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Design of small antennas

R. H. Bhuiyan www.mOwwa.co.uk www.hyperexperience.com

» There are many advanced methods to design small antennas.
» Performance often in bandwidth, matching, and efficiency.

» How can new designs, geometries, and materials improve
performance?

» Here, what is the fundamental tradeoff between performance
and size?

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden



Tradeoff between performance and size

v

Radiating (antenna) structure, V.

» Antenna volume, V; C V.

v

Current density J1 in V1.

Radiated field, F(k), in direction k
and polarization e.

v

Questions analyzed here, J; for:
> maximum G(k, &)/Q.
> maximum G(k,&)/Q for
D(k,é) > Dy (superdirectivity).
> embedded antennas.

> also minimum @ for radiated field

~

approximately F'(k) and effects of
Ohmic losses.
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Background

> 1947 Wheeler: Bounds based on circuit models.

» 1948 Chu: Bounds on Q and D/Q for spheres.

> 1964 Collin & Rothchild: Closed form expressions of Q for arbitrary
spherical modes, see also Harrington, Collin, Fantes, Maclean, Gayi,
Hansen, Hujanen, Sten, Thiele, Best, Yaghjian, Kildal... (most are based on
Chu’s approach using spherical modes.)

» 1999 Foltz & McLean, 2001 Sten, Koivisto, and Hujanen: Attempts for
bounds in spheroidal volumes.

» 2006 Thal: Bounds on @) for small hollow spherical antennas.

» 2007 Gustafsson, Sohl & Kristensson: Bounds on D/Q for arbitrary
geometries (and Q for small antennas).

» 2010 Yaghjian & Stuart: Bounds on Q) for dipole antennas in the limit
ka — 0.

» 2011 Vandenbosch: Bounds on Q) for small (non-magnetic) antennas in the
limit ka — 0.

» 2011 Chalas, Sertel & Volakis: Bounds on Q) using characteristic modes.

» 2012 Gustafsson, Cismasu, & Jonsson: Optimal charge and current
distributions on antennas.

» 2012 Bernland: Physical Limitations on the Scattering of High Order
Electromagnetic Vector Spherical Waves.

» 2012 Gustafsson & Nordebo: Optimal antenna Q, superdirectivity, and
radiation patterns using convex optimization.
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G/Q and D/Q

Partial gain expressed in the partial
radiation intensity P(k,é) and total
radiated P,,q and dissipated power Py U é\/ k

» P(k,e)
Gk, &) = dm——08)
( ) Prad + Ploss

Q-factor

wW  2cokW S

Q= = ;
Prad + P)loss Prad + Hoss

where W = max{W,, Wy, } denotes the
maximum of the stored electric and magnetic energies. The G/Q
and (D/Q for lossless) quotient cancels P.ag + Ploss

G(k,e) D(k,e) 2rP(k,e)

Q.  Q  ckW
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Stored EM energies from current densities J in V

Use the expressions by Vandenbosch
(2010) (and Geyi (2003) for smaII antennas).

Stored electric energy Wéai = 16 6otz w'®
kR
w® :/ / VI.J1V2.J’2‘M
vJv Rip \ ,
—5 (/{2J1'J§—V1-J1V2'J;) Sin(kRu) dV1 dVg, T

where J1 J(’I"l)
Jo = J(r2), Ria = |r1 — ra|. Stored

magnetic energy W\Sac) = 16“°k w™) where

m)_/ / KT, JQCOS (kR12)
Ry

—f(szl J5 — V1 - J1Va - J3) sin(kRi2) dVy dVa.
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Stored EM energies from current densities J in V' |l

Also the total radiated power Praq = ghrpraqa With

in(k
prad:// (kQJlJS_V1J1V2J§)MdV1dV2
vJv Ry

The normalized quantities w(e),w(m), and pyaq have dimensions
given by volume, m?, times the dimension of |.J|?.

» Introduced by Vandenbosch in Reactive energies, impedance,
and @ factor of radiating structures, |IEEE-TAP 2010.

» In the limit ka — 0 by Geyi in Physical limitations of antenna,
IEEE-TAP 2003.

» Validation for wire antennas in Hazdra etal, Radiation Q-factors
of thin-wire dipole arrangements, IEEE-AWPL 2011.

» Some issues with 'negative stored energy’ for large structures in
Gustafsson etal, IEEE-TAP 2012.
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G /Q in the current density J

The partial radiation intensity P(k, &)
in direction k and for the polarization é is

/ e J(r)ekT qy
14

We have the G/Q quotient T

nok? 2

3272

P(k,e) =

ey e ey
Q - maX{w (J)7w(m)(J)}
f e]kk’"dV
gmaxk?’)v ’

J max{w(® (J),w(m)(J)}

Solve the optimization problem. Closed form solutions in the limit
ka — 0 and convex optimization for larger (but small) structures.
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Convex optimization

not convex

minimize  fo(x)
subject to  fi(x) <0, i=1,...,N;
Ax =D
where f;(x) are convex, i.e., fi(ax+ By) < afi(x) + Bfi(y) for
a,feER a+p8=1 a,6>0.

Solved with efficient standard algorithms. No risk of getting trapped
in a local minimum. A problem is 'solved’ if formulated as a convex
optimization problem.

Can be used in many convex formulations for antenna performance
expressed in the current density J, e.g.,

> Radiated field F(k) = —k x k x [,, J(r)e**™ qV is affine.

> Radiated power, stored electric and magnetic energies, and
Ohmic losses are positive semi-definite quadratic forms in J.
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Currents for maximal G/Q

Determine a current density J(7) in the volume V' that maximizes the
partial-gain Q-factor quotient G(k, e)/Q.

» Partial radiation intensity P(k, &)

G(k,e)  2nP(k,e)
Q  cokmax{W,, Wn}

> Scale J and reformulate P =1 as
Re{ée*- F} =1.

» Convex optimization problem.

minimize  max{J"W.J, J"W,J}

subject to  Re{FHJ} =1

Determines a current density J(r) in the volume V' with minimal stored
EM energy and unit partial radiation intensity in {k, é}.
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Maximal G(k,x)/Q for planar rectangles

G(k.2)/(Qk%) z,
6L P 3 £

Solution of the convex optimization
problem

min. max{JHW.J JHW_J}
st.  Re{FMJ} =1

for current densities confined to
planar rectangles with side lengths /«
and ¢, = {0.01,0.1,0.2,0.5} ¢x.

Note ¢x /A = kly/(27), giving
by =)N2 = kly =7 — ka > 7/2.
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D/Q (or G/Q) bounds

Similar to the forward scattering bounds for TM.

Can design 'optimal’ electric dipole mode (TM) antennas.
TE modes and TE+TM are not well understood.

Typical matlab code using CVX

vV vV v v

cvx_begin
variable J(n) complex;
dual variables We Wm
maximize (real (F’*J))
We: quad_form(J,Ze) <= 1;
Wm: quad_form(J,Zm) <= 1;
cvx_end

We now reformulate the complex optimization problem to analyze
superdirectivity, antennas with a prescribed radiation pattern, losses,
and antennas embedded in a PEC structure.
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Superdirectivity

> A superdirective antenna has a
directivity that is much larger than for
a typical reference antenna.

» Often low efficiency (low gain) and
narrow bandwidth.

» There is an interest in small
superdirective antennas, e.g., Best R A
etal. 2008 and Arceo & Balanis 2011, Best, etal., An Impedance-Matched

2-Element Superdirective Array,
IEEE-TAP, 2008

Here, we add the constraint D > Dy to the convex optimization
problem for G/Q to determine the minimum @ for superdirective
lossless antennas. We can also add constraints on the losses.
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Superdirectivity

Add the constraint
Prag < 47rD0_1 the get the
convex optimization problem

min. max{J"W_.J, J"wW_J}
st.  Re{FHJ} =1

J'PI <KDyt
Example for current densities
confined to planar rectangles

with side lengths ¢, and
4y = 0.50y.

Q
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Superdirectivity with D > Dy = 10
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Note, it gives a bound on @ as D is known.
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Optimal performance for embedded antennas

> It is common with antennas embedded
in metallic structures.

» The induced currents radiate but they
are not arbitrary.

» Linear map from the antenna region
adds a (convex) constraint.

> Here, we assume that the surrounding
structure is PEC and add a constraint
to account for the induced currents on
the surrounding structure in the G/Q
formulation.
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Center fed strip dipole

G(z.2)/(Qka)

0.08
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Ofﬁfx /A
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Almost independent of the feed width at the resonance just below
ly = 0.5,
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Embedded antennas in a planar rectangle

1000

100
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Conclusions

» Closed form solution for small antennas.

» Optimal current distributions. Spherical
dipole, capped dipole, and folded spherical
helix. More in IF46, Small Antennas:
Designs and Applications on Thursday.

» Convex optimization to determine bounds
and optimal currents for larger structures:
» D/Q and G/Q.
» () for superdirective antennas.
» Embedded antennas in PEC structures.
» () for antennas with prescribed far fields.

See also Physical bounds and optimal currents on
antennas |EEE TAP, 60, 6, pp. 2672-2681, 2012
and Antenna currents for optimal Q, superdirectiv-
ity, and radiation patterns using convex optimiza-
tion (www.eit.Ith.se/staff/mats.gustafsson)
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