum is reset to zero. Each time the sum
plus the input equals the width of Bj, stage-1 outputs a one to stage-2 and the old
sum, i.e. Byyian — 1, 1s kept to be compared to the next input. The same principle is
used in stage-2 but instead of a flip-flop, a row memory is used to store the number of
rows of consecutive Byiqp ones, i.e. hits from stage-1, for each column in A. When the
output from stage-1 is one, the sum in the row memory is increased and if the input is
zero the sum is reset to zero. Furthermore, each time the output from stage-1 plus the
input from the row memory equals the height of Bs, stage-2 outputs a one to stage-3
and the previous sum, i.e. Boyiqn — 1, is stored in the row memory. Which sum that
should be stored in the ff and row memory, i.e. the increased or the previous sum, is
controlled by the outputs from stage-2 and 3. The MUXs in stage-2 and 3 are used for
the padding if the architecture is processing pixels outside the input image boundaries.

To handle the boundary problem discussed in Section 4.3, the padding is split into
four parts, namely north, east, south, and west padding, corresponding to the top, right,

bottom, and left side of A. The north and south padding should extend L%J rows

and the east and west padding should extend L%J columns outside A. Since only an
erosion datapath is needed to perform both operations, the boundaries are padded with
ones to not affect the output result and is independent of which operation is performed.
Furthermore, the result of all padding to the west and north can be precalculated. The
precalculated result of the west padding will always be equal to L%Q““hj and will be
the initial value in stage-1. Similarly, the north padding is equal to L%J and will
be the initial value in stage-2. The east and south is always equal to one and have to
be inserted into the data stream, i.e. the east padding at the end of every row of A and
the south padding after A. Figure 4.9 shows all padding in the case that the SE is seven
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Figure 4.9: An example of the padding on each side of the frame when the SE is
seven rows and five columns of ones, i.e. west = L%Z““hj, north = LSE—’LZ”MJ,
and east = south = 1.

rows and five columns of ones.

A FIFO is located at the input of the datapath to be able to stall the input stream
as the boundaries are being processed. The longest period of time the input data have
to be stalled is during the south and east padding, calculated as L%J - (iMmawiaeh +
LSEwif‘“hJ) clock cycles. The size of the FIFO is dependent on the number of stalled
clock cycles together with the incoming data speed, f;,, and the operating speed of the
datapath, forpn. Therefore, the size FIFO can be calculated as

S Ewidth
2

fin

S Eheight .
fmorph,

FIFOg, = | >

) (4.7)

| (imaiarn + |

Due to the sequential pixel processing, the implemented architecture supports con-
necting multiple datapaths in series enabling more advanced morphological, e.g. open-
ing, closing, etc, shown in Figure 4.10.

4.4 Results and performance

In Figure 4.8, the final architecture of the datapath is shown together with the wordlengths,
Wrp, in each stage. The input and output parts, stage-0 and 3, have a single bit
wordlength, whereas the wordlengths in stage-1 and 2 depends on the largest sup-
ported size of B. The wordlengths are, logy(Byidi) and logy (Bheight) in stage-1 and 2,
respectively. The required amount of memory to perform dilation or erosion is

memMdatapath = HOgZ(Bwidthﬂ + ﬂogQ(BheightﬂAcolumns bitS, (48)

where the first part is the flip-flop in stage-1 and second part is the row memory in stage-
2. For example, with a resolution of A = 320x 240 and supporting a maximum SE size of
B = 15x 15, the required amount of memory for the datapath is [log,(15)]+ [log,(15)]-
320 = 1284 bits. Optimizing for power, i.e. operating at the lowest possible frequency,
Jmorph = 8.1 MHz (Equation 4.10), and with a incoming data rate of f;, = 7.68 MHz,
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Figure 4.10: Multiple datapaths connected in series, each with individual SEs.

based on Equation 4.7 and 4.10, the FIFO requires an additional 2170 bits of memory.
Combining Equation 4.7 and 4.8, the total amount of memory per erosion dilation unit
can be calculated as

memyor = FIFOqizo + memggtapan = 2170 4 1284 = 3454 bits. (4.9)

The implementation in [28], with the same A and B would require (Bpeight —1) Acotumns+
Buiatn = 4495 bits of memory, which is 30% more than the required memory in the pre-
sented implementation. Furthermore, this architecture does not handle the boundary
problem and sets the border pixels to zero, i.e. when the SE processing pixels outside
the image boundaries, resulting in an image size decrease. To be able to get the correct
output at the boundaries, an additional FIFO has to be inferred at the input together
with inserting the padding into the pixel stream. This would make the presented im-
plementation even more advantageous in terms of memory requirements.

The execution time, i.e. the time from first input to last output, is tepe = tpp + tpad,
where tp, and t,,4 is the pixel processing and padding time, respectively. The pixel
processing time is equal to the size of the input image, whereas padding time depends
on the size of both A and SE according to

Bui Bpei
wzdthJ Ay + L height

Buidin
t = _
pad L 2 9 J )

|- (Acotumns + | clock cycles.

tpaa includes all extra clock cycles due to padding, i.e. the east and south padding
in Figure 4.9. With the same A and B as in the memory example above, the total
execution time is

15 15 15
teve = tpp + tpad = 240 - 320 + [ -] - 240 + | | - (320 + [ )

= 76800 + 3969 = 80769 clock cycles.
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Almost the same result is obtained in [28]. However, the presented implementation
will have a somewhat shorter execution time, since the west and north padding never
effects the padding time. In fact, padding in general is marginal compared to the pro-
cessing time for larger input images. No fair comparisons of execution time and memory
requirement are feasible with the implementation in [29], since all data management is
omitted from that design. Instead, Bjeign: different values of A are required as input
each clock cycle.

Input signals to the presented morphology unit, in excess of data and the select
erode/dilate control signal, are the width and height of B. A controller will set the north
and west padding values and produce the control signals W-boundary, N-boundary, and
E or S-boundary, accordingly (Figure 4.8).

The unit has been implemented and verified on a Xilinx Virtex II-pro FPGA at
clock frequencies up to 100 MHz, an image resolution of 320 x 240, and a frame rate of
25 fps, supporting a maximum SE size of 15 x 15.

4.4.1 Optimizations

Based on the discussion in Section 1.1.3: any time slack in the timing model should
be used to decrease the power consumption. For a system implemented on an FPGA
supporting multiple clock domains, this is achieved by optimizing (decreasing) the clock
frequency of the blocks, i.e. their operating speed. In this case, since the morphology
block is placed in series with the segmentation unit, according to Figure 3.1, the input
is a stream of consecutive ones and zeroes (left to right, top to bottom). The incoming
data rate, f;, MHz, is dependent on the constraints given to the sensor. The incoming
resolution and data rate together with the maximum supported SE size due to padding,
puts a constraint on the execution time that the morphology unit can spend on pro-
cessing each frame. When operating at a speed of f,,,pn, MHz, the timing constraint
for the unit can be written as

r . . 1 t
7 : (lmheight X meidth) > “teze <& fmorph > fzn ' ( L
mn

imheight X imwidth>‘
(4.10)

fmorph

With a resolution of 320 x 240 and a frame rate of 25 fps (each pixel requires four
sensor values), resulting in a sensor output pixel speed of 7.68 MHz, the morphology
could operate as low as =~ 8.1 MHz. Running the unit at a higher operating speed will
result in unnecessary power dissipation in the clock tree. With an increasing resolution,
for a given maximum SE size, t,,q becomes even smaller compared to tcze, resulting in
that the operating speed of the morphology unit will move asymptotically towards the
frequency of the incoming data f;,.



Chapter 5

Labeling

After segmentation and filtering, a binary frame is produced containing connected clus-
ters of pixels that represent different objects. Furthermore, assuming that noise has
been removed at an earlier stage, the frame now only contains objects of interest that
can be traced and classified. To be able to separate and distinguish between these
clusters they have to be identified, i.e. labeled. The goal is to assign a unique label
to each cluster transforming the frame into a symbolic object mask and tying certain
properties to a specific cluster, e.g. coordinates, size, color histogram, center of gravity,
etc. These properties enable monitoring of many important properties in a surveillance
system, e.g. object trajectories, appearance, disappearance, etc. Therefore, labeling is
a fundamental operation in any automatic surveillance or pattern recognition system.
In reality, segmentation is far from perfect resulting in shattered objects, i.e. one object
consists of several clusters. After labeling has been applied on the clusters, they can
be tied together and form larger objects. However, this decision is taken on a higher
abstraction level, i.e. in the feature extraction / tracking stage, and the labeling block
only delivers a label and certain properties of the clusters.

Another important issue in any automatic surveillance system is how to handle
occlusions, or rather how the objects are handled after an occlusion. An occlusion occurs
when one object is in front of another from the camera perspective, i.e. two previously
separate clusters of pixels are merged and detected as one in the binary mask. An
example of two objects moving towards each other is depicted in Figure 5.1(a). In (b),
the objects are merged in to one, and are occluded in (c). Hence, labeling is used to
sort the objects and tie the corresponding properties to each of the previously occluded
objects, but how these are handled by the implemented system is not addressed in this
thesis.

The subsequent sections will evaluate different labeling algorithm approaches finish-
ing of with implementation aspects of the chosen algorithm.

5.1 Algorithms

Various labeling algorithms have been proposed over the years, all with benefits and
drawbacks. Many are based on the same approach [30] but with improved data admin-
istration [31] [32] [33]. A sound survey and evaluation of various labeling approaches

37
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o000

Figure 5.1: (a) Two objects, 01 and 09, are moving towards each other and are
detected as two separate clusters in the binary mask. (b) The two previously
separated objects have now been merged into one, (c) occlusion has occurred,
(d) the objects have now passed each other and are again detected as two
separate clusters in the binary mask.

in terms of execution time versus number of clusters per frame can be found in [34].
Labeling applies to many different number representations [35], but due to the intended
use in our application, only labeling of binary and 8-connected clusters, defined in
Section 2.2.2, are considered in this thesis. However, a common property for these
algorithms is that they require high memory bandwidths.

Algorithms based on sequential local operations [36] have to handle the same ob-
stacle, i.e. label collisions. In a binary image, a typical label collision occur when a
u-shaped object is encountered, depicted in Figure 5.2. Scanning the image from left to
right, the first pixel to be labeled is p; Figure 5.2(a). Proceeding the scan, reaching ps
in Figure 5.2(b), a new label will be assigned since there is no momentary information
that p1 and py are part of the same cluster when reaching ps. However, reaching pixel
ps, Figure 5.2(c), a label collision will occur since there is an ambiguity in which label
to assign p3. The number of label collisions, label oisions, depends on the complexity of
the clusters. In this thesis, the algorithms are separated depending on how they handle
or avoid these collisions and are placed in two major categories:

e Equivalence Table Based Algorithms — Multiple scans with a corresponding
equivalence table.

e Contour Tracing Based Algorithms — A single scan based on contour tracing.

The first category writes the label collisions into an equivalence table during an ini-
tial image scan and resolves them during a second. The second category avoids label
collisions by tracing the contour pixels and assigning them a label directly.
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Figure 5.2: An example of a typical label collision, (a) the first upper and
leftmost pixel of a cluster is reached, p;, and labeled with /. (b) Continuing
the scan, another part of the same cluster is reached, ps, and is labeled with
l5. (c) Reaching ps, a label collision will occur since pixels in the same row
are labeled using /1 and the pixel above p3 are labeled with [s.

5.1.1 Equivalence Table Based Algorithms

The simplest form of labeling algorithms scan through the image assigning every cluster
pixel a preliminary label. The algorithms continues to scan the image memory back
and forth until all label equivalences have been resolved for every pixel cluster. An
advantage is that the algorithm is based on local and sequential operations. This means
that in a forward scan, the algorithm only considers neighboring pixels to the left and
upward. This property enables memory burst reads and writes since no random access
patterns are required. However, since the number of memory scans is depending on the
complexity of the connected clusters, this type of algorithm is not suited for hardware
implementation.

Adding an equivalence table to administrate the label collision can effectively reduce
the number of image scans, thus called equivalence table based algorithms. Furthermore,
two global scans is the minimum required image scans to be able to solve label ambi-
guities for equivalence table based algorithms. The first image scan can be completed
on the fly as the incoming frame is written into the label memory. The preliminary
label together with possible label ambiguities can be written directly into the label
memory and the equivalence table, respectively. This can be accomplished by storing
the previous input row. A second scan resolves the label ambiguities assigning the final
label to the clusters. The two scan equivalence table based algorithm is known as the
classical approach [30] and will function as reference design in the sense that competing
algorithms must achieve better or have major advantages compared to this algorithm.

Depending on how the succeeding processing block interprets the label result, a
single scan together with the equivalence table is enough to label an image. However,
this algorithm cannot extract other features than cluster size together with maximum
and minimum coordinates. It would also require post processing to administrate the
label collision and does not thereby complete the labeling procedure in the traditional
sense. However, if throughput is the main constraint, this is an interesting solution.
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Figure 5.3: (a) An example of cluster containing multiple label collisions, (b)
label result after initial scan. This particular cluster occupies four labels due
to the multiple label collisions, (c) the final label result after the second image
scan, where the label collisions have been resolved.

Memory requirements

To be able to store the resulting labeled image, a memory is needed. This memory
is determined by the resolution together with the maximum supported number of seg-
mented clusters that can be labeled, ¢4z, per frame. In this algorithm, ¢y,,, does not
include the number of supported label collisions per cluster, c.,;, which will occupy a
label during the first scan. The number of label collisions per frame is dependent on
the shape of the clusters and can be hard to estimate but must always be included in
the memory requirement calculation. An example of a cluster occupying several labels
during the initial scan is illustrated in Figure 5.3. The assumption that every cluster
contains one label collision, results in additional impeighs X iMyiden bits of memory.
Therefore, the physical dimensions, i.e. wordlength and depth, of the label memory is
dependent on the maximum number of clusters that can be labeled together with the
estimated number of label collisions per cluster and can be written as

memsgize = [1092(Cmaz + Ceot + 1)1+ (iMneight X iMuwidarn ), (5.1)

where the +1 comes from the fact that 0 is a preoccupied label representing the space
between or holes inside the clusters.

The required number of memory accesses for the equivalence based algorithm to
complete the labeling procedure consists of several parts. The sequential input data
is first written into the label memory assigning the preliminary labels. This results in
iMpeight X 1Mayidth WTite operations together with additional label ambiguities written
into the equivalence table, which can be neglected since they are < impeignht X 1Mapidih -
This is followed by a second read scan with additional impeighs X iMwiqin read operations
to resolve the label ambiguities. Let size; be the remainder of a cluster that needs to
be relabeled, which results in additional size; write operations. The total number of
memory accesses for a frame containing n clusters, each with size; pixels that needs to
be relabeled, can be written as

n—1

MEMgecess = 2 (imheight X Z’WLwidth) + E size;. (5'2)
i=0
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Figure 5.4: Labeling using the contour tracing technique. (a) The scan starts
at the previously marked start point, i.e. the first cluster pixel equal to 1, p1,
and the contour of the cluster is traced and labeled with [;. Continuing the
scan, when ps is reached, since the contour has been previously labeled /1, no
new label is assigned to p2. Due to this procedure, no label collision will occur
when reaching a pixel that is part of a cluster. (b) The labeling is complete
when reaching ps, i.e. the previously marked end point. (¢) The final labeled
output.

The total number number of required clock cycles used by the algorithm to process
a complete frame is determined by the number of memory accesses. These accesses are
determined by the complexity of the input clusters, i.e. the number of pixels that needs
to be relabeled. To be able to determine the final execution time, clusters with worst
case label collisions have to be constructed. The worst case label collision is when a
cluster is covering the complete frame with a label collision in the upper left corner.
This means that almost the complete cluster needs to be relabeled, resulting in an

upper limit of the latter part of Equation 5.2, i.e. Z?;OI size; < iMpeight * 1Mapidth- AN

upper limit on the total amount of required memory accesses per frame can therefore
be written as < 3 - (impeight X iMaidth)-

5.1.2 Contour Tracing Based Algorithms

As the name implies, contour tracing based algorithms [37] [38] is a technique that traces
the contour of each cluster assigning only these pixels a label. The algorithm requires
only one global scan together with additional random memory accesses for the contour
tracing procedure. By tracing the contour, label collisions will be avoided since when
an unlabeled cluster is encountered, the contour of that cluster is labeled immediately
and every pixel between two contour pixels with the same label is regarded as part of
the same cluster. In Figure 5.4(a), no label collision will occur since ps has already been
labeled during the prior contour tracing. Continuing the scan, if a cluster with a labeled
contour is encountered, the scan proceeds without modification. If an unlabeled pixel
is reached, the contour tracing procedure restarts. If the last pixel is reached, i.e. lower
right corner illustrated in Figure 5.4(b), the labeling of the frame is completed. The
final labeled output for this particular frame is illustrated in Figure 5.4(c).

In detail, the algorithm starts with writing the incoming frame into the labeling
memory, marking the first and last pixel equal to 1 as start point and end point respec-
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Figure 5.5: Block diagram of the contour tracing based labeling algorithm.

tively. Assuming that the input image is not empty, a global scan starts from left to
right and top to bottom, starting directly at the previously marked start pixel, which
is equal to the upper leftmost pixel of the first cluster, p; in Figure 5.4(a). The contour
of this cluster is traced, writing the label into the label memory corresponding to each
contour pixel. The contour tracing phase of this cluster is completed when the start
pixel is reached a second time and the label is increased by 1. Continuing the global
scan, one out of several possible pixel values will be encountered:

e A pixel not part of a cluster (p,, = 0).

e An unlabeled pixel (p,, = 1).

e A previously labeled pixel (p,, > 1).

o A border pixel (x = imuyidgth, Y = iMpeight)-
e The previously marked end pixel.

Describing the bullets in consecutive order, if a pixel value equal to zero is encountered,
the scan continues. If an unlabeled pixel is encountered, the contour tracing phase
restarts. If a previously labeled pixel is reached, the global scan continues flagging that
it is currently inside a cluster. If a border pixel on the right side is reached, the flag
that marks that the scan is inside a cluster is reset, and the scan continues on the left
side on the next row. If the marked end pixel is reached, ps in Figure 5.4(b), the scan is
completed for this particular input and can restart. A block diagram of the algorithm
and the described steps is depicted in Figure 5.5.

Furthermore, to avoid pitfalls like tracing contours of possible holes inside the clus-
ters, a reserved label has to be written on each side of the contour, illustrated as a
dotted line in Figure 5.4(c). This reserved label together with a flag is used by the
algorithm to keep track of whether the scan is currently inside a cluster or not. If the
flag is raised, every pixel in between the reserved label is treated as part of the cluster,
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whether it is 1 or 0 (hole). Due to this procedure, holes inside clusters are filled which
is useful when detecting humans. Hence, entering a previously labeled cluster [y, i.e. a
slice of n < iman Pixels of this cluster on a specific row, that does not have its contour
aligned with the boundaries on the left or right side of the frame, must happen in the
following order:

1. po — The first reserved label, i.e. pg = l;cs. The inside cluster flag is raised.
2. p1 — The first contour pixel, i.e. pg = [;.
Intermediate pixels, i.e. cluster pixels or holes.

Pn—o — The second contour pixel on the other side of the slice, i.e. pp_o = [5.

ook W

pn—1 — The second encountered reserved label, i.e. py = l,.s. The inside cluster
flag is lowered.

If the contour of the cluster is aligned with the boundaries of the frame, no reserved
label will be encountered. The scan continues row by row until the last pixel is reached
and the algorithm starts over.

Memory requirements

As for the equivalence table based algorithm, this algorithm needs memory to store
the resulting labeled image, i.e. label memory. The physical dimension (wordlength
and depth) of this memory is determined by the resolution together with the maximum
supported number of segmented clusters, ¢;,q., in a frame . As opposed to equivalence
based algorithm, since no label collisions will occur, ¢4 corresponds directly to the
maximum number of clusters that can be labeled per frame. Therefore, the physical
memory requirement of label memory can be written as

meMsize = [ZOQQ(Cmax + 3>—| ’ (imheight X imwidth)a (5'3)

where the +3 comes from the fact that 0, 1, and 2 are preoccupied labels; 0 is used to
represent the space between or holes inside clusters, 1 is used to represent the pixels
within a cluster, and 2 is used for the reserved label.

Calculating the number of required memory accesses for the contour tracing based
algorithm: first, the input stream must be written into a memory resulting in (impeign ¥
iMyiqen) Wwrite operations. This is followed by a second global scan with additional
(imheight X iMyiqn) Tead operations. For every cluster, trace the contour and write the
reserved label on both sides of the cluster. If a frame contains n clusters, each with p;
contour pixels and the need to write [; reserved label along each side, the total number
of memory accesses can be written as

n—1 n—1

MeMgccess = 2 (imheight X imwidth) + Zpi + Z lj- (54)
i=0 =0
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The total execution time te,e (number of clock cycles) is determined by the number of
memory accesses which are directly proportional to the complexity of the input clusters;
a complex contour results in more memory read and write operations. Theoretically,
to determine the final execution time, clusters with worst case contours have to be
constructed, which can be hard to prove mathematically. Instead, the latter part of
Equation 5.4 is left with an assumption that the maximum number of memory ac-
cesses needed by the algorithm cannot exceed the image size, i.e. Z?:_Ol pi + Z?:_Ol l; <

(imheight X iMmaiqrn ). Hence, as for the equivalence table based algorithm, the maximum
number of memory access needed by the contour tracing based algorithm will not exceed

< 3+ (iMneight X iMuwidih)-

5.2 Algorithm evaluation

When choosing algorithm for implementation, important properties for our application
was compared and evaluated, i.e. throughput, power dissipation, memory requirements,
and extracted features. The subsequent section will address these parameters consecu-
tively.

5.2.1 Throughput and power dissipation

Throughput and power dissipation are closely related since throughput is dependent
on the number of memory accesses which are a major power dissipation source in any
implementation. Comparing upper limits of the total amount of required memory ac-
cesses, no major advantage can be distinguished between the two algorithms in terms
of throughput and memory accesses. However, the one scan algorithm mentioned in
Section 5.1.1 has a major throughput advantage over any other labeling algorithm.
Based on the discussion in Section 1.1.3, a major contribution of the total power
dissipation is lost in the clock tree. But since the labeling unit is continuously working
on the image stream, clock and block gating can not be applied. However, a power
saving technique that is useful in this application is lowering (minimizing) the operating
frequency of the unit, fj,pe; MHz. The incoming data rate is set to fi.:e MHz and by
using the worst case number of memory access for the algorithm, i.e. 3 - (impeignt ¥
iMuyidtn ), a lower bound on the operating frequency can be written as fiaper = 3 - fdata-

5.2.2 Memory requirements

Comparing the memory requirements (label memory) between the algorithms, the con-
tour tracing technique has an advantage over the equivalence table based algorithm.
This is due to that for the same maximum number of clusters that can be labeled, ¢4z,
allowing one label collision per cluster, the equivalent table based algorithm requires
additional impeight X 1Myiarn bits of memory compared to the contour tracing based
algorithm. In our application, the resolution is set to 320 x 240 and ¢4, to = 64 based
on simulation. Approximately is used instead of equal since some labels are preoccupied
and the width of the label memory is adjusted to the closest power of two, e.g. ¢y = 61
in the contour tracing based algorithm which results in a label memory width of 6 bits.
Using these settings and by combining Equation 5.1 and 5.3, it can be shown that the
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Figure 5.6: (a) A typical input frame to the label unit, (b) corresponding la-
beled out. Notice that gray pixel on each side of the contour which corresponds
to the reserved label, and the hole in the middle cluster.

contour tracing based algorithm requires ~ 14% less memory than the equivalence table
based algorithm according to

MEMcontour —1_ ”092(Cmax + 3)—| —1_ )

~ 0.14.
meMequivalence ”092(Cmaa: + Ceol + 1)—|)

|

5.2.3 Extracted features

Extracting properties by post processing in the tracking stage or by a general purpose
processor can be time consuming and every property that can be extracted without
inferring additional complex hardware is an advantage and should be implemented.
These properties are delivered to the tracking stage in which many decisions are made,
e.g. which clusters to merge, tracing objects in previous frames, etc. In comparison, both
types of labeling algorithms can extract maximum and minimum coordinates and size
of each cluster. However, the contour algorithm has the ability to add Green'’s formula
during contour tracing and thereby calculate the moments [39]. The moments are used
to calculate the COG of the cluster which are useful after occlusion. In addition, this
algorithm has the hole filling property which is useful when tracking humans.

5.3 Implementation

Based on the algorithm evaluation in Section 5.2, i.e. the low memory requirement and
the ability calculate COG, the contour tracing algorithm was found more suitable to be
used in a our application. In the implemented system, the unit should not only perform
labeling on consecutive frames but should also extract features, i.e. the maximum and
minimum coordinates and size of the clusters. The labeled result is stored in the label
memory with corresponding features stored in the cluster memory. Since the output
of the unit is the memory content and to maximize the time the SW can access this
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Figure 5.7: Overview of the implemented architecture.

result, a double memory architecture is inferred. Hence, as the algorithm is labeling a
frame, accessing one memory pair, it gives random access to the other pair. The double
architecture requirement is independent of the algorithm choice, thus not considered in
the algorithm evaluation.

A fragment of a typical input frame with corresponding output of the implemented
labeling unit can be seen in Figure 5.6. The reserved label, discussed in Section 5.1.2,
is illustrated as the gray pixels on each side of the contour.

5.3.1 Architecture

An overview of the architecture is illustrated in Figure 5.7. A FIFO is located at the
input since the data stream is stalled as a frame is currently being labeled. F'SM; in
Figure 5.7, first writes the incoming frame into the labeling memory. Secondly, a global
scan starts from left to right and top to bottom, searching for the upper leftmost pixel
equal to one in a cluster. This pixel is marked as starting point and the contour of that
cluster is traced, writing the label to each contour pixel into the label memory. When
the starting point is reached a second time, the contour of that cluster is completely
traced and the global scan continues until another unlabeled cluster is encountered.
Assuming that a connected cluster is encountered. To be able to trace the next
contour pixel of this connected cluster, a direction d in form of a matrix is inferred,
depicted in Figure 5.8(a). This matrix marks the direction from the previous contour
pixel to the current contour pixel. Since the global memory scan is sequential from
left to right and top to bottom, the default direction is right, 1 in the matrix. The
lookup table (LUT), shown in Figure 5.8(b), contains the start direction to the next
pixel to search for the consecutive contour pixel based on the direction, hence referred
to as the initial search LUT. The second LUT, depicted in Figure 5.8(c), contains the
actual number to add to the current address to reach each corresponding direction in
the matrix, thus referred to as the address LUT. As an example, with a resolution
of 320 x 240, to search in the downward direction, i.e. 3, imy;qn = 320 has to be
added to the current address. Furthermore, if there is a hit, i.e. the next contour pixel
is found, the direction is updated and the search starts over. If there is a miss, the
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Figure 5.8: (a) Definition of the direction matrix, (b) the start search direction
matrix, (c) the address LUT, i.e. the number to add to the current address to
reach each corresponding direction.
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Figure 5.9: (a) A small cluster that is to be contour traced, (b) the start
pixel is marked and assigned a label, {;. The arrow indicates the initial search
direction for the next contour pixel. (¢) A new contour pixel is encountered in
the direction indicated by the arrow. (d) The current position is updated and
the arrow indicates the new initial search direction for the next contour pixel.
(e) The search direction is increased, until a new contour pixel is found. (f)
A new contour pixel is found in the direction indicated by the arrow. (g) The
label is assigned and the search starts in the direction indicated by the arrow.
(h) The search direction is increased until a new contour pixel is found, in this
case equal to the start pixel, ending the contour tracing.

direction is incremented together with the number to add to the current address. This
procedure reduces the number of memory accesses since the location of a consecutive
contour pixel is not ad hoc. An illustration of the contour tracing of a small cluster with
corresponding search directions is shown in Figure 5.9. In (b), the pixel is marked as
start pixel and assigned the current label, [;. Since the default direction is 1, a lookup
is made in initial search LUT, receiving a 0. This 0 is used for a second lookup in the
address LUT, resulting in that —im;qn + 1 should be added to the current address
to start searching for the next contour pixel. Since no contour pixel is found at this
address, the index to the address LUT is increased by 1, and the next number to add
to the current address is +1. On this address, the next contour pixel is found and the
current position is updated together with assigning this pixel the current label. The
pixel was found in a direction equal to 1, and a new lookup in the initial search LUT is
made, again receiving a 0 which is used to make a new lookup in the address LUT. If a
new contour pixel is not found on the current search address, the index to the address
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Figure 5.10: (a) Start and end point of a u-shaped cluster. (b) In detail, start
and end point of another arbitrarily shaped cluster.

LUT is increased by 1. This process repeats until the start pixel is reached, indicating
that all contour pixels of this particular cluster have been labeled and the image scan
continues searching for the next unlabeled cluster.

During the contour tracing phase, F'SM; outputs coordinates and control signals
to F'SMy for every contour pixel. F'SMs is not part of the actual contour tracing but
rather used to update and store the extracted features for every cluster. The double
memory architecture, depicted in Figure 5.7, is a memory pipeline so when F.SM> is
updating one of the cluster memories, the tracking stage is given access to the other for
an entire frame.

5.4 Results and performance

Based on the discussion in Section 5.1.2.1 and memory limitations in the implemented
technology (FPGA), ¢paz is set to 61, plus three preoccupied labels, resulting in 6 bits
per pixel, which is enough based on SW simulations. Hence, the labeling memory size
is

MEMygjre = [logg(cmax + 3)] . (imheight . imwidth) =6- (320 . 240) ~ 450 kb. (55)

Furthermore, the resolution together with ¢4, also sets the dimensions of the cluster
memory in which the properties for each cluster is stored, i.e. ¢;q, determines the depth
and the resolution determines the wordlength. A word in the cluster memory consists
of (xmm,ymm,clusterwidth,clusterheight) and the total size of the cluster memory is
therefore equal to

memsize = (Cmax + 3) : ([ZOQQ(imwidthﬂ + ”092 (imheight)]

+[1092(imwidth>—| + ”092 (imheight)]> ~ 2 kb. (56)

Based on the discussion in Section 5.1.2.1 together with the specific requirements
for this application, the total amount of memory in the implementation can be written
as
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memyor = FIFOjppyr + 2 - labelyen, + 2 - clusteryen = 1 Mb. (5.7)

The unit has been implemented and verified on a Xilinx Virtex II-pro FPGA at
operating frequency up to 67 MHz, labeling up to 61 individual clusters together with
extracting their coordinates with an image resolution of 320 x 240 and a frame rate of
25 fps.

5.4.1 Optimizations

A simple optimization that can be applied to any labeling algorithm that could, de-
pending on the input, avoid unnecessary memory accesses is to monitor the input. As
mentioned in Section 5.1.2, this can be achieved by marking the location of the first
and last pixel equal to 1 as start and end pixel, as the input frame is being sequentially
written into the label memory, illustrated in Figure 5.10. When the second scan starts,
the first visited address is the start point and the last visited location is the end point.
Depending on the input, this procedure can in many cases reduce memory accesses
without additional complex hardware.






Chapter 6

System integration

This chapter presents a prototype of an automatic surveillance system implemented
on a Virtex II Pro Development board [40]. The design strategy together with included
peripherals are also presented. Details about the included blocks are found in the fol-
lowing sections: segmentation, Section 3.1; morphological filtering, Chapter 4; labeling
of connected clusters, Chapter 5. The SW running on an embedded processor is in-
tended to perform additional feature extraction and tracking, discussed in Section 3.4
and Section 3.5, respectively. As mentioned in Section 1.2 three PhD. students are
involved each responsible for developing different parts of the system. The author’s
main contribution is the implementation of the morphological and labeling operations
included in the system.

6.1 System Design Strategy

The goal of the project was to develop a prototype of an automated digital surveillance
system on a development platform achieving real-time performance. The design strat-
egy has been carried out in two phases: top-down and bottom-up modeling. First, a
top-down approach was applied starting at the highest abstraction level (system level).
A software model in C was used to distinguish required digital image processing blocks,
e.g. morphology, labeling, etc, together with their timing constraints and corresponding
memory requirements. The system was then partitioned into HW and SW. Software
modeling is important to establish a system hierarchy especially since several people
are involved in developing the same design. Using the software model together with the
system hierarchy, test vectors to be used as input and reference vector to be compared
with the output for each block, was produced. Furthermore, proceeding lower in ab-
straction level, for each block, the design space discussed in Section 1.1.2 was explored.
The blocks were individually tested for functionality and verified with individual test-
benches, using the software produced test and reference vectors. The individual blocks
were synthesized to estimate speed and area. Synthesis is a design step that transforms
the design into a netlist, i.e. transforming code into logic blocks and how these are
connected. After synthesis, the bottom-up phase could start, i.e. design integration,
forming the complete system. The interfaces between the blocks were adjusted and

o1
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the system was divided into different clock domains. Returning to system level, addi-
tional buffers, i.e. asynchronous FIFOs, to separate the various clock domains had to
be inferred, e.g. between the segmentation and the morphology unit.

Synthesizing each block individually does not guarantee smooth synthesis of the
complete system due to an increased FPGA resource utilization and the multiple clock
domains. Furthermore, as the resource utilization increases, the physical routing also
becomes more difficult, due to limited number of wires between the blocks. Therefore,
much time was spent resolving Place and Route (P&R) errors. P&R is the last to step
in the design flow physically mapping the netlist onto the available FPGA resources,
and connecting the logic blocks.

6.2 XUP Virtex Il Pro Development System

The XUP Virtex IT Pro Development System is an advanced FPGA hardware platform
provided by Xilinx. The system has support for various peripherals and standards,
e.g. RS232, AC97, Ethernet, etc. This section will highlight and discuss the most
important supported peripherals and properties for the implemented system.

The development system is based on a Xilinx Virtex ITI-pro XCV2VP30 FPGA which
is equipped with 2448 kb of on-chip block Random Access Memory (RAM) and has eight
Digital Clock Managers (DCM) enabling eight independent clock domains. Tt has 13.6
k slices and 136 embedded multipliers. Furthermore, the FPGA has two integrated
PowerPCs (PPC) as hard on-chip IP-blocks, on which the software is running on one of
them.

The platform has an onboard 64 bit, 184-pin, Double Data Rate (DDR) Synchronous
Dynamic Random Access Memory (SDRAM) slot, in which the current implementation
has incorporated a 256 MB memory module. Furthermore, the system has four 60-pin
I/0 headers used to connect the image sensor to the FPGA. The system provides a video
Digital to Analog Converter (DAC) with corresponding VGA connector (15-pin D-sub).
The video DAC can operate at various resolutions and refresh rates but the current
implementation is running in 640 x 480 at 60 Hz using a smaller active screen area. A
photograph of the platform including some peripherals can be seen in Figure 6.1.

6.3 Kodak KAC-9648 CMOS Image Sensor

Based on the comparison between different sensor techniques in Section 2.1.1 and the
system constraints taken from Section 1.1.1, the Kodak KAC-9648 CMOS image sensor
was chosen for image capturing. It is a low power and multipurpose sensor for still
image and video sequence capturing. An important sensor property for the prototype
is the integrated compensation circuitry, e.g. black level compensation and adjustable
parameter settings for each color channel, required to optimize color reconstruction.
Black level compensation is used to remove possible natural offset, i.e. black should
be represented with the value 0. The sensor supports various modifications but the
most important to the prototype are the integration time and separate gain for each
color. Typically, the gain has to be increased for green and even more for blue to
produce a more uniform color sensitivity spectrum. Changing these settings increases
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Figure 6.1: The XUP Virtex II Pro Development System, including the senor
and the DDR memory module.

the color dynamic range. A high dynamic range is required by the segmentation unit to
achieve a good segmentation result. Integration time is equal to the shutter time in a
conventional camera and affects the image brightness. It proved necessary to decrease
the integration time since the default setting saturated the sensor in a typical indoor
environment, resulting in poor segmentation results.

In the current system, the sensor delivers a video sequence with a resolution of
(320 x 240) as an 8 bit data stream (one color at the time, four colors per pixel), at a
frequency f of 7.68 MHz (1.92 MHz RGB). Hence, the frame rate is calculated according
to

f 7.68 - 106
Frame rate = - - = = 25 {ps. 6.1
4- (theight X iMapidth) 4+ (320 x 240) P (6-1)

6.4 Prototype — An Intelligent Surveillance System

An architectural overview of the system prototype is depicted in Figure 6.2. The sensor
output consists of a 1.92 MHz continuous, 24-bit wide RGB pixel stream that is fed to
both the segmentation unit and the VGA controller. The segmentation unit outputs a
binary mask as a pixel stream at 100 MHz, connected to an asynchronous FIFO placed
between the segmentation and the morphology unit in order to separate the different
clock domains. Since the throughput of the morphology unit does not need to be higher
than that of the labeling unit, the lower operating frequency of the two units is chosen
as common clock domain, i.e. 67 MHz, which is the maximum frequency of the labeling
unit. Furthermore, the morphology unit outputs a pixel stream at 67 MHz to the
labeling unit requiring a synchronous FIFO to be placed at the input of the labeling
unit. This is done to guarantee that no pixels are lost when stalling the pixel stream
during the contour tracing phase in the labeling algorithm. A simple interface is placed
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Figure 6.2: An overview of the complete implemented system.

between the labeling unit and the PPC which gives the processor access to one of the
cluster memories together with the corresponding label memory. Using the extracted
features in the cluster memories together with the complete labeled image stored in
the label memory, the software is able to cut out the cluster areas from the original
sequence. In the current system version, the software only displays a box around every
cluster but future versions will support more advanced feature extraction, tracking and
classification.

A VGA controller outputs synchronization signals together with image data to an
external monitor. The controller requires a memory which is proportional to the reso-
lution, i.e. number of colors N, and number of bits per color Cj. In the prototype, this
memory is implemented as dual port memory, constantly writing to one port, i.e. the
system results, and constantly reading from the other, i.e. VGA output. Displaying the
original sequence in full color would require

Dual_memgize = Ne - Cp - (iMpeight X iMaiden) = 3 - 8- (320 x 240) =~ 1,84 Mb, (6.2)

which is about 75 % of the memory budget in the FPGA. Therefore, the current proto-
type only displays the original video as 8 bit gray scale.

The system output of the current prototype is only sent to the VGA controller and
displayed as a box around each cluster. In future versions of the prototype, the output
can be directed to a log-file or a mass storage unit, e.g. a hard disc. This could be
done by only storing the features of each object or together with a compressed image
sequence of the clusters.
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6.5 Optimizations

There are two major memory bottlenecks in the current system: the bandwidth from the
segmentation unit to the off-chip memory and high on-chip block ram utilization ratio
(97,7%). The bandwidth requirement in the segmentation comes from the large number
of parameters that need to be updated each clock cycle. The current segmentation unit
implementation uses three distributions per pixel, each requiring 16 bytes, that need
to be updated, i.e. read from and written to the memory, 25 times per second. This
together with a system resolution of 320 x 240 results in a bandwidth of

BW =2-3-16- (320 x 240) - 25 ~ 180 MBps. (6.3)

In an effort to reduce this bandwidth, a memory reduction scheme is currently being
investigated which reports up to 60% memory access savings in simulation.

An obvious solution to the high on-chip block RAM utilization is to move the dual
port memory required by the VGA controller off-chip, which would free 76 KB of mem-
ory. Currently, a PCB with a 32 x 256 asynchronous Static Random Access Memory
(SRAM) is being developed. This memory will not only enable the 24-bit full color
video sequence from the sensor to be displayed by the VGA controller but also give the
possibility to store the correct image from which the features are extracted by the PPC,
which currently has an offset of three frames.

There are several other properties that improves the system performance, e.g. in-
creasing the system resolution, adding tracking and classification SW. Increasing the
resolution is of special interest since it would further increase the advantage of a HW
implementation compared to other SW implementations running on general purpose
processors. Adding SW for tracking and classification is the next natural step to fur-
ther develop the system. The current system is using only 10% of the dedicated program
memory, which allows the SW program to increase in size, which is currently being inves-
tigated. Furthermore, freeing memory resources will also enable placing future feature
extraction accelerators in HW. Another important issue is displaying the original video
in full color. This would not directly increase system performance but is an appealing
feature for demonstration purposes and can be important in a commercial product.

6.6 Results

An automated digital surveillance system has been developed using a XUP Virtex II
Pro Development System platform. A high performance CMOS sensor, i.e. Kodak
KAC-9648, is used for image acquisition. The implemented prototype has the following
specification:

e Resolution: 320 x 240.
e Frame rate: 25 fps.
e Segmentation: 3 distributions per pixel.

e Morphological operation: opening.
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Table 6.1: A summation of the system resource utilization of a Xilinx Virtex II-pro
XCV2VP30-71f896 FPGA.

Logic utilization || used | available | ratio (%)
Slices 6,710 | 13,696 | 48
PPC405s 1 2 50

Block RAM 133 136 97,7
DCM 4 8 50

e Labeling: Labels 61 independent clusters together with extracting their maxi-
mum and minimum coordinates.

e Tracking: Currently supports drawing a bounding box around every cluster,
which is based on the extracted coordinates.

e VGA output: Supports four output modes: the original video (8 bits gray
scale), the segmentation result, morphological result, and the labeling unit. The
bounding box generated in SW can be shown on top of any of these output modes.

A summation of the FPGA resource utilization is found in Table 6.1. The number
of used slices can still be seen as relatively low, enabling additional accelerators to be
placed in HW. However, the block RAM utilization is 97,7% (maximum). In order to
reduce this figure, several approaches were considered, i.e. translating block RAMs into
distributed RAMs, or connecting multiple FPGAs; both rejected since neither are long
term solutions. Moving blocks off-chip, e.g. the VGA-memory, thus freeing memory
resources, was considered the only solid solution to this limitation and is therefore of
outmost importance for future system development even though it results in increased
power dissipation.

Examples of the various output modes supported by the current system implemen-
tation are depicted in Figure 6.3, excluding the original gray scale video. Each of the
four modes can be drawn with or without a bounding box.

Comparing the prototype to other system implementations, an equivalent system
implemented in SW running on a desktop PC (Pentium-4 1700MHz) achieves 3 fps with
a resolution of 352 x 288 [41]. In this system, the setup is somewhat different making the
comparison not directly proportional, e.g. the image stream is JPEG compressed and
captured with a network camera delivered to the system via a 10Mbs Local Area Network
(LAN) [42]. Increasing the computational capacity of the PC and pixel rate from
the camera together with removing the JPEG decompression would certainly increase
system performance. However, in our application, i.e. a self contained network camera,
a desktop solution is not an issue not only due to the physical size limitations but also
cost. Furthermore, as the resolution of the sensors is continuously increasing, resulting
in an even higher bandwidth in future systems, accelerating key operations in hardware
in an automated surveillance system is crucial to achieve real-time performance.



6.6. RESULTS

57

20 20

40 40

&0 &0
r

B0 a0

L L L L | L L L L L L L L L L i
20 40 &0 B0 100 120 140 160 180 200 20 40 € B0 100 120 140 160 160 200
(a) (b)
20 E
=
40 E
60 3 J q
=
80 o
100 l
120
20 40 &0 B0 100 120 140 180 180 200 & 100 120 140 180 180 200
(c) (d)

Figure 6.3: Typical results from the different units that can be displayed as
VGA output, e.g. on an external monitor, (a) segmentation result, (b) the
output from the morphological unit after an opening has been performed, (c)
labeled output, (d) original video. The bounding boxes shown in (¢) and (d)
are generated from the PPC and can be applied to any of the outputs.






Chapter 7

Conclusions

In this thesis, implementation aspects of an automated digital surveillance system
together with details of two hardware accelerators used in the system are presented.
A software implementation of the system is used to identify computational, bandwidth
and memory requirements. To be able to handle the bandwidth that a surveillance
system requires, the design strategy has been to accelerate key operations in hardware
and extract features at different abstraction levels of the system. This strategy has
proven to efficiently reduce the amount of data processed in SW, resulting in real-
time performance, i.e. 25 fps.

A low complexity hardware accelerator for binary morphological erosion and dilation
is presented. The low complexity architecture uses SE decomposition, reducing memory
requirements to a memory size proportional to the image width and SE height. The
design allows instantiations of multiple morphological units in series enabling more
advanced morphological operations based on erosion and dilation, i.e. opening, closing.
The architecture supports arbitrary sized rectangular SEs that can be changed during
run-time. Integrating the architecture in the surveillance system, efficiently reduce noise
in the binary motion mask. The architecture has been successfully tested and verified
at 100 MHz on a Xilinx Virtex-II pro FPGA.

The implementation of a hardware accelerator for cluster labeling using a contour
tracing technique is presented. The contour tracing algorithm requires less memory to
guarantee labeling of a specific number of clusters. This combined with the ability to
add Green’s formula to calculate the moments, needed to extract important features,
i.,e. COG and size, still makes the contour tracing algorithm advantageous. Especially
when the implementation is intended for use in an automated surveillance system. The
memory requirements are proportional to the image size and the maximum number of
individual clusters that can be labeled in a frame. The design extracts maximum and
minimum coordinates and is running at 67 MHz on a Xilinx Virtex-II pro FPGA.

Finally, a prototype of a simplified system has been implemented and verified on
an XUP Xilinx Virtex-II PRO FPGA development system board. By accelerating key
operations in hardware, the system achieves a resolution of 320 x 240 and a frame rate
of 25 fps.
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Chapter 8

Future work

An obvious future direction of the project is to make an effort to increase image
resolution while maintaining a frame rate of > 25 fps. The resolution is currently
320 x 240, which is low compared to modern digital surveillance applications and future
system revisions should reach at least 640 x480. The major problem when increasing the
resolution is the increased memory requirement and bandwidth bottlenecks. Migrating
to a larger FPGA, e.g. Xilinx Virtex-4, containing more on-chip memory and more
I/O connections allowing more off-chip memories would certainly solve many current
problems but might not be of scientific interest. A more scientific approach in order
to manage and restrain these limitations is to investigate memory optimization on the
system level, e.g. letting the accelerators share the bandwidth to one large off-chip
memory. Another strategy can be to infer different computational trade-offs in the
algorithms which can prove necessary since future sensor resolutions are increasing in
parallel with the FPGA resources. As an example, investigation of various lossless
compression schemes, e.g. Run Length Encoding, is currently in progress, especially in
the segmentation and labeling blocks.

Regarding the morphology unit, several future modifications are currently being
investigated. Expanding the morphology architecture to support arbitrary sized SkEs
containing ones and zeros and expanding the unit to apply to gray scale images would
certainly increase the applicability of the architecture to other image processing appli-
cations but the enhanced effect in this particular project would probably be minor.

Future labeling unit versions will support extraction of more features, e.g. size, COG.
This is achieved by while tracing the contour of a cluster, adding a discrete version of
Green formula for binary images and thereby calculating the moments. Using the first
and second moment of a cluster, size and COG can be easily calculated.

The search for simple, robust and stationary features is continuous process. Extract-
ing such features increases the system performance, i.e. prediction accuracy, especially
when handling occlusions and performing tracking. Accelerating these features in hard-
ware will decrease the workload for the PPC; keeping the amount of data processed
in SW at a minimum. Future high resolution sensors and robust features allows addi-
tional system features such as face detection/recognition. Adding such a system feature
makes the system more attractive to other applications than automated surveillance,
e.g. domestic, industrial, etc. Imagine a game of football in which every player together
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with the ball is tracked; a face recognition system used as pin-lock on a mobile phone.
Only imagination sets the limits of the applicability of an automated surveillance system
which supports face recognition.
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