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Lund University

Lund university was founded in 1666.

Sweden's Largest University.

Approximately 40 000 students.

Department of Electrical and Information Technology.
Broadband Communications, Circuits and Systems,
Communication, Electromagnetic theory, Networking and
Security, Signal Processing.
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Sum rules and physical bounds

Construct identities and physical bounds using basic
properties such as causality, linearity, passivity, and
time invariance to, e.g., analyze:

» Absorbers and High-impedance surfaces: How
does the bandwidth depend on material and
thickness?

> Extra ordinary transmission: Transmission
through apertures?

» Scattering: How much can an object interact
with an electromagnetic wave?

» Antennas: How does the performance depend
on size, geometry, and material?

» Metamaterials: Bandwidth with e(w) ~ —17

» Artificial magnets, cloaking, superluminal
propagation, matching, filters....
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High-impedance surface.
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Cross sections of nano spheres.
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A physical bound for absorbers

» A structure (above a ground plane) that
absorbs incident EM waves.

» Pyramids, homogeneous, periodic,
metamaterials, ...

» Often desired to be thin and absorb
power over large bandwidths.

Tradeoff between thickness d fractional
bandwidth B and wavelength X;

212 d g < 172d s

A — A1 =B <
S 0= Inlyt = |[loasl

where I'y = maxy, <x<x, |I'(A)| and ps is the
maximal static permeability of the absorber.

Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE-TAP, 2000.
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Sum rules

We use sum rules to derive physical bounds:
Kramers-Kronig relations (Hilbert Transform), e.g., relative
permittivity e(w)

I /
Ree(w) — 1 —][ wdw’
R W —WwW

Evaluate for w = 0 (assume no (static) conductivity) to get the

sum rule ) , ,
e(O)—lz/me(w)dw’ZO.
R

T w'

Complex analysis (Cauchy’s theorem) can
also be used to derive sum rules.

Passive systems: general approach used here.
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Sum rules in Hilbert Transforms by King 2009, examples

Encyclopedia of Mathematics and Its Applications 124

Hilbert transforms
HILBERT TRANSFORMS otume2
Volume 1 FREDERICK W. KING

University of Wisconsin-Ea Clie

CAMBRIDGE

UNIVERSITY PRESS
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Sum rules in Hilbert Transforms by King 2009, examples

240

Table 19.1. Summary of sum rules for the dielectric constant

Number Sum rule Reference
o0 o
[¢)) / % = %(s,(O) — &0} (insulators) Gorter and Kronig (1936)
0
* {e —0o(0
(2) / M = 1(5{(0) — 6‘0)
0 w 2
oo
3) / [er(w) — g9]dw = 0 (insulators) Saslow (1970); Scaife (1972)
0
o 0
4) / {er(@) — eo}dw = 7”02( ) Saslow (1970)
0
o0 Jrsowg o
%) [ wej(w)do = —— Landau and Lifshitz (1960); Stern (1963)
0
o0 o0
(6) f {er(w) — g9} coswt dw = / gi(w)sinwtdo, t > 0 Cole and Cole (1942); Scaife (1972); King (197
0 0
oo S
(@) / {er(@) — &0} dw = / £i(w)? do (insulators)
0 0
oo
®) / {er(@) — 0}l{er (@) — g0} — 3&i(w)*1dw = 0 (insulators)
0
oo
(9 [ pe (e ealm) — ealde — O (insulators) Villani and Zi (1973h)
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Sum rules in Hilbert Transforms by King 2009, examples

242

Table 19.2. Summary of sum rules for the refractive index

Number

Sum rule

Reference

1

@

3)

“)

®)

(©)

7

®)

©)

/ {n(w) — 1}do =0
0
d b4
/u wk (w)dw = 1(»5
/ o Z(n(0) — 1} (insulators)
0 3 2
/“ wr(@)n(@)do = %wg
[m(n(w) — 1}coswrdw = /m»«(w)sinwzdm, >0
0 0
[OC ok (@) 3n()? — k(@) ldo = X’
o 7%
/x k(@) {n(@) — 1}do =0
o

/oc "k (@)B{n) — 11 — k@) ldo =0, m=1,3
0

o
/ " {n(@) — Y{n(@) — 11> = 3c(@)*1do = 0, m = 2,4
0

Saslow (1970); Altarelli et al. (1972); Smith (1985)

Kronig (1926)

Moss (1961)

Villani and Zimerman (1973a)

Stern (1963); Altarelli ez al. (1972)

Villani and Zimerman (1973b)

Villani and Zimerman (1973b)
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© Sum rules for passive systems
Passive systems
Herglotz functions

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 10



Sum rules and physical bounds on passive systems

1. Identify a linear, time invariant, and passive
(and causal) system.

2. Construct a Herglotz (or similar a positive Cross sections of nans spheres
real) function h(z) that models the parameter (equal areas).
of interest. :
3. Investigate the asymptotic expansions of h(z) . “ FA W }

as z=0 and z->00. ‘
'\!nw

ngh impedance surface 2.9 < 7.

e

4. Use integral identities for Herglotz functions
(moments or residue calculus) to relate the
dynamic properties to the asymptotic st
expansions. :

5. Bound the integral.
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Passive systems

Input-output system described by R

> input signal u(t)
» output signal v(t) = R{u(-)}(t)

u(t) — R — v(t)

Definition (Passivity)

A system (v = h % u) is admittance-passive if

T u(t) %
Waam(T) = Re / o* (B)u(t) dt > 0 :
and scatter-passive if - .
u(t
r 2 2 v(t) z
W@ = [ u(®f - )P ae 20,

(0.0)
for all T" € R and smooth functions of compact support u.

Zemanian, Distribution theory and transform analysis, 1965 [22]
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Passive systems in EM

There are many passive systems (not more energy out than in) in
electromagnetics (EM):
Admittance passive

» Material models such as P(s) = se(s) and h(w) = we(w).
Similarly for bi-anisotropic media.

» Antenna input impedance P(s) = Z(s) and h(w) = iZ(w).
» Forward scattering of finite objects.

Scattering passive
» Antenna and material reflection coefficients, I" = Sy;.

» Reflection and transmission coefficients of periodic structures.

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 13



Passive systems: transfer function V' (s) = H(s)U(s)

Admittance-passive: H (s) analytic
and Re H(s) > 0 for Res > 0.
Im

Im H
] H(s)

S Re

Example: Impedance H(s) = Z(s)
of a passive circuit, V = Z1I.

+ T
1% Z(s)

Re

Scatter-passive: H(s) analytic and
|H(s)] <1 for Res > 0.

Im H Im
N 1
S  Re H(s) Re
1

Example: Reflection coefficient

H(s) = I'(s) = 552,V =TU.

v Z(s)

RN S

In both cases, H(s) is holomorphic (analytic) for Res > 0, and can be

related to a positive real (PR) (or Herglotz) function.
Youla etal(1959) [20], Zemanian (1963) [21], Wohlers and Beltrami (1965) [19], Zemanian (1965) [22]
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Definition (Herglotz functions, h(z))

A Herglotz (Nevanlinna, Pick, or R-) function h(z)
is holomorphic for Im z > 0 and

Imh(z) >0 for Imz >0

Im h Im
N .
Z  Re (2) Re

Representation for Im z > 0, cf., the Hilbert (B
tra nsform Rolf Nevanlinna

1895-1080
h(z)=A L -
(z) h + z+/—oo§_z 1+£2

Georg Alexander Pick

dy(§ ) 1850-1942

Wilhelm Cauer
1900-1945

where Ay € R, L >0, and [, ﬁdu({) < 00.

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 15
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Positive real (PR) functions

Definition (Positive real (PR) functions)

A positive real function P(s) is holo- P Tm

morphic for Res > 0 and p
ReP(s) >0 for Res >0 ° Re Re

with P(s) = P*(s*). ‘ ‘

PR functions can be represented as

for Res > 0, where L > 0, fR # dv(§) < 0o, and we assume a
sufficiently regular P(jw) in the final equality.

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 16



Herglotz functions and positive real functions

] Im P Im

Im h Im N P(s)
TN hz) 5  Re ) Re
“  Re Re

T

Note z = is, h = iP. Here also with h(z) = —h*(—2z%)
(real-valued in the time domain).

» Time conventions: e~ ! for Herglotz and ™! for PR (Laplace
parameter s = o + jw).
Many contributors, Herglotz, Cauer, Nevanlinna, Pick, ...

v

Also for maps between the unit circles.

An impedance Z(s) of a passive network is a typical PR
function, see also @22,

Applications: circuit synthesis, filter design, sum rules,
operator theory, moment problem, ...

v

v

v
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Integral identities for Herglotz functions

Herglotz functions with the symmetry h(z) = —h*(—2*) (real-valued
in the time domain) have asymptotic expansions (Ny > 0 and
Neo > 0)
h(z) = %a 227 o220y as 250 fm
- 2n—1 >
7JLV:O
< 0 Re
h(z) = Z b1_on2' 2"+ o(z'72Ne) as 2500
n=0

where = denotes limits in the Stoltz domain 0 < 6 < arg(z) <7 — 60
7. They satisfy the identities (1 — Ny, < n < Np)

—bon—1 n <0
1
2 [=Imh i a_1—b_1 n=0
lim lLim ,/ w dz = agy,_1—boy_1 = 1 1
e—=0t y—0t T J, " ai — by n=1

a9p—1 n>1

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 18
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Integral identities for Herglotz functions

Common cases

Known low-frequency expansion (a; > 0):
as z=>0
h(z) N alz z )
b1z as 2500

that gives the n = 1 identity (we drop the limits for simplicity)

2 [leg ' 2 [>®]
lim lim 2 A +iy) g der 2 (¥ Imhlz) (0
2 T x2
5 0

e—=0t y—0t+t T

Known high-frequency expansion (short times) (b_; < 0):

h(z) ~ {al/z as z—0

b_1/z as z500

that gives the n = 0 identity

2 o0
/ Imh(x)de =a_1 —b_1 < —b_;.
™ Jo
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Example (input impedance of circuit networks)

A classical sum rule for linear circuit networks is the
resistance-integral theorem [2],[4],[18].

1. A circuit network composed of passive elements.
2. The impedance between two nodes Z(s) is a PR function.

3. Consider the case with a shunt capacitor at the input terminal

+a(t)
Z1(0) as s=0
o) c == | |2 Z(s) ~{ 11( ) as s
5C as §s— 00

where we assume that Z;(0) is finite.
4. Sum rule (integral identity with n =0, a1 =0, by = 1/s)

2 [ 1

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 20




Example (Temporally dispersive permittivity)

1. Linear passive material models with permittivity e(w) @22,
2. he(w) = we(w) is a Herglotz function.
3. Consider the case without static conductivity

wes = we(0) as w=0

he(w) = we(w) ~ {

Weso = we(00)  as w300
4. Sum rule (integral identity with n =1, a1 = €5, b1 = €x)

2 [ Inlh) o, 2 [ Inle)
0 0

™ w

dw = € — €

w? o
Integrated losses are related to the difference €5 — e, cf.,
Landau-Lifshitz, Electrodynamics of Continuous Media[15]
and Jackson, Classical Electrodynamics[12].
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Example (Temporally dispersive permeability)

» Linear passive material models with permeability p(w) satisfy
the corresponding sum rule

2 /°° mih,(w)} , 2 /°° Im{p(w)}

— —_—— — dw = — L
0 0

2 dw = ps — o
T w s w

showing that s > poo, [15, 12].

» Sometimes considered a paradox for diamagnetic materials
(us < 1 and assuming piso = 1). The paradox is resolved by
considering the refractive index with no, > 1 (due to special
relativity) and hence

€ +
SZMSZ €sfls = Ns = Neo

showing that diamagnetic materials (us < 1) have a static
permittivity (and/or conductivity).

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 22



Sum rules and physical bounds on passive systems

General simple approach

Identify a linear and passive system.

2. Construct a Herglotz (or similarly a positive
real) function h(z) that models the
parameter of interest.

3. Investigate the asymptotic expansions of
h(z) as 20 and z00.

4. Use integral identities for Herglotz functions
to relate the dynamic properties to the
asymptotic expansions.

5. Bound the integral.

Examples: Matching networks [2, 3], Radar absorbers [16], Antennas [7, 8, 5],
Scattering [17, 1], High-impedance surfaces [10], Metamaterials [6],Extraordinary
transmission [9],Periodic structures [11]

0 02 04 06 08 1

Cross sections of nano spheres.

High-impedance surface.

\D/Q/kya} Chus bownd, koot

01 1 10 00 1000

Antenna D/Q.

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program,
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Sum rules and bounds in electromagnetic theory

» Temporal dispersion, e.g., from
Kramers-Kronig relations (1926, 1927)

» Matching networks (Bode 1945, Fano 1950)

Radar absorbers (Rozanov 2000)

High impedance surfaces (Brewitt-Taylor

2007, Gustafsson+Sjoberg 2011)

Extinction cross section (Sohl+etal 2007)

Antennas (Gustafsson+etal 2007)

Extraordinary transmission (Gustafsson 2009)

Periodic arrays and FSS (Gustafsson+etal |/ S

2009, 2012) Antenna D/Q.

v

v

vVvyVvVyy

» Antenna input impedance (Gustafsson 2010) :

» Partial wave scattering (Bernland+-etal 2010) k w \ﬁ )
» Metamaterials (Gustafsson+Sjéberg 2010) N
» Superluminal propagation (Gustafsson 2012) ‘ M ’

» Array antennas (Doane, Sertel, Volakis 2013) " High-impedance surface.

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 24



Outline

@ Sum rules in EM
Finite objects
Periodic structures
Absorbers
High-impedance (artificial magnetic) surfaces
Constitutive relations
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Forward scattering sum rule: assumptions

€0 MO
é . e .
¢ =
Assumptions: | From physics: )
> Finite scattering object » The propagation speed is
composed of a linear, limited by the speed of light.

passive, and time
translational invariant
medium.

» Optical theorem (energy
conservation).

» Induced dipole moment in

> Incident linearly polarized the static limit.

plane wave.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 26



Forward scattering sum rule

€0 Ho

Use the n =1 identity with R
ag=v=¢€-v.,-e+(kxée) v, (kxe)andb =0, ie,
2 o X k ~ A 7 A 7 N
;/0 Uek;Q()dkze-’ye-e—i—(kXe)-’ym-(kzxe)
or written in the free-space wavelength A = 27/k

1 [ "

— OextN) AN =& -7, - e+ (k x &) -v,, - (kx &)
0

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 27




Propagation speed limited by the speed of light

t=-2¢/c,

t=-U/c,

é-E=e . (E,+E,)

€=2
¢=3.5/4n,

» Causality in the sense that the scattered field cannot precede
the incident field in the forward direction.

» Causal impulse response hy(t).

» Analytic transfer function h(k), (Fourier, Laplace transform of

hi(t), where k = 27 f /co denotes the free-space

wavenumber.).

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 28




Propagation speed limited by the speed of light

t:—QZ/CO t:—Z/CO t=0 t:f/co

1
é.E, =

L

—

Z||1|

€,=2
§=3.5/4n,

0.00
0.22
033
0,46
0,62
-0.80
1

RO

» Causality in the sense that the scattered field cannot precede
the incident field in the forward direction.

» Causal impulse response hy(t).

» Analytic transfer function h(k), (Fourier, Laplace transform of

hi(t), where k = 27 f /co denotes the free-space
wavenumber.).
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Energy conservation (passivity)

n b n

SN W o LR W o ‘
t=t ! v t=t V:
! |
e E=E, ! ye N |
! o/ B=E, ;
E v |
] [ |
_________ S [ S W

i N : -~ 7 B

Wext,r = — // i(t, 7)< Hs(t,7)+Eg(t, r)xHi(t,r))-n(r)dSdt.
ov
simplify to
Wext = / / E(t)ht(T - t)E(T) dtdr >0
R JR
for all E implying
Imh(k) = oext(k) >0 for Imk >0

cf., the optical theorem.
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Low-frequency asymptotic expansion

v

v

v

>

$=0 P(.9,2)

h(k) = é&-~.ek + O(k?) as k — 0 (Kleinman&Senior 1986).
Polarizability dyadic ..

Induced dipole moment p = epy.Epe.
Variational principles v, < 7., (Jones 1985, Sjoberg 2009).

> High contrast polarizability dyadic .

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 30




High-frequency asymptote

Oext/ A

4
3.5

3
25

2
1 0.45a

1
05 0.55a

ka
50 100 150 200 250 0.45a 0.55a f

» Shadow scattering (Peierls 1979, Gustafsson eta/ 2008).

» Imh(k) = oext (k) < 2A on average as k — oo, i.e., for
O<d<argk <m—94.

> the extinction paradox.
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Forward scattering sum rule

€0 Ho

Use the n =1 identity with R
ag=v=¢€-v.,-e+(kxée) v, (kxe)andb =0, ie,
2 o X k ~ A 7 A 7 N
;/0 Uek;Q()dkze-’ye-e—i—(kXe)-’ym-(kzxe)
or written in the free-space wavelength A = 27/k

1 [ "

— OextN) AN =& -7, - e+ (k x &) -v,, - (kx &)
0
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Polarizability dyadic and induced dipole moment

The induced dipole moment can be written

a) E
P=ce E s i s s e
where ~, is the polarizability dyadic. @
4
Example (Dielectric sphere) &
A dielectric sphere with radius a and relative e
permittivity €, has the polarizability dyadic equipotential lines
b) E
~ :47ra36r_11_>7 = Ara’l S S |
¢ &+ 2 o ettt

as € — 0. —%

Analytic expressions for spheroids, elliptic
discs, half spheres, hollow half spheres,
touching spheres, ...

equipotential lines

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 33



Extinction cross sections for a = 50 nm spheres
P,+ Ps

|Ei[?/2n0

Sum of the scattered and absorbed powers divided by the incident
power flux. Integrate over the free-space wavelength A = 27 /k

Oext = Oa + 05 =

1 [ R R
- Oext(A) dA =& -, - & = 47a®
™ Jo
O (N)/ma?
8 2a=0.1pm
7 A
- ¢
5
4 Au
3
2 Cu
1
0 0.2 0.4 0.6 0.8 1 0 02 04 0.6 0.8 1

The areas under the curves are identical.

Time-domain approach to the forward scattering sum rule, Proc.R.Soc.A, 2010
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Forward scattering of antennas

» Forward scattering measurement of
a dipole antenna.
» Loaded, short, and open circuit.
» Length 15cm and 0.5 GHz to
6 GHz.
in cm?® loaded | short | open
sim: ¥ 661 661 | 291
sim: 2 [ e qp | 644 | 644 | 265
meas: 2 [ 7= gk | 605 | 670 | 322

Forward scattering of loaded and unloaded antenna

IEEE-TAP. 2012,

300

200

100

~100

600

400

200

~200

300
250
200
150
100

50

=50

~100

fem?
B fem d=3,5Tmm

500 ‘t 15em

Gx=Im h
/GHz
T I 2 3 4
Reh
hfem?
d=3.5Tmm
Goxi=Tm h
(=15cm
f/GHz
T 2
Reh
fem? 4=3.57mm
llmel' ¢=15em
et =Tm b [
f/GHz
LA | ) 3 1 6
Reh
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Physical bounds on antennas

|
Given a geometry, e.g., sphere, rectangle, spheroid, or cylinder.
How does D /@ (directivity bandwidth product) depend on the
geometry for optimal antennas?

D _ nkd
0 = g (e et (kxe)my, (kxe)

based on

> Passive materials
» Antenna forward scattering
> ldentities for Herglotz function

Physical limitations on antennas of arbitrary shape Proc R. Soc. A, 463. 2589-2607, 2007.

Illustrations of new physical bounds on linearly polarized antennas, IEEE Trans. Antennas Propagat., 2009.
Absorption Efficiency and Physical Bounds on Antennas, Int. J. of Antennas and Propagat., 946746, 2010
http://www.mathworks.com/matlabcentral /fileexchange/26806-antennagq
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Circumscribing rectangles

3
D/Q/(kya) Chu bound, kyak1

0.1 1 10 100 1000
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Circumscribing rectangles

3
D/Q/(kya) Chu bound, kyak1

0.1t

0.01 : : )
0.1 1 10 100 1000
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How can we measure the polarizability?

» Change of capacitance in a .
parallel plate capacitor.

> The polarizability in a parallel “E
plate waveguide. :
» The periodic polarizability for
symmetric objects. b e e w e o w o

Case 1 Case 2 Case 3
Objects with increasing
distance between the coins.
Large separation of charge give
a large polarizability.

D. Lovri¢, Theoretical and experimental studies of polarizability dyadics , 2011. Kristensson, The polarizability and
the capacltance change of a bounded object in a parallel plate capacitor, Physica Scripta, 2012.
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High-contrast polarizability dyadics: ~

Yoo is determined from the induced
normalized surface charge density, p, as

1
é-’yoo-é:/ e-rp(r)dS
Eo Jov

where p satisfies the integral equation

/
/‘p@)dQ—EWMé—%
1o)

v 4rlr — 1|

with the constraints of zero total charge

Awp@ﬁﬁzo

Can also use FEM (Laplace equation).

r + +——t 1 T 1

equipotential lines
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Removal of metal from a square plate

ool O
1+

0.8
0.6
0.4

0.2 & é)

0 . . . y
0.0001 0.001 0.01 0.1 1
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Removal of metal from a square plate and circular disk

4hY

\\~;;)§2U

-§ ww+yy) 43mw+45yy) a3(4.0 &&+4.8 §3)

1.04 (zz+gy)  £€3(0.94 £2+0.96 gy) £3(0.51 £2+0.93 9y)
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Periodic structures

Radar absorbers.

Frequency selective surfaces (FSS).

Aperture arrays for extraordinary optical transmission (EOT).
Synthesize (meta) materials.

Perfect lens (negative refractive index) to produce planar
lenses and increased resolution.

Cloaking to hide objects (negligible bi-static RCS).

vV VvV VvYyVvyy

v
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Absorbers

v

A (periodic) structure (above a ground
plane) that absorbs incident EM waves.

» Often desired to be thin and absorb
power over large bandwidths.

» The tradeoff between thickness and
bandwidth (homogeneous multilayer
structures) was first analyzed by Rozanov
in 2000.

> Here, as an example also for the general

periodic case.
Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE-TAP, 2000.
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Absorbers

1. ldentify the reflection coefficient, I, as
a passive system (|I'| < 1).

2. Analyze the low- (and high) frequency N | "
behavior: R VA
|

| e
I'(k) ~ —1—ik(2d cos+v/A), k—0 . .
G
where ~ is the polarizability per unit T wys)
cell. A well-defined static quantity that . L
is easily determined. M TR
3. Construct the Herglotz function o)
h = —iln(I'/Bp) and the sum rule - o ¥

2 /oo 1 1
— In dk < 2dcos0+v/A < 2pued
™ Jo [T (k)]
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Absorbers and array antennas

Rewrite in the wavelength A\ = 27 /k and
estimate the integral, e.g.,

1 1 1 [ 1
—(Ao—M\ dl < / In ———d\
R T =l N TEOY]

1 /OO 1
< — In —— dX\ < 2usd
™ Jo [TV

with I = maxy, x,] [1'(A)]-

Bandwidth limited by the thickness d and
(static) permeability ps. J

Extended to array antennas by Doane, Sertel,
Volakis (IEEE-TAP 2013) & Jonsson,
Kolitsidas, Hussain (IEEE-APWL 2013).
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|dentify passive systems

» The transmission coefficient, T'(k),
represents a (time domain) passive system,
i.e., the transmitted energy cannot be
greater than the incident energy for all times.

» The reflection coefficient, I', is passive if the
reference plane is placed 'above’ the

E,

structure. Screen with a periodic microstructure.
» Note causality follows from (time domain) E\ /4
passivity.

» We can now construct many Herglotz
functions (or PR) from 7" and I".

> Total cross section h(k) =i2(1 — T(k))A.

» Absorber h = —iln(I"/B}).

» High-impedance surfaces
Z=(1+I)/1-T)and hy =1iY.

Array above a ground plane.
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High-impedance (artificial magnetic) surfaces

N

» PEC surfaces have low impedance,
i.e., short circuit currents give Z = 0.
They also have reflection coefficients
I'=(Z—2y)/(Z + Zy) = —1.

» PMC surfaces have high impedance
and I" =1 (no phase shift).

> Useful for low-profile antennas ,i.e.,
planar antenna elements can be S
periodic structures

placed above a PMC. above a PEC ground
» Also useful to stop surface waves, cf., plane, here a mushroom

hard and soft surfaces. structure.

High-impedance surfaces
are often composed by

For what bandwidth can a periodic structure above a PEC plane
have "high’ impedance (reflection coefficient I" ~ 1)?
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High-impedance surfaces

How does the bandwidth of high-impedance surfaces (artificial mag-
netic ground planes) depend on the thickness of the structure?

1. Passive system: Admittance
Y =1/Z where Z=(1+1)/(1-1)
and Herglotz function hy =Y.

2. Low-frequency expansion
h~—1/(k(dcos® +~v/2A)) as
k— 0.

3. Interested in the bandwidth with
Y| < A. Compose with ha, ie.,
hi =ha(hy) ~ ]
2k(dcos@ +v/2A)A/.

4. n=1 sum rule.
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High-impedance surfaces

Sum rule

~ _ i
/0 Tm ha(hy (V) dA = 27 (dcose + 2A) A,

where A = 27 /k. ’
Dielectric lossless slab Al
1 [ N
E/ Im hA(hy(/\)) d\ = 27TA, -4
0 -1
where 2 2 1 6 8 0 12
= 4 slab with A =1/2.
0 |[Y]>A e
Imha(hy(N)) = { Yl A The area under the blue curve
L Y]< is 2r A = .
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High-impedance surfaces

Physical bound

B 1 lossy
< max
— = A7 max Y (N)]

S

1/2  lossless,

Non-magnetic and max |Y'| < 1/2 gives the normalized bandwidth
B)\o/d <m.

2

L5 —
~—ImY

1

05 S EECERLTRLTTRITTIES

L

Physical bounds and sum rules for high-impedance surfaces, IEEE-TAP, 2011.
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Additional sum rules for periodic structures

Cross section:

1 e N
ﬁ o Uext()‘;kaé)dA:é'Ve'é

Transmission blockage:
1 /°° 1
— In——d\<eée-v,-€
mJo  [T(M)

Extra ordinary transmission:

[e.9] A 06 31%
/ m{ha(h(\)} dr = 757
0 A
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Sum rules for passive systems

Antennas

Ab-
/ sorbers High-

- impedance
surfaces

Sum rules for Periodic Cross
passive systems structures section
Artificial

)z

Extra Blockage
ordinary

trans-

Dispersion

mission

Matching

Negative
refrac-
tion
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Sum rules for passive systems

I <1
roy=1
Antennas
Extra
ordinary
trans-
mission

sorbers

o Y]~0
impedance Y(0) = oo
Eorward surfaces

scat-

tering

Sum rules for
passive systems

Cross ReY big
efen s Y(0)=0

T < 1

Blockage T(0) = 1

Extra
ordinary
trans-

. mission

Matching

Negative
refrac-
tion

Mats Gustafsson, Lund University, Sweden & |IEEE AP-S Distinguished Lecturer Program, 53



Basically four (or two) cases

admittance want admittance want

large Re Y (wp) with Y/ (0) = 0. small |Y (wo)| < d with Y(0) = oc.
forward scattering (cross high impedance surface, temporal
section) dispersion.

Use identity Use pulse+identity

S-parameter want S-parameter want

|S(wo)| < 6 with |[S(0)] = 1. S(wo) =~ 1 with S(0) = —1.
absorber, matching, blockage, high impedance surface, extra
modes, ... ordinary transmission

Use log+identity Use Cayley+pulse+identity
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Passive constitutive relations

The linear, causal, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are

D(t) = ecpen E(t) + 60/ Xee(t —t)E(t')dt
R
where xee(t) = 0 for ¢t < 0, the dependence of the spatial coordinates is

suppressed, and €5, > 0 is the instantaneous response. The material
model is passive if

o</ E(t aD / /E g S(t—t")+xee(t—t")) E(') dt’ dt

for all times T" and fields E.

> Similarly for the magnetic fields.

» The presented results are also valid for the diagonal elements of
general bi-anisotropic constitutive relations.

» Time-domain model, e.g., used in FDTD.

» Fourier transform to get the frequency-domain model
D(w) = epe(w) E(w).
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Temporal dispersion of passive metamaterials

Metamaterials are materials with
unusual properties, e.g., € = €,
where €, = —1 or ¢, = 0.
Metamaterials are dispersive, i.e.,
e =¢e(w).

What is the minimum temporal

dispersion of passive metamaterials
over bandwidths B = [wq, ws]?

» no limitation for €5, < € < €.

> limitations for €, < €5 = €(00).  €(w) with 2 Lorentz terms:

» limitations for e, > €5 = €(0). €s = 2! static value, €5 = 1
instantaneous value, and
€m = 1.5 or €, = —1: target
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Example: Drude model

The Drude model (common model
for metals and metamaterials)

1 Im (w) _q n ;
_ | =T 000,01 — w)

> Interested in the behavior of
ew)~—-1=¢€y

> €(0.7) ~ —1 = en.

» Difference
le(w) — em| < A =0.4 for
approximately |w — 0.7| < 0.1.
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Sum rules on passive systems

1. Identify a linear and passive (and causal)
system (construct a Herglotz or positive real
function). Here, e.g., h(w) = we(w).

2. Determine the low- and high-frequency ——
asymptotic expansions. Expressed in €5 and Cross sections of nano spheres.

€co-

3. Use integral identities (for Herglotz functions)
to relate the dynamic properties to the
asymptotic expansion, e.g.,

/ #dw:m—blgal’ J
™ Jo w : w> -

where h(w) ~ ajw as w=0 and h(w) ~ bjw . W TN
as w-00.

0 100 1000

Antenna D/Q.

01

High-impedance surface.
Sum rules and constraints on passive systems J. Phys. A: Math. Theor. 44 145205, 2011
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Kramers-Kronig relations

1. we(w) is a Herglotz function (passive material models).
2. without static conductivity

he(w) = we(w) ~ {wes =we(0) as w0

Weao = we(00)  as w300
3. Sum rule (integral identity with n =1, a1 = €, b1 =€)

2 [ Inliel g, 2 [ Inle)
0 0

T w? T w

=€ — €x

Integrated losses are related to the difference €5 — €, cf,,
Landau-Lifshitz, Electrodynamics of Continuous Media and
Jackson, Classical Electrodynamics.

How can we instead relate the temporal dispersion to the
asymptotic values?
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Composition of Herglotz functions

Construct a Herglotz function such that
> |e —€m| < A gives Imh ~ 1.
> |e —€em| > A gives Imh ~ 0.
Solution:
1. use the Herglotz function
I (w) = = (e(w) — em)

wo
to map e & ¢y — 0.
2. compose with a Herglotz function

that has Imha(z) = 1 for |z] < A
and Imha(z) = 0 for |z| > A, ie,

A -
ha(z) = 2 [T g dé= 253

Re hy(z

X
15 -1 05 0 05 1 L5 2

wo

The Herglotz function h Ao (2) with A = 1. Note, it is
not a rational function and it has logarithmic singularities

at +A.
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Example: Drude model

Ve The Drude model

2
Im 1
1 L (W) =1+

—iw(0.01 — iw)’

has €(w) &~ —1 = €y, for w =~ 0.7.
» The area under Imhp(hy(w)) is

08 concentrated to the region

06 where |e(w) — €| < A.

o4 » This area is known

0.2 Im hai(w)

0 02 04 06 08 1 12 woA ~ 0.7-0.4 —0.14

oo —€m 11— (=1)
Imha(hi(w)) with A = 0.4.

Sum rule > area = height x width gives the

- A bandwidth, i.e., bandwidth
/ T ha(hn (@) deo = —2=— ~ 014,
0

€oco — €m
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Example: Drude model

e(w) The Drude model

1
| Im 1
1 L ew)=1+

—iw(0.01 — iw)’

has €(w) &~ —1 = €y, for w =~ 0.7.

» The area under Imhp(hy(w)) is
concentrated to the region
where |e(w) — €| < A.

» This area is known

woA 0.7-04

oo —€m 11— (=1)

=0.14

Imha(hi(w)) with A = 0.4.

Sum rule > area = height x width gives the

- A bandwidth, i.e., bandwidth
/ m ha (g (@) dow = —0—— ~ 014,
0

€oco — €m
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Example: Drude model

e(w) The Drude model

2
Im 1
1 L (W) =1+

—iw(0.01 — iw)’

has €(w) &~ —1 = €y, for w =~ 0.7.

» The area under Imhp(hy(w)) is
concentrated to the region
where |e(w) — €| < A.

» This area is known

woA  0.7-04

~ =0.14
€oo —€m 1—(—1) 0
Imha(hi(w)) with A = 0.4.
Sum rule > area = height x width gives the
bandwidth, i.e., bandwidth

oo A ~
/ Tm ha(h () dw = —202 ~0.14.
0

€oco — €m
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Temporal dispersion: constraints

Interval B = [wy,ws] with fractional bandwidth B = (w2 — wy)/wo,

wo = (UJ] -I-UJQ)/Q
€5 =static, €5, =instantaneous, €, =target values.
1. em < €00

() > B ( ) 1/2 lossy case
maXx [e(W) — € ——— (€ — €
weB 14 B20 ™)1 lossless case,

2. without static conductivity

le(w) — €m) B € —€m |1/2 lossy case
max >
weB [e(w) —€0o] ~ 14+ B/2 € — €0 |1 lossless case,

3. artificial magnetism i, > s

0@) il B e [1/2 lossy case
max >
weB [u(w) — fico| — 14+ B/2 pis — fics |1 lossless case,

Sum rules and physical bounds on passive metamaterials, New Journal of Physics, Vol. 12, pp. 043046-, 2010.
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Outline

® Conclusions
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Conclusions

» Sum rules derived from integral identities for
Herglotz functions.

» Physical bounds.

» Extinction cross section, antennas, extra R T
ordinary transmission, transmission blockage,
high-impedance surfaces, radar absorbers,
temporal dispersion, perfect lenses, artificial
magnetism.

Why physical bounds for passive systems? T
Antenna D/Q.

» Realistic expectations. Possible/impossible.

> Possible design improvements. Is it worth it? H AN

> Figure of merit for a design.

i g s 0 1
. Y
o
@w o8t
4

High-impedance surface.

» Use of active and/or non-linear systems.
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Fourier- and Laplace transforms
Hilbert transform
Stoltz domain
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Functions, distributions, and systems

Basic differences between functions, distributions, and systems:

Functions Distributions Systems
R—f{ v [—R D—| f [—R D— R [—7D
Map numbers to Map test functions to Many possibilities, e.g.,

numbers, e.g., R -+ R, numbers, e.g., D — R, (distributions to

C — C, or matrix D—C,S—C. distributions D' — D’
valued. Continuous, or functions to
differentiable, or using functions.

equivalence classes

such as integrable L7,
There are many similarities for LTI systems, v = h x u, where the
impulse response h can be a function or a distribution.
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Distributions

Definition (Test functions)

D is the space of smooth test functions with compact support.

Definition (Distribution)

The elements of the space D’ of continuous linear functionals on D
are distributions.

Linear functionals are often denoted (f, ¢). We can identify regular
distributions (generated by functions) with the integral

(f.6) = /[R F(H(t) dt

We often suppress the difference between functions and
distributions and use the same notation for distributions. In these
cases it is important to realize the symbol [ - - d-. is just a notation
for the corresponding linear functional (-, -).
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Tempered distributions

Definition (Test functions of rapid descent)

The space S of smooth testing functions of rapid descent.

Definition (Tempered distribution)

The elements of the space S’ of continuous linear functionals on S
are tempered distributions (or distributions of slow growth).

» Subspace of D.

» The Fourier transform of a tempered distribution is a
tempered distribution.

» The Laplace transform of a casual tempered distribution is
analytic for Res > 0.
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Causality

Definition (Causality)

A distribution u on D(R) is causal if (u,¢) = 0 for all test functions ¢(¢) such that
¢(t) =0fort >0, ie, suppu C [0,00).77

The Laplace transform, U(s) = £{u}(s), of a causal tempered
distribution is analytic for Re s > 0. The limiting distribution at

the frequency axis Im

5 Re
lim (U(o+-),¢) = lim / U(o + jw)p(w) dw
o—0t o—0t Jr
is a tempered distribution. Causality is hence not a very strong
condition to restrict the class of distributions.

Example

Derivatives (and anti-derivatives) of the Dirac delta distribution are typical examples

of causal distributions, i.e.,

d™é(t)
den

u(t) = 6 (t) = with U(s) = s"

where we note that U is bounded for n = 0 and passive for |n| < 1.
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Fourier- and Laplace transforms

The Fourier transform is usually defined for real-valued parameters
(the frequency axis) but can also be considered for complex-valued
parameters (e.g., a half plane). There are also many common
normalizations.

One particular illuminating case is the Fourier- and Laplace
transforms of the unit step, i.e.,

FLO(0)Hw) = Ji b ro(w) forweR
and .
L{O(t)}(s) = 3 for Res >0

where we note that {0} is a distribution and £{#} is an analytic
function in s = 0 4 jw for Res > 0. Moreover, F{6} is the
limiting distribution of £{#} at the frequency axis, i.e.,

im, (L{6}, ¢) = (F{0}, )
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Fourier- and Laplace transforms

Consider a causal impulse response
h(t) in the form of a tempered
distribution h € §'.

» The Laplace transform
L{h(t)}(s) is analytic for o > 0
with s = 0 4 jw.

» The Fourier transform

F{h(t)}(w) is a tempered C:S“S(;"'r']siz‘phulsee
e r :
distribution for w € R. S’p(tempered o — 0F
> They are related at the distribution)

frequency axis o — 0.

For the sub class of passive impulse
responses, we can use the
representations for PR (or Herglotz)
functions to restrict the spaces for
the impulse response and transfer
functions.
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Hilbert transform

Definition (Hilbert transform)

The Hilbert transform is

Hu(r}H0) = +f 1 ar

t—T
where a Cauchy principal value integral is used.

Properties
» Bounded in LP for 1 < p < cc.
> Inverse H{H{u}} = —u.
» Convolution with the tempered distribution
h(t) =pv.x, H{u} = hxu.
> Relates the real and imaginary parts of boundary

functions in H? for 1 < p < o0, 7777
King, Hilbert Transforms |,11 (2009) [13],[14].

David Hilbert
1862-1943
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SokhotskiPlemelj theorem

Theorem (SokhotskiPlemelj theorem)

The SokhotskiPlemelj theorem expresses the value of an
analytic function as a Cauchy principal value integral over
a (smooth) closed simple curve
C

L [ f(¢ f(z
f29) = ot L ace 12

© ~
where f1(z) is the limit value from the interior/exterior of
the curve C.

Josip Plemelj
1873-1967

Properties

Julian Karol
Sochocki 1847-1927
» Interpreted as the Cauchy formula and half the ochoct

residue of the pole.

» Similar to the Hilbert transform for half planes and
sufficiently regular functions (decay at infinity).
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Stoltz domain

The symbol = denotes limits in the Stoltz

domain. For w0 (upper) and s=0 (right) upper half plane
half planes, we use any 0 < 6 < 7/2 and Im
T
f<argw<m—60 or|args|§§—9 w
0
and similarly for w—=00 and s=00 v Re
Example (time delay) rightIhaIf plane
m

The time delay I'(s) = e™*7 is scattering
passive and imply the PR function

1-TF _1-e¢"
14T 1+4es7

Y(s)

= tanh(%—) —1

as s—»o0 although the limit s — oo for
s = jw does not exist.
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Outline

@) Polarizability dyadics
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Optical theorem for periodic structures

» The optical theorem relates the forward
scattering with the total cross section,
Oext = Oy + Og.

» The incident power per unit cell is P.

» Transmitted power, P, = |T|?P, + P,1.

» The absorbed power, P,

Po=P —P,— P =P — P, —|T|’P, - Pa.

> The Scattered power Scree‘n with a periodic
PS — Pr + |1 _ T’2R + R;l. microstructure.
» The total absorbed and scattered power

P,+P; = P—P,—|T|*P,— P,y +P+[1-T|*P+Py
=2Re{l - T}P,
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(2) low- and high-frequency expansions

» The Herglotz function h(k) =i2(1 — T(k)) A

» is bounded |h(k)| < 4A so the high-frequency asymptotic is
also bounded.

» The low-frequency asymptote of T is obtained by an
expansion of the fields in powers of k giving

hk) ~ky=k(e v e+ (kxe) v, (kxeé)

as k — 0.

> The electric and magnetic static polarizabilities v, and v,
provide the induced electric and magnetic dipole moments per
unit cell.

» Here, non-magnetic 7,, = 0.

Sjoberg, 'Low frequency scattering by passive periodic structures for oblique incidence: low pass case,’, 2009.
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(3) Total cross section sum rule

How much can a low-pass FSS interact with EM fields?

» Total cross section, gext = Imh, to
quantify the interaction defined as:
absorbed and scattered power
P, + P; = 0extP;, where P; is the
incident power flux.

» The optical theorem

Manufactured SRR structure.

Oext = 2 Re{l - T}A “)2 h/A ‘ 4@ n

and the low-frequency expansion
h(k) ~ké-~,-€ask—0
> Sum rule (n =1)

N f/GHz

0 L2 ) h
z / UeXt(ka k? e) dk _ é . 5 Extinction cross sections for the SRR.
0
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(3) Total cross section

sum rule

» Using the wavelength A = 27 /k

1 e.9]

= Oext(N; k,€)dA =€ -7, - €
0

> Physical bound (rectangle with the
same area)

Ao — A1
———~ min oget(N) < e -é
2 e[\, et S €7

» The extinction cross section bandwidth
product is bounded by the polarizability
per unit cell.

» Gives physical insight.

1 ©2 SRR structure.

hfem
20.4 mm

# 213 mml@

SRR cylinder.
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Periodic in one direction and single object

b) : c)

"OooCo =
woC o O C
‘C oo O

Extend the sum rule to structures periodic in one direction and
single objects
> Increase the (unit cell) distance ¢, between the objects to
infinity to get periodic structures in one direction.
> Increase /y, {y to infinity to get single objects.
> It turns out that they have identical sum rules

™

1 [ -
2/ Oext(N K, €)dN=é-~,- e
0
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Example 1D periodic

» Consider square patches with side

a) .
lengths ¢ and that are repeated ) O o o L
periodically in the @-direction with A el :
inter-element distances ¢y = nt, for /o —

n = 2,5, 10, 20.
» Total cross section for a single square
patch (n = o0).

> (top) polarization & = &. L

Ot /£ &

» (bottom) polarization & = y. 6

» Note the interference patterns that
are seen for inter-element distances
equal to an integer number of
wavelengths, i.e., nf = mA,

m =1,2,.... Similar to Wood’s
anomaly.
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Outline

@ Extra ordinary transmission
Extraordinary transmission
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Extraordinary transmission

» Extraordinary optical transmission (EOT)
is the phenomenon of greatly enhanced
transmission of light through
subwavelength apertures in an opaque
metallic film.

» Ebbesen et al., Extraordinary optical
transmission through sub-wavelength hole
arrays, Nature 1998.

» Localization of light, subwavelength
optics, sensing, optoelectronics.

» Often in thin (e.g., silver) films.

» Bandpass frequency selective surface.

» Here, we analyze apertures in PEC
(perfectly conducting) sheets (zero
thickness).

EO_E0  gO

Array of apertures.
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Extraordinary transmission through PEC sheets

Over what bandwidth can at least 80% of the power be transmitted?

est
Tnfhy (1)}

08

0.6 31%

i
04

A

0 2 1 6 B 10

Construct a sum rule for [T'|? > 0.8, i.e., A = 0.5 below

v

/OOO Tm{ha(h(N)} dX = %

Example with an aperture array of SRR in a PEC sheet.
The area under Im{ha(h(A/¢))} is known: 1.56.
Bandwidth with |T|? > 0.8 is ~ 1.1 (bound 1.56).

v vy
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Outline

@) Temporal dispersion
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Optical theorem for periodic structures

» The optical theorem relates the forward
scattering with the total cross section,
Oext = Oy + Og.

» The incident power per unit cell is P.

» Transmitted power, P, = |T|?P, + P,1.

» The absorbed power, P,

Po=P —P,— P =P — P, —|T|’P, - Pa.

> The Scattered power Scree‘n with a periodic
PS — Pr + |1 _ T’2R + R;l. microstructure.
» The total absorbed and scattered power

P,+P; = P—P,—|T|*P,— P,y +P+[1-T|*P+Py
=2Re{l - T}P,
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(2) low- and high-frequency expansions

» The Herglotz function h(k) =i2(1 — T(k)) A

» is bounded |h(k)| < 4A so the high-frequency asymptotic is
also bounded.

» The low-frequency asymptote of T is obtained by an
expansion of the fields in powers of k giving

hk) ~ky=k(e v e+ (kxe) v, (kxeé)

as k — 0.

> The electric and magnetic static polarizabilities v, and v,
provide the induced electric and magnetic dipole moments per
unit cell.

» Here, non-magnetic 7,, = 0.

Sjoberg, 'Low frequency scattering by passive periodic structures for oblique incidence: low pass case,’, 2009.
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(3) Total cross section sum rule

How much can a low-pass FSS interact with EM fields?

» Total cross section, gext = Imh, to
quantify the interaction defined as:
absorbed and scattered power
P, + P; = 0extP;, where P; is the
incident power flux.

» The optical theorem

Manufactured SRR structure.

Oext = 2 Re{l - T}A “)2 h/A ‘ 4@ n

and the low-frequency expansion
h(k) ~ké-~,-€ask—0
> Sum rule (n =1)

N f/GHz

0 L2 ) h
z / UeXt(ka k? e) dk _ é . 5 Extinction cross sections for the SRR.
0
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(3) Total cross section

sum rule

» Using the wavelength A = 27 /k

1 e.9]

= Oext(N; k,€)dA =€ -7, - €
0

> Physical bound (rectangle with the
same area)

Ao — A1
———~ min oget(N) < e -é
2 e[\, et S €7

» The extinction cross section bandwidth
product is bounded by the polarizability
per unit cell.

» Gives physical insight.

1 ©2 SRR structure.

hfem
20.4 mm

# 213 mml@

SRR cylinder.
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Periodic in one direction and single object

b) : c)

"OooCo =
woC o O C
‘C oo O

Extend the sum rule to structures periodic in one direction and
single objects
> Increase the (unit cell) distance ¢, between the objects to
infinity to get periodic structures in one direction.
> Increase /y, {y to infinity to get single objects.
> It turns out that they have identical sum rules

™

1 [ -
2/ Oext(N K, €)dN=é-~,- e
0
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Example 1D periodic

» Consider square patches with side

a) .
lengths ¢ and that are repeated ) O o o L
periodically in the @-direction with A el :
inter-element distances ¢y = nt, for /o —

n = 2,5, 10, 20.
» Total cross section for a single square
patch (n = o0).

> (top) polarization & = &. L

Ot /£ &

» (bottom) polarization & = y. 6

» Note the interference patterns that
are seen for inter-element distances
equal to an integer number of
wavelengths, i.e., nf = mA,

m =1,2,.... Similar to Wood’s
anomaly.
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