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Absorption, scattering, and extinction

Absorption, scattering, and extinction can be
calculated (and measured). Depend on

I wavelength, λ
I wavefront shape (often plane wave)

of the illuminating field, Ei, and

I material (complex permittivity ε)
I size
I shape

of the obstacle.

What can be said about the maximum absorption,
scattering and extinction (here cross section σt) of all
obstacles fitting inside a region Ω made of a material
ε and fixed illumination?
Material models from A. D. Rakic et al. ”Optical properties of metallic films for
vertical-cavity opto-electronic devices”. Appl. Opt.22.37 (1998).
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Physical bounds and optimal inverse design

We commonly desire to design devices as
good as possible. What about designing the
best?

I Need knowledge about optimality
I Physical bounds (limitations).
I Volume, shape, material, ...

I Need methodologies to design optimal
structures
I Classical design approaches.
I Inverse design (topological

optimization).

upper bound from limited information

upper bound from detailed information

simple design

inverse design

design time

p
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fo
rm

an
ce
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Physical bounds on EM devices

Bounds have been determined for, e.g.,

I Antennas (bandwidth, efficiency, gain, directivity,
capacity, ...)

I Periodic structures (bandwidth for absorbers,
high-impedance surfaces, transmission, extinction, ...)

I Scattering, absorption, and extinction cross sections
I Composite materials, homogenization, temporal

dispersion

Many of the bounds are derived using

I Holomorphic properties originating from causality and
passivity (e.g., sum rules for Herglotz-Nevanlinna
functions)

I Power/Energy relations and optimization techniques
over induced sources

Ei Es

εm
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Passivity/Causality and Optimization (power) bounds

Passivity and Causality

I LTI system (Input and output signals)
I Analyticity from causality
I Definite sign from passivity (HN)
I Bounds from weighted integrals over

all spectrum

2

π

∫
R

Im f(ω)

ω2n
dω = a2n−1 − b2n−1

Simple closed form
expressions
Based on an identity
Not pointwise (moments)
Hard to add (include)
information

Optimization (power) bounds

I Physical modelling (integral equations
(MoM))

I Optimization problems over sources
I Pointwise bounds from the solution

(convex dual) of the optimization
problem

f(ω) ≤ fopt(ω)

Pointwise bounds
Easy to add (include)
information
Bandwidth (Q-factor for
small )
Numerical solution (some
explicit )
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Relaxation of integral equation based models

Integral equations (MoM) to model
interaction between EM fields and an
obstacle

ZI = V

with

I impedance matrix Z (Green’s
function)

I (contrast) current I
(J = iω(ε0 − ε)E)

I excitation V (illumination Ei)

Ω

ε

ε0

Ei

The impedance matrix can be divided as
Z = Rρ +R0 + iX with

I absorbed power 1
2I

HRρI

I radiated power 1
2I

HR0I
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Maximum absorption cross sections

Absorbed power is a quadratic form

Pa =
1

2
IHRρI

with current satisfying ZI = V.

Reformulate as an
optimization problem

maximize IHRρI

subject to IHZI = IHV

to determine the maximum absorption of any object
in the region Ω with permittivity{

ε parts made of the material

ε0 background material (J(r) = 0)

Similar for maximum scattering
and extinction with

Ps =
1

2
IHR0I and Pt =

1

2
Re{IHV}

I Quadratically constrained
quadratic program (QCQP)
with two constraints (Re,Im)

I Dual problem for a bound
I Dual problem is convex (easy)
I No dual gap

Reduce to Re{IHZI} = Re{IHV}
for simpler bound solely dependent
on losses.
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Maximum absorption, scattering and extinction cross sections
Electrically small objects with minimum losses ρr: dipole fields

Absorption

σa = min
ν≥1

ν2

4

∑
n

ã2n%n
(ν − 1) + ν%n

≈ 6π

k2
%1

(1 + %1)2
≈ η0V

ρr

(
1 + k2η0V

6πρr

)2 ≤
{
η0V
ρr
3π
2k2

Scattering

σs = min
ν≥ν1

ν2

4

∑
n

ã2%n
(ν − 1)%n + ν

≈ 6π

k2
%21

(1 + %1)2
≈ k2

6π

(
η0V
ρr

)2
(
1 + k2η0V

6πρr

)2 ≤

k2η20V

2

6πρ2r
η0V
4ρr
6π
k2

Extinction

σt =
∑
n

ã2n%n
%n + 1

≈ 6π

k2
%1

1 + %1
≈ V

k2V/(6π) + ρr/η0
≤
{
η0V
ρr
6π
k2
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Radiation modes

Radiation modes %n are defined by the eigenvalue problem

R0In = %nRρIn

I Electrically small limit ka→ 0 have three modes with

%n =
k2η0
6π

∫
Ω
ρ−1
r dV=

k2η0|Ω|
6πρr

n = 1, 2, 3

I Homogeneous sphere (and similarly layered spheres)

%υ =
k2η0a

3

2ρr

(
(R

(1)
1,l )

2 − R
(1)
1,l−1R

(1)
1,l+1+

2

ka
R

(1)
1,l R

(1)
2,l δτ,2

)
≈ (ka)2l(

(2l + 1)!!
)2 η0aρr

{
(ka)2/(2l) τ = 1

(l + 1) τ = 2
as ka→ 0,
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Extinction cross section σt for Au in spherical region

QCLP (QCQP for σa, σs)

maximize Re{IHV}
subject to IHZI = IHV

Bounds based on

Red: σt,Z shape, ρr, and ρi

Blue: σt,R shape and ρr

Orange: σt,ρr volume and ρr

The bounds are compared with

Green: solid

Purple: optimized shell
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Extinction cross section σt for Au in spherical region

QCLP (QCQP for σa, σs)
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Extinction cross section σt for dielectric in spherical regions

QCLP (QCQP for σa, σs)

maximize Re{IHV}
subject to IHZI = IHV

Bounds based on

Red: σt,Z shape, ρr, and ρi

Blue: σt,R shape and ρr

I Small difference for
ka� 1 but large
difference for ka� 1

I Reactance constraint can
be neglected for ka� 1
which simplifies solution.

I Weak dependence on
losses.
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103
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σ
/(
πa

2
)
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10 + i10−3

ε

2a
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Comparison: Gold (Au), Silver (Ag), and dielectric (Si)

0.5 1 2 4 8
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a
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0.5 1 2 4 8

10 20 30 40

Ag

λ/μm

0.5 1 2 4 8

102030 40

εr = 11 + i10−5

λ/ μm
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2a
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I Normalized extinction cross section σt/(πa
3) for spherical regions.

I Similar results for absorption, scattering, and near-field illumination.
I Is the extinction dominated by scattering or absorption?
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Trade-off between scattering and absorption

I How is scattering and absorption
related for an obstacle?

I Use Pareto optimization to determine
the trade-off between absorption and
scattering

I Feasible region in the {σs, σa}-plane

maximize IH(waRρ + wsR0)I

subject to IHZI = IHV

with weights wa, ws. See [Sch+20] for
details and alternative formulations.

σmax
a

σmax
s

maximize Pa
maximize Ps

maximize Pa
minimize Ps

maximize Ps
minimize Pa

feasible

infeasible

σs + σa = σmax
t

minimize Pa
minimize Ps
(σa = σs = 0)

σs

σ
a
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Feasible region and realized cross-sections in a sphere with εr = 10+ i10−3
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Feasible region for Au obstacles fitting within a a = 30 nm sphere
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Conclusions

I General method to compute bounds on systems of
the form ZI = V by relaxation to IHZI = IHV

I QCQP with computationally efficient solution of
the dual

I Here, scattering, absorption, and extinction
I Directional scattering, Purcell factor, ...
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[AVB19] G. Angeris, J. Vučković, and S. P. Boyd. “Computational Bounds for Photonic Design”. ACS Photonics 6.5 (2019), pp. 1232–1239.
[GN13] M. Gustafsson and S. Nordebo. “Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex

Optimization”. IEEE Trans. Antennas Propag. 61.3 (2013), pp. 1109–1118.
[Gus+20] M. Gustafsson, K. Schab, L. Jelinek, and M. Capek. “Upper bounds on absorption and scattering”. New Journal of Physics 22.073013

(2020).
[KZM20] Z. Kuang, L. Zhang, and O. D. Miller. “Maximal single-frequency electromagnetic response”. arXiv preprint arXiv:2002.00521 (2020).
[MCR20] S. Molesky, P. Chao, and A. W. Rodriguez. “T-Operator Limits on Electromagnetic Scattering: Bounds on Extinguished, Absorbed, and

Scattered Power from Arbitrary Sources”. arXiv preprint arXiv:2001.11531 (2020).
[Sch+20] K. Schab, A. Rothschild, K. Nguyen, M. Capek, L. Jelinek, and M. Gustafsson. “Trade-offs in absorption and scattering by

nanophotonic structures”. arXiv preprint arXiv:2009.08502 (2020).

Mats Gustafsson, Lund University, Sweden, 23

http://dx.doi.org/https://doi.org/10.1021/acsphotonics.9b00154
http://dx.doi.org/10.1109/TAP.2012.2227656
http://dx.doi.org/10.1109/TAP.2012.2227656

	Absorption, scattering, and extinction
	Relaxation of system and duality
	Radiation modes and electrically small limit
	Numerical examples
	Trade-offs between absorption and scattering
	Conclusions
	References
	References

