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Modes

Expand fields or sources and often sufficient with the
first dominant modes.

» Spherical modes: Mie series for scattering of
spheres, expansion of far fields, near field
measurements, probe compensation, Q-factor
bounds (Chu), ...

» Cavity modes: resonance frequencies, losses,
Q-factors, coupling, ...

» Characteristic modes: scattering properties,
resonances, antenna feed placement, ...

> .

Determined from solutions of the Maxwell equations

formed as eigenvalue problems or eigenvalue problems of
integral equation.
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Spherical modes for spherical structures

» Orthogonal current densities on spheres, (J,,, Jp) ~ I!;'Z\IlIn ~ Omn.
» Orthogonal radiated fields, (F,,, F,,) ~ INR.I, ~ 6,

» Orthogonal reactance, I'T"nXIn ~ Omn

» Orthogonal stored energy, TH (X, + X)I,, ~ 6,0

» Complete in L? on the sphere, J =" Jpdm

» Monotonic Q-factor for TE and TM cases, Q,, > Q. if n >m

» Monotonic efficiency for TE and TM cases, 1, <y, if n >m
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Spherical modes for spherical structures

» Orthogonal current densities on spheres, (J,,, Jp) ~ I!;'Z\IlIn ~ Omn.
» Orthogonal radiated fields, (F,,, F,,) ~ INR.I, ~ 6,1,

» Orthogonal reactance, I'T"nXIn ~ Omn

» Orthogonal stored energy, TH (X, + X)I,, ~ 6,0

» Complete in L? on the sphere, J =" Jpdm

» Monotonic Q-factor for TE and TM cases, Q,, > Q. if n >m

» Monotonic efficiency for TE and TM cases, 1, <y, if n >m

Properties preserved for arbitrary shaped objects using characteristic modes.
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Spherical modes for spherical structures

» Orthogonal current densities on spheres, (J,,, Jp) ~ I!;'Z\IlIn ~ Omn.
» Orthogonal radiated fields, (F,,, F,,) ~ INR.I, ~ 6,1,

» Orthogonal reactance, I'T"nXIn ~ Omn

» Orthogonal stored energy, TH (X, + X)I,, ~ 6,0

» Complete in L? on the sphere, J =" Jpdm

» Monotonic Q-factor for TE and TM cases, Q,, > Q. if n >m

» Monotonic efficiency for TE and TM cases, 1, <y, if n >m

Properties preserved for arbitrary shaped objects using characteristic modes.

What about the other properties for arbitrary shapes. J
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Characteristic modes

» Developed in the 70s by Garbacz, Turpin, Harrington, Mautz [HMT71].

» Provides physical understanding and complements simulation and optimization
driven antenna design.

» Modes (electric current) determined by the geometry.

» Scattering properties, resonances, antenna feed placement, ...

» Generalized eigenvalue problem XI,, = A\,R.,I,,, where Z = R, + jX denotes the
MoM impedance matrix.

» Orthogonal far fields I:;'@RrIn = dmn and reactance IZXIn = M.Omn.-

T — . - — S ——

First three modes for a rectangle. Only a few dominant modes (small |\, |) for
electrically small structures.
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Antenna current optimization

Determine the optimal current distribution in a region.

» Physical bounds on @, efficiency, gain, capacity, ...,
[CG14; GN13; JC17]

Convex optimization problems often reformulated in
dual form as eigenvalue problems [CGS17].
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Expand in modes to reduce number of unknowns
(model order reduction). o

v

Particularly important for the maximal capacity
solved using semi-definite programming [EG18].

0.01
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Antenna synthesis.
Embedded antennas [CG14]
compared with bounds.
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Antenna current optimization
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Antenna synthesis.
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Used MoM matrix expressions

Method of Moments approximation [Gus+16] (expand J in basis functions)

We ~ iIHXeI stored E-energy, X, electric reactance [Van10]
W =~ iIHXmI stored M-energy, X,,, magnetic reactance [Van10]
Prog = %IHRrI radiated power

Pq =~ %IHRQI Ohmic losses, R = RsW¥ Gram matrix

givingZ =R +jX = R 4+ j(Xn — Xo).
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Used MoM matrix expressions

Method of Moments approximation [Gus+16] (expand J in basis functions)

We ~ ﬁIHXeI stored E-energy, X, electric reactance [Van10]
W =~ iIHXmI stored M-energy, X,,, magnetic reactance [Van10]
Prog = %IH R I radiated power

Pq =~ %IHRQI Ohmic losses, R = R{W¥|Gram matrix

givingZ =R +jX = R 4+ j(Xn — Xo).

Pre-computed matrices used in the optimization. J
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Characteristic and energy modes

Generalized eigenvalue problem
XIn = /\nRrITu

where Z = R, + jX denotes the MoM impedance matrix. Orthogonal far fields
I,';'quIn = 0,nn and reactance I';'nXIn = M.Omn.-
Stored energy from I"(X,, 4+ X)I is used to define stored energy modes from

(Xm + Xe)In = /\nRrIm

with orthogonal far fields I;'erIn = 0mn and reactance I';'nXIn = MOmn.-
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Characteristic modes: orthogonal far fields
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Modes from eigenvalue problems

Generalized eigenvalue problems are used to define modes [HM71]
AL, = \,R,I,,

with characteristic (A = X), energy (A = X, + X,;,), and efficiency modes
(A = Rg). Orthogonal with respect to A and R,

I"AL, =6\, and TNR.I, = 6,0
Rewritten as a Rayleigh quotient (A > 0)
I"AT,

Ap = min
"R, 1,,=0 INR, T,

for n > m,

Orthogonal I7"L'RrIm = 0 for n > m can be written K, I,,, where K,, is a matrix
formed by the modes I,,, for m = 1,..,n — 1. We focus on orthogonal far fields and
orthogonal current densities induced by the matrices

R, and ¥
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Modes from optimization problems

Optimal currents can e.g., be determined
from
maximize I"R,I
subject to IHXmI < 2P,
I"XI < 2P,
I"RoI < 2P;.
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Modes from optimization problems

Optimal currents can e.g., be determined Orthogonal to the previous modes

from H
maximize I "R,I

subject to IHXmI < 2P,
I"X.I< 2P,
I"RoI < 2P,
K,I=0.

maximize IHRrI

subject to I"X,I< 2P,
I"X.I< 2P,
I"RoI < 2P;.
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Modes from optimization problems

maximize IHRrI maximize IHRrI
subject to IHXmI < 2P, subject to IHXmI < 2P,
"X I< 2P, "X.I< 2P,
I"RoI < 2P,. I"Rol < 2P,
K,I=0.

These problems can be reformulated in convex form [CGS17; Gus+16; JC17].
Solutions as eigenvalue problems [CGS17], e.g., minimum Q-factor
(X, = vXe + (1 —v)Xy,) and maximum self-resonant efficiency (X, = vX 4+ Rgq)

. IM'x,1,
A, = max  min m
v I!,—:,Alm:(smn In RI‘I’VL

with A = R, and A = W for orthogonal far fields and current densities, respectively.
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min Q and dissipation modes: orthogonal far fields
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min Q and dissipation modes: orthogonal current
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Self-resonant maximum efficiency: orthogonal far fields
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Self-resonant maximum efficiency: orthogonal current

Mats Gustafsson, Lund University, Sweden, 14



Comparison

min Q,: J

,,,,,,,,,,
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Q-factors for different modes

Q-factors for the first 15
modes on a planar
rectangle for the min @,
min (), and maxn cases.
The modes are orthogonal
with respect to

F': far field

J: current density.
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Efficiency for different modes

Efficiencies for the first 15
modes on a planar
rectangle for the min Q,
min (), and max cases.
The modes are orthogonal
with respect to

F': far field

J: current density.

[ F,min X
—— F min W
—o— F min@
-o- J min@
—— F,min Q,
-¢- J,min @,
—— F maxn

-o- J,maxn
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Expansion of J for a self-resonant meander line antenna

Expansion using the n

first modes defined on the [Tn = T/ —— F,min X
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Meander line, capped dipole, SRR, loop antennas

Expansion using the n first modes defined
on the circumscribing rectangle.

> Self-resonant maximum efficiency
modes with orthogonal current densities.

» Resonant and non-resonant antennas.
» 4000 basis functions.

> Increasing number of expansion
functions for fine details, see e.g., the
folded meander line ( ) with strip
width ¢/64.
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Conclusions

» Dedicated mode expansions for specific
applications

» Orthogonal far fields for expansions targeting
radiation

» Orthogonal current densities for expansions
targeting sources

—— F,min X

. . . . . — F,minW

» Construction from eigenvalue and optimization — Foming
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» Synthesis
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