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Background

A A

» Properties of the best antenna confined to a given (arbitrary)
geometry, e.g., spheroid, cylinder, elliptic disk, and rectangle.
» Tradeoff between performance and size.

» Performance in

» Directivity bandwidth product: D/Q (half-power B =~ 2/Q).
» Partial realized gain: (1 —|I'|?)G over a bandwidth.
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» 1947 Wheeler: Bounds based on circuit models.
» 1948 Chu: Bounds on Q and D/Q for spheres.
» 1964 Collin & Rothchild: Closed form expressions of Q for

arbitrary spherical modes, see also Harrington, Collin, Fantes,
Maclean, Gayi, Hansen, Hujanen, Sten, Thiele, Best, Yaghjian,
... (most are based on Chu'’s approach using spherical modes.)
1999 Foltz & MclLean, 2001 Sten, Koivisto, and Hujanen:
Attempts for bounds in spheroidal volumes.

» 2006 Thal: Bounds on Q) for small hollow spherical antennas.

2007 Gustafsson, Sohl, Kristensson: Bounds on D/Q for
arbitrary geometries (and Q for small antennas).

2010 Yaghjian & Stuart: Bounds on Q for dipole antennas in
the limit ka — 0.

2011 Vandenbosch: Bounds on @ for small (non-magnetic)
antennas in the limit ka — 0.

2011 Chalas, Sertel, and Volakis: Bounds on @ using
characteristic modes.

2011 Gustafsson, Cismasu, Jonsson: Optimal charge and
current distributions on antennas.
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Background: Chu bound (sphere)
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Calculation of the stored energy and radiated power outside a
sphere with radius a gives the Chu-bounds (1948) for
omni-directional antennas, i.e.,

1 1 D 3 3
> = — _— d — < — = k 3
Q = Qchu Troa)? + o ™0 = 200, 2( 0a)
for koa < 1, where k = kg is the resonance wavenumber
k=2m/\=2nf/co.
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New physical bounds on antennas (2007)

Given a geometry, V, e.g., sphere, rectangle, spheroid, or cylinder.
Determine how D/@ (directivity bandwidth product) for optimal
antennas depends on size and shape of the geometry.

Solution:

D 3 N N
Qfdﬁmavaé+wxé»vmmkxa>
is based on

» Antenna forward scattering

» Mathematical identities for Herglotz
functions

M. Gustafsson, C. Sohl, G. Kristensson: Physical limitations on antennas of arbitrary shape Proceedings of the
Royal Society A, 2007

M. Gustafsson, C. Sohl, G. Kristensson: lllustrations of new physical bounds on linearly polarized antennas IEEE
Trans. Antennas Propagat. 2009
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@ Antenna bounds based on forward scattering
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Antenna identity (sum rule)

Lossless linearly polarized antennas

[ U TORD6RE o1
0

¥ 2 (eAe-e+(kxe) vy, (kxe))

> (1= |[(k)|?)D(k; k,e): partial realized gain, cf,, Friis
transmission formula.

I'(k): reflection coefficient

D(k;ic,é): directivity

k =2mw/\ =2nf/co: wavenumber

k: direction of radiation

é: polarization of the electric field, E = Eye.

v, electro-static polarizability dyadic of the structure.
~,,: magneto-static polarizability dyadic (assume ~,, = 0)
0 < n < 1: generalized (all spectrum) absorption efficiency
(n =~ 1/2 for small antennas).

vV vV VvV VY YV VY
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Cylindrical dipole

Directivity

Lossless 2-directed dipole, wire diameter d = ¢/1000, matched to
72 ). Weighted area under the black curve (partial realized gain) is
known. Note, half wavelength dipole for ka = 7/2 ~ 1.5 with

directivity D ~ 1.64 ~ 2.15dB;.
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Rectangles, cylinders, elliptic disks, and spheroids

Circumscribing rectangles

0.1
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AD/Q/(kya)’ Chu bound, kga<1

0.01 0.1 1 10 100

http://www.mathworks.com/matlabcentral /fileexchange /26806-antennaq
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Note, n =~ 1/2 for small optimal antennas kpa < 1.
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High-contrast polarizability dyadics: ~
Yoo is determined from the induced
normalized surface charge density, p, as I '
s Bt e e B
R e
voo-ez/ rp(r)dS e
v [ ———
(SR ——
where p satisfies the integral equation s s ot B
e e S st S |
r ~ equipotential lines
/ p( )/dS/:T‘e+Cn . qp.ttll
oV 47T|’I" —_r | L1 1 vy 1By
B et S S e
with the constraints of zero total charge e |

|, pras=o Bt

Can also use FEM (Laplace equation).

equipotential lines
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© Antenna bounds and optimal currents based on stored
energy
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Bounds on D/Q or Q

Bounds based on the stored energy

» Yaghjian and Stuart, Lower Bounds on the Q of Electrically
Small Dipole Antennas, TAP 2010. Bounds on ) for small
dipole antennas (in the limit ka — 0).

» Vandenbosch, Simple procedure to derive lower bounds for
radiation Q of electrically small devices of arbitrary topology,
TAP 2011. Bounds on (@ for small (non-magnetic) antennas (in
the limit ka — 0).

» Chalas, Sertel, and Volakis, Computation of the Q Limits for
Arbitrary-Shaped Antennas Using Characteristic Modes, APS
2011. Bounds on Q not restricted to small ka.

I —
Here, we reformulate the D /@ bound as an optimization problem
that is solved using a variation approach and/or Lagrange

multipliers, see Physical Bounds and Optimal Currents on Antennas,
IEEE-TAP (in press).

» Chu derived bounds on @ and D/Q
for dipole antennas.

D/Q/(ka)’  jo =3  ktx—2

» Most papers analyze () for small
spherical dipole antennas. Results are ot
independent of the direction and
polarization so D = 3/2 and it is
sufficient to determine () for this case. o

kex={0,0.1]1} "\,

0.01 0.1

» The D/Q results are advantageous for
general shapes as:

> they provide a methodology to
quantify the performance for
different directions and polarizations.

> they can separate linear and circular
polarization.

» D/(Qk3a®) appears to depend
relatively weakly on ka in contrast to
Qk3a®.
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D/Q

Directivity in the radiation intensity
P(k,é) and total radiated power Py,q

. P(k,ée)
D(k,é) =4r——=
( 76) g Prad
Q-factor
o W _ 2ok ISy
B Prad B Prad ’

where W = max{W,, Wy, } denotes the
maximum of the stored electric and magnetic energies. The D/Q
quotient cancels P,,q

D(k,e) 2nP(k,e)
Q  cokW
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D/@ in the current density J Small antennas ka — 0

L E d for ka — 0
Radiation intensity P(k, &) xpand for ka

2

~ % 2
» B |fy & rp(r) + bk xr-J(O)rdV‘
/ e* - J(r)etrav
\%

Cok?
3272

< max

P(k,é) = =
Q ~ 5J© p1p} g g0
P max { ffV 2 dV1 dVQ, ffV Ria dV1 dVg}

Stored electric energy W\gag = 140 w® R Electric dipole J(© —

kR k
w® _/ / Vl'J1V2'J§COS;12)—2(k2J1'J§ D, < max B[ e rp(r dV‘ .
vJv 12 Qe p 47Tf I pr)e*(ra) gy, gy
\%4 47r|'l'1 T2 1 2

— Vi -J1Vy - J5) sin(kRi2) dVy dVy,

D/Q/(ka)®

With the solution

combined

where J1 = J(r1), Jo = J(r2), Ria = |r1 — 72|
De(k, &) K k3

’% ’fV J(r eJkkT dv‘ Qe o 471— 'YOO ‘ ' 0.1
b
Q max{w (J), (m)( )} It verifies our previous bound. 001 o/t
0.01 0.1 1 10
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Non-electrically small antennas Strip dipole £ = d/¢ = {0.001,0.01,0.1}
Reformulate the D bound as the minimization
D/Q/(ka)®
problem 02t
min//vl'J1V2'J§COS(leQ) 0.15 0-1
J JvJv Ryo :
k
=5 (B I J3= Vi J1Va- J5) sin(kRi) dVidVs, ol
subject to the constraint 0.01 i
0.05 f x
p 0.001
/ e - J(r)ettrdv| =1
1% 0 ; ; ;
0 0.5 1 1.5

Optimal currents on a strip.

Solve using Lagrange multipliers. It gives bounds
and the optimal current distribution J. The stars indicate the performance of strip dipoles with £ = 0.01.

Almost no dependence on ka for D/(Qk3a®). More dependence on

ka for D and OE3a3. Note the directivity of the half-wave dinole
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Optimal current distributions on small spheres Optimal current distributions on small spheres

» The optimization problem for small dipole antennas show that Some solutions:

the charge distribution is the most important quantity. > Spherical dipole

> On a sphere, we have 6=0,A=0.

p(0,¢) = pocosd » Capped dipole,

Bg=1,A=0.
for optimal antennas with polarization é = z. » Folded spherical helix,
> The current density satisfies B8=0,A#0.

They all have almost identical

V.-J=—-jkp charge distributions
Many solutions, e.g., all surface currents p(0,¢) = pocosf
B A 3 1 0A, O0A,
J = J909(81n9 - sin9) SinG%G Y Can mathematical solutions

suggest antenna designs?

where Jgg = —jkapy, [ is a constant, and A = A(0, ¢)
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Outline Conclusions

» Forward scattering and/or
optimization to determine bounds on
D/Q for arbitrary shaped antennas.

» Closed form solution for small
antennas.

» Performance in the polarizability of
the antenna structure.

» Forwards scattering and optimization
approach coincide for ka — 0.

» Lagrange multipliers to solve the
optimization problem for larger

@ Conclusions structures.

» D/(Qk3a®) nearly independent on ka

for 0 < ka < 1.5.

» Optimal current distributions.
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