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Design of small antennas

Folded spherical helix SonyEricsson P1i Fragmented patches

I There are many advanced methods to design small antennas.
I Often antennas embedded in structures.
I Performance in Q, bandwidth and efficiency.
I Fundamental tradeoff between Q and size (and bandwidth for

passive matching).
I A figure of merit for performance.
I What about efficiency?
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Tradeoff between performance and size

I Radiating (antenna) structure, V .

I Antenna volume, V1 ⊂ V .

I Current density J1 in V1.

I Radiated field, F (k̂), in direction k̂
and polarization ê.

Questions analyzed here, J1 for:

I maximum G(k̂, ê)/Q.

I superdirectivity.

I embedded antennas.

I efficiency.

I also minimum Q for given radiated
fields, sidelobe levels, MIMO...
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Background

I 1947 Wheeler: Bounds based on circuit models.
I 1948 Chu: Bounds on Q and D/Q for spheres.
I 1964 Collin & Rothchild: Closed form expressions of Q for arbitrary

spherical modes, see also Harrington, Collin, Fantes, MacLean, Gayi,
Hansen, Hujanen, Sten, Thiele, Best, Yaghjian, Karlsson, Kildal, Kim,...
(most are based on Chu’s approach using spherical modes.)

I 1999 Foltz & McLean, 2001 Sten, Koivisto, and Hujanen: Attempts for
bounds in spheroidal volumes.

I 2006 Thal: Bounds on Q for small hollow spherical antennas.
I 2007 Gustafsson, Sohl & Kristensson: Bounds on D/Q for arbitrary

geometries (and Q for small antennas).
I 2010 Yaghjian & Stuart: Bounds on Q for dipole antennas in the limit
ka→ 0.

I 2011 Vandenbosch: Bounds on Q for small (non-magnetic) antennas in the
limit ka→ 0.

I 2011 Chalas, Sertel & Volakis: Bounds on Q using characteristic modes.
I 2012 Gustafsson, Cismasu, & Jonsson: Optimal charge and current

distributions on antennas.
I 2013 Gustafsson & Nordebo: Optimal antenna currents for Q,

superdirectivity, and radiation patterns using convex optimization.
I 2014 Multi-objective optimization for efficiency,...
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Antenna optimization
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Optimization of structures

I global optimization.
I new non-intuitive designs.
I convergence?
I stopping criteria?
I optimal?

Optimization of currents

I determine optimal currents
for Q, G/Q, ...

I convex optimization.
I physical bounds.
I can we realize the currents?
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Antenna optimization
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Q from G/Q for a planar PEC ground plane and
100, 25, 15, 6% antenna region
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Optimization of antenna current

Gain over Q

minimize Stored energy

subject to Radiation intensity = P0

Q for superdirectivity D ≥ D0.

minimize Stored energy

subject to Radiation intensity = D0Prad/(4π)

Radiated power ≤ Prad

Embedded structures

minimize Stored energy

subject to Radiation intensity = P0

Correct induced currents
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Stored EM energies from current densities J in V

Use the expressions by Vandenbosch (2010) (and Carpenter
(1989), Geyi (2003) for small antennas). Stored electric energy

W̃
(e)
vac = µ0

16πk2
w(e)

w(e) =

∫
V

∫
V
∇1 · J1∇2 · J∗2

cos(kR12)

R12

− k

2

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)
sin(kR12) dV1 dV2,

J(r)

E(r), H(r)

electric current density

near field

far field

induced EM field

²=²0
¹=¹0

(reactive and radiated fields)

(radiated field)

where J1 = J(r1),
J2 = J(r2), R12 = |r1 − r2|. Stored

magnetic energy W̃
(m)
vac = µ0

16πk2
w(m), where

w(m) =

∫
V

∫
V
k2J1 · J∗2

cos(kR12)

R12

−k
2

(
k2J1·J∗2−∇1·J1∇2·J∗2

)
sin(kR12) dV1 dV2.
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Stored EM energies from current densities J in V II

Also the total radiated power Prad = η0
8πkprad with

prad =

∫
V

∫
V

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kR12)

R12
dV1 dV2.

Method of Moments approximation (expand J in basis functions)

w(e) ≈ JHXeJ stored E-energy

w(m) ≈ JHXmJ stored M-energy

prad ≈ JHRrJ radiated power

We also use

F ≈ FHJ far field

J2 ≈ Z′J1 induced current on a PEC

The normalized quantities w(e), w(m), and prad have dimensions
given by volume, m3, times the dimension of |J |2.
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Convex optimization of antenna currents

Convex optimization offer many possibilities to analyze radiating
structures. Quantities are:

linear near field, far field, and induced currents.

quadratic positive semidefinite radiation intensity, radiated power,
absorbed power, stored energies.

in the current density J . In convex optimization, we can

I minimize convex quantities.

I maximize concave quantities.

The linear (affine) quantities are both convex and concave.
Quadratic positive semidefinite forms are convex.
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Convex optimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., N1

Ax = b

convex

not convex

f(y)

f(x)

f(®x+¯y)

®f(x)+¯f(y)

where fi(x) are convex, i.e., fi(αx + βy) ≤ αfi(x) + βfi(y) for
α, β ∈ R, α+ β = 1, α, β ≥ 0.

Solved with efficient standard algorithms. No risk of getting trapped
in a local minimum. A problem is ’solved’ if formulated as a convex
optimization problem.

Can be used in many formulations for the antenna performance
expressed in the current density J .
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Currents for maximal G/Q for embedded antennas

Determine an optimal current density J1(r) in the volume V1. Assume
that V is PEC outside V1.
Can minimize the stored energy for given
radiated field

minimize max{JHXeJ,J
HXmJ}

subject to Re{FHJ} = 1

J2 = Z′J1

or maximize the radiated field for given
stored energy

maximize Re{FHJ}
subject to JHXeJ ≤ 1

JHXmJ ≤ 1

J2 = Z′J1

Can also eliminate J2.
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ê

^

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Embedded antennas in planar PEC rectangles
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D/Q (or G/Q) bounds

Typical (but not optimal) matlab code using CVX

cvx_begin

variable J(n) complex;

dual variables We Wm

maximize(real(F’*J))

subject to

We: quad_form(J,Xe) <= 1;

Wm: quad_form(J,Xm) <= 1;

cvx_end

We can reformulate the complex optimization problem to analyze
superdirectivity, antennas with a prescribed radiation pattern, ...
Now we generalize the approach to analyze efficiency.
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Efficiency, ηeff

I For lossy structures, it is desired
to minimize the stored energy
and the ohmic losses
simultaneously.

I The ohmic losses is
positive-semidefinite quadratic
form in the current density J .

I MoM approximation
pΩ ≈ JHRΩJ.

I We consider resistive sheets for
planar structures with resistance
{10, 1, 0.1, 0.01}Ω/�.

Multi-objective optimization and
Pareto optimality to minimize the
stored energy and ohmic losses.
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Efficiency, ηeff , using Pareto optimality

Linear combination of the stored
energy and ohmic losses

min. αmax{JHXeJ,J
HXmJ}

+ (1− α)JHPΩJ

s.t. Re{FHJ} = 1

where + ≤ α ≤ 1. A planar
rectangle with side lengths `x and
`x/2 modeled as a resistive sheet
with
R = 1/(σd) = {10, 1, 0.1, 0.01}Ω/�
is used to illustrate the tradeoff
between Q, D, and ηeff for
`x/λ ≈ 0.13 (or ka ≈ 0.44).
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k=ŷ^

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Superdirectivity: min. G/Q s.t. D ≥ D0

A superdirective antenna has a
directivity that is much larger
than for a typical reference
antenna. Add the constraint
Prad ≤ 4πD−1

0 the get the
convex optimization problem

min. max{JHXeJ,J
HXmJ}

s.t. Re{FHJ} = 1

JHRrJ ≤ k3D−1
0

Example for current densities
confined to planar rectangles
with side lengths `x and
`y = 0.5`x.
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Superdirectivity: min. G/Q s.t. D ≥ D0

Linear combination for losses:

min. αW + (1− α)JHPΩJ

s.t. JHXeJ ≤W
JHXmJ ≤W
Re{FHJ} = 1

JHRrJ ≤ k3D−1
0

Example for current densities
confined to planar rectangles
with side lengths `x and
`y = 0.5`x, R = 0.01 Ω/�,
and ka = 0.44.
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Summary

I Convex optimization to determine bounds
and optimal currents:

I D/Q and G/Q.
I Q for superdirective antennas.
I Embedded antennas in PEC structures.
I Q for antennas with prescribed far fields.
I Multi-objective optimization for efficiency.

I Closed form solution for small antennas.

I Non-Foster to overcome B ∼ 1/Q.

I Initial results for efficiency. Self resonance?

I More realistic geometries.

I MIMO.
Gustafsson and Nordebo, Optimal antenna currents for Q, superdirectivity, and
radiation patterns using convex optimization, IEEE-TAP, 61(3), 1109-1118, 2013

0.1 0.2 0.3 0.4 0.5 l/¸

10

102

1

Q

103

0.3 0.6 0.9 1.2 1.5
f/GHz, l=10cm

61525

Simulation
Prediction

Physical bound

% antenna region100

V
V1

y

x

z

k

ê
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Antenna examples
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Optimal current distributions on small spheres

I The optimization problem for small dipole antennas show that
the charge distribution is the most important quantity.

I On a sphere, we have

ρ(θ, φ) = ρ0 cos θ

for optimal antennas with polarization ê = ẑ.

I The current density satisfies

∇ · J = −jkρ

Many solutions, e.g., all surface currents

J = Jθ0θ̂
(

sin θ − β

sin θ

)
+

1

sin θ

∂A

∂φ
θ̂ − ∂A

∂θ
φ̂

where Jθ0 = −jkaρ0, β is a constant, and A = A(θ, φ)
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Optimal current distributions on small spheres

Some solutions:

I Spherical dipole,
β = 0, A = 0.

I Capped dipole,
β = 1, A = 0.

I Folded spherical helix,
β = 0, A 6= 0.

They all have almost identical
charge distributions

ρ(θ, φ) = ρ0 cos θ

Can mathematical solutions
suggest antenna designs?
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