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Modes

Expand fields or sources and often sufficient with the
first dominant modes.

I Spherical modes: Mie series for scattering of
spheres, expansion of far fields, near field
measurements, probe compensation, Q-factor
bounds (Chu), ...

I Cavity modes: resonance frequencies, losses,
Q-factors, coupling, ...

I Characteristic modes: scattering properties,
resonances, antenna feed placement, ...

I ...

Determined from solutions of the Maxwell equations
formed as eigenvalue problems or eigenvalue problems of
integral equation.
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Spherical modes for spherical structures

I Orthogonal current densities on spheres, 〈Jm,Jn〉 ∼ IHmΨIn ∼ δmn.

I Orthogonal radiated fields, 〈Fm,F n〉 ∼ IHmRrIn ∼ δmn
I Orthogonal reactance, IHmXIn ∼ δmn
I Orthogonal stored energy, IHm(Xm + Xe)In ∼ δmn
I Complete in L2 on the sphere, J =

∑
m JmJm

I Monotonic Q-factor for TE and TM cases, Qn ≥ Qm if n ≥ m
I Monotonic efficiency for TE and TM cases, ηn ≤ ηm if n ≥ m

Properties preserved for arbitrary shaped objects using characteristic modes.

What about the other properties for arbitrary shapes.
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Characteristic modes

I Developed in the 70s by Garbacz, Turpin, Harrington, Mautz [HM71].
I Provides physical understanding and complements simulation and optimization

driven antenna design.
I Modes (electric current) determined by the geometry.
I Scattering properties, resonances, antenna feed placement, ...
I Generalized eigenvalue problem XIn = λnRrIn, where Z = Rr + jX denotes the

MoM impedance matrix.
I Orthogonal far fields IHmRrIn = δmn and reactance IHmXIn = λnδmn.

First three modes for a rectangle. Only a few dominant modes (small |λn|) for
electrically small structures.
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Antenna current optimization

Determine the optimal current distribution in a region.

I Physical bounds on Q, efficiency, gain, capacity, ...,
[CG14; GN13; JC17]

I Convex optimization problems often reformulated in
dual form as eigenvalue problems [CGS17].

I Expand in modes to reduce number of unknowns
(model order reduction).

I Particularly important for the maximal capacity
solved using semi-definite programming [EG18].

I Antenna synthesis.
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Used MoM matrix expressions

Method of Moments approximation [Gus+16] (expand J in basis functions)

We ≈
1

4ω
IHXeI stored E-energy, Xe electric reactance [Van10]

Wm ≈
1

4ω
IHXmI stored M-energy, Xm magnetic reactance [Van10]

Prad ≈
1

2
IHRrI radiated power

PΩ ≈
1

2
IHRΩI Ohmic losses, RΩ = RsΨ Gram matrix

giving Z = R + jX = R + j(Xm −Xe).

Pre-computed matrices used in the optimization.
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Characteristic and energy modes

Generalized eigenvalue problem

XIn = λnRrIn,

where Z = Rr + jX denotes the MoM impedance matrix. Orthogonal far fields
IHmRrIn = δmn and reactance IHmXIn = λnδmn.
Stored energy from IH(Xm + Xe)I is used to define stored energy modes from

(Xm + Xe)In = λnRrIn,

with orthogonal far fields IHmRrIn = δmn and reactance IHmXIn = λnδmn.
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Characteristic modes: orthogonal far fields
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Modes from eigenvalue problems

Generalized eigenvalue problems are used to define modes [HM71]

AIn = λnRrIn,

with characteristic (A = X), energy (A = Xe + Xm), and efficiency modes
(A = RΩ). Orthogonal with respect to A and Rr

IHmAIn = δmnλn and IHmRrIn = δmn

Rewritten as a Rayleigh quotient (A � 0)

λn = min
IHnRrIm=0

IHnAIn
IHnRrIn

for n > m,

Orthogonal IHnRrIm = 0 for n > m can be written KnIn, where Kn is a matrix
formed by the modes Im for m = 1, .., n− 1. We focus on orthogonal far fields and
orthogonal current densities induced by the matrices

Rr and Ψ
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Modes from optimization problems

Optimal currents can e.g., be determined
from

maximize IHRrI

subject to IHXmI ≤ 2P̄w

IHXeI ≤ 2P̄w

IHRΩI ≤ 2P̄Ω.

maximize IHRrI

subject to IHXmI ≤ 2P̄w

IHXeI ≤ 2P̄w

IHRΩI ≤ 2P̄Ω

KpI = 0.

These problems can be reformulated in convex form [CGS17; Gus+16; JC17].
Solutions as eigenvalue problems [CGS17], e.g., minimum Q-factor
(Xν = νXe + (1− ν)Xm) and maximum self-resonant efficiency (Xν = νX + RΩ)

λn = max
ν

min
IHnAIm=δmn

IHnXνIn
IHnRrIn

with A = Rr and A = Ψ for orthogonal far fields and current densities, respectively.
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min Q and dissipation modes: orthogonal far fields
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min Q and dissipation modes: orthogonal current
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Self-resonant maximum efficiency: orthogonal far fields
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Self-resonant maximum efficiency: orthogonal current
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Comparison
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eig(X,R): F minQη: F minQη: J max η: F max η: J
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Q-factors for different modes

Q-factors for the first 15
modes on a planar
rectangle for the minQ,
minQη, and max η cases.
The modes are orthogonal
with respect to

F : far field

J : current density.
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Efficiency for different modes

Efficiencies for the first 15
modes on a planar
rectangle for the minQ,
minQη, and max η cases.
The modes are orthogonal
with respect to

F : far field

J : current density.
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Expansion of J for a self-resonant meander line antenna

Expansion using the n
first modes defined on the
circumscribing rectangle.

I Modes with
orthogonal far fields F
approximate far fields
very well but not current
densities.

I Modes with
orthogonal current
densities J can
approximate the current
density much better.
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Meander line, capped dipole, SRR, loop antennas

Expansion using the n first modes defined
on the circumscribing rectangle.

I Self-resonant maximum efficiency
modes with orthogonal current densities.

I Resonant and non-resonant antennas.

I 4000 basis functions.

I Increasing number of expansion
functions for fine details, see e.g., the
folded meander line ( ) with strip
width `/64.
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Conclusions

I Dedicated mode expansions for specific
applications

I Orthogonal far fields for expansions targeting
radiation

I Orthogonal current densities for expansions
targeting sources

I Construction from eigenvalue and optimization
problems

I Easy to compute

I Convergence properties

I Model order reduction

I Synthesis
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