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Non-destructive testing and inverse source problems
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I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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Non-Destructive Testing and near-field imaging

Non-destructive testing (NDT):
The science and practice of evaluating various properties of a DUT without compromising
its utility and usefulness

Used to evaluate materials and components:
I Save money and time in product evaluation and troubleshooting
I Ultrasonic testing, radiographic testing, and laser testing, microwave and

millimeter wave imaging, etc.

Tx antenna

Rx probe

DUT

Abou-Khousa et al., “Comparison of X-Ray, Millimeter Wave, Shearography and Through-Transmission Ultrasonic Methods for Inspection of

Honeycomb Composites”, 2007; Ahmed et al., “Advanced Microwave imaging”, 2012; Blitz, Electrical and Magnetic Methods of Non-Destructive

Testing, 2012; Kharkovsky and Zoughi, “Microwave and Millimeter Wave Nondestructive Testing and Evaluation - Overview and Recent Advances”,

2007; Zoughi, Microwave Non-Destructive Testing and Evaluation Principles, 2000
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Antennas

Plane 2
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I Antennas radiate (or receive) electromagnetic waves.
I Usually characterized by the impedance (S-parameters) and radiation pattern

(gain, realized gain, cross polarization,...).
I Defects (e.g., malfunctioning elements) affect these parameters in a complex way.
I Near field and/or equivalent currents can localize defects.
I EMF exposure level from near-field measurements.
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Radomes

I A radome encloses an antenna to protect it from, e.g., environmental influences
I Airplane and car radar system
I Ideally electrically transparent. FSS for frequency filters
I Often reduces gain and increases side-lobe levels
I Flash (image) lobes from reflections of the radome wall.
I Can cause boresight errors ESoA, Compressive Sensing in Electromagnetics (7), 2023-10-25



Composite panels

Tx antenna

Rx probe

DUT

I Aircraft structural components are often composite-based

I Multilayer structure with low and high permittivity materials

I Distinguish between regions with varying resistivities (inhomogeneities,
delaminations, dielectric inclusions)
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Localization of defects

−100 −50 0 50 100
−60

−40

−20

0
Transmission loss
and beam deflection

Change of near
side-lobe levels

Change of far
outside lobes

Introduction of
flash lobes

I Defects in antennas (in elements, feed structure) and radomes affect the
impedance and radiated field in a complex manner.

I The small localized defect can perturb the radiation pattern (for all angles). Can
be difficult to correlate with the location of the defect.

I Near field and/or equivalent currents can localize defects.
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Inverse source problems

Inverse problem

E

E
E

E

E
J ,M

Back propagation

E

E
E

E

E
J ,M

Inversion

E

E
E

E

E
J ,M

AA−1

Inverse source problem.
Determine the sources
(J ,M) in a region from
observation of the field E in
some points.

Use the data as sources and
retransmit the field (time
reversal or phase
conjugation). Robust
classical approach.

Find the source distribution
from the linear system

Ax = b

I Inverse source problems are linear inverse problems
I Inverse scattering problems (e.g., to determine

material parameters) are non-linear inverse problems
I Both types of inverse problems are difficult in their

own way

with

I x as J ,M
I b as E,H
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Inverse source problems
Determine the current distribution from measurements of the radiated field

Volume currents

V

J(r)

E,H

I Electric current density J(r) in the
volume V . (Also magnetic currents.)

I Non-unique.

I Non-radiating currents.

I Ill-posed.

Equivalent surface currents

I Equivalent electric and magnetic
surface current densities J ,M on the
surface S = ∂V .

I Non-unique.

I Equivalence principle.

I Ill-posed.
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Inverse source problem: far-field data

Ω

J(r)=?

ê1 · F 0(r̂1)

ê2 · F 0(r̂2)

ê3 · F 0(r̂3)

Consider for simplicity an example with
I Far-field êm · F 0(r̂m), m = 1, ...,M data in directions r̂m and polarizations êm

I Electric current density J(r) =
∑N

n=1 Inψn(r) in basis functions ψn(r)
I Radiated far field

êm · F 0(r̂m) =

N∑
n=1

(−jkη0
4π

∫
Ω

ejkr̂m·rêm ·ψn(r) dV

)
In ≈

N∑
n=1

FmnIn

I In matrix notation FI = F0

I Lebedev points for uniform sampling over the sphere
I Similar for near-field measurements but need probe calibration

ESoA, Compressive Sensing in Electromagnetics (13), 2023-10-25
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I Far-field êm · F 0(r̂m), m = 1, ...,M data in directions r̂m and polarizations êm
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Some background

Antenna/radome diagnostics are intimately tied to the development of mea-
surement technology and can be characterized by the measurement geometry,
computational method, and purpose. Inverse source problem with analysis of
non-radiating currents and regularization.

I Measurement geometry: near- and far-field, planar (rectangular,
polar, bi-polar), cylindrical, and spherical.

I Method: field expansion (plane waves, cylindrical, spherical), back
propagation (phase conjugation/time reversal, microwave holography),
and inversion (integral representation).

I Purpose: diagnostics and/or near- to far-field transformation.
Some references:

I Barrett & Barnes, Automatic antenna wavefront plotter, 1952.
I Bleistein & Cohen, Nonuniqueness in the inverse source problem in

acoustics and electromagnetics, 1977.
I Rahmat-Samii, Surface diagnosis of large reflector antennas using

microwave holographic metrology, 1984.
I Yaghjian, An Overview of Near-Field Antenna Measurements, 1986.
I Hansen, Spherical near-field antenna measurements, 1988.
I Slater, Near-Field Antenna Measurements, 1991.

I Rahmat-Samii etal, The UCLA Bi-Polar Planar Near Field Antenna
Measurement and Diagnostics Range, 1995.

I Sarkar & Taaghol, Near-field to near/far-field transformation for
arbitrary near-field geometry, utilizing an equivalent magnetic current,
1996.

I Hansen, Discrete Inverse Problems: Insight and Algorithms, 2010.
I Devaney, Mathematical foundations of imaging, tomography and

wavefield inversion, 2012.
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Inverse source problems/diagnostics background

I Plane wave spectrum at least 1950 Barrett & Barnes, see also e.g.,
Devany, Joy, Hansen, Yaghijian, Wang, Sarkar, Rahmat-Samii, ...

I Modal expansion (spherical, cylindrical) at least 70’s, see e.g., Devany,
Hansen, Guler, Joy, Sten, Marengo, Ziyyat,Cappellin, Breinbjerg,
Frandsen,...

I Integral representation (MoM)
I 2001 Laurin etal : M on planar structures for N2FF.
I 2005 Persson & Gustafsson: BoR using the (Love) extinction theorem for

radome applications.
I 2006 Las-Heras etal : J and M on antennas without the extinction

theorem.
I 2009 Eibert etal : Fast multipole and higher order basis functions.
I 2009 Araque Quijano & Vecchi: 3D structures with Love extinction

theorem.
I 2010 Jögensen etal : antenna diagnostics.
I 2011 Araque Quijano etal : post-processing to remove disturbances.
I 2011 Commercial packages: by TICRA and MVG.
I ... ESoA, Compressive Sensing in Electromagnetics (15), 2023-10-25



CEM part of the inversion algorithm (outline of the derivation) I

Compute a matrix that models the transformation from currents (J ,M) to sampled
fields (E,H), note follows from linearity.

The electric fields at the position r from the electric surface current J on S = ∂Ω is

E(r) = −L (η0J) (r)

were (free space Green’s function G = e−jk|r−r
′|/(4π|r − r′|)

L(X)(r) = jk

∫
S
G(r − r′)X(r′)− 1

k2
∇′G(r − r′)∇′S ·X(r′) dS′

and from the magnetic surface current M we have

E(r) = K (M) (r)

where

K(X)(r) =

∫
S
∇′G(r − r′)×X(r′) dS′

Well-known integral operators used in standard MoM codes.
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CEM part of the inversion algorithm (outline of the derivation) II

Consider a measured electric field, Emeas(rn), in the points rn and the polarization ên,
where n = 1, ..., N and N is the number of measurement points.

The integral representation relates the surface currents to the measured fields

ên ·
(
−L (η0J) (rn) +K (M) (rn)

)
= ên ·Emeas(rn)

for all points n = 1, ..., N .
We can now expand the surface currents J ,M in basis functions (as in MoM) to get a
linear system which can be solved to estimate J ,M .
I We could also assume that M = 0 and only solve for J .

I Or any linear combination between M and J .

I Can we do better?

I Radiating sources are inside Ω

I Equivalence theorem to relate J and M

ΩJ

M
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= ên ·Emeas(rn)

for all points n = 1, ..., N .

We can now expand the surface currents J ,M in basis functions (as in MoM) to get a
linear system which can be solved to estimate J ,M .
I We could also assume that M = 0 and only solve for J .

I Or any linear combination between M and J .

I Can we do better?

I Radiating sources are inside Ω

I Equivalence theorem to relate J and M

ΩJ

M

ESoA, Compressive Sensing in Electromagnetics (17), 2023-10-25



CEM part of the inversion algorithm (outline of the derivation) II

Consider a measured electric field, Emeas(rn), in the points rn and the polarization ên,
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where n = 1, ..., N and N is the number of measurement points.

The integral representation relates the surface currents to the measured fields

ên ·
(
−L (η0J) (rn) +K (M) (rn)

)
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CEM part of the inversion algorithm (outline of the derivation) III

Assume a reconstruction surface S that surrounds the volume Ω and do not intersect
∂Ω. This implies that the sources of the radiated field is inside of S.

The electric E and magnetic H fields outside S can be represented with the
equivalent currents M = −n̂×E and J = n̂×H on the surface S = ∂Ω.
Integral representation to relate the equivalent currents to the fields

−L (η0J) (r) +K (M) (r) =

{
E(r) r outside S

0 r inside S

ΩJ

M E = 0

Also a corresponding representation for the magnetic field.

I first equation for the measured field.

I second equation to relate J and M at S.

Removes the ambiguity in J ,M and produces equivalent currents which correspond to
the true E,H fields outside S.
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CEM part of the inversion algorithm (summary)

Integral equation EFIE (or MFIE, CFIE) on the reconstruction surface S with unit
normal n̂

n̂(r)×
(
L (η0J) (r)−K (M) (r)

)
=

1

2
M(r) r ∈ S

and integral representation to relate equivalent currents to measured fields

ên ·
(
−L (η0J) (rn) +K (M) (rn)

)
= ên ·Emeas(rn)

for n = 1, ..., N (number of measurement points), where (again)
L(X)(r) = jk

∫
S
G(r′, r)X(r′)− 1

k2
∇′G(r′, r)∇′S ·X(r′) dS′

K(X)(r) =

∫
S
∇′G(r′, r)×X(r′) dS′

Expand in basis functions to get a matrix equation Ax = b (linearity).
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Non-destructive testing and inverse source problems

NDE/NDT
Inverse Source

Problems

Physics

EM

Ultra
sound

Fre-
quency &
wavelength

Geometry

Appli-
cations

(meta)
material

Composites

Antennas

Arrays and
MIMO

Radomes

Setup &
Calibration

Source
separation

Aperture

Probe
compen-
sation

CEM

Imaging
Algorithms

Regular-
ization

SVDMatrix free

Com-
pressive
sensing

Convex op-
timization

Machine
learning

Tx antenna

Rx probe

DUT

Plane 2

P
la
n
e
1

I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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Radome diagnostics setup

Diagnostics to detect defects, e.g., thickness varia-
tion in radome walls or FSS patterns

I Radomes are often planar to cover an aperture
or curved to enclose a dish or an array

I NDT by measurements of radiated near/far
field and comparison with desired field

I Reconstruction of fields (equivalent currents on
radome surface) for localization of defects

I The electric field is measured (sampled) in a
discrete set of points ên ·Emeas(rn)

I Here, cylindrical near or spherical far-field
I Probe compensation is not needed for far-fields
I Estimate the field (equivalent currents) on the

radome surface

Known 
electric 
field

'E

JM   / ''

JM  vv

E z

Unknown
currents

n

/

'
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Imaging of dielectric tape on a radome

Radome Amplitude Phase
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(Persson et al., “Radome diagnostics — source reconstruction of phase objects with an equivalent currents approach”, 2014)
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Imaging of dielectric tape on a radome

1 to 8 layers of tape ∠H(1)
v − ∠H(2)

v (deg)
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I Scotch Glass Cloth Electrical Tape 69-1 with thickness ≈ 0.15 mm, εr ≈ 4.1, and
phase shift 1◦ to 2◦ (used to trim dielectric radomes).

I Squares with sides of {15, 30, 60}mm. 1 to 8 layers.
I Measurements at 10 GHz, λ ≈ 30 mm.

Phase difference is sensitive to thin dielectric layers

K. Persson et al. “Radome diagnostics — source reconstruction of phase objects with an equivalent currents approach”. IEEE Trans. Antennas

Propag. 62.4 (2014)
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I Frequency selective radome with a passband around 9 GHz
I Disturbances in the lattice due to the double curvature of the radome surface
I Here, line defects on a radome with height 1.65 m ≈ 51λ at 9.35 GHz
I Power flow to detect and image transmission errors

K. Persson et al. “Source reconstruction by far-field data for imaging of defects in frequency selective radomes”. IEEE Antennas and Wireless

Propagation Letters 12 (2013), pp. 480–483 ESoA, Compressive Sensing in Electromagnetics (24), 2023-10-25

http://dx.doi.org/10.1109/lawp.2013.2256100
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I Frequency selective radome with a passband around 9 GHz
I Disturbances in the lattice due to the double curvature of the radome surface
I Here, line defects on a radome with height 1.65 m ≈ 51λ at 9.35 GHz
I Power flow to detect and image transmission errors

K. Persson et al. “Source reconstruction by far-field data for imaging of defects in frequency selective radomes”. IEEE Antennas and Wireless

Propagation Letters 12 (2013), pp. 480–483
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Non-destructive testing and inverse source problems
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I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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Inversion and regularization
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I The inverse source problem is ill-posed, i.e., small errors in the data can produce
large errors

I The approximate matrix equation is ill-conditioned
I Need regularization, e.g., Tikhonov, SVD, randomized SVD, Lp, ...

We should not ask for more information than there exist in the data and prior information
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Linear inverse problems

Would like to solve
Ax = b

with an M ×N matrix A. Simple to solve if M = N and cond(A) not too large
(compared with the errors and noise in A and b).
Otherwise regularization:

I SVD: A = UΣVH with UHU = 1 and VHV = 1

I L2-minimization: ‖x‖2 = (
∑N

n=1 |xn|2)1/2 or with weight xHWx
I L1-minimization: ‖x‖1 =

∑N
n=1 |xn|

I L0-minimization: the number of non-zero entries of x. (not a norm)
I Many choices of norms, weight functions, and (convex) optimization formulations

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Pr., 2004; P. C. Hansen. Discrete inverse problems: insight and

algorithms. Vol. 7. Society for Industrial & Applied Mathematics, 2010; A. Massa, P. Rocca, and G. Oliveri. “Compressive Sensing in

Electromagnetics-A Review”. IEEE Antennas Propag. Mag. 57.1 (2015), pp. 224–238
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Singular value decomposition (SVD)

A = UΣVH with UHU = 1 and VHV = 1

Σ is an M ×N matrix with diagonal elements σ1, ...., σP , where P = min{M,N}

to
get

Ax = UΣVHx = b⇒ ΣVHx = UHb or Σx̃ = b̃

Have the solution
x̃ = Σ−1b̃ and x = VΣ−1UHb

if M = N and σp > 0 for p = 1, ..., P . With additive noise

x̃ = Σ−1b̃ + Σ−1ñ

so strong amplification if σp < |ñ|. Set σ−1p = 0 if σp < ε.

Classical robust solution similar to pseudoinverse and to the L2-solution.
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Linear inverse problems

Would like to solve
Ax = b

with an M ×N matrix A. Simple to solve if M = N and cond(A) not too large
(compared with the errors and noise in A and b).
Otherwise regularization:

I SVD: A = UΣVH with UHU = 1 and VHV = 1

I L2-minimization: ‖x‖2 = (
∑N

n=1 |xn|2)1/2 or with weight xHWx

I L1-minimization: ‖x‖1 =
∑N

n=1 |xn|
I L0-minimization: the number of non-zero entries of x. (not a norm)

I Many choices of norms, weight functions, and (convex) optimization formulations

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Pr., 2004; P. C. Hansen. Discrete inverse problems: insight and

algorithms. Vol. 7. Society for Industrial & Applied Mathematics, 2010; A. Massa, P. Rocca, and G. Oliveri. “Compressive Sensing in

Electromagnetics-A Review”. IEEE Antennas Propag. Mag. 57.1 (2015), pp. 224–238
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Regularization

I Ax = b with a matrix A ∈ CM,N having M rows (number of measurements) and
N columns (number of basis functions) ⇒ not invertible

I Not invertible and measurement noise ⇒ optimization formulation

minimize
x

‖Ax− b‖p.
I Often least-squares norm p = 2. Computational and analytic simplicity together

with additive Gaussian noise (Kay, Fundamentals of Statistical Signal Processing,
Estimation Theory, 1993; Tarantola, Inverse problem theory and methods for
model parameter estimation, 2005)

I Regularization is necessary for solving (Hansen, Discrete inverse problems: insight
and algorithms, 2010), e.g., SVD or by reformulating it as (convex) optimization
problems. Typically

minimize ‖Ax− b‖2p + α‖Υx‖2q or

minimize ‖Υx‖2q subject to ‖Ax− b‖2p ≤ δ,
where δ is related to the signal-to-noise ratio.
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I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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EMF and compliance testing of mm-wave devices

I mm-Waves: wavelength λ from 10 to 1 mm
(f ≈ 30− 300 GHz) used and rapidly
expanding in consumer electronics

I Frequencies above 24 GHz in 5G
I Arrays with beam steering in devices and base

stations
I Often no need for miniaturized antennas

(λ/2 ≈ 5 mm at 30 GHz) and hence weak
reactive near fields

I Rapid attenuation in lossy bodies
I Absorption concentrated to surfaces
I EMF compliance through power density

averaged over e.g., 4 cm2

Wavelengths

1GHz

28GHz

60GHz

z

xx

y
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Measurement Technique: 28GHz setup

Determine the incident power flow close to the radiating DUT.
I 28 GHz⇒ λ ≈ 9 mm ≈ 10 mm ⇒ 1 mm positioning error ≈ 36◦ phase error and

large amplitude

I Where is the field measured in the open wave guide?
I Probe calibration
I Need sub mm accuracy in positioning and measurement system
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Measurement Technique: Setup
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Aperture Sheet: Aperture cut out from
metal backed dielectric.

I Well-defined radiation pattern.
I Independent of illumination.
I Self-resonant sub-wavelength.
I Also a closed object (box) with an

aperture.

Illuminating Antenna: Situated behind
aperture (any antenna will do) and
excites aperture.

Distance: Scan plane to aperture distance
is fixed and based on the DUT.

J. Lundgren et al. “A near-field measurement and calibration technique:
Radio-frequency electromagnetic field exposure assessment of
millimeter-wave 5G devices”. IEEE Antennas Propag. Mag. 63.3 (2021),
pp. 77–88
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Measurement Technique: Calibration

1. Initiate: Aperture radiates as
a dipole.

2. Measure: Probe registers
complex voltage value signals.

3. Compare: Comparison
between registered and
simulated aperture signals
yields calibration.
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Measurement Technique: DUT

x

y

1. Position the DUT: Align
with the aperture.

2. Remove Aperture: Lift out
the aperture.

3. Scan the DUT: Scan the
same region as the aperture
was scanned.
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Measurement Technique: DUT

1. Position the DUT: Align
with the aperture.

2. Remove Aperture: Lift out
the aperture.

3. Scan the DUT: Scan the
same region as the aperture
was scanned.

Calibration

The measured complex voltage signals is compared with the probe calibrated field to
obtain a corrected field corresponding to the actual field from the DUT.
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Measurement Technique: MoM

Using method of moments to compute the currents on a plane at the DUT.

E(r) = jkη0

∫
S
J(r′)G(r − r′) +

1

k2
∇G(r − r′)∇′ · J(r′) dS′

x

y

ESoA, Compressive Sensing in Electromagnetics (37), 2023-10-25



Measurement Technique: MoM

Using method of moments to relate the currents on a plane close to the DUT with the
EM field

E = NeJ

I E is the electric field.
I J is the currents at the plane of the DUT.
I The matrix operator Ne takes us from currents to the field.

Measured E → J at DUT plane → E at other planes →
Power density: 1

2 Re{E ×H∗} · n̂.

x

y
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Mock Up Phone with four 28 GHz ports

I 4 ports 28 GHz with ≈ λ separation

I size 144× 72× 9.8 mm3

I plastic cover and PCB.

I 6 possible planes e.g., front (plane 1)
focus here and top (plane 2)

Plane 2

P
la
n
e
1
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Results: Power Density, Mock Up Phone 28 GHz, Plane 1
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Planes:
284× 284mm2.
Sampling:
8× 8mm2, 3/4λ.
Distance to DUT:
63 mm.
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Non-destructive testing and compressive sensing

I Near field and/or equivalent currents can localize defects and
estimate (EMF) exposure.

I Imaging of the fields and/or equivalent currents for understanding.
I Integral equations (similar to MoM).
I One drawback is the measurement time. Can take several hours to

measure the near/far field around the structure.
I Defects are often localized and there are often only a few defects.
I Utilize the sparse image (few defects) to improve the image quality

and reduce the measurement time.
I Compressive sensing.
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Outline

1 Non-destructive testing

2 Radome and Antenna diagnostics
Inverse source problem
Inversion algorithm
Radome diagnostics
EMF and mm-wave exposure

3 Compressive sensing and L1-regularization

4 NDT composite panel
Transmission Case
Reflection Case

5 Regularization and convex optimization and bounds

6 Conclusions

ESoA, Compressive Sensing in Electromagnetics (41), 2023-10-25



Non-destructive testing and inverse source problems

NDE/NDT
Inverse Source

Problems

Physics

EM

Ultra
sound

Fre-
quency &
wavelength

Geometry

Appli-
cations

(meta)
material

Composites

Antennas

Arrays and
MIMO

Radomes

Setup &
Calibration

Source
separation

Aperture

Probe
compen-
sation

CEM

Imaging
Algorithms

Regular-
ization

SVDMatrix free

Com-
pressive
sensing

Convex op-
timization

Machine
learning

Tx antenna

Rx probe

DUT

Plane 2

P
la
n
e
1

I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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Linear inverse problems and regularization

Would like to solve
Ax = b

with an M ×N matrix A. Simple to solve if M = N and cond(A) not too large
(compared with the errors and noise in A and b).
Otherwise regularization:
I SVD: A = UΣVH with UHU = 1 and VHV = 1
I L2-minimization: ‖x‖2 = (

∑N
n=1 |xn|2)1/2 or with weight xHWx

I L1-minimization: ‖x‖1 =
∑N

n=1 |xn|
I L0-minimization: the number of non-zero entries of x. (not a norm)

Many choices of norms and weight functions

SVD and L2 have many similarities. Would like to use L0 in compressive sensing but
approximate with L1 to form convex optimization problems. Can use CVX for small
problems and dedicated solvers (TFOCS, spgl1,...) for larger size problems (matrix
free).
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L1-regularization

Changing the L2-regularization to L1 gives the (convex) optimization problem

minimize‖Ax− b‖2 + α‖x‖1

Alternative related (convex) formulation

minimize ‖x‖1
subject to ‖Ax− b‖2 ≤ δ,

where the parameter δ can be estimated from the SVD solution δ ≈ ‖AxSVD − b‖2.
This formulation tries to produce a solution with similar fit to the data as the SVD
(L2) but without the smoothing (a few dominant components).

L2 on the data term is often motivated by assuming Gaussian noise. L1 can be used
and be better for cases with low SNR and outliers

(Tarantola, Inverse problem theory and methods for model parameter estimation, 2005)
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L2 or L1?

When a traveler reaches a fork in the road, the L1-norm tells him to take either one way
or the other, but the L2-norm instructs him to head off into the bushes.

John F. Claerbout and Francis Muir, 1973
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Small toy problem

`x
`y

Consider a planar rectangle divided into Nx ×Ny elements with a current density J(r)
expanded in local basis functions ψm(r)

J(r) =
∑
m

Imψm(r) with Im collected in x

The radiated far field is expanded in spherical modes

F (r̂) =

N∑
n=1

fnAn(r) with fn collected in b

Estimate the current density x from the far-field coefficients b, where b = Ax.
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SVD and L1-regularization

Use SVD and L1-regularization to estimate the current density.

minimize ‖x‖1
subject to ‖Ax− b‖2 ≤ δ,

The parameter δ is estimated from the SVD solution δ ∼ ‖AxSVD − b‖2. This
formulation tries to produce a solution with similar fit to the data as the SVD (L2) but
without the smoothing (a few dominant components).
Here, we use SPGL1

x = spg_bpdn(A,b,d,opts);
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1λ× 0.5λ rectangle with 2 sources

Current density: J0 SVD-current: J2 L1-current: J1

I 1λ× 0.5λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Same mesh for data and reconstruction (inverse crime).

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases even with sub λ/4 distance.

ESoA, Compressive Sensing in Electromagnetics (48), 2023-10-25



2λ× λ rectangle with 2 sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Same mesh for data and reconstruction (inverse crime).

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases even with sub λ/4 distance.
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2λ× 1λ rectangle with 4 sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Same mesh for data and reconstruction (inverse crime).

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects.
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2λ× 1λ rectangle with 2 sources different mesh

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Different mesh for data and reconstruction.

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects.
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2λ× 1λ rectangle with 2 smooth sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Different mesh for data and reconstruction.

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects
and smoothing.
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2λ× 1λ rectangle with 4 smooth sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Different mesh for data and reconstruction.

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects
and smoothing.
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2λ× 1λ rectangle with 4 smooth sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 35 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Different mesh for data and reconstruction.

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects
and smoothing.
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2λ× 1λ rectangle with 4 smooth sources

Current density: J0 SVD-current: J2 L1-current: J1

I 2λ× λ rectangle divided into 16× 8 elements.

I 232 current elements and 63 measurements (spherical modes).

I Additive noise from a random current density 0.01 max |J0|.
I Different mesh for data and reconstruction.

SVD (and L2) regularization produces a smeared image to ≈ λ/4 resolution. L1 regu-
larization recreates most cases but results deteriorate with increasing number of objects
and smoothing.
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Some observations from the toy problem

I SVD (L2) regularization is robust and computationally
efficient but smooth images to ≈ λ/4 resolution.

I L1-regularization is less robust and computationally
more demanding.
I potentially very efficient for imaging of small objects.
I best for a few non-smooth objects (sparse).
I important to use different approach to compute data

and inversion (inverse crime).

I besides being computationally challenging
L0-regularization (sparsity) would preform worse than
L1 for most of these cases.
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Lp for the unresolved components

L2 inversion indicates a resolution of the order λ/4 to λ/2. The resolved part can be
determined from the observations Ax = b.
Regularization with just two components satisfying x1 + x2 = 1 (from Ax = b)

min‖x‖22 = x21 + x22 = 0.5 for x1 = x2 = 0.5

and
min‖x‖1 = |x1|+ |x2| = 1 for any x1, x2 ≥ 0

What happens if x1 fits the data slightly better than x2?

I L2 regularization produces x1 ≈ x2 ≈ 0.5. A smooth image with features
determined by the resolution.

I L1 regularization produces x1 ≈ 1 and x2 ≈ 0. Good for sparse cases (few
dominant components) but otherwise irregular random results.
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Outline

1 Non-destructive testing

2 Radome and Antenna diagnostics
Inverse source problem
Inversion algorithm
Radome diagnostics
EMF and mm-wave exposure

3 Compressive sensing and L1-regularization

4 NDT composite panel
Transmission Case
Reflection Case

5 Regularization and convex optimization and bounds

6 Conclusions
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Non-destructive testing and inverse source problems

NDE/NDT
Inverse Source

Problems

Physics

EM

Ultra
sound

Fre-
quency &
wavelength

Geometry

Appli-
cations

(meta)
material

Composites

Antennas

Arrays and
MIMO

Radomes

Setup &
Calibration

Source
separation

Aperture

Probe
compen-
sation

CEM

Imaging
Algorithms

Regular-
ization

SVDMatrix free

Com-
pressive
sensing

Convex op-
timization

Machine
learning

Tx antenna

Rx probe

DUT

Plane 2

P
la
n
e
1

I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness
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Composite panels

Tx antenna

Rx probe

DUT

I Multilayer structure with low and high permittivity materials.

I Distinguish between regions with varying resistivities (inhomogeneities,
delaminations, dielectric inclusions).

I NDT using mm-waves in transmission and reflection.
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Transmission Case

Tx antenna

Rx probe

DUT

y
x

z 0

z 1

z 2

1 2
3

I Tx: fixed antenna illuminating the panel.
I Rx: planar near-field scan over a rectangular grid.

The received field and the field at the imaging plane are dominated by the illuminating
field. Not sparse in a pixel basis and hence not suitable for CS.

(Helander et al., “Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels”, 2017)
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Transmission Case

How can the illuminating field be removed
to produce a sparse image?

a) use measurement without the panel
b) use measurement of non-defect panel
c) simulated data from numerical model

of Tx and panel
d) estimate of the illuminating field from

measured data and position of Tx

y
x

z 0

z 1

z 2

1 2
3

I Tx: fixed antenna illuminating the panel.
I Rx: planar near-field scan over a rectangular grid.

The received field and the field at the imaging plane are dominated by the illuminating
field. Not sparse in a pixel basis and hence not suitable for CS.

(Helander et al., “Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels”, 2017)
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Source separation for removal of the illuminating field

Tx antenna

Rx probe

DUT

DUT plane
b̃1

Measurement planebm = b̃m + b2

Antenna plane
xa

A21

A20

A10

b1

z

z2

z1

z0

d

I Simplest approach based on measurements with and without the panel does not
work due to strong scattering of the panel.

I Source separation: Add sources representing radiation from the Tx antenna
(including transmission through the panel).

1. Reconstruct antenna current xa.
2. Subtract field radiated from xa.
3. Reconstruct DUT current. Few defects imply sparsity in pixel bases and hence

suitable for CS.
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Planar scan at 60GHz: Synthetic data

y
x

z 0
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1 2
3

Simulation (FEKO) setup with 3 defects: side view
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Planar scan at 60GHz: Synthetic data

y

x z

1

2

3

Simulation (FEKO) setup with 3 defects: top view
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Planar scan at 60GHz: Synthetic data
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Planar scan at 60GHz: Synthetic data
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Back propagation with background subtraction, 5 dB range
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Planar scan at 60GHz: Synthetic data
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Back propagation with source separation, 20 dB range
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Planar scan at 60GHz: Synthetic data
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Planar scan at 60GHz: Synthetic data
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back propagation, source separation, CS

I 60 dB range

I back propagation dominated by scattering in panel.

I source separation removes scattering in panel.

I L1-regularization together with source separation produce a superior image.
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Planar scan at 60GHz measured data

I Horn antenna (Tx) and open waveguide (Rx).
I Rx scanned over 250× 250 mm2 sampled uniformly every 5 mm.
I 60 mm between Rx and DUT.
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Planar scan at 60GHz measured data

PNA

LNA

Stationary horn Scanning probe

DUT
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Planar scan at 60GHz measured data

Dielectric defects
Conducting defects

I 300× 300× 3 mm3 composite panel
I 2 mm-thick low permittivity over-expanded Nomex honeycomb core sandwiched

between two 0.5 mm sheets of TenCate EX-1515.
I Added conductive and dielectric defects inside the honeycomb core.
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Planar scan at 60GHz measured data
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I Back propagation with background subtraction (two measurements).
I 5 dB range.
I Image dominated by scattering of the panel.
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Planar scan at 60GHz measured data
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I Back propagation with source separation (one measurement).
I 20 dB range.
I Source separation eliminates one measurement and removes interaction with the

panel.
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Planar scan at 60GHz measured data
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I Compressive sensing with source separation (one measurement)
I 60 dB range.
I L1-regularization removes the smoothing.
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Planar scan at 60GHz measured data
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Back propagation, source separation, compressive sensing

J. Helander et al. “Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels”. IEEE Trans. Antennas Propag.

65.10 (2017), pp. 5523–5531
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Computational aspects

A 30 × 30 cm2 panel at 60 GHz (λ ≈ 0.5 cm) corresponds to 60 × 60λ2. Discretized
using λ/5 implies N ≈ 2× 3002 ≈ 105.

The source separation compressive sensing image can often be determined in two
separate steps

A20x0 ≈ b

where x0 ∈ CP with P ≈ 100 models the ’small’ antenna aperture. Easily solved with
an SVD.
The L1 solution is determined by the optimization problem

minimize ‖x1‖1
subject to ‖A21x1 − b̃‖2 ≤ δ.

This convex optimization problem is solved iteratively requiring multiple evaluations of
A21 ∈ CN,M and AH

21, where M ≈ 103 (can be smaller).
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Matrix-free algorithms

The computational complexity can be prohibitive for larger problems, e.g., the rather
coarse discretization of 100× 100 unknowns corresponds to a matrix A with 108

elements. Size grows rapidly and can eventually not store the matrix explicitly but can
anyway evaluate Ax and AHb efficiently.
Often efficient to utilize (translational) symmetries and FFT based algorithms to
reduce the computational complexity (Gustafsson et al., “High resolution digital transmission microscopy—a Fourier

holography approach”, 2004).

Using the same spacing for the basis functions and the data points gives a (block)
Toeplitz matrix
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Toeplitz matrix vector multiplication

Let M = N and embed an M ×M Toeplitz matrix into an 2M × 2M circulant matrix
such that (

Ax
Sx

)
=

(
A S
S A

)(
x
0

)
The circulant matrix Ã has the first row

Ã1,: =
(
A11 A21 · · · AM1 0 A1N · · · A12

)
Evaluate using the FFT, i.e., from the first M elements of, i.e.,

Ax = [F−1(F(Ã1,:)F([x 0]))]1:M

Can reduce the dimension to M +N − 1

Ã1,: =
(
A11 A12 · · · A1N 0 AM1 · · · A21

)
or M +N + P − 1 where P ≥ 0 is the number of additional zeros.
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Matrix-free implementation

I The translational invariance reduces memory requirements and accelerates the Ax
multiplication (n log(n)-algorithm).

I Similar approach works for 2D arrays and sub-sampling of the image.

Use anonymous functions in e.g., SPGL1

Af = @(x,mode) Afunc(x,mode);

x = spg_bpdn(Af,b,d,opts);

where Afunc is a function which evaluates Ax and AHy efficiently (chosen by mode).
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Reflection Case

I Aircraft structural components often incorporate sheets of RF-impenetrable
materials

I Demand for bistatic imaging systems operating in reflection rather than
transmission

Tx antenna

Rx probe

ẑŷ

x̂

Mount the DUT on top of a ground plane to emulate/extend the underlying conducting
layer

J. Helander et al. “Reflection-Based Source Inversion for Sparse Imaging of Low-Loss Composite Panels”. IEEE Trans. Antennas Propag. 68.6

(2020), pp. 4860–4870
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Methodology – Numerical Modeling

Experimental setup and equivalent numerical model

Tx antenna

Rx probe

ẑŷ

x̂
Measurement surface

Probe

Ground plane

DUT surface

Tx surface

Image
Tx surface

ẑ

ŷ
x̂

I Introduction of an image Tx surface below ground
I Discretized reconstruction surfaces (DUT, Tx and image Tx)
I User selectivity on size of the reconstruction surfaces
I Define NTx =

[
N> N<

]
and the Tx currents J> and J<, above and below

ground

J>

J<

(Helander et al., Reflection-Based Inverse Scattering for Sparse Image Reconstruction, 2019)
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Methodology – Source Separation
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Measurements – Composite Panel

I 300 mm× 300 mm× 3 mm
I Low permittivity honeycomb core
I Sheets of cyanate ester pre-preg
I Dielectric defects of assembling

adhesive

I 59− 61 GHz
I 300 mm× 300 mm measurement

surface with spacing
∆ = 3 mm ≈ 3λ/5

I Single TE-polarized measurement
(≈ 4 h)ESoA, Compressive Sensing in Electromagnetics (73), 2023-10-25



Composite Panel – 200mm× 200mm

, 30 dB

A 300 mm× 300 mm measurement surface captures the specular reflection of a
200 mm× 200 mm area of the DUT surface

Measurement surface
Probe

Ground plane

DUT surface

Tx surface

Image
Tx surface

ẑ

ŷ
x̂
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Composite Panel – 200mm× 200mm, 30 dB

A 300 mm× 300 mm measurement surface captures the specular reflection of a
200 mm× 200 mm area of the DUT surface
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Composite Panel – 350mm× 350mm

If there’s any ambiguity in how to select the DUT reconstruction surface, filtering can
remove undesirable scatterers (edge diffraction)
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Remove the contribution from scatterers in the external region

Ẽsc = Esc −Ndut (ŝext ◦Edut)

and run the reconstruction routine using Ẽsc
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Remove the contribution from scatterers in the external region

Ẽsc = Esc −Ndut (ŝext ◦Edut)

and run the reconstruction routine using Ẽsc
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Composite Panel – 350mm× 350mm

If there’s any ambiguity in how to select the DUT reconstruction surface, filtering can
remove undesirable scatterers (edge diffraction)
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QCQP and convexity

I quadratic form ‖ΥI‖22 = IHΥHΥI often representing energy or power quantities

I Gramian matrix Ψ = ΥHΥ with elements

Ψmn =

∫
Ω
ψm(r) ·ψn(r) dV

decrease mesh dependence and links ‖ΥI‖22 to power dissipated as material losses
I quadratically constrained quadratic program (QCQP)

minimize ‖ΥI‖22 = IHΨI

subject to ≤ δ,
as finding the current density, represented by I, in a region Ω with a prescribed
radiated field and minimal losses (assuming homogeneous material parameters).

A convex QCQP similar to problems of determining physical bounds (or fundamen-
tal limits) on antennas Gustafsson and Nordebo, “Optimal Antenna Currents for Q,
Superdirectivity, and Radiation Patterns Using Convex Optimization”, 2013 or scatter-
ers Gustafsson et al., “Upper bounds on absorption and scattering”, 2020.
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Inverse source problem and physical bounds

Ω

J(r)=?

ê1 · F (r̂1)

ê2 · F (r̂2)

ê3 · F (r̂3)

Inverse source problem

I Determine a current distribution J(r)
producing a field ên · F (r̂n)

I Non unique J(r)
I Regularization for a unique and nice

solution

Physical bounds

I Determine an optimal current
distribution J(r) producing the field
ên · F (r̂n)

I Optimal in e.g., minimum losses
(efficiency) or minimum stored energy
(Q-factor and bandwidth)

Regularizing with Gramian (Ψ) is equivalent to determine physical bounds (optimal
currents) for minimum losses. What about using quantities (stored energy)?
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Non-destructive testing and inverse source problems

NDE/NDT
Inverse Source

Problems

Physics

EM

Ultra
sound

Fre-
quency &
wavelength

Geometry

Appli-
cations

(meta)
material

Composites

Antennas

Arrays and
MIMO

Radomes

Setup &
Calibration

Source
separation

Aperture

Probe
compen-
sation

CEM

Imaging
Algorithms

Regular-
ization

SVDMatrix free

Com-
pressive
sensing

Convex op-
timization

Machine
learning

Tx antenna

Rx probe

DUT

Plane 2

P
la
n
e
1

I Use physics that is sensitive
to the desired properties or
parameters

I Insensitive to environmental
disturbances

I EM fields are sensitive to
EM properties

I Sometimes but not always
sensitive to mechanical
properties, e.g., strain can
effect resistance but cracks
can be hard to detect

I Ultrasound is often used

I Important to use the correct
field and frequency range

I Geometrical setup to
increase sensitivity and
reduce errors

I Production testing of
material or manufacturing
errors

I Malfunctioning array
elements

I Detect errors and localize
them spatially, e.g., faulty
array element

I Undesired radiation and
scattering from cables and
support structures

I Complyings testing of power
levels and EMF

I Use a setup that is sensitive to desired
properties and insensitive to other defects

I Calibration to reduce errors

I Probe calibration to compensate for probe
pattern, i.e., to transform measured (voltage)
signals to EM field values at some point

I Combine with CEM for calibration of setup
and numerical code

I Examples with aperture and source
separation

I Aperture to position DUT and calibrate
CEM with setup

I Source separation to remove illumination
from knowledge of its physical location

I Inverse source problems are
linear but illposed, i.e., small
measurement errors and
cause large errors

I Need regularization to
stabilize the inversion, i.e., to
reduce deteriorating effects
from unresolved components

I Incorporate prior information
(knowledge, assumption)
e.g., smoothness or number
of defects

I Matrix free formulation for
computational efficiency

I Computational efficiency vs
generality vs robustness

ESoA, Compressive Sensing in Electromagnetics (81), 2023-10-25



Summary

I Imaging of equivalent currents can localize defects
I Integral equations/representations for modeling
I Non-destructive testing of radomes, antennas, composite

panels, EMF exposure, measurement data post processing
I Source separation to remove unwanted illumination
I L1-norm and compressive sensing for imaging of sparse defects
I Much research remains for understanding of algorithms,

regularization, and imaging quality

Results in this presentation mainly based on:

I J. Lundgren etal, ’A Near-Field Measurement and Calibration Technique –Radio-frequency electromagnetic
field exposure assessment of millimeter-wave 5G devices’, IEEE-APM 2021

I J. Helander etal, ’Reflection-Based Source Inversion for Sparse Imaging of Low-Loss Composite Panels’,
IEEE-TAP 2020

I J. Helander etal, ’Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite
Panels’, IEEE-TAP 2017

I K. Persson etal, ’Radome Diagnostics—Source Reconstruction of Phase Objects With an Equivalent
Currents Approach’, IEEE-TAP 2014

I K. Persson and M. Gustafsson, ’Reconstruction of equivalent currents using a near-field data
transformation-with radome applications’, PIERS 2005
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