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Herglotz functions and applications in electromagnetics

Typical applications are design of antennas, scatterers, �lters,
periodic structures, materials, ...
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Desired to design physically small structures with good (the best)
performance.
What does it have to do with Herglotz functions?
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Fundamental limitations on the performance

I based on assumptions such as linearity and passivity

I often tradeo� between size and performance

I metamaterial and devices:
I temporal dispersion
I thickness of absorbers
I size of antennas
I scattering and absorption in scatterers

Here, we focus on the use of passive systems to derive sum
rules and physical bounds. The are other approaches to derive
bounds.

System with
input u, output
v = θ ∗ u

T∫
−∞

v(t)u(t) dt ≥ 0

T∫
−∞

|u(t)|2−|v(t)|2 dt ≥ 0

Not more energy out than in for all times and signals.

I Passivity is (here) a time domain system concept.

I Imply causality.

I Not su�cient with passive material (devices).

I There are many passive systems:
Admittance passive

I Material models such as sε(s) (bi-anisotropic).
I Input impedance Zin(s).
I Forward scattering.

Scattering passive
I Antenna and material re�ection coe�cients.
I Re�ection and transmission coe�cients of periodic
structures.

1. Youla etal(1959)

2. Zemanian (1963,1965)

3. Wohlers and Beltrami (1965)

h(z) = Lz+

∞∫
−∞

1

ξ − z dν(ξ)

I Representation with some positive measure.

I Kramers-Kronig relations
I Causal and L2 signals (�nite energy)
I Not suited for systems (not L2)
I Bounds on frequency derivative (lossless) [1,2].

I Passive systems
I Herglotz and PR functions [3]
I Integral identities (sum rules)

I Stieltjes functions [4]

I Convex optimization [5]

1. Landau, Lifshitz, Electrodynamics of Continuous Media.

2. King, The Hilbert transform I,II (2009)

3. Herglotz, Cauer, Nevanlinna, Pick, ...

4. Milton, The Theory of Composites (2002)

5. Nordebo etal IEEE-TAP (2014)

2

π

∫ ∞
0

Imh(x)

x2
dx = a1−b1

Sum rules:

I Integral identities for Herglotz functions
(passive systems) [1]

I Relates the low and high frequency
asymptotes with the dynamic response

I Closed form expressions

I Investigated for many systems: matching
[2], absorbers [3], scattering [4,5], antennas
[6], high impedance surfaces [7], temporal
dispersion [8], and extra ordinary
transmission.

1. Bernland etal, J.Phys.A (2011)

2. Bode, Fano (1950)

3. Rozanov, IEEE-TAP (2000)

4. Purcell, J. Astrophys (1969)

5. Sohl etal, J.Phys.A (2007), J.Phys.D (2007), J.Appl.Phys (2008)

6. Gustafsson etal, , Proc.R.Soc.A (2007), IEEE-TAP (2009)

7. Gustafsson and Sjöberg, IEEE-TAP (2011)

8. Gustafsson and Sjöberg, NJP (2010)

9. see also table in King 2009.

Physics based
models,

state- space models

Determine the stored energy in the (antenna) system

I Physics based models [1,2]. Need a model of the
internal structure.

I State-space models [3]. Synthesizes a model of the
internal structure.

I Q-factor. Ratio of stored and dissipated energy.

I B ∼ 2/Q, B fractional bandwidth [4].

I Well-de�ned for small radiating structures (a� λ).

I Larger structures, dispersive and inhomogeneous
media. What is stored and radiated?

I Can it be used in scattering, metamaterial, ...?

1. Vandenbosch, IEEE-TAP (2010)

2. Gustafsson etal, IEEE-TAP (2012,2015)

3. Willems (1972)

4. Yaghjian, Best, IEEE-TAP (2005)

Mats Gustafsson, (3), EIT, Lund University, Sweden



Physical bounds on
EM systems

Passive
systems

Admit-
tance

Scatte-
ring

Stored
energy

Sum rules

Integral
representa-

tions

Fundamental limitations on the performance

I based on assumptions such as linearity and passivity

I often tradeo� between size and performance

I metamaterial and devices:
I temporal dispersion
I thickness of absorbers
I size of antennas
I scattering and absorption in scatterers

Here, we focus on the use of passive systems to derive sum
rules and physical bounds. The are other approaches to derive
bounds.

System with
input u, output
v = θ ∗ u

T∫
−∞

v(t)u(t) dt ≥ 0

T∫
−∞

|u(t)|2−|v(t)|2 dt ≥ 0

Not more energy out than in for all times and signals.

I Passivity is (here) a time domain system concept.

I Imply causality.

I Not su�cient with passive material (devices).

I There are many passive systems:
Admittance passive

I Material models such as sε(s) (bi-anisotropic).
I Input impedance Zin(s).
I Forward scattering.

Scattering passive
I Antenna and material re�ection coe�cients.
I Re�ection and transmission coe�cients of periodic
structures.

1. Youla etal(1959)

2. Zemanian (1963,1965)

3. Wohlers and Beltrami (1965)

h(z) = Lz+

∞∫
−∞

1

ξ − z dν(ξ)

I Representation with some positive measure.

I Kramers-Kronig relations
I Causal and L2 signals (�nite energy)
I Not suited for systems (not L2)
I Bounds on frequency derivative (lossless) [1,2].

I Passive systems
I Herglotz and PR functions [3]
I Integral identities (sum rules)

I Stieltjes functions [4]

I Convex optimization [5]

1. Landau, Lifshitz, Electrodynamics of Continuous Media.

2. King, The Hilbert transform I,II (2009)

3. Herglotz, Cauer, Nevanlinna, Pick, ...

4. Milton, The Theory of Composites (2002)

5. Nordebo etal IEEE-TAP (2014)

2

π

∫ ∞
0

Imh(x)

x2
dx = a1−b1

Sum rules:

I Integral identities for Herglotz functions
(passive systems) [1]

I Relates the low and high frequency
asymptotes with the dynamic response

I Closed form expressions

I Investigated for many systems: matching
[2], absorbers [3], scattering [4,5], antennas
[6], high impedance surfaces [7], temporal
dispersion [8], and extra ordinary
transmission.

1. Bernland etal, J.Phys.A (2011)

2. Bode, Fano (1950)

3. Rozanov, IEEE-TAP (2000)

4. Purcell, J. Astrophys (1969)

5. Sohl etal, J.Phys.A (2007), J.Phys.D (2007), J.Appl.Phys (2008)

6. Gustafsson etal, , Proc.R.Soc.A (2007), IEEE-TAP (2009)

7. Gustafsson and Sjöberg, IEEE-TAP (2011)

8. Gustafsson and Sjöberg, NJP (2010)

9. see also table in King 2009.

Physics based
models,

state- space models

Determine the stored energy in the (antenna) system

I Physics based models [1,2]. Need a model of the
internal structure.

I State-space models [3]. Synthesizes a model of the
internal structure.

I Q-factor. Ratio of stored and dissipated energy.

I B ∼ 2/Q, B fractional bandwidth [4].

I Well-de�ned for small radiating structures (a� λ).

I Larger structures, dispersive and inhomogeneous
media. What is stored and radiated?

I Can it be used in scattering, metamaterial, ...?

1. Vandenbosch, IEEE-TAP (2010)

2. Gustafsson etal, IEEE-TAP (2012,2015)

3. Willems (1972)

4. Yaghjian, Best, IEEE-TAP (2005)

Mats Gustafsson, (3), EIT, Lund University, Sweden



Physical bounds on
EM systems

Passive
systems

Admit-
tance

Scatte-
ring

Stored
energy

Sum rules

Integral
representa-

tions

Fundamental limitations on the performance

I based on assumptions such as linearity and passivity

I often tradeo� between size and performance

I metamaterial and devices:
I temporal dispersion
I thickness of absorbers
I size of antennas
I scattering and absorption in scatterers

x
y

z
Ei

Er

θ

d

VA

VG

Here, we focus on the use of passive systems to derive sum
rules and physical bounds. The are other approaches to derive
bounds.

System with
input u, output
v = θ ∗ u

T∫
−∞

v(t)u(t) dt ≥ 0

T∫
−∞

|u(t)|2−|v(t)|2 dt ≥ 0

Not more energy out than in for all times and signals.

I Passivity is (here) a time domain system concept.

I Imply causality.

I Not su�cient with passive material (devices).

I There are many passive systems:
Admittance passive

I Material models such as sε(s) (bi-anisotropic).
I Input impedance Zin(s).
I Forward scattering.

Scattering passive
I Antenna and material re�ection coe�cients.
I Re�ection and transmission coe�cients of periodic
structures.

1. Youla etal(1959)

2. Zemanian (1963,1965)

3. Wohlers and Beltrami (1965)

h(z) = Lz+

∞∫
−∞

1

ξ − z dν(ξ)

I Representation with some positive measure.

I Kramers-Kronig relations
I Causal and L2 signals (�nite energy)
I Not suited for systems (not L2)
I Bounds on frequency derivative (lossless) [1,2].

I Passive systems
I Herglotz and PR functions [3]
I Integral identities (sum rules)

I Stieltjes functions [4]

I Convex optimization [5]

1. Landau, Lifshitz, Electrodynamics of Continuous Media.

2. King, The Hilbert transform I,II (2009)

3. Herglotz, Cauer, Nevanlinna, Pick, ...

4. Milton, The Theory of Composites (2002)

5. Nordebo etal IEEE-TAP (2014)

2

π

∫ ∞
0

Imh(x)

x2
dx = a1−b1

Sum rules:

I Integral identities for Herglotz functions
(passive systems) [1]

I Relates the low and high frequency
asymptotes with the dynamic response

I Closed form expressions

I Investigated for many systems: matching
[2], absorbers [3], scattering [4,5], antennas
[6], high impedance surfaces [7], temporal
dispersion [8], and extra ordinary
transmission.

1. Bernland etal, J.Phys.A (2011)

2. Bode, Fano (1950)

3. Rozanov, IEEE-TAP (2000)

4. Purcell, J. Astrophys (1969)

5. Sohl etal, J.Phys.A (2007), J.Phys.D (2007), J.Appl.Phys (2008)

6. Gustafsson etal, , Proc.R.Soc.A (2007), IEEE-TAP (2009)

7. Gustafsson and Sjöberg, IEEE-TAP (2011)

8. Gustafsson and Sjöberg, NJP (2010)

9. see also table in King 2009.

Physics based
models,

state- space models

Determine the stored energy in the (antenna) system

I Physics based models [1,2]. Need a model of the
internal structure.

I State-space models [3]. Synthesizes a model of the
internal structure.

I Q-factor. Ratio of stored and dissipated energy.

I B ∼ 2/Q, B fractional bandwidth [4].

I Well-de�ned for small radiating structures (a� λ).

I Larger structures, dispersive and inhomogeneous
media. What is stored and radiated?

I Can it be used in scattering, metamaterial, ...?

1. Vandenbosch, IEEE-TAP (2010)

2. Gustafsson etal, IEEE-TAP (2012,2015)

3. Willems (1972)

4. Yaghjian, Best, IEEE-TAP (2005)

Mats Gustafsson, (3), EIT, Lund University, Sweden



Physical bounds on
EM systems

Passive
systems

Admit-
tance

Scatte-
ring

Stored
energy

Sum rules

Integral
representa-

tions

Fundamental limitations on the performance

I based on assumptions such as linearity and passivity

I often tradeo� between size and performance

I metamaterial and devices:
I temporal dispersion
I thickness of absorbers
I size of antennas
I scattering and absorption in scatterers

0.1 1 10
1

10

100
Qk a33

0

` /`21

physical bound
for k a¿10

0.1 0.2 0.3 0.4 0.5

0.01

0.1

1

`/λ

G/Q

100%

25%

10%

6%

0.3 0.6 0.9 1.2 1.5
f/GHz, ` = 10 cm

`

`/2

ΩA

ΩG

x̂
ŷ

ẑ
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I based on assumptions such as linearity and passivity

I often tradeo� between size and performance
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Here, we focus on the use of passive systems to derive sum
rules and physical bounds. The are other approaches to derive
bounds.
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I based on assumptions such as linearity and passivity

I often tradeo� between size and performance

I metamaterial and devices:
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I thickness of absorbers
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Here, we focus on the use of passive systems to derive sum
rules and physical bounds. The are other approaches to derive
bounds.
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Metamaterials

Metamaterials are materials engineered to have properties that have
not yet been found in nature.

Sometimes (often) applications that are di�cult to realize:

I negative refraction:

constitutive relations n(ω) < 0

I perfect absorbers:

re�ection coe�cient r(ω) ≈ 0

I cloaking:

cross section σ(ω) ≈ 0

I arti�cial magnetism:

constitutive relations µ(ω) > 1

Light source

Light rays

Ring of metamaterial

Lens

² =¹ =1

² >1
¹ =1

Perfect lens

Focus 
point

Plane wave
Point
source

Focus 
point

r r
² =¹ =1r r ² =¹ ={1r r

r

r

Start with the constitutive relations ε(ω) < 0 for some frequency.

Mats Gustafsson, (4), EIT, Lund University, Sweden



Metamaterials

Metamaterials are materials engineered to have properties that have
not yet been found in nature.

Sometimes (often) applications that are di�cult to realize:

I negative refraction: constitutive relations n(ω) < 0

I perfect absorbers: re�ection coe�cient r(ω) ≈ 0

I cloaking: cross section σ(ω) ≈ 0

I arti�cial magnetism: constitutive relations µ(ω) > 1

Light source

Light rays

Ring of metamaterial

Lens

² =¹ =1

² >1
¹ =1

Perfect lens

Focus 
point

Plane wave
Point
source

Focus 
point

r r
² =¹ =1r r ² =¹ ={1r r

r

r

Start with the constitutive relations ε(ω) < 0 for some frequency.

Mats Gustafsson, (4), EIT, Lund University, Sweden



Metamaterials

Metamaterials are materials engineered to have properties that have
not yet been found in nature.

Sometimes (often) applications that are di�cult to realize:

I negative refraction: constitutive relations n(ω) < 0

I perfect absorbers: re�ection coe�cient r(ω) ≈ 0

I cloaking: cross section σ(ω) ≈ 0

I arti�cial magnetism: constitutive relations µ(ω) > 1

Light source

Light rays

Ring of metamaterial

Lens

² =¹ =1

² >1
¹ =1

Perfect lens

Focus 
point

Plane wave
Point
source

Focus 
point

r r
² =¹ =1r r ² =¹ ={1r r

r

r

Start with the constitutive relations ε(ω) < 0 for some frequency.

Mats Gustafsson, (4), EIT, Lund University, Sweden



Passive constitutive relations

The linear, causal, time translational invariant, continuous,
non-magnetic, and isotropic constitutive relations are

D(t) = ε0ε∞E(t) + ε0

∫
R
χee(t− t′)E(t′) dt′

where χee(t) = 0 for t < 0, the spatial coordinate is suppressed,
and ε∞ > 0 is the instantaneous response. The material model is
passive if

0 ≤
∫ T

−∞
E(t) · ∂D(t)

∂t
dt

for all times T and �elds E.

I Similarly for the magnetic �elds.

I Fourier transform to get the frequency-domain model
D(ω) = ε0ε(ω)E(ω) for the angular frequency ω.

I Herglotz function h(ω) = ωε(ω) for passive models.

Mats Gustafsson, (5), EIT, Lund University, Sweden



Implications of h = ωε(ω) (Herglotz) for metamaterials?

I Are there ε(ω0) = εm (e.g.,
εm = −1) for a �xed frequency ω0?
Yes, easy to synthesize.

I What about for a range of
frequencies around ω0

(bandwidth)? Limited range with
ε(ω0) ≈ εm.

Analyze Herglotz functions h(ω):

I h(ω) = ωε∞ + o(ω) as ω→̂∞.

I h(ω) ≈ ωεm for ω ∈ [ω1, ω2].

(Gustafsson and Sjöberg 2010), also
(Landau, Lifshitz, and Pitaevski�� 1984;
Nordebo et al. 2014; Skaar and Seip
2006).

Light source

Light rays

Ring of metamaterial

Lens

² =¹ =1

² >1
¹ =1

Perfect lens

Focus 
point

Plane wave
Point
source

Focus 
point

r r
² =¹ =1r r ² =¹ ={1r r

r

r

Want ε(ω0) < 0 for the
perfect lens and cloaking.
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Canonical form

Construct a new Herglotz function

h(ω) =
ω

ω0
(ε(ω)− εm) ∼

ω

ω0
(ε∞ − εm)

as ω→̂∞, where ε∞ ≥ εm. Want

h(ω) ≈ 0 for ω ∈ [ω1, ω2]

Have a Herglotz function h(ω) with
h(ω) ∼ b1ω as ω→̂∞.
How are the bandwidth ω2 − ω1, ampli-
tude |h(ω)| ≤ ∆ over ω ∈ [ω1, ω2], and
coe�cient b1 related?

Compose with a Herglotz function which
is unity (Im-part) if |z| < ∆.
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Herglotz pulse function

Im

Re

−2 −1.5 −1 −0.5 0.5 1 1.5 2
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Herglotz pulse function

h∆(z) =
1

π

∫
|ξ|≤∆

1

ξ − z dξ =
1

π
ln
z −∆
z +∆

∼
{
i as z → 0

−2∆
πz as z →∞

where 2∆ is the width of the pulse. The composed Herglotz
function (h(ω) ∼ b1ω as ω→̂∞) has the asymptotic expansions

h1(ω) = h∆(h(ω)) ∼
{
O(1) as ω→̂0

− 2∆
ωπb1

as ω→̂∞
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Integral identities and sum rules

Use that a Herglotz function with this asymptotic expansion
satis�es the integral identity

lim
ε→0+

lim
y→0+

1

π

∫
ε<|x|< 1

ε

Imh1(x+ iy) dx =
2∆

πb1

and the symmetry h1(z) = −h1(−z∗)∗ to get

lim
ε→0+

lim
y→0+

2

π

∫ 1
ε

ε
Imh1(x+ iy) dx

def
=

2

π

∫ ∞
0+

Imh1(x) dx =
2∆

πb1

This simpli�ed notation is sometimes used in this presentation.
Totally, we have the sum rule (integral identity)∫ ∞

0+
Imh∆(h(ω)) dω =

∆

b1
=

∆ω0

ε∞ − εm

Mats Gustafsson, (9), EIT, Lund University, Sweden



Example: Drude model
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Imh∆1(ω) with ∆ = 0.4.
Note, Imh∆(z) ≈ 1 for |z| < ∆
and Im z ≈ 0.

The Drude model (common model
for metals and metamaterials)

ε(ω) = 1 +
1

−iω(0.01− iω)
,

I Interested in the behavior of
ε(ω) ≈ −1 = εm

I ε(0.7) ≈ −1 = εm.

I Di�erence
|ε(ω)− εm| ≤ ∆ = 0.4 for
approximately 0.6 ≤ ω ≤ 0.8.

I Sum rule ∆
ε∞−εm = 0.4

1−(−1) = 0.2

(Gustafsson and Sjöberg 2010)
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Example: Drude model
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ε(ω) = 1 +
1

−iω(0.01− iω)
,

I Interested in the behavior of
ε(ω) ≈ −1 = εm

I ε(0.7) ≈ −1 = εm.

I Di�erence
|ε(ω)− εm| ≤ ∆ = 0.4 for
approximately 0.6 ≤ ω ≤ 0.8.

I Sum rule ∆
ε∞−εm = 0.4

1−(−1) = 0.2

(Gustafsson and Sjöberg 2010)
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Example: Drude model
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The Drude model (common model
for metals and metamaterials)

ε(ω) = 1 +
1

−iω(0.01− iω)
,

I Interested in the behavior of
ε(ω) ≈ −1 = εm

I ε(0.7) ≈ −1 = εm.

I Di�erence
|ε(ω)− εm| ≤ ∆ = 0.4 for
approximately 0.6 ≤ ω ≤ 0.8.

I Sum rule ∆
ε∞−εm = 0.4

1−(−1) = 0.2

(Gustafsson and Sjöberg 2010)
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Physical bounds

Consider an interval B = [ω1, ω2] and estimate the sum rule

(ω2 − ω1) min
ω1≤ω≤ω2

Imh∆(h(ω)) ≤
∫ ∞
0+

Imh∆(h(ω)) dω =
∆

b1

and use Imh∆(z) ≥ 1/2 for |z| ≤ ∆ to get

∆ = max
ω1≤ω≤ω2

|h(ω)| ≥ ω2 − ω1

2
b1

Reintroduce h = ω(ε− εm)/ω0, b1 = (ε∞ − εm)/ω0 and use the
fractional bandwidth B = (ω2 − ω1)/ω0, ω0 = (ω1 + ω2)/2,
ε∞ =instantaneous, and εm =target values to get

max
ω∈B
|ε(ω)− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case

1 lossless case ,

where we also used that Imh∆(z) = 1 for the lossless case.
Smoothly from the lossless case the lossy case as losses increases.
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Similar bounds for other material cases

Interval B = [ω1, ω2] with fractional bandwidth B = (ω2 − ω1)/ω0,
ω0 = (ω1 + ω2)/2
εs =static, ε∞ =instantaneous, εm =target values.
1. εm < ε∞:

max
ω∈B
|ε(ω)− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case

1 lossless case ,

2. without static conductivity

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B

1 +B/2

εs − εm
εs − ε∞

{
1/2 lossy case

1 lossless case ,

3. arti�cial magnetism µm > µs

max
ω∈B

|µ(ω)− µm|
|µ(ω)− µ∞|

≥ B

1 +B/2

µm − µs
µs − µ∞

{
1/2 lossy case

1 lossless case ,

Sum rules and physical bounds on passive metamaterials, New Journal of Physics, Vol. 12, pp. 043046-, 2010.
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Sum rules in Hilbert Transforms by King 2009, examples

encyclop ed i a o f mathemat i c s and i t s a p p l i cat i on s

Hilbert transforms
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University of Wisconsin-Eau Claire
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Sum rules in Hilbert Transforms by King 2009, examples

Table 19.1. Summary of sum rules for the dielectric constant

Number Sum rule Reference

(1)
∫ ∞

0

εi(ω)dω

ω
= π

2
{εr(0)− ε0} (insulators) Gorter and Kronig (1936)

(2)
∫ ∞

0

{εi(ω)− σ(0)/ω}dω
ω

= π

2
{εr(0)− ε0}

(3)
∫ ∞

0
[εr(ω)− ε0]dω = 0 (insulators) Saslow (1970); Scaife (1972)

(4)
∫ ∞

0
{εr(ω)− ε0}dω = −πσ(0)

2
Saslow (1970)

(5)
∫ ∞

0
ωεi(ω)dω =

πε0ω
2
p

2
Landau and Lifshitz (1960); Stern (1963)

(6)
∫ ∞

0
{εr(ω)− ε0} cosωt dω =

∫ ∞

0
εi(ω) sinωt dω, t > 0 Cole and Cole (1942); Scaife (1972); King (1978a)

(7)
∫ ∞

0
{εr(ω)− ε0}2 dω =

∫ ∞

0
εi(ω)

2 dω (insulators)

(8)
∫ ∞

0
{εr(ω)− ε0}[{εr(ω)− ε0}2 − 3εi(ω)

2]dω = 0 (insulators)

(9)
∫ ∞

0
ωεi(ω){εr(ω)− ε0}dω = 0 (insulators) Villani and Zimerman (1973b)

240

(10)
∫ ∞

0
ω2{εr(ω)− ε0}2 dω =

∫ ∞

0
ω2εi(ω)

2 dω

(11)
∫ ∞

0
ω2{εr(ω)− ε0}[{εr(ω)− ε0}2 − 3εi(ω)

2]dω = 0

(12)
∫ ∞

0
ω3εi(ω)[3{εr(ω)− ε0}2 − εi(ω)

2]dω = 0

(13)
∫ ∞

0
ω3εi(ω){εr(ω)− ε0}dω = −

πε2
0ω

4
p

4
Altarelli and Smith (1974)

(14)
∫ ∞

0
ω5εi(ω)[3{εr(ω)− ε0}2 − εi(ω)

2]dω = πε3
0ω

6
p

2
Villani and Zimerman (1973a)

(15)
∫ ∞

0

ωεi(ω)dω

ω2 + ω2
0

=
∫ ∞

0

ω0{εr(ω)− ε0}dω
ω2 + ω2

0

, ω0 > 0 King (1976a)
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Sum rules in Hilbert Transforms by King 2009, examples

Table 19.2. Summary of sum rules for the refractive index

Number Sum rule Reference

(1)
∫ ∞

0
{n(ω)− 1}dω = 0 Saslow (1970); Altarelli et al. (1972); Smith (1985)

(2)
∫ ∞

0
ωκ(ω)dω = π

4
ω2

p Kronig (1926)

(3)
∫ ∞

0

κ(ω)dω

ω
= π

2
{n(0)− 1} (insulators) Moss (1961)

(4)
∫ ∞

0
ωκ(ω)n(ω)dω = π

4
ω2

p Villani and Zimerman (1973a)

(5)
∫ ∞

0
{n(ω)− 1} cosωt dω =

∫ ∞

0
κ(ω) sinωt dω, t > 0

(6)
∫ ∞

0
ωκ(ω)[3n(ω)2 − κ(ω)2]dω = 3π

4
ω2

p

(7)
∫ ∞

0
ωκ(ω){n(ω)− 1}dω = 0 Stern (1963); Altarelli et al. (1972)

(8)
∫ ∞

0
ωmκ(ω)[3{n(ω)− 1}2 − κ(ω)2]dω = 0, m = 1, 3 Villani and Zimerman (1973b)

(9)
∫ ∞

0
ωm{n(ω)− 1}[{n(ω)− 1}2 − 3κ(ω)2]dω = 0, m = 2, 4 Villani and Zimerman (1973b)

242

(10)

∫ ∞

0
{n(ω)− 1}[{n(ω)− 1}2 − 3κ(ω)2]dω = 0 (insulators) Villani and Zimerman (1973b)

(11)

∫ ∞

0
ω2[{n(ω)− 1}2 − κ(ω)2]dω = 0 Villani and Zimerman (1973b)

(12)

∫ ∞

0
[{n(ω)− 1}2 − κ(ω)2]dω = 0 (insulators) Altarelli and Smith (1974)

(13)

∫ ∞

0
[{n(ω)− 1}2 − κ(ω)2]dω = −πσ(0)

2ε0
Smith (1985)

(14)

∫ ∞

0
ω3κ(ω){n(ω)− 1}dω = − π

16
ω4

p Villani and Zimerman (1973a); Altarelli and Smith (1974)

(15)

∫ ∞

0
ω5κ(ω)[3{n(ω)− 1}2 − κ(ω)2]dω = π

16
ω6

p Villani and Zimerman (1973a)

(16)

∫ ∞

0

ωκ(ω)dω

ω2 + ω2
0

=
∫ ∞

0

ω0{n(ω)− 1}dω
ω2 + ω2

0

, ω0 > 0 King (1976a)

(17)

∫ ω0

0

{n(ω)− 1}dω√
(ω2

0 − ω2)
=

∫ ∞

ω0

κ(ω)dω√
(ω2 − ω2

0)
, ω0 > 0 Villani and Zimerman (1973b)

(18) cosπβ
∫ ∞

ω0

{n(ω)− 1}dω
(ω2 − ω2

0)
β
− sin πβ

∫ ∞

ω0

κ(ω)dω

(ω2 − ω2
0)

β
Villani and Zimerman (1973b)

+
∫ ω0

0

{n(ω)− 1}dω
(ω2

0

− ω2)β
= 0, ω0 > 0,−1/2 < β < 1

Mats Gustafsson, (13), EIT, Lund University, Sweden



Sum rules and physical bounds on passive systems
General simple approach

1. Identify a linear and passive system.

2. Construct a Herglotz (or similarly a positive
real) function h(z) that models the
parameter of interest.

3. Investigate the asymptotic expansions of
h(z) as z→̂0 and z→̂∞.

4. Use integral identities for Herglotz functions
to relate the dynamic properties to the
asymptotic expansions.

5. Bound the integral.
Examples: Matching networks (Bode 1945; Fano 1950), Radar
absorbers (Rozanov 2000), Antennas (Gustafsson 2010a; Gustafsson, Sohl,
and Kristensson 2007; Gustafsson, Sohl, and Kristensson 2009),
Scattering (Bernland, Gustafsson, and Nordebo 2011; Sohl, Gustafsson, and
Kristensson 2007), High-impedance surfaces (Gustafsson and Sjöberg 2011),
Metamaterials (Gustafsson and Sjöberg 2010),Extraordinary
transmission (Gustafsson 2009),Periodic structures (Gustafsson et al. 2012),
...
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Passive systems

De�nition (Passivity)

A system (v = h ∗ u) is admittance-passive if

Wadm(T ) = Re

∫ T

−∞
v∗(t)u(t) dt ≥ 0

u(t)

Z
+

−
v(t)

and scatter-passive if

Wscat(T ) =

∫ T

−∞
|u(t)|2 − |v(t)|2 dt ≥ 0,

Zv(t)

u(t)

for all T ∈ R and smooth functions of compact support u.

Passivity is a systems concept. Not su�cient with passive materials
(devices). Need less energy in the output signal than in the input
signal for all times and signals.
The transfer function, H(s) is holomorphic (analytic) for Re s > 0,
and can be related to a positive real (PR) (or Herglotz) function.
(Wohlers and Beltrami 1965; Youla, Castriota, and Carlin 1959; Zemanian 1963; Zemanian 1965)

Mats Gustafsson, (15), EIT, Lund University, Sweden



Passive systems: examples

I Re�ection and transmission of periodic slabs (scattering)

Ei

Er = ΓEi

Et = TEi

z

0 d

εr

I Constitutive relations (admittance)

D(t) = ε0ε∞E(t) + ε0

∫
R
χee(t− t′)E(t′) dt′

I Scattering (forward (admittance) and modes (scattering))

k̂
ê

k̂
ê

ε(r) µ(r)

ε0 µ0
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De�nition (Herglotz functions, h(z))

A Herglotz (Nevanlinna, Pick, or R-) function h(z) is
holomorphic for Im z > 0 and

Imh(z) ≥ 0 for Im z > 0

Re

Im

z Re

Im

h(z)

h

Representation for Im z > 0, cf., the Hilbert
transform

h(z) = Ah + Lz +

∫ ∞
−∞

1

ξ − z −
ξ

1 + ξ2
dν(ξ)

where Ah ∈ R, L ≥ 0, and
∫
R

1
1+ξ2

dν(ξ) <∞.

Gustav Herglotz
1881-1953

Rolf Nevanlinna
1895-1980

Georg Alexander
Pick 1859-1942

Wilhelm Cauer
1900-1945

Mats Gustafsson, (17), EIT, Lund University, Sweden
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Integral identities for Herglotz functions

Herglotz functions with the symmetry h(z) = −h∗(−z∗) (real-valued in
the time domain) have asymptotic expansions (N0 ≥ 0 and N∞ ≥ 0)
h(z) =

N0∑
n=0

a2n−1z
2n−1 + o(z2N0−1) as z→̂0

h(z) =

N∞∑
n=0

b1−2nz
1−2n + o(z1−2N∞) as z→̂∞

Re

Im

θ

z

where →̂ denotes limits in the Stoltz domain
0 < θ ≤ arg(z) ≤ π− θ.They satisfy the identities (1−N∞ ≤ n ≤ N0)

lim
ε→0+

lim
y→0+

2

π

∫ 1
ε

ε

Imh(x+ iy)

x2n
dx = a2n−1−b2n−1 =


−b2n−1 n < 0

a−1 − b−1 n = 0

a1 − b1 n = 1

a2n−1 n > 1

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.
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Derivation of the integral identities

Similar Integral identities can be
derived under various assumptions.

I Passive system with PR
(Herglotz) functions. Limits in
the Stoltz domain.

I Holomorphic functions in a
region that includes the
frequency axis except for simple
poles at the frequency axis.
Limits in C+.

I Lp functions at the frequency
axis with 1 < p <∞ and with
limits along the frequency axis.

Integral identities

PR/Herglotz

Lp meromorphic

Easy to show passivity but di�cult to show the last two properties.

Mats Gustafsson, (19), EIT, Lund University, Sweden



Integral identities for Herglotz functions

Known low-frequency expansion (a1 ≥ 0):

h(z) ∼
{
a1z as z→̂0

b1z as z→̂∞
which gives the n = 1 identity (we drop the limits for simplicity)

lim
ε→0+

lim
y→0+

2

π

∫ 1/ε

ε

Imh(x+ iy)

x2
dx

def
=

2

π

∫ ∞
0

Imh(x)

x2
dx = a1−b1 ≤ a1

Known high-frequency expansion (short times) (b−1 ≤ 0):

h(z) ∼
{
a−1/z as z→̂0

b−1/z as z→̂∞
which gives the n = 0 identity

2

π

∫ ∞
0

Imh(x) dx = a−1 − b−1 ≤ −b−1.

Mats Gustafsson, (20), EIT, Lund University, Sweden



Some sum rules for passive systems

Sum rules for
passive systems

Periodic
structures

Absor-
bers High-

impedance
surfaces

Cross
section

BlockageExtraor-
dinary
trans-
mission

Matching

Dis-
persion

Negative
re-

fraction

ε near 0

Arti�cial
µ

Scat-
tering

Forward
scat-
tering

Extraor-
dinary
trans-
mission

Spherical
modes

Antennas
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Some sum rules for passive systems

Sum rules for
passive systems

Periodic
structures

Absor-
bers High-

impedance
surfaces

Cross
section

BlockageExtraor-
dinary
trans-
mission

Matching

Dis-
persion

Negative
re-

fraction

ε near 0

Arti�cial
µ

Scat-
tering

Forward
scat-
tering
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A physical bound for absorbers

I A structure (above a ground plane) that
absorbs incident EM waves.

I Pyramids, homogeneous, periodic,
metamaterials,...

I Often desired to be thin and absorb
energy over large bandwidths.

Tradeo� between thickness d fractional band-
width B and wavelength λ;

λ2 − λ1 = Bλ0 ≤
2π2dµs

lnΓ−10

≤ 172dµs
|Γ0,dB|

Γ0 = maxλ1≤λ≤λ2 |Γ (λ)| and µs is the maximal
static relative permeability of the absorber.

x
y

z
Ei

Er

θ

d

(Rozanov 2000)
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Absorbers

1. Identify the re�ection coe�cient, Γ , as a
passive system (|Γ | ≤ 1).

2. Analyze the low- (and high) frequency
behavior:

Γ (k) ∼ −1−ik
(
2d cos θ+γ/A

)
, k → 0

where γ is the polarizability per unit cell.
A well-de�ned static quantity which is
easily determined.

3. Construct the Herglotz function
h = −i ln(Γ/B) and the sum rule

2

π

∫ ∞
0

1

k2
ln

1

|Γ (k)| dk ≤ 2d cos θ+γ/A ≤ 2µsd

x y

z

Ei Erθ

d

PEC

z z

²(x,y,z)

²(x,y,-z)

¹(x,y,z)
²(x,y,z)

¹(x,y,z)

¹(x,y,-z)

k

ê

^

ê

k̂

k̂ê

a) b)

(r)

0

-d

-2d
(r)

(Gustafsson and Sjöberg 2011; Rozanov 2000)
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Absorbers and array antennas

Rewrite in the wavelength λ = 2π/k and
estimate the integral, e.g.,

1

π2
(λ2−λ1) ln

1

|Γ0|
dλ ≤ 1

π2

∫ λ2

λ1

ln
1

|Γ (λ)| dλ

≤ 1

π2

∫ ∞
0

ln
1

|Γ (λ)| dλ ≤ 2µsd

with Γ0 = max[λ1,λ2] |Γ (λ)|.
Bandwidth limited by the thickness d and (sta-
tic) permeability µs.

Applied to array antennas in (Doane, Sertel,
and Volakis 2013; Jonsson, Kolitsidas, and
Hussain 2013).

λ1 λ2
1

ln 1
Γ0

λ

1
|Γ |

λ1 λ2

−20

−10

0

λ

|Γ |dB
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Magnitude of scattering parameters

Z

1 2 3

−3

−2

−1

1

2

3

0
Re

Im

Γ

−1 1

−1

1

Re

Im

P

2 4

−2

2

0
Re

Im
1−Z
1+Z

− lnΓ

The absorber is an example with scattering parameters |Γ (0)| = 1
where it is desired to have |Γ (ω)| ≤ Γ0.
Map to Herglotz/PR functions using ln(h/B) and use the n = 1
identity.
Similar approaches for matching (Bode 1945; Fano 1950),
transmission blockage (Gustafsson et al. 2009; Sjöberg, Gustafsson,
and Larsson 2010), mode scattering (Bernland 2012; Bernland,
Gustafsson, and Nordebo 2011).
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Magnitude of Herglotz/PR functions

Γ
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−1

1

0
Re

Im1−Z
1+Z −j

π ln js−∆
js+∆

I Scattering parameters Γ (0) = ∓1 and desire Γ (jω) ≈ ±1
I Admittance P (0) =∞ and desire |P (jω)| ≤ P0.

Temporal dispersion (Gustafsson and Sjöberg 2010),
high-impedance surfaces (Gustafsson and Sjöberg 2011),
extraordinary transmission (Gustafsson, Sjöberg, and Vakili 2011),
and superluminal transmission (Gustafsson 2012).
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Basically four (or two) cases

admittance want
large ReY (ω0) with Y (0) = 0.
forward scattering (cross section)
Use identity
S-parameter want
|S(ω0)| ≤ δ with |S(0)| = 1.
absorber, matching, blockage,
modes, ...
Use log+identity

admittance want
small |Y (ω0)| ≤ δ with Y (0) =∞.
high impedance surface, temporal
dispersion.
Use pulse+identity
S-parameter want
S(ω0) ≈ 1 with S(0) = −1.
high impedance surface,
extraordinary transmission
Use Cayley+pulse+identity

Many physical bounds based on sum rules can be formulated as these
4 (or 2) cases. Convex optimization can be used for some other cases.
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Passive systems
and sum rules
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Challenges with the sum rules technique

Use of passive systems, Herglotz functions, and sum rules is a very
powerful technique to derive bounds for EM design problems. Some
challenges:

I Can easily change a problem to a physically equivalent problem
where the approach does not work so well. For example:
change of a PEC ground plane to Cu changes the expansion to
−d+ γω as ω → 0, where d < 1. Cannot use the integral
identities.

I Multi-parameter cases, have often more than one parameter,
e.g., frequency and incident angle. Can the parameters be
treated together?

I Have sometimes active systems or systems that are made of
passive materials but not time-domain passive.

Some of these problems can be analyzed using convex optimization
techniques.
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How do we relate the antenna with Herglotz functions?

k̂
ê

k̂
ê

ε(r) µ(r)

ε0 µ0

Assumptions:

I Finite scattering object
composed of a linear, passive,
and time translational
invariant materials.

I Incident linearly polarized
plane wave.

From physics:

I The propagation speed is
limited by the speed of light.

I Optical theorem (energy
conservation).

I Induced dipole moment in
the static limit.

Passive system with h(k) ∼ γk as k→̂0 and σext = Imh.

(Gustafsson 2010b; Purcell 1969; Sohl, Gustafsson, and Kristensson 2007)
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Forward scattering sum rule

k̂
ê

k̂
ê

ε(r) µ(r)

ε0 µ0

Use the n = 1 identity with
a1 = γ = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê) and b1 = 0, i.e.,

2

π

∫ ∞
0

σext(k)

k2
dk = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

or written in the free-space wavelength λ = 2π/k

1

π2

∫ ∞
0

σext(λ) dλ = ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)
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Forward scattering of antennas

I Forward scattering measurement of
a dipole antenna.

I Loaded, short, and open circuit.
I Length 15 cm and 0.5GHz to

6GHz.

in cm3 loaded short open

sim: γ 661 661 291

sim: 2
π

∫ k2
0

σext(k)
k2

dk 644 644 265

meas: 2
π

∫ k2
k1

σext(k)
k2

dk 605 670 322
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Forward scattering of loaded and unloaded antennas, IEEE-TAP, 2012.
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Antenna forward scattering bounds (rectangles)
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(Gustafsson, Sohl, and Kristensson 2007; Gustafsson, Sohl, and Kristensson 2009)

Mats Gustafsson, (34), EIT, Lund University, Sweden



Antenna forward scattering bounds (rectangles)

0.1 1 10 100 1000
0.01

0.1

1

` /`

Chu bound,D/Q/(k a)
3

0

´=1

k a¿10

´=1/2

`
a

2

1

`

1 2

physical bounds

ê
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Sum rules, stored energy, and passive systems

Sum rules (integral identities) and
stored energy are commonly used
to construct physical bounds.
Both are related to passive
systems

The stored energy is used to de-
termine the Q-factor and hence an
estimate of the bandwidth. This
changes the perspective from op-
timization of the frequency beha-
vior of the system to optimization
of the states that models the sy-
stem at a �xed frequency.

Passive system

Sum rules

Representation

formula

Stored

energy
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Stored energy and antenna current optimization
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15%
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I Antenna current optimization and physical bounds [1].
I Single frequency antenna optimization, e.g., minimize Q [2].

Express the stored energies as semi-positive quadratic forms in the
current (density) I:

We ∼ IHXeI ≥ 0 and Wm ∼ IHXmI ≥ 0
[1] Gustafsson and Nordebo, IEEE-TAP (2013), [2] Cismasu and Gustafsson, IEEE-TAP (2014)
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Stored energy and antenna current optimization
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What is stored energy? (lumped circuits)

I Capacitor i = C dv
dt .

I Multiply with v to get the power

iv = d
dt
C|v|2
2 and integrate∫ T

−∞
iv dt =

C

2

(
|v(T )|2 − |v(−∞)|2

)
I Time harmonic case
v(t) = Re{V ejωt} gives the time
average stored electric energy
We = C|V |2/4

Stored energy from the d
dt -di�erentiated

quadratic form. Frequency domain
d
dt → s implies term proportional to the
frequency, s = jω.

Lumped elements

C

− +
V

I L

I

Time average stored energy in
capacitors

We =
C|V |2

4
=
|I|2
4ω2C

and in inductors

Wm =
L|I|2
4
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Rational PR functions

Consider a rational PR function (an, bn ∈ R)

Z(s) =

∑Nb
n=0 bns

n∑Na
n=0 ans

n

Often good for low frequencies but there are
passive systems that are not well represented
by rational functions.
Rewrite as a state-space model{

d
dtx = Ax+Bu

y = Cx+Du

with

Z(s) = Y (s)/U = C(s1−A)−1B+D
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ẑ

^
x̂

y
ẑ
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State-space model

Consider a state-space model with input u and output y{
d
dtx = Ax+Bu

y = Cx+Du

I Stored energy has been analyzed for state-space models.

I Need minimal representations and reciprocity (symmetry).
Necessary but not su�cient.

I Still some open questions.

I What about for non-rational PR (or Herglotz) functions?

I Can we de�ne a (useful) stored energy for a Herglotz (or PR)
function?

J.C. Willems, Dissipative dynamical systems I,II (1972), ...., (2013)
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Summary

I Herglotz/PR functions, physical bounds, and passive systems.
I Su�cient with passivity and low- and/or high-frequency

expansion to derive sum rules and physical bounds.
I Antennas, scatterers, absorbers, high impedance surfaces,

temporal dispersion,...
I The bounds are tight for many cases.
I Need active (non-foster), non-linear and/or time varying

devices to overcome the bounds.
I Also convex optimization using the integral representation and

minimization of stored energy.

x
y

z
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Er

θ

d

VA

VG
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