

EM Modes for Model Order Reduction and Antenna Optimization

Mats Gustafsson

Electrical and Information Technology, Lund University, Sweden

IEEE APS, Boston, July 11, 2018

Modes

Expand fields or sources and often sufficient with the first dominant modes.

- Spherical modes: Mie series for scattering of spheres, expansion of far fields, near field measurements, probe compensation, Q-factor bounds (Chu), ...
- Cavity modes: resonance frequencies, losses, Q-factors, coupling, ...
- Characteristic modes: scattering properties, resonances, antenna feed placement, ...

Determined from solutions of the Maxwell equations formed as eigenvalue problems or eigenvalue problems of integral equation.

Spherical modes for spherical structures

- Orthogonal current densities on spheres, $\langle \boldsymbol{J}_m, \boldsymbol{J}_n \rangle \sim \mathbf{I}_m^{\mathsf{H}} \Psi \mathbf{I}_n \sim \delta_{mn}$.
- ▶ Orthogonal radiated fields, $\langle {m F}_m, {m F}_n \rangle \sim {f I}_m^{\sf H} {f R}_r {f I}_n \sim \delta_{mn}$
- Orthogonal reactance, $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n \sim \delta_{mn}$
- ▶ Orthogonal stored energy, $\mathbf{I}_m^{\mathsf{H}}(\mathbf{X}_{\mathrm{m}} + \mathbf{X}_{\mathrm{e}})\mathbf{I}_n \sim \delta_{mn}$
- \blacktriangleright Complete in L^2 on the sphere, $oldsymbol{J} = \sum_m J_m oldsymbol{J}_m$
- ▶ Monotonic Q-factor for TE and TM cases, $Q_n \ge Q_m$ if $n \ge m$
- \blacktriangleright Monotonic efficiency for TE and TM cases, $\eta_n \leq \eta_m$ if $n \geq m$

Spherical modes for spherical structures

- Orthogonal current densities on spheres, $\langle \boldsymbol{J}_m, \boldsymbol{J}_n \rangle \sim \mathbf{I}_m^{\mathsf{H}} \Psi \mathbf{I}_n \sim \delta_{mn}$.
- ▶ Orthogonal radiated fields, $\langle \boldsymbol{F}_m, \boldsymbol{F}_n \rangle \sim \mathbf{I}_m^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}_n \sim \delta_{mn}$
- Orthogonal reactance, $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n \sim \delta_{mn}$
- ▶ Orthogonal stored energy, $\mathbf{I}_m^{\mathsf{H}}(\mathbf{X}_{\mathrm{m}} + \mathbf{X}_{\mathrm{e}})\mathbf{I}_n \sim \delta_{mn}$
- lacksim Complete in L^2 on the sphere, $oldsymbol{J} = \sum_m J_m oldsymbol{J}_m$
- ▶ Monotonic Q-factor for TE and TM cases, $Q_n \ge Q_m$ if $n \ge m$
- ▶ Monotonic efficiency for TE and TM cases, $\eta_n \leq \eta_m$ if $n \geq m$

Properties preserved for arbitrary shaped objects using characteristic modes.

Mats Gustafsson, Lund University, Sweden, 3

Spherical modes for spherical structures

- Orthogonal current densities on spheres, $\langle \boldsymbol{J}_m, \boldsymbol{J}_n \rangle \sim \mathbf{I}_m^{\mathsf{H}} \Psi \mathbf{I}_n \sim \delta_{mn}$.
- ▶ Orthogonal radiated fields, $\langle \boldsymbol{F}_m, \boldsymbol{F}_n \rangle \sim \mathbf{I}_m^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}_n \sim \delta_{mn}$
- Orthogonal reactance, $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n \sim \delta_{mn}$
- ▶ Orthogonal stored energy, $\mathbf{I}_m^{\mathsf{H}}(\mathbf{X}_{\mathrm{m}} + \mathbf{X}_{\mathrm{e}})\mathbf{I}_n \sim \delta_{mn}$
- \blacktriangleright Complete in L^2 on the sphere, $oldsymbol{J} = \sum_m J_m oldsymbol{J}_m$
- ▶ Monotonic Q-factor for TE and TM cases, $Q_n \ge Q_m$ if $n \ge m$
- ▶ Monotonic efficiency for TE and TM cases, $\eta_n \leq \eta_m$ if $n \geq m$

Properties preserved for arbitrary shaped objects using characteristic modes. What about the other properties for arbitrary shapes.

Characteristic modes

- Developed in the 70s by Garbacz, Turpin, Harrington, Mautz [HM71].
- Provides physical understanding and complements simulation and optimization driven antenna design.
- Modes (electric current) determined by the geometry.
- Scattering properties, resonances, antenna feed placement, ...
- ► Generalized eigenvalue problem $\mathbf{XI}_n = \lambda_n \mathbf{R}_r \mathbf{I}_n$, where $\mathbf{Z} = \mathbf{R}_r + j\mathbf{X}$ denotes the MoM impedance matrix.
- ▶ Orthogonal far fields $\mathbf{I}_m^{\mathsf{H}} \mathbf{R}_r \mathbf{I}_n = \delta_{mn}$ and reactance $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n = \lambda_n \delta_{mn}$.

First three modes for a rectangle. Only a few dominant modes (small $|\lambda_n|$) for electrically small structures.

Antenna current optimization

Determine the optimal current distribution in a region.

- Physical bounds on Q, efficiency, gain, capacity, ..., [CG14; GN13; JC17]
- Convex optimization problems often reformulated in dual form as eigenvalue problems [CGS17].
- Expand in modes to reduce number of unknowns (model order reduction).
- Particularly important for the maximal capacity solved using semi-definite programming [EG18].
- Antenna synthesis.

Embedded antennas [CG14] compared with bounds.

Antenna current optimization

Determine the optimal current distribution in a region.

- Physical bounds on Q, efficiency, gain, capacity, ..., [CG14; GN13; JC17]
- Convex optimization problems often reformulated in dual form as eigenvalue problems [CGS17].
- Expand in modes to reduce number of unknowns (model order reduction).
- Particularly important for the maximal capacity solved using semi-definite programming [EG18].
- Antenna synthesis.

Embedded antennas [CG14] compared with bounds.

Method of Moments approximation [Gus+16] (expand J in basis functions)

$$\begin{split} W_{\rm e} &\approx \frac{1}{4\omega} \mathbf{I}^{\sf H} \mathbf{X}_{\rm e} \mathbf{I} \quad \text{stored E-energy, } \mathbf{X}_{\rm e} \text{ electric reactance [Van10]} \\ W_{\rm m} &\approx \frac{1}{4\omega} \mathbf{I}^{\sf H} \mathbf{X}_{\rm m} \mathbf{I} \quad \text{stored M-energy, } \mathbf{X}_{\rm m} \text{ magnetic reactance [Van10]} \\ P_{\rm rad} &\approx \frac{1}{2} \mathbf{I}^{\sf H} \mathbf{R}_{\rm r} \mathbf{I} \quad \text{radiated power} \\ P_{\Omega} &\approx \frac{1}{2} \mathbf{I}^{\sf H} \mathbf{R}_{\Omega} \mathbf{I} \quad \text{Ohmic losses, } \mathbf{R}_{\Omega} = R_{\rm s} \mathbf{\Psi} \text{ Gram matrix} \end{split}$$

giving $\mathbf{Z}=\mathbf{R}+j\mathbf{X}=\mathbf{R}+j(\mathbf{X}_m-\mathbf{X}_e).$

Method of Moments approximation [Gus+16] (expand J in basis functions)

$$\begin{split} W_{\rm e} &\approx \frac{1}{4\omega} \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\rm e} \mathbf{I} \quad \text{stored E-energy, } \mathbf{X}_{\rm e} \text{ electric reactance [Van10]} \\ W_{\rm m} &\approx \frac{1}{4\omega} \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\rm m} \mathbf{I} \quad \text{stored M-energy, } \mathbf{X}_{\rm m} \text{ magnetic reactance [Van10]} \\ P_{\rm rad} &\approx \frac{1}{2} \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\rm r} \mathbf{I} \quad \text{radiated power} \\ P_{\Omega} &\approx \frac{1}{2} \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I} \quad \text{Ohmic losses, } \mathbf{R}_{\Omega} = R_{\rm s} \mathbf{\Psi} \text{ Gram matrix} \end{split}$$

giving $\mathbf{Z}=\mathbf{R}+j\mathbf{X}=\mathbf{R}+j(\mathbf{X}_m-\mathbf{X}_e).$

Pre-computed matrices used in the optimization.

Generalized eigenvalue problem

$$\mathbf{XI}_n = \lambda_n \mathbf{R}_r \mathbf{I}_n,$$

where $\mathbf{Z} = \mathbf{R}_r + j\mathbf{X}$ denotes the MoM impedance matrix. Orthogonal far fields $\mathbf{I}_m^{\mathsf{H}} \mathbf{R}_r \mathbf{I}_n = \delta_{mn}$ and reactance $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n = \lambda_n \delta_{mn}$. Stored energy from $\mathbf{I}^{\mathsf{H}} (\mathbf{X}_m + \mathbf{X}_e) \mathbf{I}$ is used to define stored energy modes from

$$(\mathbf{X}_{\mathrm{m}} + \mathbf{X}_{\mathrm{e}})\mathbf{I}_{n} = \lambda_{n}\mathbf{R}_{\mathrm{r}}\mathbf{I}_{n},$$

with orthogonal far fields $\mathbf{I}_m^{\mathsf{H}} \mathbf{R}_r \mathbf{I}_n = \delta_{mn}$ and reactance $\mathbf{I}_m^{\mathsf{H}} \mathbf{X} \mathbf{I}_n = \lambda_n \delta_{mn}$.

Mats Gustafsson, Lund University, Sweden, 7

Characteristic modes: orthogonal far fields

→ → → → → → →		-	-			-	-	~	-
, .				·		1.1			
		Ý Í	'	, 's	1	1 de 19	÷.	· ·	`
		v +	1	1.1	1.00	1.1	1	1	1
		v 1	1	1.1	${\mathcal T}_{i,j}$	1.1	1	1	1
	/	1 ×	×	1.1	${\bf r}_{\rm eff}$	1.1	1	1	$\ell_{\rm c}$
		< ~	-			-	-	-	-
		· •	-		<		-	-	-
		1.15			-		-	1	1
		1.00						1	i^{-1}
1 · · ·	· •	1.00							1
1 N	· · · ·	· .	1					×	
· · · · · ·			-		-		~	8	
		<u> </u>			>>-	>			-
6		(**		-	1		-		-
/	1	1 -	1	S - S	×	1.1	1	1	2
/		V		s - 5	${\mathcal T} = {\mathcal T}$	1			
				1.0	1	1.11			
·	/		'	,	1.1		1		
1	1	1.1	1	1			8	2	*
		Y.							

Modes from eigenvalue problems

Generalized eigenvalue problems are used to define modes [HM71]

 $\mathbf{A}\mathbf{I}_n = \lambda_n \mathbf{R}_r \mathbf{I}_n,$

with characteristic (A = X), energy (A = X_e + X_m), and efficiency modes (A = R_{Ω}). Orthogonal with respect to A and R_r

$$\mathbf{I}_m^{\mathsf{H}} \mathbf{A} \mathbf{I}_n = \delta_{mn} \lambda_n$$
 and $\mathbf{I}_m^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}_n = \delta_{mn}$

Rewritten as a Rayleigh quotient $(\mathbf{A} \succeq \mathbf{0})$

$$\lambda_n = \min_{\mathbf{I}_n^{\mathsf{H}} \mathbf{R}_r \mathbf{I}_m = 0} \frac{\mathbf{I}_n^{\mathsf{H}} \mathbf{A} \mathbf{I}_n}{\mathbf{I}_n^{\mathsf{H}} \mathbf{R}_r \mathbf{I}_n} \quad \text{for } n > m,$$

Orthogonal $\mathbf{I}_n^H \mathbf{R}_r \mathbf{I}_m = 0$ for n > m can be written $\mathbf{K}_n \mathbf{I}_n$, where \mathbf{K}_n is a matrix formed by the modes \mathbf{I}_m for m = 1, ..., n - 1. We focus on orthogonal far fields and orthogonal current densities induced by the matrices

$$\mathbf{R}_{\mathrm{r}}$$
 and $\mathbf{\Psi}$

Mats Gustafsson, Lund University, Sweden, 9

Modes from optimization problems

Optimal currents can *e.g.*, be determined from

 $\begin{array}{ll} \mbox{maximize} & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I} \\ \mbox{subject to} & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{m}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{e}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I} \leq 2 \bar{P}_{\Omega}. \end{array}$

Modes from optimization problems

Optimal currents can *e.g.*, be determined from

 $\begin{array}{ll} \text{maximize} & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I} \\ \text{subject to} & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{m}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{e}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I} \leq 2 \bar{P}_{\Omega}. \end{array}$

Orthogonal to the previous modes maximize $\mathbf{I}^{\mathsf{H}} \mathbf{R}_{r} \mathbf{I}$ subject to $\mathbf{I}^{\mathsf{H}} \mathbf{X}_{m} \mathbf{I} \leq 2\bar{P}_{w}$ $\mathbf{I}^{\mathsf{H}} \mathbf{X}_{e} \mathbf{I} \leq 2\bar{P}_{w}$

 $\mathbf{I}^{\mathsf{H}}\mathbf{R}_{\Omega}\mathbf{I} \leq 2\bar{P}_{\Omega}$ $\mathbf{K}_{p}\mathbf{I} = \mathbf{0}.$

Modes from optimization problems

$$\begin{array}{ll} \text{maximize} & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I} & \text{maximize} & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I} \\ \text{subject to} & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{m}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} & \text{subject to} & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{m}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{e}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} & \mathbf{I}^{\mathsf{H}} \mathbf{X}_{\mathrm{e}} \mathbf{I} \leq 2 \bar{P}_{\mathrm{w}} \\ & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I} \leq 2 \bar{P}_{\Omega}. & \mathbf{I}^{\mathsf{H}} \mathbf{R}_{\Omega} \mathbf{I} \leq 2 \bar{P}_{\Omega} \\ & \mathbf{K}_{p} \mathbf{I} = \mathbf{0}. \end{array}$$

These problems can be reformulated in convex form [CGS17; Gus+16; JC17]. Solutions as eigenvalue problems [CGS17], *e.g.*, minimum Q-factor $(\mathbf{X}_{\nu} = \nu \mathbf{X}_{e} + (1 - \nu)\mathbf{X}_{m})$ and maximum self-resonant efficiency $(\mathbf{X}_{\nu} = \nu \mathbf{X} + \mathbf{R}_{\Omega})$

$$\lambda_n = \max_{\nu} \min_{\mathbf{I}_n^{\mathsf{H}} \mathbf{A} \mathbf{I}_m = \delta_{mn}} \frac{\mathbf{I}_n^{\mathsf{H}} \mathbf{X}_{\nu} \mathbf{I}_n}{\mathbf{I}_n^{\mathsf{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}_n}$$

with $\mathbf{A} = \mathbf{R}_{\mathrm{r}}$ and $\mathbf{A} = \mathbf{\Psi}$ for orthogonal far fields and current densities, respectively.

min Q and dissipation modes: orthogonal far fields

min Q and dissipation modes: orthogonal current

Self-resonant maximum efficiency: orthogonal far fields

Self-resonant maximum efficiency: orthogonal current

Comparison

Q-factors for different modes

Q-factors for the first 15 modes on a planar rectangle for the min Q, min Q_{η} , and max η cases. The modes are orthogonal with respect to

F: far field

J: current density.

Efficiency for different modes

Efficiencies for the first 15 modes on a planar rectangle for the min Q, min Q_{η} , and max η cases. The modes are orthogonal with respect to

F: far field

J: current density.

Expansion of \boldsymbol{J} for a self-resonant meander line antenna

Expansion using the n first modes defined on the circumscribing rectangle.

► Modes with orthogonal far fields *F* approximate far fields very well but not current densities.

 Modes with orthogonal current densities J can approximate the current density much better.

Meander line, capped dipole, SRR, loop antennas

Expansion using the $n\ {\rm first}\ {\rm modes}\ {\rm defined}$ on the circumscribing rectangle.

- ► Self-resonant maximum efficiency modes with orthogonal current densities.
 - Resonant and non-resonant antennas.
 - 4000 basis functions.
- ▶ Increasing number of expansion functions for fine details, see *e.g.*, the folded meander line (_____) with strip width $\ell/64$.

Conclusions

- Dedicated mode expansions for specific applications
- Orthogonal far fields for expansions targeting radiation
- Orthogonal current densities for expansions targeting sources
- Construction from eigenvalue and optimization problems
- Easy to compute
- Convergence properties
- Model order reduction
- Synthesis

References I

- [CG14] M. Cismasu and M. Gustafsson. "Antenna Bandwidth Optimization with Single Frequency Simulation". IEEE Trans. Antennas Propag. 62.3 (2014), pp. 1304–1311.
- [CGS17] M. Capek, M. Gustafsson, and K. Schab. "Minimization of Antenna Quality Factor". IEEE Trans. Antennas Propag. 65.8 (2017), 4115—4123.
- [CHE12] M. Capek, P. Hazdra, and J. Eichler. "A method for the evaluation of radiation Q based on modal approach". IEEE Trans. Antennas Propag. 60.10 (2012), pp. 4556–4567.
- [CW15] Y. Chen and C.-F. Wang. Characteristic Modes: Theory and Applications in Antenna Engineering. John Wiley & Sons, 2015.
- [EG18] C. Ehrenborg and M. Gustafsson. "Fundamental bounds on MIMO antennas". IEEE Antennas Wireless Propag. Lett. 17.1 (2018), pp. 21–24.
- [GN06] M. Gustafsson and S. Nordebo. "Characterization of MIMO antennas using spherical vector waves". IEEE Trans. Antennas Propag. 54.9 (2006), pp. 2679–2682.
- [GN13] M. Gustafsson and S. Nordebo. "Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex Optimization". IEEE Trans. Antennas Propag. 61.3 (2013), pp. 1109–1118.
- [Gus+16] M. Gustafsson, D. Tayli, C. Ehrenborg, M. Cismasu, and S. Nordebo. "Antenna current optimization using MATLAB and CVX". FERMAT 15.5 (2016), pp. 1–29.
- [HM71] R. F. Harrington and J. R. Mautz. "Theory of characteristic modes for conducting bodies". IEEE Trans. Antennas Propag. 19.5 (1971), pp. 622–628.
- [HM72] R. F. Harrington and J. R. Mautz. "Control of radar scattering by reactive loading". IEEE Trans. Antennas Propag. 20.4 (1972), pp. 446–454.
- [JC17] L Jelinek and M Capek. "Optimal Currents on Arbitrarily Shaped Surfaces". IEEE Trans. Antennas Propag. 65.1 (2017), pp. 329-341.
- [Van10] G. A. E. Vandenbosch. "Reactive Energies, Impedance, and Q Factor of Radiating Structures". IEEE Trans. Antennas Propag. 58.4 (2010), pp. 1112–1127.
- [VCF10] J. Volakis, C. C. Chen, and K. Fujimoto. Small Antennas: Miniaturization Techniques & Applications. McGraw-Hill, 2010.