Physical bounds on antennas of arbitrary shape

Mats Gustafsson
(Gerhard Kristensson, Lars Jonsson
Marius Cismasu, Christian Sohl)

Department of Electrical and Information Technology
Lund University, Sweden

Loughborough Antennas & Propagation Conference, 2011-11-14

Outline

1 Motivation and background

2 Antenna bounds based on forward scattering

3 Antenna bounds and optimal currents based on stored energy

4 Conclusions

Background

- 1948 Chu: Bounds on Q and D/Q for spheres.
- 1964 Collin & Rothchild: Closed form expressions of Q for arbitrary spherical modes, see also Harrington, Collin, Fantes, Maclean, Gayi, Hansen, Hujanen, Sten, Thiele, Best, Yaghjian, ...
- 2006 Thal: Bounds on Q for small hollow spherical antennas.
- 2007 Gustafsson, Sohl, Kristensson: Bounds on D/Q for arbitrary geometries (and Q for small antennas).
- 2010 Yaghjian & Stuart: Bounds on Q for dipole antennas in the limit $ka \rightarrow 0$.
- 2011 Vandenbosch: Bounds on Q for small (non-magnetic) antennas in the limit $ka \rightarrow 0$.
- 2011 Chalas, Sertel, and Volakis: Bounds on Q using characteristic modes.
- 2011 Gustafsson, Cismasu, Jonsson: Optimal charge and current distributions on antennas.

Physical bounds on antennas

- Properties of the best antenna confined to a given (arbitrary) geometry, e.g., spheroid, cylinder, elliptic disk, and rectangle.
- Tradeoff between performance and size.
- Performance in
 - Directivity bandwidth product: D/Q (half-power $B \approx 2/Q$).
 - Partial realized gain: $(1 - |\Gamma|^2)G$ over a bandwidth.
Calculation of the stored energy and radiated power outside a sphere with radius \(a\) gives the Chu-bounds (1948) for omni-directional antennas, i.e.,

\[
Q \geq Q_{\text{Chu}} = \frac{1}{k_0 a} + \frac{1}{k_0 a} \quad \text{and} \quad \frac{D}{Q} \leq \frac{3}{2} \left(k_0 a \right)^3
\]

for \(k_0 a \ll 1\), where \(k = k_0\) is the resonance wavenumber \(k = 2\pi/\lambda = 2\pi f/c_0\).

New physical bounds on antennas (2007)

Given a geometry, \(V\), e.g., sphere, rectangle, spheroid, or cylinder. Determine how \(D/Q\) (directivity bandwidth product) for optimal antennas depends on size and shape of the geometry.

Solution:

\[
\frac{D}{Q} \leq \frac{\eta k_0^3}{2\pi} \left(\hat{e} \cdot \gamma_e \cdot \hat{e} + (\hat{k} \times \hat{e}) \cdot \gamma_m \cdot (\hat{k} \times \hat{e}) \right)
\]

is based on

- Antenna forward scattering
- Mathematical identities for Herglotz functions

Antenna identity (sum rule)

Lossless linearly polarized antennas

\[
\int_0^\infty \frac{(1 - |\Gamma(k)|^2)D(k; \hat{k}, \hat{e})}{k^4} \, dk = \frac{\eta}{2} \left(\hat{e} \cdot \gamma_e \cdot \hat{e} + (\hat{k} \times \hat{e}) \cdot \gamma_m \cdot (\hat{k} \times \hat{e}) \right)
\]

- \((1 - |\Gamma(k)|^2)D(k; \hat{k}, \hat{e})\): partial realized gain, cf., Friis transmission formula.
- \(\Gamma(k)\): reflection coefficient
- \(D(k; \hat{k}, \hat{e})\): directivity
- \(k = 2\pi/\lambda = 2\pi f/c_0\): wavenumber
- \(\hat{k}\): direction of radiation
- \(\hat{e}\): polarization of the electric field, \(E = E_0\hat{e}\).
- \(\gamma_e\): electro-static polarizability dyadic of the structure.
- \(\gamma_m\): magneto-static polarizability dyadic (assume \(\gamma_m = 0\)).
- \(0 \leq \eta < 1\): generalized (all spectrum) absorption efficiency \((\eta \approx 1/2\) for small antennas).
Cylindrical dipole

Lossless \(\hat{z}\)-directed dipole, wire diameter \(d = \ell/1000\), matched to 72\(\Omega\). Weighted area under the black curve (partial realized gain) is known. Note, half wavelength dipole for \(ka = \pi/2 \approx 1.5\) with directivity \(D \approx 1.64 \approx 2.15\) dB.

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden

Circumscribing rectangles

High-contrast polarizability dyadics: \(\gamma_\infty\)

\(\gamma_\infty\) is determined from the induced normalized surface charge density, \(\rho\), as

\[
\gamma_\infty \cdot \hat{e} = \int_{\partial\mathcal{V}} \rho(\mathbf{r}) \ dS
\]

where \(\rho\) satisfies the integral equation

\[
\int_{\partial\mathcal{V}} \frac{\rho(\mathbf{r}')}{{4\pi}|r - r'|} \ dS' = \mathbf{r} \cdot \hat{e} + C_n
\]

with the constraints of zero total charge

\[
\int_{\partial\mathcal{V}_n} \rho(\mathbf{r}) \ dS = 0
\]

Can also use FEM (Laplace equation).

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden

Rectangles, cylinders, elliptic disks, and spheroids

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden

http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq
Outline

1 Motivation and background
2 Antenna bounds based on forward scattering
3 Antenna bounds and optimal currents based on stored energy
4 Conclusions

Bounds on D/Q or Q

- Chu derived bounds on Q and D/Q for dipole antennas.
- Most papers analyze Q for small spherical dipole antennas. Results are independent of the direction and polarization so $D = 3/2$ and it is sufficient to determine Q for this case.
- The D/Q results are advantageous for general shapes as:
 - they provide a methodology to quantify the performance for different directions and polarizations.
 - they can separate linear and circular polarization.
 - $D/(Qk^3a^3)$ appears to depend relatively weakly on ka in contrast to Qk^3a^3.

Bounds based on the stored energy

- Vandenbosch, *Simple procedure to derive lower bounds for radiation Q of electrically small devices of arbitrary topology*, TAP 2011. Bounds on Q for small (non-magnetic) antennas (in the limit $ka \to 0$).

Here, we reformulate the D/Q bound as an optimization problem that is solved using a variation approach and/or Lagrange multipliers, see *Physical Bounds and Optimal Currents on Antennas*, IEEE-TAP (in press).

Directivity in the radiation intensity $P(\hat{k}, \hat{e})$ and total radiated power P_{rad}

$$D(\hat{k}, \hat{e}) = 4\pi \frac{P(\hat{k}, \hat{e})}{P_{rad}}$$

Q-factor

$$Q = \frac{2\omega W}{P_{rad}} = \frac{2c_0kW}{P_{rad}},$$

where $W = \max\{W_e, W_m\}$ denotes the maximum of the stored electric and magnetic energies. The D/Q quotient cancels P_{rad}

$$\frac{D(\hat{k}, \hat{e})}{Q} = \frac{2\pi P(\hat{k}, \hat{e})}{c_0kW}.$$
D/Q in the current density \mathbf{J}

Radiation intensity $P(\hat{k}, \hat{e})$

$$P(\hat{k}, \hat{e}) = \frac{\Omega k^2}{32\pi^2} \left| \int_V \hat{e}^* \cdot \mathbf{J}(r)e^{ik\mathbf{r} \cdot \hat{r}} dV \right|^2,$$

Stored electric energy $W_{\text{vac}}^{(e)} = \frac{\mu_0}{16\pi\varepsilon_0} u^{(e)}$

$$u^{(e)} = \int_V \int_V \nabla_1 \cdot \mathbf{J}_1 \nabla_2 \cdot \mathbf{J}_2 \cos(kR_{12}) - \frac{k}{2}(k^2 \mathbf{J}_1 \cdot \mathbf{J}_2^*) \sin(kR_{12}) dV_1 dV_2,$$

where $\mathbf{J}_1 = \mathbf{J}(r_1)$, $\mathbf{J}_2 = \mathbf{J}(r_2)$, $R_{12} = |r_1 - r_2|$.

$$\frac{D(\hat{k}, \hat{e})}{Q} = k^3 \left[\int_V \hat{e}^* \cdot \mathbf{J}(r)e^{ik\mathbf{r} \cdot \hat{r}} dV \right]^2 \max\{u^{(e)}(\mathbf{J}), u^{(m)}(\mathbf{J})\},$$

Non-electrically small antennas

Reformulate the D/Q bound as the minimization problem

$$\min_{\mathbf{J}} \int_V \int_V \nabla_1 \cdot \mathbf{J}_1 \nabla_2 \cdot \mathbf{J}_2 \cos(kR_{12}) - \frac{k}{2}(k^2 \mathbf{J}_1 \cdot \mathbf{J}_2^*) \sin(kR_{12}) dV_1 dV_2,$$

subject to the constraint

$$\int_V \hat{e}^* \cdot \mathbf{J}(r)e^{ik\mathbf{r} \cdot \hat{r}} dV = 1.$$

Solve using Lagrange multipliers. It gives bounds and the optimal current distribution \mathbf{J}.

Small antennas $ka \to 0$

Expand for $ka \to 0$

$$\frac{D}{Q} \leq \max_{\rho} \frac{k^3}{4\pi} \int_V \hat{e}^* \cdot \mathbf{J}(r) dV^2 \frac{|J^{(0)}(r)|}{\max_{\rho} \left\{ \int \int \hat{e}^* \cdot \mathbf{J}(r) dV \right\}},$$

Electric dipole $J^{(0)} = 0$

$$\frac{D_e}{Q_e} = \max_{\rho} \frac{k^3}{4\pi} \int_V \hat{e}^* \cdot \mathbf{J}(r) dV^2 \frac{|J^{(0)}(r)|}{\max_{\rho} \left\{ \int \int \hat{e}^* \cdot \mathbf{J}(r) dV \right\}}.$$

With the solution

$$\frac{D_e(\hat{k}, \hat{e})}{Q_e} = \ell^3 \hat{e}^* \cdot \gamma_{\infty} \cdot \hat{e}.$$ It verifies our previous bound.

Strip dipole $\xi = d/\ell = \{0.001, 0.01, 0.1\}$

The stars indicate the performance of strip dipoles with $\xi = 0.01$. Almost no dependence on ka for $D/(Qk^3a^3)$.

Almost no dependence on ka for D and Qk^3a^3. Note the directivity of the half-wave dipole.
The optimization problem for small dipole antennas show that the charge distribution is the most important quantity. On a sphere, we have
\[\rho(\theta, \phi) = \rho_0 \cos \theta \]
for optimal antennas with polarization \(\hat{e} = \hat{z} \).

The current density satisfies
\[\nabla \cdot J = -j k \rho \]

Many solutions, e.g., all surface currents
\[J = J_{\theta 0} \left(\sin \theta - \frac{\beta}{\sin \theta} \right) + \frac{1}{\sin \theta} \frac{\partial A}{\partial \phi} - \frac{\partial A}{\partial \theta} \hat{\phi} \]
where \(J_{\theta 0} = -j k a \rho_0 \), \(\beta \) is a constant, and \(A = A(\theta, \phi) \).

Some solutions:
- Spherical dipole, \(\beta = 0, A = 0 \).
- Capped dipole, \(\beta = 1, A = 0 \).
- Folded spherical helix, \(\beta = 0, A \neq 0 \).

They all have almost identical charge distributions
\[\rho(\theta, \phi) = \rho_0 \cos \theta \]

Can mathematical solutions suggest antenna designs?

Outline
1. Motivation and background
2. Antenna bounds based on forward scattering
3. Antenna bounds and optimal currents based on stored energy
4. Conclusions

Conclusions
- Forward scattering and/or optimization to determine bounds on \(D/Q \) for arbitrary shaped antennas.
- Closed form solution for small antennas.
 - Performance in the polarizability of the antenna structure.
 - Forwards scattering and optimization approach coincide for \(ka \to 0 \).
- Lagrange multipliers to solve the optimization problem for larger structures.
 - \(D/(Q k^3 a^3) \) nearly independent on \(ka \) for \(0 < ka < 1.5 \).
- Optimal current distributions.