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Stored energy and antennas
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I Single frequency antenna optimization, e.g., minimize Q.
I Current optimization.
I Physical bounds.

Express the stored energy in the current density.
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Stored EM energy expressions (free space)

I Subtraction of the energy in the radiated field (far field F )
(Collin & Rothschild 1964, Yaghjian & Best 2005)

W
(E)
F =

ε0
4

∫

R3
r

|E(r)|2 − |F (r̂)|2
r2

dV

I Expressed in the frequency derivative of the reactance (Fante
1969, Yaghjian & Best 2005)

W
(E)
F =

|I0|2
4
X ′in −

1

2η0
Im

∫

Ω
F ′(r̂) · F ∗(r̂) dΩ

I In the current density (Vandenbosch 2010, see also Geyi 2003,
Gustafsson & Jonsson 2012)

W
(E)
C =

η0

4ω

∫

V

∫

V
∇1 · J1∇2 · J∗2

cos(kr12)

4πkr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

8π
dV1 dV2
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Subtracted far field approach

W
(E)
F =

ε0
4

∫

R3
r

|E(r)|2 − |F (r̂)|2
r2

dV

Have shown that W
(E)
F = W

(E)
C +Wc,0:

J(r)

E(r), H(r)

electric current density

near field

far field

induced EM field

²=²0
¹=¹0

(reactive and radiated fields)

(radiated field)

W
(E)
C =

η0

4ω

∫

V

∫

V
∇1 · J1∇2 · J∗2

cos(kr12)

4πkr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

8π
dV1 dV2

with Jn = J(rn), n = 1, 2 and a coordinate dependent part

Wc,0 =
η0

4ω

∫

V

∫

V
Im
{
k2J1·J∗2−∇1·J1∇2·J∗2

}r2
1 − r2

2

8πr12
k j1(kr12) dV1 dV2

where j1(z) = (sin(z)− z cos(z))/z2 is a spherical Bessel function.
Gustafsson, Jonsson: Stored electromagnetic energy and antenna Q, 2012
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Subtracted far field: comments

I Coordinate dependent for far-fields F
with

Wc,0−Wc,d =
ε0
4
d·
∫

Ω
r̂|F (r̂)|2 dΩ 6= 0

I Identical coordinate independent part
as for the stored energy introduced by
Vandenbosch 2010.

I Can produce negative values for lager
structures.

I Difficult to generalize to antennas
embedded in lossy media (no far field).
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We now introduce an alternative approach to analyze antennas in
lossy (dispersive) media.
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Frequency derivatives of impedance/admittance matrices

The impedance and admittance matrices relate the voltages and
currents

ZI = V or I = Z−1V = YV

The (angular) frequency derivative of the admittance matrix is

Y′ =
∂Y

∂ω
=
∂Z−1

∂ω
= −Z−1Z′Z−1 = −YZ′Y

Note there are no complex conjugates. Hence, better to use
quadratic forms with the transpose VTY′V than Hermitian trans-
pose VHY′V = VT∗Y′V.

For the case of a voltage source (frequency independent)

Yin =
1

Zin
=

VTYV

V 2
in

and V 2
inY
′

in = VTY′V = −ITZ′I.
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Lumped circuits

Consider a voltage source and use the Kirchoffs’ laws to construct
the linear system ZI = V, where the impedance matrix
Z = R + jX contains elements of the form

Zij = Rij + jXij = Rij + j

(
ωLij −

1

ωCij

)

The differentiated impedance matrix Z′ = jX′ is imaginary valued
with the elements

X ′ij =
∂

∂ω

(
ωLij −

1

ωCij

)
= Lij +

1

ω2Cij
.

Differentiated input admittance and impedance

Y ′in = −jITX′I/V 2
in and Z ′in = −Z2

inY
′

in = jITX′I/I2
in

Mats Gustafsson, Lund University, Sweden



Energy in lumped circuits

C

+ −
V

I
L

I

Time average stored energy in capacitors and in inductors

W (E) =
C|V |2

4
=
|I|2

4ω2C
and W (M) =

L|I|2
4

Contain absolute values |I|2 and |V |2, need to use Hermitian
transpose. For a circuit network

W (M) −W (E) =
IHXI

4ω
and W (E) +W (M) =

IHX′I

4
≥ 0

reactance X for difference W (M) −W (E) and differentiated
reactance X′ the sum W (M) +W (E).
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Energy in lumped circuits

C

+ −
V

I
L

I

Time average stored energy in capacitors and in inductors

W (E) =
C|V |2

4
=
|I|2

4ω2C
and W (M) =

L|I|2
4

Contain absolute values |I|2 and |V |2, need to use Hermitian
transpose. For a circuit network

W (M) =
1

8
IH
(
∂X

∂ω
+

X

ω

)
I =

1

4

N∑

i,j=1

I∗i LijIj ≥ 0

W (E) =
1

8
IH
(
∂X

∂ω
− X

ω

)
I =

1

4ω2

N∑

i,j=1

I∗i C
−1
ij Ij ≥ 0,
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Q and QZ′
in

for lumped circuits

Assume for simplicity a self-resonant circuit (antenna)

QZ′
in

=
ω|Z ′in|
2Rin

=
ω|ITX′I|
2IHRI

and

Q =
2ωmax{W (E),W (M)}

Pd
=
ωIHX′I

2IHRI

Transpose for QZ′
in

and Hermitian transpose for Q

Also the inequality Q ≥ QZ′
in

as (X′ = UTΛU real valued)

IHX′I = (UI)HΛUI ≥
∣∣(UI)TΛUI

∣∣ =
∣∣ITX′I

∣∣ ≥ 0

with equality (to 0) for some current I (in the matrix case).

Mats Gustafsson, Lund University, Sweden



Zin for antennas using MoM

Use a method of moments (MoM) formulation of the electric field
integral equation (EFIE). Impedance matrix Z = R + jX

Zij

η
= j

∫

V

∫

V

(
k2ψi1 ·ψj2 −∇1 ·ψi1∇2 ·ψj2

) e−jkR12

4πkR12
dV1 dV2

where ψi(rn) with i = 1, ..., N and n = 1, 2 and R12 = |r1 − r2|.
The current density is J(r) =

∑N
i=1 Iiψi(r) with the expansion

coefficients determined from

ZI = V or I = Z−1V = YV

where V is the column matrix with excitation coefficients and
Y = G + jB is the admittance matrix.
The input admittance, Yin = Gin + jBin = Z−1

in , is

Yin = 1/Zin = VTYV/V 2
in

where Zin = Rin + jXin is the input impedance.
Mats Gustafsson, Lund University, Sweden



QZ′
in

and Q for antennas (fields)

Differentiate the MoM impedance matrix

k ∂Zij

η ∂k
=

∫

V

∫

V
j
(
k2ψi1 ·ψj2 +∇1 ·ψi1∇2 ·ψj2

) e−jkR12

4πkR12

+
(
k2ψi1 ·ψj2 −∇1 ·ψi1∇2 ·ψj2

) e−jkR12

4π
dV1 dV2

As for the lumped circuit case

V 2
inY
′

in = (VTYV)′ = VTY′V = −ITZ′I.

and the stored energy determined from X′

WeX′ +WmX′ =
1

4
IHX′I

is identical to the stored energy expressions introduced by
Vandenbosch 2010.
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Antenna examples (free space)
Q from stored energy expressed in the current density QC, circuits QZB , and

differentiated impedance QZ′
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Antenna examples (free space)
Q from stored energy expressed in the current density QC, circuits QZB , and

differentiated impedance QZ′
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Q computed from

I the currents, QC.

I a circuit model synthesized from
the input impedance using
Brune synthesis (1931), QZB

.

I differentiation of the (tuned)
input impedance,

QZ′
in

=
ω0|Z′

in|
2Rin

= ω0|Γ ′|.

All agree for Q � 1 but the Q from
the differentiated impedance (QZ′

in
) is

lower in some regions.
Which one is most accurate/best?
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Mats Gustafsson, Lund University, Sweden

http://arxiv.org/abs/1211.5521


Stored energy from circuit models

Resonance circuits Padé (local) approximation around the resonance

frequency (also an all-pass filter), cf., QZ′ = ω0|Z′|
2R = ω0|Γ ′|

C L
R C L R

Brune synthesis Brune (1931) synthesized circuit from the input
impedance. The negative quantities are replaced by ideal
transformers. Here Q-factor QZB

0.86
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1
4.7

3.66.1
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Dispersive media

The frequency derivative of the EFIE impedance matrix Z is

ω
∂Zij

∂ω
= k

∂(Zij/η)

∂k

ηω

k

∂k

∂ω
+ ω

Zij

η

∂η

∂ω

for a temporally dispersive background medium with k = ω
√
εµ

and η =
√
µ/ε. The derivative simplifies to

ω
∂Zij

∂ω
= k

∂(Zij/η)

∂k
η

(
ω∂ε

2ε∂ω
+ 1

)
− Zij

2

ω∂ε

ε∂ω

for the common case of a non-magnetic medium, µr = 1.

Multiplication of the previously calculated derivative (with respect to
the wavenumber k in the medium) with a factor that only depends
on the medium. The factor ωε′ = (ωε)′− ε is similar to the classical
approach used to define the energy density in dispersive media.
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Numerical examples: Debye media
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Numerical examples: Debye media
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Numerical examples: Debye media
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Numerical examples: Lorentz media
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Numerical examples: Lorentz media
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Numerical examples: Lorentz εr = µr media
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Numerical examples: Lorentz εr = µr media
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Summary: Stored EM energies

I Introduced by Vandenbosch in Reactive energies, impedance, and
Q factor of radiating structures, IEEE-TAP 2010.

I In the limit ka→ 0 by Geyi, IEEE-TAP 2003 and also similar
expressions by Carpenter 1989.

I Verification for wire antennas in Hazdra etal, IEEE-AWPL 2011.
I Some issues with ’negative stored energy’ for large structures in

Gustafsson etal, IEEE-TAP 2012. See also Gustafsson and Jonsson,
Stored Electromagnetic Energy and Antenna Q, 2012.

I Time-domain version by Vandenbosch 2013.
I QZ′

in
formulation by Capek etal, IEEE-TAP 2014.

One of the most powerful new tools in EM and antenna theory. Still
many open questions and probably no consensus (yet).

I How do we interpret the stored energy? Subtracted far-field...
I How do we verify the expressions? Circuit models (Brune),

unique,...
I Dialectics, losses, ... There are some suggestions and initial results..
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Q-factor and stored energy

I The Q-factor for a tuned antenna is

Q = max{Q(E), Q(M)}, Q(E) =
2ωW (E)

Pr
, Q(M) =

2ωW (M)

Pr

and W (E) is the stored electric energy, W (M) the stored
magnetic energy, and Pr the dissipated (radiated for a
loss-less antenna) power.

I Fractional bandwidth for single resonance circuits

B =
ω2 − ω1

ω0
≈ 2Γ0

Q
√

1− Γ 2
0

,

where ω0 = (ω1 + ω2)/2 and Γ0 is the threshold of the
reflection coefficient.

I The Fano limit for a single resonance circuit,
B ≤ 27.29/(Q|Γ0,dB|), is an upper bound on the bandwidth
after matching.
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Brune synthesize

Iterative procedure to
synthesize circuit models from
PR (positive real rational
functions) by Brune 1931.

1. Approximate the input
impedance with a rational
PR function (hard
problem).

2. Apply Brune synthesis
and compute the stored
energy in the capacitors
and inductors.
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