
Physical bounds on small antennas as convex
optimization problems

Mats Gustafsson, Marius Cismasu, and Sven Nordebo

Department of Electrical and Information Technology

Lund University, Sweden

IEEE-APS, Chicago, 2012-07-09



Design of small antennas

R. H. Bhuiyan www.m0wwa.co.uk www.hyperexperience.com

I There are many advanced methods to design small antennas.

I Performance often in bandwidth, matching, and efficiency.

I How can new designs, geometries, and materials improve
performance?

I Here, what is the fundamental tradeoff between performance
and size?
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Tradeoff between performance and size

I Radiating (antenna) structure, V .

I Antenna volume, V1 ⊂ V .

I Current density J1 in V1.

I Radiated field, F (k̂), in direction k̂
and polarization ê.

Questions analyzed here, J1 for:

I maximum G(k̂, ê)/Q.

I maximum G(k̂, ê)/Q for
D(k̂, ê) ≥ D0 (superdirectivity).

I embedded antennas.

I also minimum Q for radiated field
approximately F (k̂) and effects of
Ohmic losses.
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Background

I 1947 Wheeler: Bounds based on circuit models.
I 1948 Chu: Bounds on Q and D/Q for spheres.
I 1964 Collin & Rothchild: Closed form expressions of Q for arbitrary

spherical modes, see also Harrington, Collin, Fantes, Maclean, Gayi,
Hansen, Hujanen, Sten, Thiele, Best, Yaghjian, Kildal... (most are based on
Chu’s approach using spherical modes.)

I 1999 Foltz & McLean, 2001 Sten, Koivisto, and Hujanen: Attempts for
bounds in spheroidal volumes.

I 2006 Thal: Bounds on Q for small hollow spherical antennas.
I 2007 Gustafsson, Sohl & Kristensson: Bounds on D/Q for arbitrary

geometries (and Q for small antennas).
I 2010 Yaghjian & Stuart: Bounds on Q for dipole antennas in the limit
ka→ 0.

I 2011 Vandenbosch: Bounds on Q for small (non-magnetic) antennas in the
limit ka→ 0.

I 2011 Chalas, Sertel & Volakis: Bounds on Q using characteristic modes.
I 2012 Gustafsson, Cismasu, & Jonsson: Optimal charge and current

distributions on antennas.
I 2012 Bernland: Physical Limitations on the Scattering of High Order

Electromagnetic Vector Spherical Waves.
I 2012 Gustafsson & Nordebo: Optimal antenna Q, superdirectivity, and

radiation patterns using convex optimization.
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G/Q and D/Q
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Partial gain expressed in the partial
radiation intensity P (k̂, ê) and total
radiated Prad and dissipated power Ploss

G(k̂, ê) = 4π
P (k̂, ê)

Prad + Ploss

Q-factor

Q =
2ωW

Prad + Ploss
=

2c0kW

Prad + Ploss
,

where W = max{We,Wm} denotes the
maximum of the stored electric and magnetic energies. The G/Q
and (D/Q for lossless) quotient cancels Prad + Ploss

G(k̂, ê)

Q
=
D(k̂, ê)

Q
=

2πP (k̂, ê)

c0kW
.
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Stored EM energies from current densities J in V
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Use the expressions by Vandenbosch
(2010) (and Geyi (2003) for small antennas).

Stored electric energy W̃
(e)
vac =

µ0
16πk2

w(e)

w(e) =

∫
V

∫
V
∇1 · J1∇2 · J∗

2

cos(kR12)

R12

−k
2

(
k2J1·J∗

2−∇1·J1∇2·J∗
2

)
sin(kR12) dV1 dV2,

where J1 = J(r1),
J2 = J(r2), R12 = |r1 − r2|. Stored

magnetic energy W̃
(m)
vac = µ0

16πk2
w(m), where

w(m) =

∫
V

∫
V
k2J1 · J∗

2

cos(kR12)

R12

− k

2

(
k2J1 · J∗

2 −∇1 · J1∇2 · J∗
2

)
sin(kR12) dV1 dV2.
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Stored EM energies from current densities J in V II

Also the total radiated power Prad = η0
8πkprad with

prad =

∫
V

∫
V

(
k2J1 · J∗

2 −∇1 · J1∇2 · J∗
2

)sin(kR12)

R12
dV1 dV2.

The normalized quantities w(e), w(m), and prad have dimensions
given by volume, m3, times the dimension of |J |2.

I Introduced by Vandenbosch in Reactive energies, impedance,
and Q factor of radiating structures, IEEE-TAP 2010.

I In the limit ka→ 0 by Geyi in Physical limitations of antenna,
IEEE-TAP 2003.

I Validation for wire antennas in Hazdra etal, Radiation Q-factors
of thin-wire dipole arrangements, IEEE-AWPL 2011.

I Some issues with ’negative stored energy’ for large structures in
Gustafsson etal, IEEE-TAP 2012.
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G/Q in the current density J
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The partial radiation intensity P (k̂, ê)
in direction k̂ and for the polarization ê is

P (k̂, ê) =
η0k

2

32π2

∣∣∣∣∫
V
ê∗ · J(r)ejkk̂·r dV

∣∣∣∣2
We have the G/Q quotient

G(k̂, ê)

Q
= k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}

≤ max
J

k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
Solve the optimization problem. Closed form solutions in the limit
ka→ 0 and convex optimization for larger (but small) structures.
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Convex optimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., N1

Ax = b

convex

not convex

f(y)

f(x)

f(®x+¯y)

®f(x)+¯f(y)

where fi(x) are convex, i.e., fi(αx+ βy) ≤ αfi(x) + βfi(y) for
α, β ∈ R, α+ β = 1, α, β ≥ 0.

Solved with efficient standard algorithms. No risk of getting trapped
in a local minimum. A problem is ’solved’ if formulated as a convex
optimization problem.

Can be used in many convex formulations for antenna performance
expressed in the current density J , e.g.,

I Radiated field F (k̂) = −k̂ × k̂ ×
∫
V J(r)ejkk̂·r dV is affine.

I Radiated power, stored electric and magnetic energies, and
Ohmic losses are positive semi-definite quadratic forms in J .
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Currents for maximal G/Q

Determine a current density J(r) in the volume V that maximizes the
partial-gain Q-factor quotient G(k̂, ê)/Q.

I Partial radiation intensity P (k̂, ê)

G(k̂, ê)

Q
=

2πP (k̂, ê)

c0kmax{We,Wm}
.

I Scale J and reformulate P = 1 as
Re{ê∗ · F } = 1.

I Convex optimization problem.

minimize max{JHWeJ,J
HWmJ}

subject to Re{FHJ} = 1
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Determines a current density J(r) in the volume V with minimal stored
EM energy and unit partial radiation intensity in {k̂, ê}.
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Maximal G(k̂, x̂)/Q for planar rectangles

Solution of the convex optimization
problem

min. max{JHWeJ,J
HWmJ}

s.t. Re{FHJ} = 1

for current densities confined to
planar rectangles with side lengths `x
and `y = {0.01, 0.1, 0.2, 0.5}`x.

Note `x/λ = k`x/(2π), giving
`x = λ/2→ k`x = π → ka ≥ π/2.
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D/Q (or G/Q) bounds

I Similar to the forward scattering bounds for TM.

I Can design ’optimal’ electric dipole mode (TM) antennas.

I TE modes and TE+TM are not well understood.

I Typical matlab code using CVX

cvx_begin

variable J(n) complex;

dual variables We Wm

maximize(real(F’*J))

We: quad_form(J,Ze) <= 1;

Wm: quad_form(J,Zm) <= 1;

cvx_end

We now reformulate the complex optimization problem to analyze
superdirectivity, antennas with a prescribed radiation pattern, losses,
and antennas embedded in a PEC structure.
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Superdirectivity

I A superdirective antenna has a
directivity that is much larger than for
a typical reference antenna.

I Often low efficiency (low gain) and
narrow bandwidth.

I There is an interest in small
superdirective antennas, e.g., Best
etal. 2008 and Arceo & Balanis 2011, Best, etal., An Impedance-Matched

2-Element Superdirective Array,
IEEE-TAP, 2008

Here, we add the constraint D ≥ D0 to the convex optimization
problem for G/Q to determine the minimum Q for superdirective
lossless antennas. We can also add constraints on the losses.
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Superdirectivity

Add the constraint
Prad ≤ 4πD−1

0 the get the
convex optimization problem

min. max{JHWeJ,J
HWmJ}

s.t. Re{FHJ} = 1

JHPJ ≤ k3D−1
0

Example for current densities
confined to planar rectangles
with side lengths `x and
`y = 0.5`x.
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Superdirectivity with D ≥ D0 = 10
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Note, it gives a bound on Q as D is known.
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Optimal performance for embedded antennas

I It is common with antennas embedded
in metallic structures.

I The induced currents radiate but they
are not arbitrary.

I Linear map from the antenna region
adds a (convex) constraint.

I Here, we assume that the surrounding
structure is PEC and add a constraint
to account for the induced currents on
the surrounding structure in the G/Q
formulation.
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Center fed strip dipole
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Almost independent of the feed width at the resonance just below
`x = 0.5λ.
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Embedded antennas in a planar rectangle
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Conclusions

I Closed form solution for small antennas.
I Optimal current distributions. Spherical

dipole, capped dipole, and folded spherical
helix. More in IF46, Small Antennas:
Designs and Applications on Thursday.

I Convex optimization to determine bounds
and optimal currents for larger structures:

I D/Q and G/Q.
I Q for superdirective antennas.
I Embedded antennas in PEC structures.
I Q for antennas with prescribed far fields.

See also Physical bounds and optimal currents on
antennas IEEE TAP, 60, 6, pp. 2672-2681, 2012
and Antenna currents for optimal Q, superdirectiv-
ity, and radiation patterns using convex optimiza-
tion (www.eit.lth.se/staff/mats.gustafsson)
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