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ABSTRACT

The T-matrix method (also called the "extended boundary
condition method" or "null field approach") is a formalism, which
applies to scattering of linear classical waves (i;e. acoustic,
electromagnetic and elastic waves). The object of this thesis is
to extend the T-matrix formalism to a geometry consisting of two
half-spaces, one of which contains a three-dimensional inhomo-
geneity. The two half-spaces, separated by an infinite interface,
are otherwise homogeneous, linear and isotropic. The source that
excites the scatterer can be located in any of the half-spaces or
inside the inhomogeneity, though explicit equations and numerical
computations are presented only for sources outside the inhomo-
geneity (above or below the interface). The assumptions on the
sources are fairly weak, and in the ﬁumerical computations we
consider a monopole or dipole source or an incoming Rayleigh sur-
face wave. Furthermore the formalism applies to a large class of
inhomogeneities, and we illustrate some: a sphere, a spheroid
(both oblate and prolate) and two spheres. The orientation of the
obstacle is arbitrary both with respect to the surface and the
source. The scattered field in the general formalism is in a na-
tural way separated in two terms, one of which is the directly
scattered field as if no buried inhomogeneity were present. The
other term reflects the presence of the inhomogeneity and that is
the one which has been the quantity of primary interest in the

numerical computations.



INTRODUCTION

This introduction consists of two sections. In the first
section we give a general introduction and a short presentation
of the subject of the thesis. This first section also contains
a review of the historical development and a discussion of the
pertinent litterature. The second section presents more thorough-
ly the results and gives a summary of the following five papers

which constitute the thesis:

I. Scattering from buried inhomogeneities - a general
three-dimensional formalism, (together with S. Strodm),
J. Acoust. Soc. Am. 64, 917-936 (1978).

II. Electromagnetic Scattering from Buried Inhomogeneities -
a General Three-dimensional Formalism. Rep. 78-42,
Inst. Theoretical Physics, Goteborg (1978), to appear
in J. Appl. Phys.

III. Electromagnetic scattering from a buried three-dimensional
inhomogeneity in a lossy ground. Rep. 79-29, Inst.
Theoretical Physics, Gb6teborg (1979).

IV. Elastic wave scattering by a three-dimensional inhomoge-
neity in an elastic half-space, (together with A. Bostrdm).
Rep. 79-33, Inst, Theoretical Physics, GOteborg (1979).

V. A uniqueness theorem for the Helmholtz equation:
Penetrable media with an infinite interface. Rep. 79-10,

Inst. Theoretical Physics, GO&teborg (1979).



GENERAL REVIEW

The subject of this thesis is scattering of stationary clas-
sical waves (i.e. linear acoustic, electromagnetic and elastic
waves) from buried inhomogeneities. An extension of the T-matrix
method (also called the "extended boundary condition method" or
the "null field approach"), originally given by Waterman 1-3)

(for the elastic case see also Varatharajulu and Pao 4)) for fi-
nite scatterers, is presented. In addition to the finite scatterer
we also consider a surface of infinite extent, which is bounded

by two parallel planes. This geometry is of great interest in

modelling a number of prospecting situations.

Integral formulations have been used frequently to solve
diverse scattering problems. Extensive work has been done in the
field of volume and surface integral equation formulations, and
for a review of the theoretical aspects of the surface integral
formulation see Kleinman and Roach 5). A common property of the
integral formulations is that they are based upon an appropriate
integral representation of the field. In the T-matrix method,
however, there is no reduction to a surface integral equation in
its usual sense (i.e. we do not let the field point approach
the bounding surface) and furthermore the "extinction part"

of the integral representation is explicitly used.

The T-matrix method is an approach developed for scattering
of stationary linear acoustic, electromagnetic and elastic waves,
appropriate for both two or three-dimensional, scalar or vector
problems. In this method one usually concentrates on the spherical
basis projection of the T operator of potential scattering theory 6).

However, projections on other basis systems can also be used. In



the case when the scatterer is a homogeneous body a useful ex-
plicit expression is obtained for the T-matrix. This T-matrix
method has been applied to a large number of scattering problems
during the last decade, mostly scattering of classical waves by

1-4), 7_29). The T-matrix approach provides a

a finite obstacle
formalism for the different types of wave propagation, acoustic
electromagnetic and elastic waves, which is very similar in struc-
ture, and this is a valuable feature of the method. Thus the
scattering of scalar and .vector waves can be treated analogously
ana much of the formal structure developed in the scalar case can
simply be taken over, with appropriate changes and modifications,
to the vector cases. Furthermore, the formalism has been applied
to various boundary conditions, geometries and physical sifua—

tions 10-11), 16-17), 20-22), 24-25), 28-29)

. All these examples
emphasize the generality and versatility of the approach. Exten-
sions in various directions have lead to a systematic treatment

14-15), 23) 12-13), 23)

of layered scatterers , several scatterers

and waveguide problems 26).

The constituent fields are expanded in elementary waves
appropriate to the problem, and the formalism gives an algorithm
for computing the linear relation between the incoming and scat-
tered fields - the T-matrix. The formalism makes use of the free
space Green's function expanded in a suitable system of basis
functions. There are a number of acceptable systems of basis func-
tions available, but in the application discussed here we use
the: spherical and plane wave systems. The first, discrete, set is
convenient to describe the finite inhomogeneity, the other, cha-

racterized by continuous parameters, is more suited to the infi-



nite surface. The transformation between these two systems of

basis functions is then an important tool in the formalism.

The introduction of an inhomogeneity in one of the half-
spaces leads to a more intricate scattering problem. The interac-
tion between the infinite surface and the buried obstacle must
be taken into accounf in the general case, and only in some spe-
cial situations can we ignore the multiple-scattering effects
between the surfaces, e.g. for a deeply buried obstacle or a
highly conducting ground. This interaction coup}es the wave which
propagates in the ground and the wave which is scattered upon the
finite inhomogeneity. One difficulty in the theoretical analysis
of the interaction phenomenon is that of finding suitable repre-
sentations of the fields and furthermore to match these various
representations. Useful representations should be found for both
the infinite interface and the bounded obstacle. This dilemma
will be discussed further in connection with the presentation of

the papers.

To put the thesis in its proper perspective, we will here
give a short presentation of various formulations, which treat
a geometry similar to the one encountered in this thesis. The
intention is not to give a complete list of references, but to
mention some of the most important ones., Some examples of two-
dimensional formulations are found in e.g. Refs. 30-38. They are
all specialized to a specific geometry of the inhomogeneity
(cylinder or half-plane). This is also the case in a number of
papers, see Refs, 39-42, which analyse the response from a three-

dimensional obstacle (mostly spherical).

Raiche 43) has adopted a somewhat different method, capable



of treating a more general geometry and we will therefore dis-
cuss it in some detail., In the T-matrix method we make use of
the free space Green's function. However, there is another
alternative, namely to employ the Green's function, which satis-
fies the appropriate boundary conditions of the problem. In
practice, to determine this Green's function is as difficult as
solving the entire problem. Thus, consider, as Raiche does, the
Green's function that satisfies the appropriate boundary conditions
for a stratified homogeneous ground. This Green's function can
now be applied to solve a scattering problem with a stratified
earth and an inhomogeneity present. The appropriate boundary con-
ditions in the stratified earth are already taken into account
and we have to apply the boundary conditions on the inhomogeneity
to achieve the final solution. This last step is in principle ana-
logous to determining the scattered field from a finite scatterer,
using the Green's function discussed above instead of the free-
space Green's function. This approach is very general and can be

applied to a great number of different scattering geometries. One

can even, in principle, consider the situation where the inhomo-
geneity cuts one or more of the discontinuous layers, i.e. the

inhomogeneity can be half-buried.

A somewhat similar approach is used by Mei et al.44). The

final solution of the problem is expanded in a set of basis func-
tions, each of which satisfies the appropriate boundarv condition
on the infinite surface. The wave propagation outside the buried
(or half-buried) obstacle is thus in principle determined, and
the eventual fit of the solution to the obstacle is done by a
numerical approach - The Unimoment method. The inhomogeneity

can be quite general, even obstacles with continuously varying ma-



terial parameters can be considered. For the most recent calcula-
tions using this method see K.K. Mei, J.F. Hunka and S-K. Chang,

"Recent developments of the Unimoment method”" in Ref. 29.

Still another approach to the problem has been used. One
then takes as a starting point a finite configuration and the in-
finite interface problem is considered as a limiting case of the
finite one. We mention this approach here since it contains many
quantities and building blocks which can be identified with
special cases of the T-matrix results for layered scatterers, see
e.g. Refs. 14-15, 23. More explicitly: take two excentric spheres,
and let the distance from the centre of the smaller sphere to
the surface of the larger be constant as the radius of the larger
sphere approaches infinity. In the vicinity of the smaller sphere
the scattering geometry approaches that of a flat earth and a

buried sphere at finite depth. D'Yakonov 45-48)

49-50)

and his followers
have studied a completely rotational symmetric configura-
tion, i.e, a vertical dipole exciting a buried sphere, located
directly below the dipole. The close relation to the T-matrix
results is revealed by the use of the translation properties

of the cylindrical and spherical basis functions and furthermore
by quantities, which can be identified as the T-matrix for the

smaller sphere.

In connection with the prospecting problem discussed above,
we will now elucidate a related problem, which in some respects
can be considered as a special case of our formulation, namely
the propagation of electromagnetic waves over a plane homogeneous
ground, excited by e.g. a dipole. The problem has been studied

intensively for a long period and most of the important results



are summarized in the books by Bafos >1) and Wait 52). In this
case one frequently encounters integrals containing a Bessel func-
tion (Sommerfeld integrals), which gives a slowly converging and
alternating contribution in the integrals. There is a demand for
fast numerical routines for computation of these integrals, and
we have noticed an intensified research on this subject, see

Refs. 53-56. The calculations of the Sommerfeld integrals repor-
ted in the present thesis are based upon a computational scheme

in which the alternating parts are separated and the convergence

is accelerated by the use of an Euler transformation.

In the approaches, which we have discussed above, the infi-
nite interface between the two half-spaces is assumed to be flat.
A deviation from a completely plane surface affects the scattered

field, and in many practical applications it is necessary to be
able to compute the magnitude of these effects. A canonical prob-
lem is that of a flat surface with a deviation of finite extent.
A general formalism applicable to scattering from rough surfaces

has been developed by Bahar >7)

. The formalism applies to approxi-
mate impedence boundary conditions as well as to the exact boundary
conditions at the rough surface. In Ref. 58 a two-dimensional
geometry (the hill is infinite in one direction) is considered

and a formalism based upon Fourier-analysis is applied. In Ref. 59
an integral equation of the second kind for the surface field amp-
litude is derived using the present formalism for the case of a

finite deviation from a plane. This suggests an iteration approach,

at least in the long wavelength case.



SUMMARY OF THE THESIS -

The object of this thesis is to study classical scattering
phenomena for stationary fields from a buried inhomogeneity, i.e.
a three-dimensional scattering geometry of two half-spaces, one
of which contains a finite inhomogeneity. The half-spaces are
otherwise homogeneous and isotropic. The driving source can be
situated in either of the half-spaces or inside the inhomogeneity.
The requirement on the incoming field is that it can be expanded
in the relevant regions in a suitable set of basis functions. This
set is chosen appropriately for the geometry considered (e.g. plane
or regular spherical waves). The formalism, which is adopted, was

1_3). Scattering of sta-

first discussed and studied by Waterman
tionary waves from a finite obstacle in a homogeneous space was

first considered and we summerize some of the main characteristics

of the formalism: 1) The field is represented by a surface
field integral, which also provides the "extinction part" - a
most vital part in the formalism. 2) The free space Green's
function is expanded in a suitable set of basis functions.

3) The surface fields are expanded in an appropriate complete

set of basis functions. 4) The boundary conditions are intro-

duced into the integral representation. 5) The linear transforma-
tion between the expansions of the incoming and the scattered
fields - called the T-matrix - is found by eliminating the ex-
pansion coefficients of the surface fields. This matrix describes
the scattering process, i.e. it contains the effects of the shape

and material parameters of the obstacle as well as the boundary

conditions.



The numerical effectiveness of this approach has been demon-

strated in the long wavelength and resonance regions for not too

extreme shapes of the scatterers 1-2), 27), 60-61)

However, we
emphasize that considerable work is being done at present on the
numerical aspects. In particular, several new combinations of

the T-matrix ideas and other numerical techniques have been intro-
duced recently and a rapid development is expected to take place
in the near future concerning these aspects, see e.g. Ref, 22

and the following contribution in Ref, 29: D.J.N. Wall, "T-Matrix
Method and Numerical Methods of Overcoming Computational Instabi-
lities", P. Barber, "Scattering and Absorption by Homogeﬁeous and
Layered Dielectrics", P.C. Waterman, "Survey of T-matrix methods

and surface field representations", V.N. Bringi and T.A. Seliga,

"surface Currents and Near Zone Fields using the T-matrix".

The T-matrix method has successfully been applied to scatter-

ing by finite obstacles, and in this thesis we extend these re-
sults td a geometry, which contains an infinite surface in addi-
tion to the finite one. This extension can, in principle, be per-
formed in two different ways. We have already, in the preceding

45-48) and

section, discussed the approach suggested by D'Yakonov
its connection with the T-matrix formalism. This limiting proce-
dure can be extended to an arbitrary finite scatterer below the
ground, but we have found it more convenient to solve the prob-

lem directly for an infinite interface. However, some details and

comments on the limiting process are found in paper I.

Thus, we have adopted a scattering geometry, which should
be of interest for a large class of prospecting situations. The

infinite surface can be general in shape, but it is assumed to be



10.

bounded by two parallel planes, and the restrictions on the inhomo-
geneity are fairly weak, see the papers I-IV. Although the general
formalism can treat the influence of a non-planar interface, we
specialize in our numerical applications to a plane interface.
However, we have found it instructive particularly with respect

to the physical interpretation to develop the formal structure of

the general theory before specializing to a plane interface.

The expansion of the relevant surface fields in a suitable
complete set of basis functions is as already mentioned a charac-
teristic property of the formalism. The spherical waves have been
extensively used. The completeness of these waves, both the re-

gular and outgoing waves as well as their normal derivatives on a

62) 63)

class of finite surfaces, has been shown by Millar and Miller .
The technique relies on the existence ofvappropriate uniqueness
theorems for the Dirichlet or Neumann problem (exterior or in-

terior problem). We can also apply this technicue to other

basis functions and for the plane waves see paper I and paper II

and Ref. 62. Uniqueness theorems for the homogeneous boundary con-
ditions are available for a large class of finite surfaces, see

e.g. Ref. 64, and for corresponding results for some classes of in-
finite boundary surfaces see Refs., 65-67 (an extension of these
results to penetrable media are found in paper V). The complete-

ness of the basis functions for these types of waves are to be in-
terpreted as a fit in a least-square sense. The expansion coeffi-
cients will thus in general depend on the truncation order, which
depends on the required accuracy of the expansion. These gquestions

are discussed in the excellent review by Millar'62). The relation

between these expansion coefficients and the ones found by assuming

the validity of the Rayleigh hypothesis is also reviewed in the



11.

paper by Millar. It should be emphasized that calculations accord-
ing to the T-matrix scheme have been shown to be stable and rapid-

ly converging in cases where the Rayleigh hypothesis 68-69) is

1)

not satisfied . However, considerable work remains to be done on

these questions, and we do not pursue this subject further here.

When discussing the expansions of various surface fields
in suitable basis functions it is also important to consider
the associated expansions of the relevant derivatives of the
fields in the corresponding derivatives of the basis functions.
In the formalism it often appears as if the expansions of the
surface fields can be differentiated formally e.g. in the normal
direction. We emphasize that this differentiation property depends
very much on the choice of the basis function and for a different
choice it will look totally different. For some sets of basis
functions (they should satisfy the proper regularity properties)
it is possible to show that the same expansion coefficients
approximate the surface field and its relevant derivatives with
arbitrarily high accuracy. The basic case with the source out-
side a finite permeable scatterer is discussed in Ref. 2. The
complications alluded to above become apparent when one wants to
go through the same application of Green's theorem as in Ref. 2
but now with a different system of expansion functions. An extra
relation is then necessary to relate the two sets of expansion
coefficients. One usually tries to avoid this extra relation by
choosing the most suitable set of basis functions. We take an ex-
plicit example; the expansion of the surface field and its rele-
vant derivatives (say ifs normal derivative , as in the scalar

case) on the inside of a finite obstacle can both be expanded in
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regular spherical basis functions and its normal derivatives,
respectively. For a situation where the sources are located out-
side the scatterer these regular basis functions approximate both
the surface field and its normal derivative with arbitrarily high
accuracy. This will not be true if we adopt the outgoing spherical
basis functions in expanding the fields from the inside. These
features are very easily illustrated in the spherical permeable
scatterer case. It should also be emphasized that in these expan-
sion systems the appropriate wave number must be used. Thus, for
each field and its relevant derivatives there are in pfactice only
a limited number of sets of basis functions which lead to the
most compact form of the theory. These questions are usually
treated by applying the integral representation to the ihterior
(i.e. source-free) region. The relation then obtained determines
if the set of basis functions can approximate both the field

and its relevant derivatives with arbitrarily high accuracy. If
this is not the case the integral representation then gives the
extra relation needed to relate the two sets of expansion coeffi-
cients. However, we want to stress that considerable analysis re-
mains to be done, before we have a complete understanding of these

matters.

We here give a short summary of the papers presented in
this thesis. In paper I we analyse the scalar problem of scattering
from a buried inhomogeneity. We also discuss the limiting procedure
suggested by D'Yakonov, which was considered above. The sources are
assumed to be located in the upper half-space and in this case we
give explicit expressions for the scattered field above the ground.
We also consider the casewhere the sources are below the inter-

face. In this latter situation no explicit expressions for the
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fields are given, but they can be achieved with appropriate modi-
fications. In a series of appendices we analyse various mathema-

tical éroblems which occur in the paper, e.g. the completeness

of the plane wave system and convergence of the iteration scheme,
which is used to solve the matrix equation, reflecting the inter-
action between the inhomogeneity and the ground. A number of nu-

merical computations illustrate the use of the formalism.

Paper II extends the results of paper I to the electromag-
netic case. The structure of the equations is formally similar.
The various theoretical aspects of the required modifications are
analysed in detail. We introduce a plane wave expansion of the
Green's dyadic and in an appendix the completeness of the spherical
and plane vector waves for both finite and infinite surfaces is
established. Paper III proves that the formalism can be extended
to lossy media. The fundamental transformation properties between
plane and spherical vector waves in the lossy case is analysed in
an appendix. In both papers II and III we illustrate the formalism
with some numerical examples, showing the scattered field on the
interface or below the ground in a drillhole. The source in these

applications is an oscillating dipole, located on the ground.

Paper IV considers the extension of the formalism to elas-
tic waves. The formal structure of the equations in the formalism
are very similar in all types of classical wave motions, and
this feature makes generalizations easier to perform. In the elas-
tic case when we have two different types of wave motions - shear
and pressure waves - the-coupling effects imply a more complicated
structure of the formalism, and the explicit expressions of the

fields become rather lengthy, but in most respects the formalism
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developed in the scalar and the electromagnetic cases apply with
appropriate modifications. In the elastic case an incoming sur-
face wave, the Rayleigh wave, is of particular interest, and there-
fore this case is given a more detailed analysis, see the appen-
dix in paper IV. In a number of numerical illustrations a Rayleigh
wave excites a buried inhomogeneity (spheres or spheroids) and

the field is computed on the interface, showing various components

of the scattered or total field.

The last paper in this thesis, paper V, contains a unique-
ness theorem for scalar fields, proving the uniqueness of the
solution to Helmholtz equation satisfying a prescribed radiation

condition. An extension of some of the results given by Kato 70)

is obtained. We consider an interface, which for sufficiently

large distances is a cone of arbitrary cross-section, and adopt a
class of boundary conditions, which allow discontinuities both in
the field and in its normal derivative. We have briefly emphasized
the importance of uniqueness theorems of the above type when dis-
cussing the completeness properties of the basis functions, and

we refer to papers I and II for more details. In these applications
it is the results for the homogeneous boundary conditions (Dirichlet
and Neumann) which are relevant. Paper V is an extension of already
existing uniqueness theorems for the homogeneous boundary condi-
tions 65-67) to the case with penetrable media (the homogeneous
boundary conditions become a special case). It also explicitly
considers the case when finite inhomogeneities are present, and
thus applies directly to the situation one encounters in proving

the completeness properties in papers I and II.
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Scattering from buried inhomogeneities—a general three-

dimensional formalism
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In the present article we give a general three-dimensional formalism for scattering in two half spaces, one
of which contains a bounded inhomogeneity. Our formalism consists of an extension of the transition
matrix method which has been given by Waterman, a method which applies equally well to acoustic,
electromagnetic, and elastic scattering. The formalism is here developed in detail for the case when the
source and inhomogeneity are situated in different half spaces. However, the same method works for other
source positions as well, and the basic equations are given also for the case when the source and the
inhomogeneity lie in the same half space. In the final expression for the total scattered field, that part
(the so-called anomalous scattered field) which depends on the presence of the inhomogeneity, can be
separated, and the physical meaning of the various quantities which determine this anomalous scattered
field can be identified. ‘The inhomogeneity enters through its T matrix, and previous results on various
bounded configurations of scatterers can therefore be inserted and used in the present formalism.
Numerical results are given for inhomogeneities consisting of one or two spheres.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

In the present article we adapt the transition matrix
formulation of stationary scattering to the problem of de-
termining the scattering from an inhomogeneity which is
buried in a half space. The transition matrix formula-
tion was introduced in Refs. 1-4 (and earlier references
given there) for a single scatterer, and it has also been
extended to situations involving several (multilayered)
scatterers®™? and to infinite periodic surfaces.!® We
shall here consider the scattering of a scalar field.
However, the extension to the electromagnetic or elastic
cases is not expected to present any difficulties and will
be treated in subsequent work. As in the above-men-
tioned cases for which the T matrix formalism has been
developed it can also in the present case be given in a
general three-dimensional form which is independent of
any symmetries characterizing the surface which sep-
arates the two half spaces or the inhomogeneity, How-
ever, the simplifications which occur in the presence
of specific symmetries are easily identified within the
framework of the general formalism,

A key element in the transition matrix formulation is
the use of certain expansions for the surface fields, and
in the present work we introduce corresponding ex-
pansions, relevant to the configuration under considera-
tion, Thus the geometrical and physical characteristics
of the surface, separating the two half spaces, and of the

tromagnetic case has been treated extensively by dif-
ferent analytical and numerical techniques by several
authors (see, e.g., Refs. 15-25), and below wé shall
make some comments on the relation between some of
these papers and the present approach. However, rela-
tively few treatments of truly three-dimensional cases
exist.

The plan of the present article is as follows. In
Sec. I we derive the basic equations of the transition
matrix formalism in a form which is adapted to the
scattered configuration of Fig. 1. In Sec. II we con-
sider the structure of the equations and we explain the
physical meaning of the various quantities which appear
in the process of solving the equations, such as trans-
mission and reflexion coefficients, and transformations
between different wave types. The solution for the case
of a plane interface is given in some detail, The inho-
mogeneity is here still of a general nature, character-
ized by its T matrix. In Sec. III we describe some nu-
merical applications. We consider first the simplest
case of a spherical homogeneous inhomogeneity. The
T matrix for the inhomogeneity is in this case diagonal,
which leads to further simplifications of the solution.
That part of the scattered field which is due to the pres-
ence of the inhomogeneity is calculated for several dif-
ferent positions of a source lying on the plane S;. In

inhomogeneity are limited mainly by the condition that P k.2, Yo v,
these expansions shall be allowed. However, complete *
systems, suitable for approximation of the surface
fields, can be found for very general classes of sur- TR e
faces.! Considerable experience has by now been ac- o i, 5,
cumulated concerning the numerical effectivenessof  — __ = ~—T— Ny T
the transition matrix formalism for finite scatterers, 2 ~
and it is reviewed, e.g., in Refs. 12-14, ! ™
Results concerning scattering from buried inhomo- ki, e ++
geneities obviously have applications in many geophys- : 51
ical applications, such as prospecting by means of
acoustic, electromagnetic, or elastic waves. The elec-  FIG. 1. Geometry and notations of the scattering problem.
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order to illustrate the generality of the formalism, we
also apply it to a situation where we have two different
inhomogeneities. In this case the total T matrix corre-
sponding to the two inhomogeneities is calculated, using
earlier results, and then inserted into the present for-
malism. In Sec. IV we have collected some concluding
remarks on the extension of the present results. Var-
ious technical questions which occur in the development
of the formalism are treated in three appendices.

1. T MATRIX FORMALISM IN THE PRESENCE OF AN
INFINITE SURFACE '

We shall consider the type of scattering situation .
which is depicted in Fig. 1, where we have two half
spaces separated by a surface S; which need not be a
plane but which can be enclosed by two parallel planes.
The normal to these planes then defines a direction which
will be taken as the z axis. The upper half space is
completely homogeneous and the lower half space is
homogeneous except for a region of finite extent—bounded’
by the surface S;-which has different propagation char-
acteristics. In order to simplify certain steps inthe der-
ivations below we shall also assume that the region in-
side S, is homogeneous. However, this restriction is in
no way essential and can be relaxed. ?

Consider a wave field with its source in a point P in
the upper half space. In the three different regions
Vi, Vi, and V, this wave field is assumed to satisfy [a
time factor exp(-iwt) is suppressed].

Vit By, =0, r=0,1,2. (1

As usual, we assume that the driving field 9°¢ which is
generated at the point P can be treated as a prescribed
incoming field and we shall obtain the total field in the
three different regions. In the T matrix formalism this
is done by means of application of the following integral
representation (together with its accompanying “ex-

tinction theorem”) for a wave field in terms of the bound- .

ary values from the outside ¥* and #.Vy* on a closed
surface S (and here we assume the Sommerfeld radia-
tion condition to hold):
N «
= pie(r) + j 7V G- GV ) as, ¢
0 s

r outside S
for
r inside S . (2)

Here G is a free-space Green’s function, normalized
according to

(v + )G, ;) =-6(r -1') . (3)

In the present problem we use this formula for the
regions Vy and Vy (cf. the derivation of the T matrix
for a multilayered scatterer™®, The surface fields
are denpted y; =0, 1,2 according to Fig. 1. We now
consider the case when the surface S in Eq. (2) con-
sists of a finite part of S, and a lower half sphere. By
letting the radius go to infinity and assuming that the
surface integral over S; exists, we get

J. Acoust. Soc. Am., Vol. 64, No. 3, September 1978

G. Kristensson and S. St(Bm: Scattering from buried inhomogeneities

918
y(r) . ,
' }=4)3“°(r)+ j ny - [P (r" )V G(x, 1/ k)
0 So
- r in VO
= G(r, r'; b))V yi(r’)]dS’, for { (4)
r outside Vj .

The relevant Green’s function is that corresponding
to outgoing waves and we proceed by introducing suitable
expansions for G(r, r’;%,) and for the surface field y3(r).
The main consideration in choosing the expansion for
the Green’s function is that one should be .able to use
one and the same expansion in the whole integral over
S, in the right-hand side of Eq. (4). Thiscanbe achieved
if we consider, not all r inside and outside V,, respec-
tively, but only those r in V, for which 2> z, and only
those r outside V, for which z<z, and if, furthermore,
we expand the Green’s function in terms of harmonic
and evanescent plane waves:

H 2r
G(r, r'; ko)=§% L dg | dasinaexplik, (r-1')],
Cy
(5)

where kOEko(sina cospB, sina sinf, cosa) and where the
integration is over C, if z~2'>0 and over C. if z -2’
<0. The contours C, are given in Fig. 2. (See, e.g.,
Ref. 26 where integral representations of this type for
G are reviewed.) By considering an r with z> z, we thus
have a representation of G(r, r'; k) as an integral over
C, for all r’ on ;. In this way_ the scattered field ¥§°
which is given by the integral over S, on the right-hand
side of Eq. (4),_ is given in terms of upwards-traveling
plane harmonic waves and evanescent waves which de-
crease exponentially with increasing 2. Thus the repre-
sentation (5) for the Green’s function leads to waves
which propagate and decrease, respectively, in specific
ways in half spaces and in a geometry of scattering sur-
faces like the one considered here; this representation
therefore seems preferable to representations which
use harmonic waves traveling in all directions. (See,
e.g., Refs. 26 and 27.)

Using Eq. (4) for an r in V, with 2> 2z, we thus have,
after a change of the order of integration, the following
representation of the scattered field:

r
Pe(r) = Io dg, J; f (k) €0 sina, day , (6)

Imo Imo |

%,

Reot

FIG. 2. The integration contours C, and C..
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where
ik - .
)= 5% [ FolpiE)v (o)
8 sp -
—e T Yy(e)]dS) , ke, . (n

The prescribed incoming field zp“," is assumed to be
generated at the point P with position vector r, in vy,
It is natural to consider a §{"° which is a superposition
of multipole fields emanating from r,, i.e.,

PRe(r) = a, ¥, [Ry(r ~1,)] . (8)

Here we use the same notation as in earlier work on the
T matrix formalism, "?i. e, , the regular and outgoing
spherical waves are denoted Rey, and ¥ Tespectively,
where 7z is an abbreviation of a multi-index n=omn and
where Rey, is chosen as a real function. For z> 2, and
z<z,, $,°° can then be expanded in terms of harmonic
and evanescent plane waves by means of the relation
(see, e.g., Refs. 28 and 29)

1 2' ( -
P, (kr) = T I dg | Y,(k)e™Tsinada ,
" Cs

220. (9)

For z<z, we thus have [after a change of order between
summation and integration, which is always allowed for
any finite expansion (8)]

wénc(r)zf:'dﬁo s

where a(k,) is a known function obtained from (8) and

(9). We now apply Eq. (4) for r outside V, and consider
furthermore an r with z<z,. We can then use a repre-
sentation (5) of G(r, r'; k) as an integral over C. for all
' on §,. The integral on the right-hand side of Eq. (4)
in this case gives a superposition of down-going har-
monic plane waves and evanescent waves which decrease
as z decreases,

1kyer o5
. alky) e™o"* sinq, da ,

(10)

In this way we get (again after a change of order of in-
tegrations) the following relation between a(k,) and the
surface fields ¢j on S;:

alky) = - az—:f- Is ;10 (W) V! (e 0w
0

- %" Vi) ash , ke C. . (11)
Note that the integrals on the right-hand sides of (11) and
(7) differ only in that ke C. in (11), whereas ke C, in
(n.

One way of solving the scattering problem, and this
is the one used in the T matrix formalism, is to elimi-
nate the surface field y; between (7) and (11) so as to
obtain f(ky) in terms of a(k;). ¥; is influenced by the
lower half space and the inhomogeneity in a way which
is determined by the boundary conditions on Sy and S,.
In the next step we therefore apply Eq. (2) to the case
when S consists of S, and S; and when outside S corre-
sponds to inside V. Since we have assumed that the
only source present is the one at r, above S, we get in
this case
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zp,(r)}

=- J ny - [Y7 (" )WV Glr, 1’5 ky)
0 . s

0

- G(r, r'; k) V' i (r')] aSy + L ny - [97(x")
. 1

xV'G(r, r'; k) - G(r, *'; B,)V' P (r’)] dSY,

rin Vy
for

rin Vyor v, . (12)

Here §; and ¥] are related to §; and §;, respectively, by
the boundary conditions, Asin thecase of a bounded two-
layered scatterer we retain ¥ and ¥; as unknowns which
are to be eliminated.™® The equations needed for this
elimination are obtained from a consideration of r in V,
and V, in Eq. (12). The case of r in V, can be used to
obtain different expansions for y, in different parts of
V;. Consider firstr in V, in Eq. (12). Since S, is a
closed surface we choose to describe the influence of

"the inhomogeneity by means of its T matrix referring

to spherical waves.! To this end we use the spherical
wave expansion for G(r, r’; k) in the integral over S,,
Glr, r'; k) =ik, ) Rey, (kT i, (kyTs) . (13)
n

In order to be able to identify r, r’ with r,, r.in a
unique way for all ' on S; we choose an origin O, inside
S; and consider an r which, furthermore, is outside the
circumseribed sphere of S; with center at 0, (this sphere
may extend into V). We then have r=r, and 1’ =r,
for ¥’ on S;. In the integral over S, it turns out to be
advantageous to postpone the expansion of the Green’s
function. In the present case, Eq. (12) thus takes the
form (after changing the order of summation and integra-
tion)

%o - [450' )V G(r, 1'; k) = G(x, T3 y)
Sp

XV ()] dSh = iky 3 d,(kyT) fs iy - [0y (r")
n 1

x V' Rey, (k') —Rey,(Byr' )V 9i(r’)] dS] . (14)
Consider next an r inside S;. We then have r=r, and

r' =r, for all 1’ on S, and S if we further assume that

r lies inside the inscribed sphere of S; with center at

0,. Again we postpone the expansion of the Green’s

function in the integral over S;, and in a similar way

we then get from Eq. (12)

% - [V G(r, ' k) - G(r, 1’5 Ry)
Js,
XV'§1(r')]dSh =ik D Rey,(kyr)

x [ i [V ) -9, )V UG 05T (15)
s
1
We rewrite Egs. (7), (11), (14), and (15) by means of
the boundary conditions so that they contain only the sur-
face fields ¢7 and ¢,. In order to illustrate the details
of this procedure we assume specific boundary condi-
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tions. Let § be the velocity potential and ¢ the density,
and let V,, V,, and V, be isotropic permeable media, In
this case the boundary conditions require &y and - Vi
to be continuous across Sy and S;. In order to eliminate
the surface fields and obtain a relation between f(k,)
and a(k,) we shall make use of suitable expansions for
these fields. A wide choise of complete systems of func-
tions in which the surface field can be expanded is in
principle available here. However, since we eventually
want to obtain the T matrix for the inhomogeneity in
terms of spherical waves, it is most convenient to use
spherical waves also for the expansion of the surface
fields. Since §,(r) is regular everywhere inside Sj, it is
here natural to choose an expansion in terms of regular
spherical waves, and we shall use an expansion of the
form
3(r) =2 P Rey, (k1) . (16)
n

We note that an expansion for ¢ on S, in terms of
{Rey,(k,r)} is also obtained if an “inner Rayleigh hy-
pothesis™ is valid, i.e., if the expansion for ¥,(r) in
terms of {Rey,(k,r)}, which always exists inside the in-
scribed sphere of Sy, is furthermore valid everywhere
on S;. In general, however, the use of the expansion
(16) in the T matrix formalism does not rely on such an
inner Rayleigh hypothesis, t*1!

The surface field ¥y is treated analogously. Since S,
is an infinite surface and the plane waves are not square
integrable over S;, a slight extension of the complete-~
ness properties given in Ref. 11 is required, and it is
given in Appendix A, As is shown there, we can on S,
use an expansion for ;(r) which contains plane waves
‘corresponding to both the C, and C. contours:

5= | : o[ [ atie)+ [ )

X e'M'T ginw doy . (17)

The use of an expansion (17) is again' independent of the
Rayleigh hypothesis,

If (16) and (17) are introduced, together with the
boundary conditions ] =¢£7'¢, ¥3= Cy, ¥ and 7. VY
=n.VY;, into (14) and (15), we thus obtain

J:: ds [f -a(k1)+ . B(ki)] I(k,, r)sina, do,

=—i Zn Rey,(k,1)Q,,(Out, Re)at? (18)
by}
for r inside the inscribed sphere of S;, and
f " a8, [ [ ati)e ,s(k,)],z(k,, r) sinay da
0 Ca Cs
==1 ; lP"(kif)Qnm (Re, Re)a,(,zl) (19)

for r above S, and r outside the circumscribed sphere of
S;. Here we have used the notation

Q,n(Out, Re) =k, J‘ {9, (k" )V’ Red,. (k,r")
51
~ Cyy [V' 9oy )] Ret, s (kor')}. aS].  (20)
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Q,.+(Re, Re) is given by an analogous expression which

has regular spherical waves in all four places. Further-
more,
Ik, 1) = j [e®" v/ G(r, 1'; k)
5y
—(¥' e®¥)G(x, v'; k)] - dS . (21)

In this context we note that in analogy with the @,,.
matrices (20) of the spherical wave formalism for finite
scatterers!™ we can introduce a corresponding quantity
for S,, which refers to plane waves (cf. also Ref. 10).
We put (Cyy =£3'¢y)

k
k = ~ikne? o ( ik
Qg k)= 3% [ [T 9 e)
- Cy(V' %) et . 48 . (22)

Thus, if the surface S, is a plane, Q(k,, k,) is “diagonal”
in the sense that it is proportional to &2 [nyx (ko - ky)].

- If the boundary conditions on S; are taken into account

and if ¢ is expressed by means of (17), Egs. (7) and
(11) can be written

Flk) = —i J’: dﬁ,“c_a(k,)+ fc‘ ﬁqu)]

x Q(k,, k) sinay doy , ke C, , (23)
atky) =i | " a8, [ [ ate)+ B(k,)]
0 Cc- c.
x Q(k,, k) sina doy , ke C. (24)

We want to extract coefficient relations, analogous to
(23) and (24), from (18) and (19). To this end we note
that the value of I{k;, r) depends on whether r lies above
or below S; and on whether ﬁ, belongs to C, or C.. In
order to calculate the explicit value of I(k;, r) one intro-
duces a small (positive) imaginary part to k; and closes
S, in the upper and lower half space, respectively, de-
pending on whether k; belongs to C, or C.. In this way
one obtains (cf. Appendix B for more details)

eiF* for %eC,,

Ik, )= " for r above S , (25)
0 for keC. .
0 for keC,
Ik, r)= for r below S; . (28)
- for keC.
From (18), (19), (25), and (26) we thus get
2r
J ap, 5 alk,)(- e™®1°F) sinay day
0 c.
——i Y Rey,(k;7)Q,,(Out, Re)a'? (27
nn’
r
J' dp, J Bk,) e™'F sinay day
0 c,
==i 9 0,(BT)Q,, ¢ (Re, Re)alP . (28)

nn’
In these equations plane wave expansions occur on the

left-hand sides, whereas the right-hand sides contain
spherical wave expansions. Coefficient relations can
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FIG. 3. Geometry for the two-layered situation.

therefore be obtained by introducing the appropriate
transformations between these two types of expansions
as follows. Multiply Eq. (27) by Y,(7) and integrate
over a sphere lying inside S;. For real B we have (see,
e.g., Ref. 28)

r L4
J dy J e'®*Y (7) sins do = 4mi", (k)Y (E) . (29)
0 0

This is the regular analogue of Eq. (9) and gives the
transformation from regular spherical waves to plane
waves. Here the left- and right-hand sides of Eq. (29)
define analytic functions in the cosa plane (except for
the branch points and cuts). Thus the equality (29) holds
for all complex k in their common region of analyticity.
We thus obtain

r
anin | ap, j
0

a(k,),(k,) sine, da,
c.

=12, @po(Out, Re)a? . (30)
"l
In Eq. (28), r can be taken to lie on a plane z =z,> z,
(this plane must also lie above the circumscribed sphere
of S;) and therefore we introduce plane waves on the
right-hand side of (28). Using (9) for C, we thus obtain
(k,) Z 1 % (2)
B )= -zm—mf Y,,(k,)Q,,,,.(Re, Re)a,,. . (31)
an’
(We can compare coefficients on aplane in theseformulas;
on a plane z =const it consists essentially of a slightly
modified way of writing an ordinary two-dimensional
Fourier integral. %)

Thus, between the five amplitudes a(k,), f(k,), a(k,),
Blk,), and a!® we have four relations, namely Egs.
(23), (24), (30), and (31), which can be used to extract a
relation between any pair of these amplitudes.

Before we discuss how these equations are used in
determining the scattering from buried inhomogeneities
it is instructive to consider at this stage the relation
between these equations and the corresponding equations
used in the derivation of the T matrix for a scatterer of
finite extension, which consists of layers which consecu-
tively enclose each other. "8 Consider the case depicted
in Fig. 3. This case is treated in detail in Refs. 7 and
8. We note that Eqs. (23), (24), (30), and (31) above are
the analogs of Eqs. (25)—(28) in Ref. 8. Further-
more, we note that the results (25) and (26) above are
the analogs of Eqs. (20) and (21) in Ref. 8. Thus the
structure of the equations in the two cases is similar,
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and the main difference is, naturally, that in the present
case there occur transformations which describe the
change from spherical to plane waves and vice versa.

One might also try to exploit the similarity between
the two cases in Figs. 1 and 3 further by considering
case 1 (in Fig. 1) as a limit of case 2 when S{* be-
comes infinitely large, i.e., when a—«, with constant
k (in Fig. 3). This has been done, e.g., by D’'Yakonov
in special cases.!®

The equations which are used in Ref. 15 are essential-
ly those which are obtained from the general equations
in Refs. 7 and 8 by explicitly introducing the displace-
ment of the inner surface and then considering a source
on the symmetry axis. This limiting procedure does not
appear to be particularly useful for actual computations.
It contains nevertheless some interesting aspects of the
problem which warrant a few additional rémarks.

The free space Green’s function G(r, r’; k) and its
expansions in various complete function systems play
a central role in the T matrix formalism, and it is in-
structive to first consider the effect of the limit on this
function. In case 2 the relevant expansion for G(r, r'; k)
is in terms of spherical waves, as given by Eq. (13).
Consider therefore the effect of the limiting procedure
on this expansion. The limit @~ transforms the por-
tionof S§* whichlies inthe vicinity of S{*’ intoa planeand
the spherical coordinates around 0; becomes a cylindri-
cal coordinate system in the vicinity of 0,; I 6 and ¢
are spherical angles at 0; we have in the limit ¢~ that
rj~», -0 so that 8r;=¢, »{ —a=z' where (¢, ¢, 2)
forms a cylindrical coordinate system with origin at
0,. However, if one simply lets { -« and 6—~0, the
arguments of the spherical waves degenerate. In order
to get a meaningful result the limit ¢ =« must be com-
bined with a limit n—~«, The way in which the limit for
n should be introduced is suggested by the notion of Lie
group contraction (see, e.g., Refs. 30 and 31): In the
limit @, the group of transformations of the sphere,
i.e., the three-dimensional rotation group R(3), is
“contracted” to the group of transformations of the plane,
i.e., the two-dimensional Euclidean group E(2).

The notion of contraction has been extended to group
representations by means of additional prescriptions.
In the present case these prescriptions3”® require that
the limit -0 is to be coupled to the limit n-« by the
relation 6= i/n where u is arbitrary but fixed. Taking
this limit in the spherical harmonics (see, e.g., Ref.
30), we have

lim (2n+1)Y2y, (u/n, @)=(-1)"J (u)ei™* .

o

(32)

Since the limit 8- 0 is coupled to »{ —= by means of
6r) =t we have r{n"'=¢pu™ =171, where A is arbitrary
but fixed during the limiting procedure. The relevant
limit in the spherical Bessel functions is therefore

lim[ j,(exn), k(X 0)]

1=

where A is arbitrary, i.e., both Bx"'<1 and pA"1>1 ap-
pear. Here we use the asymptotic series for J,(xn) and
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H,(kn) and we keep only the first term in the series.
(See, e.g., Refs. 32 and 33. The required formulas
are given in simple form in Ref. 32, p. 631; the full
asymptotic series, valid uniformly in «, is given in
Ref. 33.) From A=7"'n we have Ax =7"1An (where An
=1 in the sum). Collecting the above observations and
using the explicit form of the asymptotic series for J,
and H, we arrive at the following formal limit (8=t
r=m-, etc.):

inlke7”) Bp(RD)Y 18, Y (€', 9) 72 (= 4) 12 )id;:\’)‘”
xexp[- O\~ )'/?|2 - 2’ []7,00), (") e et

(33)
The sum over n goes over to an integral over A, and
thus we get that the spherical wave expansion (13) is, by
the limiting procedure briefly described above, con-
tracted into a cylinder wave expansion which can be
written

G(r, r’;k);z —2—_—4%0’-”‘- cosm(cp—(p')j ﬁ%’ﬂ
- 0

x exp[- (A2 =)z = 2 |17, 00T, (")

. (34)
(cf., e.g., Ref. 32; note that this expansion contains
both harmonic and evanscent waves in the z direction.)

One could now proceed and consider the effect of the
limit in other contexts in the T matrix formalism. As
is indicated by the above result, one would then ex-
pect to get a cylinder wave version of, e.g., the pre-
vious equations (23), (24), (30), and (31). However, we
shall find it more useful to stay within the plane wave
formalism. Furthermore, if cylindrical wave expan-
sions are the most useful ones in a particular applica-
tion, the cylindrical wave analogs of Eqs. (23), (24),
(30), and (31) can, of course, also be derived directly,
and therefore we do not go into further details of the
limiting procedure here.

So far we have explicitly assumed that the source is
situated above the surface S;, and this fact partly de-
termines the structure of the basic equations. How-
ever, we can just as well treat the case when the source
lies in Vy or V, and develop a similar formalism for
these cases. The starting point is again the integral
representation (2), and the main difference is that the

source term will appear in different places in the equa-
tions.

In order to illustrate the modifications which occur,
we consider the case whenthe source lies in V;. Equation
(2), applied to V;, then gives [cf. (23) and (24)]

fkg)=~i J:' ag, [Jc alky) + Ic B(ki)]

xQ(k,, k) sina, day , ke C,, (35)

25
o= (" ap, U all,) + B(k,)]
0 c. c,
xQ(ky, k) sinayday , ke C. . (36)
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to obtain an expansion for pie in terms of regular

The source term appears when Eq. (2) is applied to V;.
Consider a source at P, (see Fig. 4) which generates a
field which can be expanded in outgoing spherical waves

lp:nc___ Z a, ‘pn(kl !“) . (37)

For an r inside (the inscribed sphere of) S; we use® %28

P, (kyr) =9, [By(b+ )] = Z O+ (D) ReY,. (By)  (0>7)
" (38)

spherical waves. Writing the resulting expansion for
Pp°° as

Ye(r) = ) gy Reyy(kyT) .

we get, in the same way as the derivation of Eq. (30),
the equation

2' .
4mi" J’ dp, J a(k,)Y,(k,) sinay day
0 c.

=—a'+i ), Qume(Out,Re)a? . " (40)
"l

For r in V, and above z=2,, we use Eq. (9) to express

$i*¢ in terms of harmonic and evanescent plane waves.

Writing this expansion as

pig
Po(r) = J‘o ag, L a'(ky) e™" sine, da, , (41)

+

we get, in analogy with Eq. (31),
1 -~
Bl = a' () + 2 5ot Yolly)
nn’

XQ,,+(Re, Re)af? . (42)

Thus, Egs. (35), (36), (40), and (42) constitute the basic
equations when the source lies in V,. It is clear that
the equations for a source in V, can be derived in a
similar way. The details of this are left to the reader.

1. CALCULATION OF THE SCATTERED FIELD

The four basic Eqgs. (23), (24), (30), and (31) will now
be studied in more detail. As was mentioned before,
these equations can in principle be used to obtain a rela-
tion between any two of the quantities a(k,), f(k,), a(k,),
Bk,), and a!?. In view of the applications we have in
mind, namely to calculate the effect of the inhomo-
geneity on the scattered field in V, we shall in this sec-
tion concentrate on the relation between f (k) and a(k).
Since the scattering response from the finite inhomo-

FIG. 4. Geometry and notations for a source location in V.
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’

FIG. 5.

Multiple-scattering interpretation of (44).

geneity is determined by its T matrix and the prescribed
incoming field, we solve the equations in such a way
that this T matrix is brought into the description. This
is done by solving Eq. (30) for a{®. The T matrix
T,q+(1) of the inhomogeneity is given by!

Tppe(1)== D Quues(Re, Re)[Q(Out, Re)], er s -

Then one gets
. - 2y
k) =22 6" Y, k)T, (1) | “agy [ o))
nn' 0 Ca

XY,,.(?eQ)sina{da;, kec,. (43)

This type of relation between B(k;) and a(k,) was to be
expected. al(k;) and B(k,) are the amplitudes of up- and
down-going plane waves, respectively, and these ampli-
tudes can be expected to be related by the quantity Tpnr (1),
which expresses the scattering characteristics of the
inhomogeneity. However, a(k,) and B(k,) are both plane
wave expansion coefficients, while 7,,.(1) refers to
spherical waves. Therefore the transformation func-
tions between spherical and plane waves, namely Y,(k),
appear in Eq. (43) together with the appropriate summa-
tions and integrations. In the above it was explicitly as-
sumed that the inhomogeneity was homogeneous. How-
ever, if a more complicated inhomogeneity is considered —
€.g., several homogeneous or layered scatterers or
scatterers with continuously varying material parame-
ters—a similar analysis can be carried out. &®? In this
case the basic equations will be the same—Eqs. (23),
(24), and (43)—but with the difference that the T ‘matrix
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in Eq. (43) should be the T matrix for this more com-
plicated inhomogeneity.

Since scattering occurs at both S, and S;, we expect
the full solution to contain multiple scattering effects.,
In order to get some insight into these multiple scat-
tering phenomena it is instructive to make a formal
analysis of the problem by simply inverting the integral
relations (23), (24), and (43). Symbolically, we may
write these equations as follows:

f:—iQa —iQﬁ LS
a=1iQa+iQ8,
ﬁ=Ta )

which formally gives

1=(R-QTQMH(1+QTg ) 'a (44)
The different character of the @’s is not made explicit
here; this character is determined by the vectors on
which they operate. Thus the T operator for the sur-
face Sy, i.e., the reflection coefficient for S,, reads in
this abbreviated notation simply R= - QQ™'. A physical
interpretation of Eq. (44) in terms of multiple scattering
contributions is obtained by expanding the inverse in
powers of T. (See Fig. 5.)

We note that Eqs. (23) and (24) relate plane wave ex-
pansion coefficients directly. In order to obtain the
solution in a form which is more amenable to a nu-
merical treatment, we want to rewrite (24) in matrix
form. This is done by introducing the spherical wave
projections of a(k,). Thus we introduce the vector {c,}
defined by

2' -~
¢,= f ag, j alk,)¥, (k) sin, day . (45)
0 c.
c={c,} are unknown quantities since they are just the
spherical wave projections of the unknown plane wave
amplitude a(k,). Equations (43) and (24) can then be

written
Bl =2 Y. iy (BT, (e, | %,ec,, (46)
nn'
2r .
alky)=1i f dg, [I ak) + f 2 Z in* ey (k)
0 Ca c, nn'
XT,,,,.(l)c,,,] Qk,, k,)sina, da, , keC..  (47)

As already mentioned, @(k,, k,) is in general not a func-
tion in the usual sense and relations involving Q(k,, k;)
should be understood in a distribution sense, However,
we note that Eq. (47) in the case of a flat surface S,
degenerates into an algebraic relation. We now rewrite
Eq. (47) with the purpose of isolating a(k,). Thus we
formally introduce the inverse of Q(k,, k;), %, b eC.,
which is analogous to the inverse of the matrix @,, ,Out,
Re) in the case of finite scatterers. From Eq. (47) we
then get formally
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2 _
alk,)= -1 6y j-c-Qi(ko, k,)[a(ko)

2r
-Ziz i" '"T",,;(l)c,,. fo dB’i

nn’

QUky, ki)
Cs+
x Y,(k}) sinoj doz{lsinozodoz0 , keC.. (48
Multiply Eq. (48) by Y,(%,) and integrate over B; and a;,
where a, is taken along the C. contour., Then the left-

hand side becomes equal to ¢, and Eq. (48) can be writ-
ten as a matrix equation as follows:

C,,:d,,— Z Arm'cn' ’ (49)
"l

where

ae-i [ a | v " am

X fc Q' (ky, k) alk,) sinay day siney da, , (50)
A= =2 2 0 L) [y [ 1,8
n'l c-
2r
x j dg} I R(k;, k{)Y,.. (k) sina do} sina, da, ,
0 Cy
(51)
2r »
Rliy, )= [ agy | Qo k) Q (o, K))
0 C.
xsinagda, , keC., HeC, . (52)

Here R(k,, k!) is the reflection coefficient from under-
neath the surface S,. Similarly @(k,, k;) in Eq. (50)
is the transmission coefficient from ¥ to V; through
Sy (cf. the analogous meaning of the corresponding @
“matrices for a finite surface®). Thus the coefficients
d, are the spherical wave projections of the plane wave
amplitudes of the incoming field after it has passed
through S,. In Eq. (49), d, and A4,,. are known quanti-
ties; i.e., this equation can be used to determine c,.
We also note that the matrix A4,,. is independent of the
field. Equation (49) can be written in the form

c=(1+A)ld . (53)

Sufficient conditions on the infinite matrix A for a solu-
tion to this equation to exist can be found in Ref. 34.
Appendix C contains more details on the nature of these
conditions for an A matrix given by (51), for a simple
choice of T,,,. We note that the multiple scattering ef-
fects are contained in Eq. (53). A,,. contains a product
of T,.., and R(k,, k}) and therefore describes a reflec-
tion at §; from underneath and a scattering from S;. If
(1+ A)! is expanded in powers of A, the terms in such
an expansion can thus be interpreted as rmultiple scat-
tering contributions containing an increasing number of
reflections back and forth between S, and S;.

When ¢ has been determined, «f(k,) and S(k,) are ob-
tained from Eqs. (48) and (46), respectively, and the
amplitude f(k,) of the scattered field in V, is obtained by
inserting Egs. (46) and (48) in Eq. (23). In this way we
obtain
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2% -
Flky)= jo gy [k, k) alky) sina da
Ca

L9 Y (e j:'dﬁ, f Y,(k,)
Ca

nn'

2r
X[Q(ko, k) + j’o ag; | RO, )0k, k)

x sinaj daj ] sina, do, , k,eC, . (54)

In analogy with the T matrix for a finite scatterer we
have here introduced the “T matrix” for the infinite sur-
face S;, which is in this case usually called the reflec-
tion coefficient and which is denoted R(k,, k). R(k, k)
is defined by [cf. (52)]

. I:' a8, jC_Q(ko, k,)

x @ (k) k,) sina, da , R eC, , ‘I;(,’ ecC. . (55

The scattered field $3°(r) is then finally obtained from
(54) and (6);

2r 2r -
v = [ asy jc{ L dg} jc_R(ko, K!)a(k)

R(k,,

2r
xsina}day+2 2 i" T, (1)c,. I dB,
m?’ 0
~ 2r
x J Y,,(k,)[Q(ko, k,)+j dﬁqj R(K,, k,)
c, 0 C.

x Q(k,, ki) sinarf da{] sinay da,} e'®°T sina, da, .

(56)
The first term in (56) is a direct reflection at the infinite
surface S,, as if no inhomogeneity were present in V;.
The remaining terms represent the anomalous scattered
field, i.e., that part of P{°(r) which contains informa-
tion about the scattering properties of the buried in-
homogeneity (and since c, appears here all the multiple
scatterings between S, and S; are included in this part).
Thus, although the above treatment of the basic equations
has been mainly of a formal nature, it provides some
insight into the meaning of the various quantities which
appear.

In order to see explicitly how this scheme works we
specialize to a plane surface S,. In this case Q(k,, k)
[cf. (22)] becomes a & function and the integral relations
(23) and (24) degenerate into simple algebraic expres-
sions. (Note that we do not yet introduce any additional
assumptions concerning the inhomogeneity.) Thus let
S, be the plane z=z,. The Egs. (52), (55), (50), (51),
and (56) then simplify into

R(k,, k) = - R(r,) exp| 2iz,(k3 —aD)'/?] 6( B - BY)
x 6(ay + o} —7)/sinay , keC., B ec,, (57)
R(k,, kb) = R(x,) exp[— 2iz, (k2 — 25!/ ?]5(B, - BY)

x8(a, + oy —m)/sinay , keC,, kheC., (58)

B 2r
=% | 4 [ nm-rOY)
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xexplizo[(kf - \)'/? ~ (B2 = A2)1/?]} alk,) sina, da, |
(59)
r -
Ape=2 2 i""""TMﬂ)f dﬁ:] Y, (k)
0 Ca

"l'

X RN, (B]) exp|2izy(k! - AD)] sina, day ,  (60)

Y. 4
yeo(r) = L dg, jc R(ry) exp[- 2izy(k - A2/ alk)

or o 2 inte
xe"‘O"smaodao-i»%Q i, (1) ey
1

21 =
x | afy | Yollo) explizal( - N2 - (65 - N9 7}
0 C, .

x[1+ R(x,)] ety sina dog = Y= 47(r) + %“ mom(r) ,

(61)
where

Cullf =212 = (¢ - )12
Cor (ke = XT3 (T2

is the well-known reflection coefficient of the plane.
Similarly, 1+ R() and 1 - R(\) are both transmission
coefficients through S). 1-R()\,) refers to transmission
from V, to V; and 1+ R(\;) to transmission from V, to
V,. (Additional phase factors also appear, since the
coordinate origin lies at a distance 2, below So.) We
have also introduced the notations

R(\) =

A;=kysinay, i=0,1,

ko=, sina, cosB,, k sinoy sinfy, — (k% -A})1/?],

k} = ky(sina, cosB,, sina, sing,, - cosy,) ,

ko= ko ki [sina, cosg,, sinay sinfy, (K k2 —sinay)/?,
%}E (sinay cospy, sina, sing, , —-cosay) ,

and the square roots are specified by the conditions
Im(k} -A2)V2=0,

I11. NUMERICAL APPLICATIONS

In this section we will illustrate how the results can
be used for numerical computation of the anomalous
scattered field. The simplest possible case is of course
that of a spherical inhomogeneity, i.e., a diagonal T(1)
matrix, and we give numerical results for a selection
of media contrasts, sphere sizes, and source positions
for this case. Results concerning nonspherical inhomo-
geneities are of course of great interest, and therefore
we present another set of computations concerning this
case. Descriptions of several examples of the numerical
calculation of the nondiagonal T matrix corresponding to
a single nonspherical scatterer can be found in Refs. 1
and 13. Furthermore, computer programs are avail-
able for computation of the 7" matrix of a single general
rotationally symmetric scatterer.?** Qur examples
concern various configurations of two spheres, having
different sizes and scattering characteristics. The
computation of the 7(1) matrix for this case is given in
Refs. 6 and 37.

In the numerical examples the incoming field is that
of a simple point source
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expliky|r —1,1)

(62)
Ir=-r,l

pioe(r) =
situated at the point r,=(¢,, 0, 2,), where (¢, ¢, 2) are
cylindrical coordinates. From (62) and (5) we get the
plane wave amplitudes of 3,

a(k,) = %ﬁ exp[ - iky(L, sinay cosBy + z,cosay)] . (63)

Equation (59) and the second part of Eq. (61) then sim-
plify into

dy= 2kyi ™= 1)y, j" Pre) g, [yt (1~ 2)17)

o &% {ikyzgx +i(2, — 2)[ B = 21 - )] %} - kyx dx
Cols —R (1 -N7 24 pix

o) (20)

zp;e, mom(r) — ﬂ%:l_kl E i""‘"T,m'(l)cn' ¥Vn
nn'

(64)

cosme 1
X ™ ( ) I Pr{[1 -k - )]/}
sinm¢@ i

X exp(i{(z — zo)kyx + 2, [B} - BE(1 - x9)]'/2})

X, [y (1=x2)1 2){ Ry Coyx + [ 21— x?)]1/ T

og=e
X kox dx for( > )
o=0

(65)

where we have used cylindrical coordinates also for r
=(£, @, z) on the right-hand side of (65). ¥, is the

normalization factor for the spherical harmonics. (See

Appendix C.)

The directly scattered field-will not be analyzed any
further here since the properties of this field has been
thoroughly treated in the literature., (For an analytic
treatment see Ref. 26 and references given there and
for numerical aspects see, e,g., Ref. 38.) Thus we
shall mainly present our results in terms of |§%*°%|,
sometimes divided by lzpé‘“l . Some results on the phase
of Y5%*°™ are also given. It is clear that in actual ap-
plications one would often be more interested in the
quotient | y§%*°™|/] y8%%*| and the phase difference be-
tween 3§97 and P§>*°™, Using the well-known results
concerning %%~ these quantities can easily be obtained
from the results on ;> **°" given below, but we shall
not go further into this in the present article.

In the numerical calculations the evaluation of the in-
finite integrals constitute an important part. These in-
tegrals [cf. Eqgs. (60), (64), and (65)] are analytically
well behaved when 2z, >0, but the rapid oscillations of
the integrals cause difficulties in numerical evaluation.
One oscillating term can be avoided by putting the
source and the measuring point on S;. The contour of
integration from i» to 1 is split into one infinite part
from i~ to 0 and a finite part from 0 to 1. For the finite
part we have used the Romberg iteration scheme. ' The
infinite part was evaluated either by the method of Rom-
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S

_FIG. 6. The amplitude of the anomalous scattered field | $3°*™| on the surface Sy (k2= 2) for a buried sphere of radius

kia=1.25, ko/ky=2, Ly/ty=2.

The point source is located at ko, =3. (The scale on the x and y axes are in units of ky. The

buried sphere is projected on the surface S in units of kg as a reference.)

berg, after truncation, or a 32-point Gauss~Laguerre
quadrature, depending on a cost-effectiveness estimate
in each particular case. (See, e.g., 39, 40, and 41.)
The numerical procedure is as follows:

(1) Evaluate the T matrix for the inhomogeneity.

(2) Compute the integrals in A,,, and d, and calculate
the matrix A,,.

(3) Obtain the vector ¢ by interation of Eq. (49).

(4) Evaluate the 33>*°"(r) in a given measuring

point r by computing the integrals in (65) and sum to
sufficient order,

We note that these integrals depend only upon the posi-
tion vector r and are independent of the inhomogeneity
and the incoming field. Thus these integrals can with
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advantage be calculated and stored for an array of mea-
suring points. When a new calculation of the scattered
field with a different inhomogeneity, but with the same
properties of V, and Vy, is desired, one just evaluates
the new T(1) matrix and uses this new T(1) matrix to~

‘gether with the old evaluation of the integrals to calcu-

late the new §§»**°™. The evaluation of a solution ¢ to
Eq. (49) can be done in various ways. We have found

a simple iteration scheme, the Gauss—Seidel method
(see, e.g., Ref. 41), most convenient. For moderate
contrasts between the media this method gives fast con-
vergence,

In the calculations we assume that V,, Vj, and V, are
all without losses. The difference between the V, and
the V, parameters is chosen to be moderate, kg :_1. Sky,
Cy1 =2, and it is the same throughout. The surface S,
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FIG. 7. The ratio | $§&®%/y%¢| for the configuration in Fig. 6, but kju=0.5. (The scale is given in percent.)

is taken to be kyz(=2, and three different source posi-
tions are considered, namely k¢ ,=0, 3, and 15, >
is evaluated on S; and for an array of points obtained
by varying the cylindrical coordinates ¢ and ¢. This
array varies slightly between the different examples,
depending on the variation of the scattered field.

The simplest scattering situation is that of a single
buried sphere. Some numerical plots concerning this
case are shown in Figs. 6-8. Figures 6 and 7 show
surfaces of constant value of the absolute value of the
anomalous scattered field and the anomalous scattered
field divided by the incoming field, respectively. There
are some irregularities of the curves, which obviously
are due to the linear interpolation in the computer rou~
tine producing these plots. The original calculated
fields do not show these irregularities, The absolute
value of the anomalous scattered field is given in an ar-
bitrarily chosen scale, which is the same for all graphs
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showing | #5*°®|. The absolute scale can be obtained
from the graphs showing |43®°®/yp*°l. Figure 8 shows
a series of graphs of the variation of |y4***°"|along the
x axis for a selection of radii of the sphere.

In general, the graphs of |¢§»2"°"| show a maximum
on the far side of the sphere. For larger values of the
radius there is a minimum indicating that destructive
interference come into play. (These gross features are
roughly consistent with what one would expect from qual-
itative arguments based on phase differences of repre-
sentative rays; however, any such arguments should of
course be used with extreme caution at these long wave-

- lengths.)

Figures 10-16 show the results from computations
with the inhomogeneity consisting of two spheres. The
radii of the spheres are denoted @y and a; and the total
T{(1) matrix for the configuration of the two spheres .
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FIG. 8. The variation in | $§*% | along the x axis but on the surface Sy(ky z = 2) for various radii of the buried sphere. In all

curves kol,=3, ky/ky=2, L/t;=2.

refers to spherical waves from the coordinate origin,
which lies halfway between the centers of the spheres.
The distance between the centers is denoted d. The
orientation of the two spheres is given by the spherical
angles (9, x) of the axis from the origin to the center of
the larger .sphere (cf. Fig. 9). Computer programs
for the calculation of the total 7' matrix for a configura-
tion of two spheres oriented along the z axis are given
in Ref. 37. For a different orientation this 7' matrix
is then similarity transformed by means of a (block
diagonal in #n) rotation matrix (i. e, , each n block con-
sists of a (2# + 1)-dimensional irreducible rotation
matrix, cf. Refs. 31 and 42). -In Figs, 10 and 11 the
volume of the bigger sphere is eight times that of the
smaller.

At these comparatively long wavelengths the relative
influence of the two spheres could be expected to be
roughly proportional to their volumes and the presence
of the smaller sphere is seen to produce only a slight
distortion of the field corresponding to an inhomogeneity
consisting only of the bigger sphere. In Figs. 12-14
the spheres are bigger and of more equal size. In
Fig. 14, which shows most structure, the k values of
the two spheres are different.

The results shown here are only some representative
examples of the type of calculations which can now be
performed in a straightforward manner. It is certainly
of interest to perform more extensive calculations con-
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cerning the dependence on all the various parameters
which are involved and also to present the results in
terms of | y§%*°™ /35417 3 guitable measure on the in-
fluence of the inhomogeneity. Conversely, one should
also compare | $§*°®| (i,e., calculated just below Sy)
with what would be obtained in the absence of S, (i.e.,
for ky=Fky, £y=¢4). This would give a measure of the
influence of the interface S,. Work in these directions
is in progress and will be reported elsewhere.

Iv. CONCLUDING REMARKS

It has already been remarked that the above results
can be expected to apply, with appropriate modifica-
tions®=%7 to the electromagnetic and elastic cases as
well and work in this direction is in progress.

So far we have only treated in any detail the solution
for the case of a plane surface S),, and the construction
of an explicit solution for a case when §; is not a plane
is obviously a problem of great interest., In particular,
if S, is plane surface everywhere except in a finite re-
gion, the present formalism can be used in a perturba-
tive treatment of the deviation from the plane surface
solution even if the integral transforms cannot be in-
verted analytically. If the finite “hill” in addition has
rotation symmetry, the integral transforms involved
is only one dimensional, We get a one-dimensional in-
tegral transform also when we have a ridge which is in-
finite in extent in one direction, e.g., the x axis, and
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FIG. 9. Spherical angles (¢, x) for the orientation of two
spheres.
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which is independent of the coordinate x and of finite
extent in the y direction. (The inhomogeneity could
then still be taken as three dimensional.)

In the present article we have concentrated on the
direct scattering problem for the configuration of Fig. 1.
It is obvious that the inverse problem for this con-
figuration is of greatest importance and the present re-
sults concerning the direct problem could be exploited
in an attack on the inverse one. It is in this context in-
teresting to note that results based on the surface in-
tegral relations used in the T matrix formalism have
recently proved to be fruitful in attacking inverse scat-
tering problems.
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FIG. 10. The amplitude | $§>**®| on the surface Sy(k4z=2) for two buried spheres of radii kjay=0.5, kja;=0.25, Lo/t =83/81=2,

ky/ky=k3/ky=2. The separation distance is kyd=1.5 and the
located at koZy=15.
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symmetry axis has the polar angles ¢=n/2, x=37/2. The source is
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FIG. 11. The 5ame as Fig. 10, but $=3n/4, x=57n/4, and koty=3.
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APPENDIX A: ON THE COMPLETENESS OF
SPHERICAL AND PLANE WAVE SYSTEMS

In this appendix we show how the treatment of the
completeness properties of certain systems of spherical
and plane waves given in Ref. 11 (cf. also earlier ref-
erences given there) can be extended and modified so
as to cover the present case. Reference 11 treats a
single closed or open and periodic surface, and we shall
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show how the systems considered there can be enlarged
so as to be complete on S, and S, together.

Consider first two closed surfaces such as S{’ and
S{¥ in Fig. 3. In this case the system {Rey,, ,} is a
complete system in L¥(S§? +S{¥’), the space of square
integrable functions on S§*'+S{¥. (Here and in
the following the integration is always with respect to
the surface element.) That is, for any element f(r’) in
LY(S{® +S¢P) which is orthogonal to an arbitrary ele-
ment in this set (i.e., an arbitrary linear combination
of Rey, and ,), it follows that f{r")=0. In order to
show the completeness of {Re¥,, ¥,} we make use of the
fact that if f(r’) is orthogonal.to an arbitrary element
in this set, it is in particular orthogonal to {Red,} and
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FIG. 12. The ratio | ¥§3@@/yiie| on the surface S, (k42 = 2) for two buried spheres. kyay=kia,= 0 5, $=u/2, x=17/4, kolp=3.

The remaining parameters are as in Fig. 10.

{#.}, and we consider these two sets of conditions sep-
.arately.

Thus we consider first the conditions

J‘séz)‘siz)f(r')zp,.(kr')dS':0 (all n) . (A1)

Choose an r inside the inscribed sphere of S{”, multiply
(A1) by Rey,(kr), and sum over n. According to (13),
we then have

fm 0 @)GE,r';k)ds' =0 .
SO 481

Thus the function ¢¥(r) defined by
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$0= [ o o FEIGE, 15 DS’

So +81
is equal to zero inside the inscribed sphere of S{®’, It
is a solution to Helmholtz equation which can be con-
tinued up to S{¥’ and it is then zero everywhere inside
Sf, 1t is sufficient to consider all (r’) in a dense set
in L%(S§? +S{¥) and we may therefore furthermore as-
sume that £(r’) is continuous on S§2’ +S{?>, Then ¢¥(r)
is continuous across S{%, i.e., we have ¢*(r) =0 for
r inside or on S{%’,

Consider similarly the condition

J(Z) o f (£ ) Red(kr) ds’=0 . (A2)
So +54



932 G. Kristensson and S. Strém: Scattering from buried inhomogeneities 932

FIG. 13. The same as Fig. 12, but kyay=1, kyay=0.75, kyd=2, $=x=1/2, kely=0.

In this case we choose an r outside the circumscribed
sphere of S{*, multiply (A2) by ¢,(kr) and sum over %
to get

’ ’, r_
fsams;z) f(r) Glr, r'; k) as’ = 0.

Thus the function

¢°(r)= fm o f&) G, ' k) as’
Sg "+8q

is zero outside the circumscribed sphere of §§2 and
this solution of Helmholtz equation is then by continua-
tion zero everywhere outside $§*’ and for a continuous
f(r’) ¢°(r) is continuous across S{>. Thus we have that
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o(r)= fm o (TN Glr, r'; k) ds’,
Sg +5¢ v

which is a solution to Helmholtz equation everywhere
except on S§* and S{®, is different from zero at most
in the shell between S{*’ and S{’. A nonzero solution
of this homogeneous Dirichlet boundary value problem
for the bounded region between S{*’ and S{» can exist
for at most a discrete set of & values.** We therefore
assume that %2 does not coincide with any of these dis-
crete values and in this case we have ¢ (r)=0 every-
where. But in general f(r’) corresponds to the surface
source density on S§*’ and ${* of ¢ (r), i.e., f(r) is
proportional to the discontinuity of % V¢ across these
surfaces. Since ¢(r) is equal to zero everywhere,

n-V$,=0=n-V¢._on 5§¥ and S{®, and consequently
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FIG. 14. The amplitude | #§**| on the surface S, (ksz = 2) for two buried spheres of radii k1a;=k1a,=0.5, kyd=1.5, d=x=7/2,
ky/ky=1, ky/ky=2, L/ti=ty/t1=2, and kyt,=3. Index 2 refers to the sphere on the positive y axis and index 3 to the sphere on

the negative y axis.

f(r')=0. Thus the two conditions (A1) and (A2) imply
f(r')=0 and the system {Re®,, #,} is complete on S’
and S{? [for & not coinciding with any of the (discrete)
resonance values of the region between S((,z’ and SfZ)]-

Next we consider the configuration of Fig. 1. One
technical complication is introduced in this case inas-
much as for the infinite surface S,, the plane and spheri-
cal waves are not square integrable over S; and thus,
for example, the integrals

J,

do not exist for all f(r’) in L%S,). However, the plane
and spherical waves can be treated as generalized eigen-

f(!") eik-r' dsa, f f(l") lP,. (krl) d86
So

0
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functions and for these we have a corresponding com-
pleteness concept. (See, e.g., Ref. 45 for more de-
tails.) Thus we consider a suitably restricted subspace
of L¥S, +S,) namely the set of infinitely differentiable
functions on $; which are rapidly decreasing at in-
finity, 4>

Corresponding to the fact that we have one open and
infinite surface and one closed and bounded, we consider
the following set of functions

{e¥*", 3.} for keC. and all n, (A3)

and we show that for eVery infinitely differentiable
rapidly decreasing function f(r’) on S; and Sy, the con-
ditions
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[ However, the functions y,(kr’) are not always a suit-
] able set to use on §;. On S; we may express them in
terms of plane waves. I the coordinate origin inside
S, lies below z =z, ¥,(kr’) can be expanded in terms
of {¢**™'} with k€C, only, whereas if the origin lies
above z =z, both k€ C. and keC, appear [cf. Eq. (9)].
However, since all of S; is assumed to lie below S;, the
origin will lie below S; and therefore contributions cor-
responding to iaEC. will always appear in the expansion
of §,(~r’) for r' on S;,. Thus if a function on S is ex-
panded in terms of the set {¢'*™’, keC_; y,(kr")} and if
¥.(kr’) is transformed into plane waves, we obtain an
expansion of this function in terms of plane waves
exp(ik - r’) with keC. and keC,, as in Eq. (17).

APPENDIX B EVALUATION OF THE INTEGRAL
ik, r)

In this appendix we evaluate the singular integral (21),
i.e.,

/ B

1G,1)= | [V Glr,r'5k)
S0

—( v’ 'k ")G(r r k)] nodSO

The easiest way is to-use the limiting absorbtlon pro-
cedure, i.e., to give k a small imaginary part; &

ks =k’ +i¢ with ¢>0. Using the new integration variable
r’'=r’'-r, we have -

m 7

1

FIG. 15. The variation in | ¥§**°™®| along the y axis but on the

surface S (k;z = 2) for two buried spheres kya;=kja,=0.5, kyd Ik, 1)
=1.5, $=x=1/2, k3/k1—2 Lo/ L= L/8=2, kot, =3, but with ’
varied ratios of k,/k, (again index 2 refers to the sphere on

the positive y axis, etc.). (a) kp/ky=5, (b) ky/ky=2, (c) ky/ky _gier J‘ [e“"“V"(Aeiwl> et )] 5
= T n
. A 0dog -

k 'y
=1, (d) ky/ky=0.5. ) b v (et T

First we choose r in ¥} and close S, by adding a half
J’ 7 e s’ =0, hecC., (Ad) sphere I with radius »"'=R. S, is closed in the upper
S0+ 51 or lower half space depending on whether k< C, or
ke C.. By Gauss’ theorem the 1/7” smgulamty gives
a contribution + 1 if keC but zero when 2cC.. In the
J f()a,(kr)dS'=0 (all n) (A5) limit of R — =, the remaining integral over T, gives no
So+51 contribution since for IEEC, we have

and

imply f(r')=0. The set (A3) is then complete, *°

Consider first (A5). In order to exploit this condi- arg ¥
tion we proceed as before: Choose an r inside the in-
scribed sphere of S;, multiply by Rey,(kr), and sum
over n. In this way we obtain, as before,

(r) = j F(r") Glz, t'; k) dS’ (A6)
Soosl

is zero everywhere inside and on S;. —

Similarly we multiply (A4) by exp(— ik-r) where r is
chosen above z =z, and integrate over C_ to obtain, by
means of Eq. (5), the result that the expression ¢(r)
given by (A6) is zero everywhere above and on S;. These
properties of ¢(r), together with the explicit expression
(A6) suffice to guarantee that ¢(r) is equal to zero
everywhere'® and as before we get f(r') =0 and the set FIG. 16. The phase variation of $§**"™ along the y axis., Data
(A3) is complete on Sy +S;. as in Fig. 15.

J. Acoust. Soc. Am., Vol. 64, No. 3, September 1978
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J [“ o ”<e(kr':> e(kr" V”( sy ] A "
rempy e GG B

27 arccosle ¢ /R)
<J‘ dy f exp [-Im (kR cosy) — €R]
x | ik =1/R - zkcosrl gy Sin9dd
. .
< kR f exp (- tk' RIm. cosa) K| (k) dt
2 /R

< R K, (K)exp(- k'zIm cosa)~0, R-— .

Here cosy=£ .7, k=(sina cosg, sina sing, cosa) and
Kik), K(k') are constants, independent of R. For
k<C. one has similarly

J. s ”(e ) ot
dnv'' ) Amr?’
Se—eRRI

. -1

= & K, (k) exp(- &'z ,Jm cosa)— 0,

VII (eik-r“)] . ;ldsu
exp(— tk'RIm cosa) K jK)dt

R~ oo,

Thus if r lies in V; we have

eix'r EEC
= f ~ +
1%, 7) {o} °r{kec_ -

In the second situation, i.e., when r lies in V;, we can
proceed as above. We close S, in the upper or lower
half spaces, but this time the contribution comes from
ke C.. One finds

I(k,r)z{_gﬂ.,} for {:eg}

The minus sign appearing in this last expression comes
from the fixed conventlon regarding the direction of the
normal vector 7, on S,.

APPENDIX C: CONDITIONS FOR THE EXISTENCE OF
A SOLUTION TO (49)

In this appendix we discuss briefly some sufficient
conditions for the existence of a (bounded and also
unique) solution to Eq. (49). Anequationof the type (49)
is said to be regular if 3, A, <1 for all n. If Eq. (49)
is regular and if the right-hand side d is bounded by '
ld,| =K¢, where Kis a constant and £,=1~3, !4, |
>0, then a bounded solution ¢ with |¢c, | < K exists and
can be found by “successive approximation” or by “the
method of reduction. ”3 I, furthermore, the system
(49) is fully regular, i.e., if £,=9>0 for all n, this
solution is the only bounded solution to Eq. (49). By
successive approximation we mean the use of the itera-
tion scheme

Gel) 2: Gy ' )
Cn =d, - Appr Cpt'y 1=0, 1, 2;---’01(10 =0.
py

The method of reduction refers to taking the limit N— «
in the truncated system of equations

C,,:d"—ioA""'C"r, n:O, 1,...,N.
n’=
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The above results are proved in Chaps. 1 and 2 of
Ref. 34, where more mathematical details can be found.

We apply these results to Eq. (49) (or rather to.a
similarity transformed version of it: cf. below) with
the explicit form (60) for A, in a simple case. Con-
sider a spherical inhomogeneity and a source situated
symmetrically above it. For a sphere Eq. (60) reads

Arm' =0 mm* 5aul T . (1)(- 1)"""‘. 47[7’"7’"'

j P ) P7 () R [y (1~ x 2)1/2) exp (2izghyx) dx,
(c1)
where

yCyo gt (Rya) jo (ko) = Ry jn(kya) jy (kpa)

: - Cc2
EiCig ' (10)jnllaa)~ gh ) (R1a i, (kpa) e

Tn(l) ==

{the prime denotes differentiation with respect to the
whole argument) and the normalization factor y, 'is given

o= (- 1),,,|:2n+ 1 (n-m)! ]1/27

Ay (n+m)!

The matrix 4 in (C1) has different growth properties
along rows and columns. We shall therefore study a
similarity-transformed version of A which has sym-
metrical growth properties on both sides of the diago-
nal. Consider

A=S8AS,
where the (diagonal) matrix S is given by
Snn' = 6“.'}/‘;1]' n(kla)" (C3)

This matrix is invertible if k,a does not coincide with
any of the zeros of j,(x). Thus it is invertible if for in-
stance 0<k;a<3. The transformed Eq. (49) will be
written

(1+A)c=d, (c4)
and according to Egs. (C1),
plicitly

(C3), and (64) one has ex-

A = 8t Oogr Toe (1) (=)™ (20" +1) (0" —m")!

1
XL+ 1 1T olse) e Gre)] ™ | PRGR)
X P™ (x) R[ky (1 — x2)!/?] exp(2izykyx) dx, (C5)

Zinz Z S"": d"l = Zkiz m+l(_ 1)" ]-"(kla)
e

1
xf P (), [yl (1 =% Y2

Xexp{zk1z0x+z(z, zo)[ko—kz(l xz)]zlz}k dx(l)
Col le— kT =xD)]"* + kyx 0

for{oze}-
oc=0

The inhomogeneity is assumed to lie fully inside v,
which requires a< z,. We shall consider the long wave-
length limit, i.e., an interval of the form kja< Cy,
where C, is some constant. In the case of a symmetri-

(C6)
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cally situated source only terms corresponding to m=0
contribute [cf. (C6)]; the general case will demand a
more elaborate analysis but is straightforward). Using
suitable estimates for |P, | one obtains the required
bound on 3,1 A, |. Thus for this special situation it
can be shown that for a suitable choice of the constant

C, the system (C4) is fully regular so that a unique
bounded solution to this equation exists?? (and thus also
to Eq. (49) for every invertible matrix §). However,

a corresponding analysis could be applied to more com-
plicated situations. The conditions obtained are suf-
ficient conditions and unique bounded solutions can be
expected to exist for a much wider range of parameters
and geometries than are indicated by these sufficient con-
ditions. All the numerical examples which we have con-
sidered in the present article showed very fast conver-
gence for this equation.
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Abstract

We will in the present paper derive a general three-dimen-
sional formalism for electro-magnetic scattering from buried
inhomogeneities. We will exploit the transition matrix forma-
lism - originally given by Waterman - to electromagnetic scat-
tering in the presence of an infinite surface and a buried bound-
ed inhomogeneity. The analysis explicitly assumes that the sour-
ces are located above the ground, but this restriction can easily
be relaxed and a parallel derivation can be made for sources loca-
ted in the ground or inside the buried obstacle. No explicit sym-
metry assumptions are made for the bounded inhomogeneity or the
interface between the halfspaces, except that the interface be
bounded by two parallel planes. The scattered field above the
ground is calculated in terms of an expansion where the expan-
sion coefficients are solutions of a matrix equation. The ex~-
pression for the scattered field is separated into a directly
scattered term -~ as if no scatterers were present - and the
so called anomalous field, reflecting the presence of the in-
homogeneity. We give some numerical examples for a flat
interface and an inhomogeneity consisting of one or two

buried spheres or a perfectly conducting spheroid.



I Introduction

The transition matrix formalism has, since it was first
formulated [l], successfully been extended to more complicated
configurations and scatteres [2]—[9] - several finite scatterers,
multilayered or not, or a periodic infinite surface [ld]. The ana-
lysis has shown great similarities between the acoustic, electro-
magnetic and the elastic cases, giving a systematic formulation
for scattering solutions of Helmholtz!' equation in both the scalar
and vector case. The effect of an infinite surface in the presence
of finite scatterer has recently been treated for acoustic fields
[lﬂ , and in this paper we give the corresponding extension to
electromagnetic waves.,

The two essential tools in the T-matrix formalism - suitable
expansions of the Green's function and of the surface fields -
will in this context be generalized to hold for vector plane
waves. The vector character of the problem introduces a dyadic
notation for the Green's function, but also generalization of the
transformations between plane and spherical waves found in the
scalar case, and these aspects will be analysed. The presence of
an infinite surface introduces a continuous variable, which is
inconvenient for numerical applications. We will in this paper
show how the equations, at least for a flat surface, can be trans-
formed into a matrix equation more suitable for numerical calcu-

lations. This property is a consequence of finiteness of the buried

obstacle but also of the use of the spherical wave basis.

Electromagnetic scattering, from e.g. a dipole and an infi-

nite plane surface is a canonical problem, and a long list of
papers have analysed various aspects of this topic. Many of the

results are found in the monograph by Bahos [lﬂ  and references



given there. The scattering problem from a buried inhomogeneity
is a problem of greater complexity, and the results found in the
literature are mainly concentrated on obstacles with certain sym-
metries, which simplifies the analysis to some extent, e.g. spheres,
cylinders [lﬂ —[Zi). Very few results with a general bounded ob-
stacle are found, see, however, e.qg. [2@ . In this paper we will
develop an analysis for truly three-dimensional electromagnetic
prospecting situations, making fairly weak assumptions on the geo-
metry of the obstacle and structure of the source. Several exten-
sions of the results given below is being pursued at presence and
will appear elsewhere. The T—matrix‘method has been developed for
the elastic wave case in Refs. {91 and {10} . It is expected that
the results of [1ﬂ and the present paper can be extended to the
elastic case as well and work in this direction is in progress.
The plan of the paper is the following. In section II we
will make the necessary assumptions and definitions. We also ce-
rive the basic equations of the formalism, and analyse the diffe-
rences from the corresponding scalar case. In section III the
basic equations will be further developed, and the scattered
field above the ground will be written down explicitly, both in
the general case and the special case of a flat interface. Further-
more it will be shown that the results can be given a multiple
scattering interpretation. In section IV we analyse and discuss
various numerical aspects, and some numerical results are presen-
ted. In the final section V we discuss applications and future

extensions of the theory.



II T-matrix formulation of electromagnetic scattering in the

presence of an infinite surface

Tn this section we will derive the necessary equations for
electromagnetic scattering from a scattering geometry as depic-
ted in Figure 1. The surface So separates the two halfspaces
Vo and Vy-

to be sufficiently regular for an application of Green's theorem

The interface S need not be a plane but is assumed

and bounded by two parallel planes 2=z and z=z_. The normal to
these planes defines the z-axis and the axis is directed into VO.
The upper halfspace VO is assumed to be homogeneous, and the half-
space Vl is also assumed homogeneous except for a finite region V2.
The propagation constants in each volume are indicatea in the fi-
gure. (We here explicitly take the volume v, to be homogeneous buat
this restriction can be relaxed [7].)

The sources of the wave field will explicitly be assumed to
be situated in the upper halfspace Vo’ at the point P in Figure 1.
This choice is not essential for the formalism and a parallel
derivation can be made when the sources are in V; or V, (cf.
Ref. [11}). This aspect will be developed further in a future
paper.

In each volume respectively the electric field Ei(f) will

satisfy (a time factor exp(-iwt) is suppressed)
- A - :
VxVUxE;(® - K E:(® =0 10,12 | (L
(Here and below we will derive all the equations in terms of the
> >
electric field E(r), but these equations hold equally well for
the magnetic field ﬁ, all that needs to be done is to replace the

electric field E(¥) by the magnetic field i [21, see also Eg. (18)

and below.)



inc >
ﬁo

The incident field (r) is assumed to be prescribed and

generated at a point P, but we will here make no further assump-
tions.

The method or scheme, which we will adopt here to solve the
scattering problem, is a T-matrix formalism ﬂﬂ-—@]. The starting
point in this formalism is the following integral representation
of the electric field E, in terms of its tangential boundary valu-

es, see e.d. [25]

B = inc ' > - '
=0 2 E_ () + Vxﬂan(F)G(r,r'k)dS ¥

¢} S
) —— o ! ¢ outside S
+kz'inVxSSax(VxE(?))G("»rlik)dsl {F"ms;aes (2)

S
Here S is a closed surface and the sources are located outside
S, and §+ and vx§+ indicate the field values taken from the out-
side. The free space Green's function G(?,f',k) satisfies the

scalar Helmholtz' equation with a delta function as a source term:
2 .2 1 g-; -/
(V +k)G(?r'k)=‘ ((‘-—Y‘) (3)

To satisfy the requirement that we have an outgoing wave for large

arguments we chose

G237 k)= ex?{ikl?—?'l%'ﬁ 1T-2

The integral representation Eg. (2), commonly known as the
Poincaré-Huygens principle or the extinction theorem, will first
be applied to a surface consisting of a finite part of SO and a
lower half sphere. Let the radius of the sphere go to infinity

and assume the integrals over SO exist, and furthermore that the



integrals over the lower halfspace vanish (radiation conditions).

We get
_E"o(?) = \n o , )
S B s xRl GEF ) dS -
S
. e , T,
' k"v X{v xjé e (VXE(’(?'))G(T—’?'; kg C\S} T outside V, (4)

It is here convenient to introduce the dyadic notation for
the Green's function G(?,?'; k) and since the T-matrix formalism is
based on suitable expansions of the Green's function or dyadic
we will here discuss the expansion of the Green's‘dyadic in some
detail. Since the scattering geometry, as depicted in Figure 1,
consists of an infinite surface SO bounded by two parallel planes
an expansion in plane waves is suitable. The aim of this expansion
is to use the same expansion of the Green's dyadic over the whole
surface S, in the integrals of Eq. (4). The plane wave expansion
of the Green's function which we shall find most suitable is,

(see e.qg. [_26] or [ll])
) [ '

CE(mr; ng dp e &nmd& (5)
Here f=k(sinacoss, sinosing, cosa) and C, are contours in the
complex a-plane (see Figure 2). The C+ contour is relevant if
z>z' and C_ if z<z'., This expansion can be interpreted as an
expansion in harmonic waves (corresponding to the real part of
the contours C,) and evanescent waves (the complex contributions
in the contours Ci). This type of expansion has been extensively
analysed in the literature and for further details see Banos [lﬂ

and references given there,

a.a. where
1 373

3
The unit dyadic'? can be written as I

J
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aj;j=l,2,3 is any righthanded orthogonal triplet of unit vectors.
We will here explicitly take the unit vectors aj to be the sphe-

rical unit vectors of kEK/k. We shall use the following notations

-

1

N
o
A
N
= K (6)

w> > >
Z"l"

and we can write

é-gj e ) s.\nm dn (7)

The main reason for using spherical unit vectors in the dyadic
is to get accordance with the spherical vector waves introduced
below, but also since this choice separates the longitudinal
part of the Green's dyadic in a simple fashion (the longitudinal
part corresponds in our notation to j=3).

The spherical vector waves will be used to describe the
scattering from the inhomogeneity, and consequently the corres-
ponding expansion of the Green's dyadic will be needed. The sphe-

; > - > > .
rical vector waves wToml(kr) and RewTOml(kr) are defined as

cosm::)] (8)

L=12,. y m=01,...,L v=e0|T=12

qju.ml( k¥) ~ﬁ(—[—-\ (k VK) [kr h, (ke) P "(cos¥)

= {=- m Z__‘L‘. l‘ )‘- 1
Yimz 1) iem Hw{tﬁv ; €= 2= 000

The vector waves ReiToml(k?) is defined analogously with

h{l)(kr) everywhere replaced by jl(kr).



These vector waves can alternatively be written in terms
. x -
of the vector spherical harmonics AT ml( ) as
—’

™ A (0
P ) = Ryt Ryt

-y

¢

-> A -~ n [
seml (K& = Ay () f%m[krl'\“:(kr\}/kr + L) Aswml(r\ \"L(k")/kr

where

> N 1 - m, - cosm 'y
Axmlt”iﬁ(—l—,ﬁ Ux (¥ Y'-“‘FL (cosi) ( '?n

smm& = —? XAZG'N\‘.(}Y\')

g

A
arml({T) =

! ™ COSmQ A=
i st (23] - 2R

9)
-ty

A'.srml (v)= ?‘Ylm le(cos(ﬂ (wsm? )

Sin m<?

We will below, when convenient,

¢

-
n Toml A n

abbreviate the indices as follows:
- —

V¢,

n

~»

—-’
Atn" Atrml

The expansion of the Green's dyadic in terms of spherical vector

waves is found in the literature e.g. [27]

—> vy «
JGEFK- ik'%'l‘_“\’n(k?,) ReW (ki) + i (10)
Tel2

_.).
Here r_ and i: are to be identified with the argument T or r'

according to |§:><| =min(r,r"') ;

; |f>|=max(r,r') . The dyadic I,

r.
is an irrotational dyadic.

Consider an T in V, with z>z in Eq. (4). Insert the plane

wave expansion of the Green's dyadic Eq. (7), and we get, after



a change of order of integration, a representation of the scat-

tered electric field in the region Vo with z>2Z .

an ~

= T, koo -

EXm- £ é flkye ™ sin %, Ao, 2>2, a1
where f(k°\=7};.‘ ‘h(ko\ 3, and

fihae e [{ (BB (5 (Rl 3] 677 de e, 02

0

Note that only the transverse part of the expansion of the Green's
dyadic is used - the longitudinal part is superfluous, since the
electric field itself is transverse. Here and below the summation
over j (or t), if not indicated, will be Jjust over 1 and 2.

For an r not in Vo and furthermore z<z  we can again use
Eqg. (7) in Eq. (4) and this gives (after a change of order of

integration) a plane wave expansion of the incoming field.

2N .- -
inc. - ko'r :
Eo (?)=$C‘P°g0.(k°\€f Smmoc\o&, Z<2 ¢ (13)
] C‘
> & A
Here O(k,) =L 0-"&(\\,) 34 and
3=t
-tk %t 1 T
Q'B(?o\'i —;}‘&j {(n KF_ ) (~1k xa: ) [n x(V)LE ﬂ }c “ds keC_ (14)
Se
The incoming field Einc is as usual a prescribed field, whose

sources are assumed situated in Vo. This means that in any case
the sources are above the fictitious plane z=z_ and an expansion
of the incoming field E(i)nc as in Eg. (13) can be found for a wide
class of sources (for examples see [ll} and below). The similarity

between fj(Ko) and aj(io) should be noted - the essential diffe-
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rence is just the domain of io as indicated in Egs. (12) and
(14).

The problem can now be stated more explicitly. For a given
g(ﬁo), i.e. incoming field, find the vector amplitude f(KO),
which in Eg. (11) gives the scattered field for z>2Z_ . This rela-
tion between g(io) and %(ﬁo) - a quantity called the total
T-operator, since it is a generalization of the concept of the
T-matrix for a finite scatterer - will be found by elimination
of the surface fields on S,. These surface fields are influenced
by the lower half-space and the inhomogeneity by the boundary con-

ditions on SO and Sl'
The boundary conditions will be discussed in detail below,
but first we will use the Poincaré&-Huygens principle once more
to find an additional relation of the surface fields. Thus apply
Eq. (2) when S consists of Sl, a finite part of S, and a upper

halfspace. Once again let the radius go to infinity and assume

necessary existence of integrals and radiation conditions to hold.

We get

t iy

- . 1 . ' - :
E__O:(\')} : *Vx“ ;\‘O‘E:(?:, G(?,F'; \C‘ S- kax{VxU (v xE.-\(?))G(F‘r"\k)dS}*-

wn
3>

[+

S

. ! -z A "a'* »¢ -y -

U P RAET T GET k) AS + K, vx{ x| nx (UxEl(T ))G(r,r';k‘\dS}
S, S

E‘i in V, 1)
[y

For an T in V1 this equation can be used to find an expansion of
the electric field inside Vl’ but this property will not be ex-
ploited any further here. We will instead use the Eg. (15) for
Egvl, and first we consider an ;évo and furthermore outside

the circumscribed sphere of the inhomogeneity S;. Since ; is
outside the circumscribed sphere of Sl’ we can identify ;

>

and §< in Eq. (10) with T and T respectively - valid over the
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whole surface Sl' Thus we get after a change of summation and in-

tegration (we have here explicitly taken the origin inside the
volume V2) .

ro= ., =, |
Tx [ A ETGET ks + kfw{vd& A (TE@ GRS | =
S, S

)

— -y Y /
ik B P ] (BB (O Reb ki) LA x (B @ Re® 1S (16)
n S
1

The next step will be to consider an T inside the inscribed sphere

of ;. We then again can identify T and ¥_ - this time with

' and ¥ respectively - over the whole surface of Sq1s and using

Eg. (10) in (15) we get

J % i AxEI@IGE TR A S-' + k_:' v xiv X Ssﬁ A, (V’K-Et-‘t?',) a7 rk)d 5‘} =
S, .

- , - . , - - ]
=k L Reqj (k‘?) “ i (G‘X—E‘:’L?'))-(Vx q)n(k,?')) +[n‘x(v~;<€:(‘r")ﬂ"~\’n(k,r )} ds
VL n

\ (17)
$

Again only the transverse part of file (_f,—f' ;k) contributes.

The surface fields can all be expressed in terms of just
ﬁOXEI and ﬂlxﬁg and the corresponding tangential components of
the magnetic field by the boundary conditions, i.e. the continuity

of tne tangential electric and magnetic fields:

(18)
= ' -,
n,x E_:'L?v?\‘xE e’

—~ ] A 4 - _ -t
n,x (V'*g:'(?)\ = C‘zn‘x(v xE ¢ ))

where Cg = Por //\.‘r and

C\L':'}*‘r//“z.r . (If B is replaced by H,
let C,= e¢>¢-/gh_ and

C‘.,_E. £1r/8lr -)

Next we expand the surface fields noxl:fl and nlxﬁ2 in suitable

complete sets of functions. By means of these expansions, an
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algorithm for the elimination of the surface fields can be
constructed. Here we have a variety of complete systems avail-
able. The standard expansion system for the surface field inside
a finite scatterer is the regular spherical vector waves, see
e.g. Ref, [2) . This system will also be used here, since we are
aiming at an identification of the T-matrix of the inhomogeneity

A

in terms of spherical waves. For the surface field nlxﬁg we thus

assume an expansion

4 -
A —‘7- . A -,
nx B (FY=2 &, n X Re b, (k) (19)
~ .

This sum is symbolical, since the convergence and completeness of
such an expansion is in a mean square sense. The expansion coeffi-
cients Mn will in general depend on the truncation order and pre-
assigned accuracy required, but this is not explicitly indicated

here to avoid a heavy formalism. For more details on completeness

and convergence of this system see e.g. [Qé] - [?5] and appendix.
We also note that an expansion such as in Eqg. (19) does not rely
on the Rayleigh hypothesis [?é].

Since the surface SO is infinite the spherical vector wave

functions are not convenient for the expansion of the surface field

A

noXEI' The completeness properties on a configuration consisting
of an infinite and a finite surface is discussed in the appendix.
As snown in Ref, Ei) for the scalar case and in the appendix for

the vector case, both the up- and down-going plane waves are needed
when we expand the surface field noxﬁi.

-

Hy
AxEL(F= éd(s‘ Gox{ f2@) Jrsc ,\} ¢ ' sinx,du, (20)

L)

C. C,

We note that the vector amplitudes Z(Kl) and E(El) in the expansion

~

above, only have components along a and 854 because the transverse
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character of the solution. Again this type of expansion is inde-
pendent of any Rayleigh hypothesis,
These expansions can now be inserted into Egs. (16) and (17)

together with the boundary conditions Eq. (18)' and we get
z

r’\ﬂ S «, (k) Pé(k)‘k I.(\z“_r"' Smo( dos, =

llO
& —p

=-;2}\)

n

(k7Y QuelReRe) (21)

2 = - > 12 - - )
z Sd?‘{éf‘ktk\\ *_é ‘Bk(k‘)\ l}(k.‘r\ s, d, =

[

-~
= i T Re¥ (k) Q,. (0ut ,Re) %, (22)

Eq. (21) holds for all ;evo and outside the circumscribing sphere
of Sl’ while Eq. (22) holds for all ; inside the inscribed sphere

of S;. We also have introduced the notation {2].

Que (Out,Re) = k !S?\‘-{(v'xq”(k?‘))xRe:l;.(k?') v

(
\{J e % wReq’ (k7 }dS (23)

The matrix an,(Re,Re) is defined analogously, now with the regu-
lar spherical vector waves in all places. The conventions concern-
ing signs, normalizations etc. of the Q-matrices used in the pre-
sent paper are identical to those of Refs. [3] and [5]. Further-
more we have introduced the symbol

. =g
—.:'L(—\Z =Y SSn xa: G(T.T" e'p"rds‘ x

¥ 4
R

i (24)
iv*“ﬂ xhk xa YGir,rhk)e™ c\S}

(k) and é’(kl) in 9. (20). Eg. (24) can be simplified by
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application of Green's theorem to the volume above or below
So depending whether Kl belongs to C, or C_. We get (see also

fll] app. B)

- - é\ elt;? -

T -50) e, Faboes. (25)
3 . .

:E(T:”?)= {"3?1 ""} kiect ? Below SO (26)

- >

This property of the vector fj(kl; r) simplifyEqgs. (21) and (22)

L - N
Sdp PR " sinu dey= i T P 067 Qe Re,Re &, (27)
° ‘C* nn

') - -

[ ETCTL RS Re®, (k) O (0wt R (28)
° c.

As before the first equation holds for ;evo and outside the cir-
cumscribed sphere of Sl' while the second holds for T inside the
inscribed sphere of Sl' To proceed we introduce the transformation
between plane and outgoing spherical vector waves. The formulas
linking these two types of waves are very similar to the formulas
given in the scalar case, see Eg. (9) in [li], but the vector cha-
racter introduces more complex transformation functions. This

transformation, which can be found in e.,gq. [2{], is written as

Iy - = A \k? .
G (k?)=—'=-jc|(5§ B (kle  sSmadux %0 (29)
(o]

Here C, are the same contours as for the expansions of the Green's
dyadic Eg. (5), see Figure 2, and furthermore the transformation

vectors En(k) are defined as
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or %N(Q\i ) An('\\c) T=42 (30)

Devaney & Wolf [2&] also gives the formula

~t
)

w - -
Sdein(?)ék'rsin%d%z HW{‘ Re}l}h(ﬁh (31)
° 0
We observe that this is the regular analogue of Eq. (29) -
a transformation between regular spherical vector waves and plane
waves - but here the integration contour is purely real. This
transformation can be proven to hold for real values of &, but
is valid for complex propagation angles & as well - in the common
domain of analyticity of the right and left hand sides.

We introduce Eg. (29) into Eg. (27) and we get

Y

- \ - A —

pR)= 7 2B (k) O (Re Re keC, (32)
(The comparison of the integrands on a plane z= constant is valid,
since the plane wave expansion is essentially a two-dimensional
Fourier integral [;Z].)

We take the scalar product of Eq. (28) and the vector sphe-

rical harmonics Kn(é) and integrate over the unit sphere (this
can be done since Eq. (28) is valid inside the inscribed sphere of

Sl)' By orthogonality and Eg. (31) we get

Y

-t .
§dp, JRE)-Bolk) sina e, = =3 T 0o (0ut Redta (33)
) C. w
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Here we have introduced the vectors ﬁ:(k), which are analogous

to gn(ﬁ) (-i is exchanged with +i)
A AT 7 A
i e TEA k)

(34)

The plane wave analogue to the Q-matrices, Eq. (23), will now be
introduced to eliminate the surface fields inEgs. (12) and (14).

We define:

-y

- k° . - A - A ‘ - el !
Q:“.(k‘,,\\\s--;;:l1 %{(“o“sﬁ‘("ko"a&\‘fcm[?‘,"(‘ks“a:\'\]'gi} clk‘ k)T ds (35)

©

We notice here that for a flat surface S the Q I(k k ) will

of
be diagonal, i.e. it will be proportional to 6(kox—klx)6(koy-kly),
which is analogous to the diagonal matrix in Egq. (23) for a sphe-
rical surface Sl' This diagonal character of Q .(k Kl) is essenti-
ally the Snell's law of refraction, which will be more appearent
below.

By introduction of the boundary conditions Eq. (18) and the
surface field expansion Eg. (20) in Egs. (12) and (14) we get

‘1(\(\‘ "\.Z\ Sdfb {é-&;"(—\z‘) +é {L‘i'(_ﬂ‘\} Q“‘(ko) ‘\Slnm du‘ _\:(,€C+ (36)

.‘IO

:]O

(k\-.ZSd(sHa(k j{s;\'(\?‘)} Qi (kok,) sinsdw,  keeC (37)
Cs

Thus we have derived for the five quantities f(ﬁo), E(KO), Z(Kl),
E(ﬁl) and a, four equations (36), (37), (32) and (33). From these
equations we can extract a relation between any pair of quantities
but we will here just concentrate on our primary goal, i.e. toO

find the vector amplitude %(Ko) expressed in terms of the vector

amplitude a(K_) of the incoming field.
o]
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III Calculation of the scattered field

We will in this section develop the four basic equations
(36),(37), (32) and (33) further, As pointed out above, we will
only consider calculations of the vector amplitude %(io) in terms
of the prescribed incoming amplitude‘g(io). The derivation of
other types of relations between the quantities %(io), Z(io),
Z(Ei), E(El) and a, can be treated in an analogous fashion.

In the transition matrix formalism the incoming field is
influenced by the scatterer in a way, which is completely de-
scribed by the T-matrix of the obstacle [1}-{2]. This makes it
desirable to extract the T;matrix for the inhomogeneity Sl from
the four basic equations. Formally we solve Eg. (33) for )

and insert it into Eg. (32). We get

w

AN 2 Zi-énkt,\—\nn' éd (s"

- =t A, . f -~
f2@ Bk sinald TeC, 8
C-

The T-matrix is defined formally as (see e.qg. [31 and [51)

-1
= - Z}, Q“r:' (Ke)Re) Q. (Out .Ke.) (39)

boat

This type of relation between the vector amplitudes Z(ﬁl)
and §f§l), as expressed in Eg. (38), was expected. The downgoing
wave amplitude K(Kl), given in the plane wave basis, is transfor-
med into the spherical basis by the transformation vectors
Eg(ii). The scattering effects from the inhomogeneity is totally
determined by the T-matrix of the obstacle. Thus the downgoing
wave amplitude is transformed by the T-matrix into an outgoing
wave amplitude, which once again is transformed - as the T-mat-
rix is related to the spherical wave basis - to the plane wave

basis by the vectors En(ﬁl). The structure of Eg. (38) thus has



18.

a very explicit physical interpretation. It is here also ccnvenient
to note that our original assumption of a homogeneous scatterer

vV, can be relaxed, and any type of scatterer is applicable as

soon as its T-matrix is determined. Algorithms for several homo-
geneous or layered scatterers or scatterers with continuously
varying material parameters are found in [3], [5] and [7].

We now concentrate on the elimination of the surface field
amplitudes g(ﬁl) and g(ﬁl) from Egs. (36), (37) and (38). Formally
this can be performed by inverting the integral equations. This
formal solution is in practise of limited use, but it offers some
insight into the structure .of the problem and in particular a‘

multiple scattering interpretation can be extracted. We formally

write
- L n_,'
f = ‘L(() & +Q P)
W W
as- 1 ("% +Q(‘»~)
Ae TR

with a solution

- -t

. vt
f= (r-d'vd* J(1+QTQ ) 3 (40)

Here we have by arrows A symbolized the directions of the pliane

wave, up- and downgoing, in the range and domain of the operators
) ) 4 M-

Q respectively. With these symbols we have Rz-Q Q l. (The ref-

lection coefficient of the surface So.) The multiple scattering

interpretation of the solution, E. (40), given be an expansion
of the inverse inEqg. (40) in powers of Q“TQW-l is depicted in
Fig. 3.

The usefulness of the formalism in numerical applications will
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to a large degree depend upon the possibility of discretizing

the final equations in a suitable way. Equations with a continuous
variable often lead to inversion of integral equations, which is

a delicate problem for numerical calculations. Thus, we want to
rewrite the basic equations (36), (37) and (38) - at least for
some class of simple infinite surfaces S - as a discrete set of
equations. We define the projection of the plane wave amplitude

3(?1) on the spherical basis as

LT

Cre S & (k \‘B (l\\<‘\ sina, d, (41)
n o C

and the equations (38) and (37) now read

-y

[*s(k‘wzz'%n(ﬁ,wm; . ke, (42)
o.(k)nz. d(h,“oc‘(k) ZZSB,‘A nnC}“
. (43)
X Q;\'l'(\tb,k‘) s.\nok‘clo(‘ k,eC_

Here we have adopted the notation Bn.(ﬁ)z gn(ﬁ)‘éj for the

aj—component of En(k), and similary we define B (k) §+(k) a

The next step will be to invert Eg. (43) in order to isolate

=5

K(kl). (This step is formal, since as already pointed out the
ij'(Ko' Kl) functions are not ordinary functions, i.e the equa-
tions have to be interpreted in a distribution sense. Neverthe-

less, for a flat surface the Egs. (36) and (37) will degenerate

to just simple algebraic expressions and the inversion is trivial.)

7.1
o((k)=-l.2 APSQ, (k\Q (k \<)Smm do( +

+zz Ffs,(k o R (R ) sinel ded Keco (49

“"3 o nnoUn AL W
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Here we have introduced the reflection coefficient R.j.(fllii)
from below:
Ry (K, *‘=-2:SA § M(k ) O p (K sina da,
o C-
k‘e C., k‘e C, (45)

~

We proceed by multiplying Eq. (44) by ng(kl) and sum over j and
integrate Kl over a C_contour. The left hand side then can be

identified as a Ch quantity and we get

=d, ZA Joy . (46)

The vector dn and the matrix Ann' are defined as

Y g w

d = Sdp13&nu du SdFOSSmu,Jm Qr(k\Q %k k\& (k) (47)
l -

'=-2.2. Sd[s Sind Ad.jdfb 5"\01 40‘ x

nu o
- -5 "' A
"y . ' . (48)
¥ Bn'j'(k\) X (R“ (khk‘) B".\(k"

We here note that the vector dn is a completely known vector, when
the geometry and incoming field is given, and can be interpreted
as the incoming field transmitted through the surface So' Also
the matrix Ann' is known and does not contain any quantities de-
pending on the incoming field - it depends just on geometry and
the material parameters.

The infinite matrix equation (46) can be solved for the
unknown Cpr and necessary conditions for a solution to exist can
be analysed in the same way as in the scalar case, (see @i} app.
C), and we do not repeat these results here.

The solution of Eq. (46) determines the vector amplitudes

Z(ﬁl) and E(Kl) by the equations (42) and (44), and the final
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solution - the vector amplitude fj(io), see Eq. (36), - can be

written in terms of cn as:

X

A
L \ . > =, B -, . 1 ) _
h(kg: Z id(‘% S Ku» (ko ko) a; (ko) sinn,du,

d -
bA 1

ap IR .(d‘z Ss\nm da % Qll'(-\:o-\:‘\ + 72 gcl(}," S s;nm: Aot: x (49)

! ] [} c
nn" J -

* Q.ﬁ» (’lZo)YZ") (Rl"l’ (T{,TZ‘) } E"'l‘ (L‘) Tan Cp zoe C

+

> > .
The reflection coefficient RJJ (kO'kb) from above is the direct
analogue to the T-matrix for finite scaterer, see Eqg. (39) and de-

fined as:

R, '(k k\-—Zde‘SQu(k k)Q (k k) sng, dx,
C.
kec kec (50)

The scattered field Egc(§) for z>z_, given by Eg. (11), can now
be written in terms of the incoming field amplitude E(Ko) and the
solution ¢ of the matrix Eg. (46). Insert Eg. (49) in Egq. (11)

and we get

J'

Sc (F)— dP j+?) '2 S R '(Eo..\zn CL‘\‘ ) Slno( Am § k° g;no‘ dbt -
Ay 14
-2 Sd(s S Z{gd(’a sind, de {.053'&0;\) N -
A | J:"
*z;»'-id?:és‘n« dx Q (K, :')(R"'(k k\]B T C“‘}*
) 3 e}ﬁo-? Sin&odio - Eic‘d;r. G_w) . "E’.s:‘amm, ?)

d

The first term in Eq. (51) can be identified as the directly re-

flected term, i.e. the total scattered field if no scatterer were
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present. All information about the scatterer is contained in
the second term, called the anomalous scattered field, both
directly via the T-matrix and indirectly via C,r as a solution
to Eq. (46). This second term contains all the multiple scattering
effects and mutual interaction between So and Sl’ as can be seen
by an expansion of the matrix (l+A)-'l in powers of the reflection
coefficient R and the T-matrix. An interpretation analogous to
the oné of Eq. (40) can be made, by interpreting R as a reflection
at So from below and-T as scattering (reflection) from Sl' The de-
tails of this are left to the reader.

86 far the main assumption concerning the infinite surface
So has been its confinement between the two parallel planes
z=z, and z=2z_. The final Eq. (51) is rather complicated and it is
illustrative to examine the simplifications which occur when SO
is a flat surface. Let the surface SO be z=zo=constant. The equa-
tions (45), (50), (47), (48) and (51) will then simplify, due to

the diagonal character of Egq. (35).

! o ' &((b -{5‘\
- - Zilolk’;—?\z;\Iz' %(dq ) .il) C2
Q\ﬂ'(k“ ‘)= - %.“‘ R&(‘x‘\ e Sn’\i‘ . (52)
kecC. kecC,

)

. 2 .2\ — 1
Ry (RE= g Rya &5 ko= o) 0 pifs) (53)

o0 sinw,

- bee X
k.eC, , koeC..

AR . 2 vy 2 &t v,
- t as a2, (k',\o)z-(k,‘fb ) Z(k-" ku) .
dn=}§»~id‘5°§: a:‘(ko\ B, (ke Lk, Bi(?‘o\ S\r\uod\xo (54)

iR [}
t A N o Z'n?.,(\?;'ﬁy" . 55
A"“':Z'E:"EAP‘S En:‘(kQ E'{'A(k‘\ lr':n' Rl()\‘\ e S\\'\u&‘dott (55)

C.
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'E"::.( )= :c dur(r)+’€:‘anom(i._) -
pAlY I -
2 .
’I.Xcl(s &a (k\R('A\ ik ) rik,T g‘\ sinw, dx, +
i C, (56)
 Heake ?a |6, (6 Ty e UG R
W 23R .
A (g.fwh ‘ ;
X 3. — snmX_ adXx
J AJ(AJ 0. 0

Here we have introduced the wellknown Fresnel reflection coeffi-

cients (30] .

Ny (A cmku—wm % (-0
DN ok U=k ™ & i, L=y Y

R (A= (57)

z ‘/ ll
RlA)= NN - A‘l\"— Co (it~ &I}“
DA (KB 4 ¢, (G- XV

Rl is the reflection coefficient for the electric field in the

~ ~

plane of incidence (note al=a in our convention) and R2 is the cor-

responding quantity for the electric field perpendicular to the
plane of incident (::12=§), Dj(x),appearing in Egs. (54) and (56)
are the denominator of Rj(A) respectively, and Ai=kisinai; i=0,1.
The square root is defined such that Im(kﬁ*)};)v’i,O. Furthermore we

have introduced the notation

~
A . . .
k= (sinx cosp, sing, sinp,- cosy, )

Ko ( - . . 2 .2\
ta , (Smu,cosp,)smxo Sinp,, ~ (Lk'/k.,) - Slnzuo)/z )

=2

~
T&;- ko(sind\ocospo) SInK, SN Po,” cosw, )

t . . . \
T(oa %‘ (SIG&QCOSP°)$\“¢os\nP°1 (( ‘/k\ - Sl\'\d )L)
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IV Numerical applications

In this section we will analyse the numerical applications
of the theory. The inhomogeneity is completely described by its
T-matrix, and the applicability of the formalism for a flat in-
terface depends on the existence of suitable algorithms for com-
puting the T-matrix of the obstacle. Hitherto a long list of
computer programmes is available for computing the T-matrix of
various scatterers [}i} - [343, and in this section we will illu-

strate the use of some of these.

The T matrix for a single sphere is trivial, since it is
diagonal and can easily be computed. Scattering from a single
buried sphere will be examplified in a series of figures, dis-
playing various physical quantities. More interesting applica-
tions are scattering from a non-spherical obstacle. Computer
programmes for a general rotationally symmetric body or for
two spheres are available [313—‘}4}. By a rotation of the
T-matrix a general orientation of the common axis can be
treated, and a series of figures for two buried spheres or a

perfectly conducting spheroid will illustrate these calculations.

In all numerical examples shown here, the incoming field
is a vertically orientated electric dipole, but more complica-
ted source distributions can easily be introduced, cf. Eg. (13).
Let the source point P be ft=(pt,0,zt), where (p,¢,2) are cylind-

rical coordinates, and we have

vk V-l
\X (58)

_E";;“c?) = iﬁ%—r\ ‘*’m, (ko(P-7)) = —L—t Y, x{v «| 2 e"‘"“ko\ =T 1



25.

From Eq. (29) and Egq. (13) we then get

"‘: -
__‘_ A - - °‘r -
(k)= T a,sing,e t keC (59)

Eqg. (54) then simplifies into (zt=zo)

i - . [/
kYo (e TkE db ik, (t-Gefu-a?
TGN 0 kU1-(E Y O-E s Colkit

¢ [ lkesy U-89) LimSeade Pl - i -0 -

(60)
Su’e%tz Ko T Vz. -
- —Z{:‘—-[{({ﬂ—m»P (U"(_ \(\-'L)) )

otk
- o) BT (-G 0-E) 1§

where the Yn is defined as in Eg. (8).

We also rewrite the anomalous scattered field Esc anom(r)

as

=% sc,anom

B @=L AR IS (61)

where cn is the solution of Eg. (46) and where

b g
"?(?)chmkv .[ S \-\zo?ml((k kSm&\ -k Cos¥,)
)

o (62)
o keosts 2R (K eina,das
Dy 3
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The numerical procedure will be:

-> .
1) For a given source-position r, compute the dn—vector, £g. (60)

t
2) Compute the Tnn,—matrix of the inhomogeneity

3) Generate the Ann,—matrix, Eq. (55)

4) Solve the Eqgq. (46) for the Cn—vector

5) Generate for an array of measuring-points ; the %n(;)—vector,

Egq. (62)

6) Combine the quantities in Eq. (61).

We note that the integrals appearing in the vector %n(;) and
the Ann,—matrix are independent of the inhomogeneity, and can
consequently with advantage be generated and stored for a given
contrast in the physical parameters of the volumes Vo and Vl‘
This observation makes some of the steps in the scheme above

superfluous, if only the properties of the inhomogeneity are

varied in consecutive field computations,

The numerical calculations include a large number of numeri-
cal integrations along the C+ and C_ contours, or along a
transformed, equivalent contour. In all these numerical integra-
tions we will use a fast, improved quadrature procedure, which
explicitly makes use of the previously computed functional values,
when the subdivision of the integral interval increases. The
integrals, which are exponentially decaying for zo>0, are nume-
rically stable, and show fast convergence for the contrasts used

here.

We will in this paper present calculations of the anomalous

(f). The remaining part of the

. . . a
scattered electric field Egc, nom

sc,dir

scattered field - EO

(f) - is thoroughly analysed in e.g.

Ref, Dz], and will for a given air~earth (i.e. VO—Vl) contrast
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be the same for all buried obstacles. Computer programmes for
this directly scattered field are also available, see e.g. (}5],
and it is for this reasons that we here omit that part of the

total field computation.

The numerical results can be represented in a number of
ways, but we will here mainly give the results as the absolute

value of various components of (f) and its phase. Fur-

gSCc,anom
o
thermore a number -of graphs will show the absolute value of the
ratio of the vertical component of the anomalous scattered field
to the corresponding component of the incoming field. In the nume-
rical examples shown below we assume all space to be lossless,
more explicitly we take; kl/ko=2.5, Col=l, klzo=2. The source is

a vertical electric dipole on the surface z =2z and the dn-vec—

t
tor is computed for a series of source positions kopt=0,3,8.

As mentioned above the simplest obstacle, which the theory
can be applied to is a single buried sphere, since its T-matrix
is diagonal. In Figs. 4-5 we show some examples of numerical cal-
culations for this type of situation. Figure 4 shows the z- and
x—-component of the anomalous scattered field. This plot shows
surfaces of constant value of the absolute value. Due to the
interpolation routines in the computer these plots exhibit some
irregularities, which do not appear in the originally calculated
field. In Figure 5 we show the ratio of the absolute value of the

sc,anom ,>
z—-component of Eo !

(r) to the vertical incoming field ﬁénc(f).
The plot illustrates the variation of this quantity for two dif-
ferent rays through the z-axis: ¢=225O and ¢=45O and ¢=i900
respectively. In general the z-component of the field shows a
much more complex interference pattern than the x- and y-compo-

nents of the field, presumably due to the orientation of the
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source and to the boundary conditions (continuity of the
horizontal components). More detailed analysis of the graphs
is not possible at this stage, but additional computations

must be made.

To illustrate the applicability of the theory to non-
spherical buried configurations we also calculate the anomalous
scattered field from two buried spheres. The radii of the spheres
are a, and a, and the separation between their centres is d.

The orientation of the common axis (from the smaller to the
bigger sphere) is given in spherical angles 6, x as depicted in
Fig. 6. The T-matrix for two spheres is computed for an orienta-
tion along the z-axis, see Ref, [34]. For a different orientation
of the spheres, the T-matrix is similarity-transformed by the
rotation matrices (these matrices are block-diagonal (21+1) x (21+1)
matrices) cf. Ref. [3&]. In Figs. 7-9 we show computer plots of
surfaces of constant values for various components and source
positions of the anomalous scattered electric field. Again we
have the complex interference pattern of the vertical component
of the field, while the horizontal components show a less com-
plex scattering picture. Fig. 10 shows the variation in the ver-
tical component of the anomalous scattered field to the corres-
ponding component of the incoming field along two rays for data
as in Fig. 9. We have in Fig. 11 plotted the effect of a vari-
ation in the k value of one of the spheres, while all other

parameters are fixed.

In Fig. 12 the scattering picture from one buried sphere
at variable depth is presented. Note that these results can

be obtained by letting one of the spheres in the computer pro-
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gramme for two spheres vanish, and by then considering a vari-
ation of the separation between the remaining and the ficti-
tious sphere. In this way a repeated calculation of the inte-

grals in Egs. (55), (60) and (62) can be avoided.

Scattering from a single buried non-spherical obstacle is
illustrated in Figs. 13-14. The T-matrix for an arbitrarily
shaped dielectric or perfectly conducting rotationally symmetric
body is computed for an orientation along the z-~axis, see e.g.
EMJ-B3]. By an application of the rotational matrices mentioned
above we then can obtain any orientation of the symmetry axis of
the inhomogeneity. In this paper we have for simplicity taken
the obstacle to be a perfectly conducting spheroid. In Fig. 13
we display the z-component of the anomalous scattered field for
two various orientations of an oblate spheroid. Fig. 14 is an

analogous plot for a prolate spheroid.

The results presented above are just intended to serve as
examples of the kind of numerical computations which can be per-
formed within the present formalism. Similar computations can
now be done straightforwardly for various other configurations
and parameter contrasts. In this section we have only illustra-
ted a few quantities of physical interest. Other guantities
of interest in e.g. electromagnetic prospecting situations would
be the total scattered field - i.e. the direct plus the anomalous
scattered field - and various ratios, for example the wave tilt
i.e. the ratio of the horizontal to the vertical component of the
total scattered electric field or the surface impedence. Another
extention of the numerical calculations would be computations
with complex calues of k. All these aspects will be considered

in future papers.
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V Concluding remarks

We have in this paper presented a transition matrix formalism
for electromagnetic scattering from buried inhomogeneities. This
formalism is an extension of the corresponding scalar results
DJ]. The extension to elastic waves is believed not to cause

any difficulties and work is in progress that analyses this

case.

In this paper the formalism is developed for a general inter-
face So' but only results for a flat surface SO has been illustra-
ted numerically. Compared to actual surfaces encountered in real
prospecting situations, this is a strong restriction. A more
detailed treatment of scattering from configurations that involve
a nonflat surface So is therefore of great interest and results
in this direction would substantially increase the usefulness
of the formalism. If the deviation from a plane is restricted to
a finite region one can avoid integral equations over infinite in-
tervals. By adding and subtracting in a suitable way one obtains an
integral equation over a finite intervall and a corresponding cont-
ribution from an infinite plane surface, which can be treated ana-
lytically. The proper expansion systems for the surface field
for such a configuration are of fundamental importance, and work

in these directions is in progress and will be reported elsewhere.

All media in the analysis above were assumed to be loss-—
less, but this restriction can be relaxed and an analoaous for-
mulation for media with losses can be made. We also expect that
an extension to a layered structure instead of the single infinite
surface So will give a fairly straightforward modification of

the results given above. The reflection from the surface S0 is com-
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pletely determined by its reflection coefficient and if a strati-
fication is introduced this reflection coefficient for the single
surface will be replaced by its total reflection coefficient for

the layered structure.

We have in all numerical examples illustrated various com-
ponents of the anomalous scattered field and its quotient with
the vertical incoming field, Of interest are various other ratios,
for example a comparison with the total electric field or the
directly scattered field. The source has in all examples been a
vertical electric dipole. An interesting comparison would be
computations with sources of horizontal polarizations or having
a more complex structure. These extensions are straightforward
and not reported here. Furthermore an equivalent theory can be

formulated for the source position in Vl or V This will lead to

5
modifications in the basic equations and can be analysed analo-

gously (see Etﬂ for the acoustic case).
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Appendix

We will in this appendix analyse the completeness proper-
ties of the tangential spherical and plane vector wave systems.
The completeness properties of the spherical waves on a finite sur-
face will be studied first. The plane wave system is then shown to
be complete on an infinite surface and these results are finally
extended to hold for a combination of finite and infinite surfaces
as depicted in Fig. 1. In the first part of this appendix we will
make a short review of the properties of the layer distributions
at the boundary of a smooth surface in the electromagnetic case.

For a review on the corresponding results in the scalar case, see
(37].

Consider the following vector

- TmarEeds ®.1)

where S is a closed smooth bounded surface and f(¥) is a surface
field, i.e. a continuous vector field defined on S such that
ﬂ-f(f')=0. $(;) is defined for every.; not on S, but it can further-
more be shown that 3(?) is continuous everywhere, see e.g. Lenma

73 in [38].

Taking the curl of (A.l), we get

Vxd(T)= SS?(?'HVG(?,?';H ds (A.2)
S

This operation is valid for T not on S, but for an T approaching

S from the positive or negative side (with respect to n) we have
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a definite limit and furthermore there is a jump in the tangential

component of (A.2) when crossing the surface S. Theorem 46 in
[33] gives

?\u?,,w{inh(?o)l*_-Vx&?;)\_F ?(?’) eSS (A.3)

/] o]

If we operate once more with the curl operator on (A.l) we get for

.—).
an r not on S.

- > A '
9xvxd@® = - £ Va(F,# k) ds ~

¢ m‘:::
l-—*\*
W
Q.
n
4
R
o
w _

As before the first term on the right hand side is continuous

everywhere, and furthermore the second term can be shown to have

a continuous tangential component, if we assume that f(f') is a

continuously differentiable surface field

We define the surface gradiant

-, ! - ' A_é._ -,
v, G(" k)= Va(@ k) ~n3r G(7,¢ k)

(A.5)
and we get since f(f')-ﬁ=0
- ' -3¢ "_;. ! - !
f{ £ VG(F,r;k)ds' - | {6 Lar@rk)lds -
S S
- {9 8@) a@ k) ds (».6)
S

The last equality follows from an application of the corresponding

Gauss' theorem for the surface gradient Vor See Lemma 58 in [38]
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Thus we get

-~ -~ ! -, )
ng( Ik VG(FF' k) dS “ V:'f(?') VG(?,r'lk) ds (A.7)
S

Eg. (A.7) has a jump in the normal component when one crosses the

surface. The discontinuity is, see Theorem 45 in [38]

Sﬁ( IR k\c\S\ %Lr)'VG(??' k\c\Sl
= AT Vl-—!;(?o) v, eS (2.8)

Thus the left hand side of (A.4) has a continuous tangential com-

ponent when crossing the surface.

We will now discuss the completeness of the tangential compo-
nents of the regular spherical vector waves on a smooth closed
bounded surface S. The results obtained for ﬁxRe$n are analogous
to those of [2§3 for ﬁx$n. However, we shall prefer to use a some-
what more explicit notation and make the derivation in a way which
is more closely analogous to the treatment of the scalar case

given in [28] .

Let L2(S,dS) denote the class of complex-valued square-inte-

grable surface fields and define a scalarproduct and norm as

- =

- - 2% -
$, 8584 ds  F & ell(sas)
“CH\E\I<;,$> Z{;éf(g\dg> (A.9)

We observe that the spherical vector waves {;xRe$n(kf )} belong
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to L2(S,dS).

We will here adopt the following definition of completeness

and closure. A sequence {gi} is closed if,

- - -

<&;,4$>=0 for all i implies $=0
A sequence {gi} is complete if all elements in L2(S,ds) can be
approximated arbitrarily closely by a finite linear combination
of elements in {gi}, i.e. for given $5L2(S,ds) and ¢>0 find

al(N),...,aN(N) such that

- N -3
\l4>-§¢;m)4=;\l <g
These two concepts are equivalent for the space L2(S,ds), i.e.
a system that is complete if and only if it is closed, see [35].
It should be noted that [39] has a reverse definition of a closed

and a complete sequence. In this appendix we will show the complete-

ness of a system by showing that it is closed.

Thus assume that

> A -~ :
<{-,nx2e‘-\’“> =0 for all n (A.10)

Let here f belong to a suitable dense set in L2(S,ds). Take for
simplicity f to be continuousliy differentiable on S. Take an T

outside the circumscribing sphere of S, i.e. |f|>§Px]f'| and
YeS
multiply Eq. (A.10) by $n(k?) and sum over n (t=1,2). Make use

of Eq. (10) and we get

%

> ! a7 -~y
@) nds + Y. (P (A.11)

O= (Ja@e x) x-{? -

vy
S
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'_> . » - 3
Here wiréf) is a irrotational vector. We define

T@) =x §(Fa@ K x-§¥(?'))‘;\\ de =
S

-3)* ] )
A . -ty
= | (nx%(_?))xv Ge,F k) as (A.12)
)
This vector is zero outside the circumscribing sphere of S, and
furthermore since it is a solencidal solution of the vector

Helmholtz' equation it can be continued up to S and thus zero for

all r outside S.

Now take the curl of Eq. (A.l2) For §¢S we then have

Tx V() =
TRt ! - -, !
= i § ax};*(?') G(¥,7 k) de - VS&(axﬁz?))‘VG(r‘r ;k) ds (8.13)
S S

-
and we have VX¥(T)=0 for an ¥ outside S. Furthermore this guanti-
ty has a continuous tangential component across the surface S as

reviewed above, see Egs. (A.l) and (A.8).

We will now study Egq. (A.13) for an ¥ inside S. The right
hand side is a solenoidal solution to the vector Helmholtz' equation
with zero boundary values for the tangential component. A non-zero
solution to this problem can only exist for a discrete set of k
values [3@] and if we exclude these k values we have that VXV(Z)
is zero everywhere. An application of Stokes' theorem to a narrow
loop across the surface S will show the continuity of the tangen-—

tial components of ¥(¥) and we thus have, see Egs. (A.2) -~ (A.3)

s - - -
S=nx(F,(F)-V.E)) = a@®)x £ (@) €S (2.14)
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or since f-n=0

—’
.\-z-ax(%ﬁ};):B (A.15)

But, as discussed in [28], it is sufficient to consider a dense
subset of L2(S,ds) and make an approximation of fELZ(S,dS) by a
sequence of functions in this dense sets. This sequence will tend

to zero [28], and we conclude:

-

“»
<?) 3;@«}&) =0 'gov all n , :Y?elf(s,clg) = §=O

Now let S be an infinite surface bounded above by a plane z=z

We consider the tangential plane vector waves defined as

A A ik;’} . o

nxa:e 3'11 ke C._ (A.16)
d V)

The tangential plane vector waves do not belong to L2(S,dS) but

they can be treated as generalized eigenfunctions and for these

one has the corresponding completeness relation, see e.qg. [40].

In analogy with Eq. (A.10) we now start with

=y -4 \ -
A A kYT . .
SS"'(?')'(T‘!XB&& )d5=0 S:l‘l | kec_ (A.17)
Let here f belong to a suitable dense subset of L2(S,ds) e.g. let
f be a infinitely differentiable function on S which is rapidly

decreasing at infinity.

~ . o>
Take an r for which we have z>z and multiply by aje ik

AR 2

and integrate k over a C_ contour and sum over j. We get as before
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(see Egq. (17)),

-’
% )
3- N Bermiar @) nds + Y () (a.18)
S

Define, as above

T A ;’%Al / - '

T = Shnx{tr)\xVG(r.r;k\dS (A.19)

S

We conclude as above that this vector is zero everywhere above S,
since it is zerxo for 2>z _, and furthefmore can be continued to
every T above S. Again we observe that the curl of (A.19) has a
continuous tangential part when crossing S. The curl of Eg. (A.19)
for an r below S defines a solenoidal solution of the vector
Helmholtz' equation, which satisfies the radiation condition and
has a zero tangential component on the boundary S. We assume this
problem to be unique, so we have as above that vx¥50 everywhere,
(The uniqueness of the analogous situation in the scalar case is
certain, at least for a large class of surfaces S EAI] - [ﬁd].)
The surface field ¥ is proportional to the jump in the tangential

> >
component of ¥ across S and as before we have £z0. Thus we have

o
- n A R2
£ axasé r?

0 =12 keC_ ?e 15(s d9) = -{?=3

and the tangential plane vector waves (see Eq. (A.1l6)) are

complete on a surface S as defined above.

Finally we will consider the geometry depicted in Fig. 1 and
we will show the completeness of the following system in
ds)

2
L (So+sl'
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{SxS-é N Gx‘-\) (k?)} 'r\.z "-\:e C_ ; (A.20)

We assume

ey =
{§ ﬁ(r) (nxa “Yds =0 \=12 keC. (a.21)
S+S '
- - \
“ ﬁ(?\(ax""n(\(?)) dS =0 for all n (A.22)
S;S‘

Here it is assumed that f is an infinitely differentiable

function on S0 and Sl and is rapidly decreasing at infinity.

Choose an ¥ inside the inscribed sphere of S, and multiply

(A.22) by Re$n(kf) and sum over n. Furthermore take an r* with
& >
-ik-x

z>z_ and multiply (A.21) by éje and sum over j and integrate

>

over a C_ contour. We have that

e B @))xva@ #R ds (a.23)
S¢S

i

is zero for all r above SO and T inside Sl' As before, the curl

of (A.23) is a solenoidal solution of vector Helmholtz' equation in
Vl with zero tangential components op SO and Sl’ and this solution
is assumed unique. In the scalar case this is true at least for

a restricted class of surfaces Ss such as a plane surface SO or a
plane surface with a hill of finite extent, see [Ai\ - [44]. Thus

we can, in the same way as before, conclude that
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ck‘r

<¥\ i ?=0 \=h2 -"\:ec_

o 0
>

) =a>$=6’

2 A0 (A.24)
< nx"}’“) =0 %ov all n .

\

and the system in Eq. (A.20) is complete in L2(SO+Sl,dS).

In some applications it would be more convenient to work only

with the tangential plane vector waves, i.e.

N -

. =
ng.&é‘"i ke Ce i i=\2. (A.25)
This is always possible, since ﬁxﬁn(kf) can be expressed in

plane waves, cf. Eq. (29). If the origin lies below z=z _ only
ﬁéc+ will contribute, but since we assume Sl to be below So there
always will be a contribution from ﬁec+. This result was used when

we introduced Eqg. (20) for the surface field ﬂxﬁl.
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Figure captions

Fig. 1 Geometry and notations of the scattering problem.
Fig. 2 The integration contours C+ and C_.
Fig. 3 Multiple-scattering interpretation of Eqg. (40).

Fig. 4 Upper part: The amplitude of the z-component of the

Esc,anom_‘

anomalous scattered field | z| on the surface

So(klzo=2) for. a buried sphere of radius kla=0.5,

kl/k2=2, C. _=1. The source is located at kopt=3 and

12
the scale factor is 10_4.
Lower part: The corresponding x-component of the ano-
malous field, (The scale on x- and y-axes are in units
of ko' For additional information about parameters see
the text.)
Fig. 5 The variation in |§§c’anom-z|/|§inc-£| along two rays
through the z-axis. The obstacle is a buried sphere
with data as in Fig. 4. The rays have azimutal angles
a) ¢=225° and 45°; b) ¢=-90° and ¢=+90°. (The scale is
given in percent.)
Fig. 6 Spherical angles (6,x) for the orientation of two spheres.
Fig. 7 The amplitude of the y-component of the anomalous scat-
tered field Iﬁgc,anom.§| on the surface S_ (k;2_=2)

for two buried spheres of radii klal=0'5' k,a,=0.25,

1927

kl/k2=2" C12=l., kl/k3=2., Cl3=l‘ The separation dis-

tance is kld=l. and the orientation of the symmetry axis
is e=x=7n/2. The source is located at kO t=0. and the scale
factor is 10_4. (The index 3 refers to the smaller sphere

=¥l
and Cl3— r/u3r.)
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The amplitude of the z-component of the anomalous scat-

sSCc,anom

tered field Iﬁo -é] on the surface (k;z_=2) for

two buried spheres of radii klal=kl 2=0.5

ky/k =k /k3=2., Cq,=C;5=l., k,d=1.5, 6=n/2, x=v/4.

1

The source position kopt=0. and the scale factor is
1074,

The amplitude of the x-component of the anomalous scat-

sc,anom *

. + —
tered field |E] x| on the surface S_(k;z_=2.)

1 l=0'75' kla2=0.5,

ki/ky=2, Cy,=1, ky/ky=2., Cyy=l., k,d=1.5, 8=r/2,

x=n/4. The source position kopt=3 and the scale factor

is 107°.

for two buried spheres of radii k. a

>SC,anom

The variation in IEO é]/]ﬁinco£| for data as

in Fig. 9 along two rays a) ¢=270O and ¢=90O
b) q‘>=225O and ¢=450. The scale is in percent.

The amplitude and phase variation of

gsc,anom >
o +x along

a ray ¢=225O and ¢=45O on the surface So(k zo=2) for

1

=k.a,=0.5, k,d=1.5, g=y=1/2

128175122 1
kl/k3=2" C12=Cl3=l., kopt=3. (Here the index 2 refers

two buried spheres k

to the sphere on the positive y-axis and index 3 to the

sphere on the negative axis) a) kl/k2=2,

b) k;/k,=0.5. The scale factor is 1073,

-~

=~sSc,anom
d -z along

The amplitude and phase variation of Eo
a ray ¢=180O and ¢=OO on the surface SO for a single

buried sphere klal=0.5,kl/k2=2, C12=l, kop =3 as a

t

variation of the distance h between the surface Soand

the centre of the sphere. a) k,h=2.5, b) klh:2,

1

c) klh=l.5.
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The amplitude of the z-component of the anomalous

scattered field lﬁgc,anom.z| on the surface

S
o}

(klzo=2) for a single buried perfectly conducting

spheroid. The semi axis in the direction of
symmetry is kla=0.2 and the other semi axis
The source position is kopt=3 and the scale

10 °. Upper part: orientation of the common

rotational
is k1b=0.6.
factor

axis

6=n/2, x=0. Lower part: orientation of the common axis

6=0, x=0.

The same as in Fig. 13 but kl 1

a=0.6 and k,b=0.2.
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Abstract

The T matrix method (also called the "extended boundary condi-
tion method" or "null field approach") introduced by Waterman, has
recently been generalized to interfaces of infinite extent
(G. Kristensson and S. Strdm, J. Acoust. Soc. Am. 64, 917-936
(1978) and G. Kristensson, "Electromagnetic Scattering from Buried
Inhomogeneities - a General Threedimensional Formalism", Rep. 78-42,
Inst. of Theoretical Physics, G&teborg (1978), to appear in J. Appl.
Phys.). This paper extends the formalism to lossy materials. Here
we explicitly assume that the ground and the inhomogeneity have
losses, but the formalism also applies to a lossy medium above the
ground with only minor changes. In developing the theory, we assume
the source to be situated above the ground but it is otherwise ar-
bitrary. A similar formalism can be constructed when the source
position is located in the ground or in the inhomogeneity. The
scattered field is calculated both above and below the ground.
Above the ground the scattered field separates into two parts,
which have direct physical interpretation; one field, here called
the directly scattered field, which is the total scattered field
when no buried obstacle is present, and a second field, the anoma-
lous field, which reflects the presence of the inhomogeneity. We
present some numerical computations of the field both above and
below the ground for a flat earth and a buried perfectly conduc-
tion spheroid. The main theoretical developments are given in an
appendix, where we study the transformation between plane and

spherical vector waves for a complex wave number.



I Introduction

Waterman [l] originally developed the T matrix method of
scattering from a scatterer of finite extent (cf. also [2] for
the elastic case). This approach (also called the "extended
boundary condition method" or "null field approach") has been
generalized to scattering from a buried inhomogeneity in the loss-
less case for both acoustic, electromagnetic and elastic waves
Eﬂ-—[i]. The present paper will extend the formalism to the lossy
case, which in many scattering problems is the situation of
greatest interest. The scattering configuration will be truly
three dimensional, and the formalism contains rather weak assump-
tions on the source distributions, the geometry of the scatterer
etc. We will here explicitly develop the scattering formalism for
electromagnetic waves with a source above the ground but the re-
sults are applicable with appropriate modifications to the acoustic

and elastic cases and sources in other regions of interest.

The integral representation of the field is the basic ele-
ment in the formalism. Suitable expansions of the Green's dyadic
are central in the method and depending on the situation it is
expanded in either plane or spherical vector waves. The transfor-
mation properties between these two elementary waves - plane and
spherical - play an important part in the formalism and we analyse
its properties in the lossy case in detail. The plane and spherical

waves also enter in the expansions of the pertinent surface fields.

The inhomogeneity is completely described by its T matrix
referring to spherical waves. The T matrix enters in the formalism

as a building block in the construction of the solution, and in



this context many results derived from scattering from obstacles
of finite extent can be used. The interaction between the ground
and the inhomogeneity is described by the solution of a matrix
equation, where a power series expansion of the inverse of the
matrix formally can be identified as multiple scattering contri-
butions [3}, [4). We will in this paper study this matrix equa-
tion for the lossy case, and give explicit expressions in the
flat interface case. Both the field above and below the ground are

analysed and explicit expressions are given in the flat earth case.

The electromagnetic scattering from a source, say a dipole,
in the presence of a homogeneous halfspace has been studied
thoroughly and a long list of references are given in [4] addressing
themselves to this problem, both with and without an inhomogeneity
present in one of the halfspaces. Many of these treatments are pu-
rely numerical, while others pursue an analytic solution of the

problem.

In section II the scattering problems to be considered are
defined, the fundamental assumptions are introduced and the basic
equations derived, while in section III the use of the formalism
is illustrated in some numerical examples. In an appendix, we
analyse the transformation properties between plane and spherical
waves in the lossy case for both scalar and vector waves as needed

for the theory developed in section IT.



II T matric formalism for a lossy ground

Basic equations

In this section we will point out the essential differences
and similarities between the lossless case [4}, and the situation
where losses are present in the ground and the inhomogeneity. Most
equations are identical in structure to the corresponding lossless
ones, and at some instances we will therefore be rather brief and

we refer to [4] for more details.

Consider a scattering geometry as depicted in Fig., 1. The
surface S separates the halfspaces V and Vi which are assumed
to be homogeneous except for a finite region V2. This inhomogenei-
ty is bounded by the surface Sq- Besides the implicit assumptions
on the surfaces SO and Sl,namely that they fulfil the necessary
regularity conditions for an application of the Green's theorem,
we also assume SO to lie between the two parallel planes z=z
and z=z _ (the z-axis is defined as perpendicular to these planes).
We assume that the source and the inhomogeneity are located in
separate halfspaces (the source location is marked with a P).

A parallel formulation can be made when both source and inhomoge-
neity occupy the same halfspace [B] or the source ‘is inside the ob-
stacle. Furthermore we will in this context permit the different
regions to have losses. In many practical applications one en-
counters a situation where the halfspace V_  can be assumed to be
lossless, and this is the explicit case we will consider here. The
introduction of losses also in Vo is straightforward and the de-

tails are left to the reader.

In each volume the electric field ﬁi satisfies (we assume



the time factor e—lwt throughout this paper)

—

VxUxE (F)~ k E,(F)=0 TV g aeonz @

L |

2 2 . .
Here ki=w u_ € €, %_+1w°i“ i=0,1,2, where ¢

o T and y_ are the di-
071, i, ir "o o

o

electric constant and permeability of free space and o; the conducti-
vity in V,. Bs discussed above we will in this paper only consider
the case oo=0. All equations in this paper will explicitly be

written down for the electric field Ei' The same analysis holds

for the ﬁi field, and what is discussed below about the Ei field

can equally well be applied to the magnetic field ﬁi if we in-
terpret the source distributions as the corresponding magnetic

ones, e.g. an electric dipole becomes a magnetic dipole, and

the necessary substitutions are made, see Eq. (2) below.

The boundary conditions are continuity in the tangential mag-
netic and electric fields on the surface S, and S,y (for notations

see Fig., 1), i.e.

o A =- —! ! .
XEi(")“ﬂiXE-i*.‘(r) FGS; ‘)1,':0_‘1
[ 8 [ oy —»!
x [VxELE) = ¢ ax [ vxE] (™) 2)

G= PR, 1200

A -
n
AL
n

3

S ki L2 -1
(If we replace E with H, let Ci—(EI:I) ui+lr uir.)

The starting point in the T matrix formalism [i}is the fol-
lowing integral representation of the field E in terms of a sur-
face integral over the tangential components of E and H on the

bounding surface S.



- . _»I - - ' 1
E;(ﬂ s ETU®) + Ux “ ?\»:Ef(?) G(rF 3 ds +
0 S -
-2 / -n) -'! '
+ k VX{Vxﬂax(VxE’_*Lr)) G(F{r;k)c\&} (3)
S
T outside S
¥ inside S

S is a bounded surface and §+ and.Vx§+ are the field values on
the outside of S (ﬁ is directed outwards on S). The Green's func-
tion G(f,f';k) satisfies the Helmholtz' equation with a delta

function source term.

2‘ 20 ! ]
W k) @ e k) = - - S
The requirement of an outgoing wave at infinity gives us the solu-

tion to Eq. (4)

GIT T, k)= exp ( ikl?—?'l) /HT\'\F—?'\ (5)

It should be noted here that k can be a complex number, which

will be the case when we apply Eg. (3) to volumes with losses.

As discussed in [43 both plane and spherical vector waves are
introduced as well as the transformation between these. In these
quantities we must justify the analytic continuation of k-values
into the complex plane. The definition of spherical waves are found
in [4]. The extension to complex k values in these definitions

introduces no problems; the complex quantities just appear in the



radial dependence argument kr but leave the spherical vector har-
monics Kn(r) unaffected. The transformation between spherical and
plane vector waves are discussed in detail in the appendix and

we have, (see Eg. (A.22)):

— A >
- A ke
q’n(k?h*;“,Sd(sé( B, (kle sina dw 2

4

14

(6)

N
o

The complex contours C+ are depicted in Fig. 2 (see the appendix
for a definition of the contours). The contour C, - the upgoing
waves - is used when é>0 and C_ - the downgoing waves - when 2<0.
It should be noted that along the C, contours k sina is real and
that Eq. (6) essentially is a two-dimensional Fourier integral
in kx’ ky rewritten in the spherical angles (o,B) oOf K, i.e.

K=k (sing cosg, sing sing, cosa). The definition of gn(ﬁ) is found

in [4] :

A T-2-L - A

By, (k)2 i Atk “1a (7)

~]

Note that we here, and when convenient also below, abbreviate
the indices as follows nztnztoml. As a special case (1=0) of

Eqg. (A.15) we also get the plane wave expansion of the Green's

function in Eq. (5)

s PRGN )
e sSinaw d« 222

> >

The Green's dyadic fG(r,r';k) can thus be written [4}:



Here T is the unit dyadic and aj, j=1,3 are the spherical unit

vectors of k=§/k and with the following convention:

The separation of the Green's dyadic in spherical vector waves

is found in e.gq. [6]:

— —ty

Ia(E? : ReP(k2\V (k2) + T (9)
LG k)= ik ReT(ke) T, (kd,) + Lier

n

Tel,2

> -> > > .

The argument r and r_ are chosen to be r or r' according to
|§<‘=min(r,r'), |;>|=max(r,r') and the dyadic Eirr. is an irro-
tational dyadic. Eq. (9) holds for complex values of k, at least
for values of k in our domain of interest, i.e. argkeﬁLTV4)(iL In

analogy with Eq. (6) we also need the transformation between the

regular spherical vector waves and the plane waves. This is found

in e.q. [é}:

EI
n(\é sin& Ao (10)

oL-—-—«d

2N
ReW (ki g

The extension to complex values of k in this integral over a
finite interval causes no problems and the formula holds in the

common domain of analyticity of the two sides.

We now apply the integral representation Eqg. (3) to a
surface S consisting of a finite part of S, and lower half sphere.
Assume that the fields encountered in the integral over the lower

half-sphere satisfy the appropriate radiation condition. As the



radius of the half sphere approaches infinity this integral then
vanishes. By introducing the plane wave expansion of the Green's
dyadic, see Eq. (8),in the surface integral over S we obtain

the following plane wave expansions of the scattered and incoming
field, respectively (which are formally the same as in the loss-

less case):

Ay -
- > .k'F .
EL (@)= éd(hoé f (k) e sina d, 2>2, (11)
+
2§ »
E':“(?): {dpog:&(in)ék‘r sy, datg Z2<Z, (12)
o - - ;= kT L)
@) g IRLEHE T [ (9xEY)] 3 )67 ad
o]
kel 49
k - A . - -.-‘:'P, '
0 (pz-iky s&{(ﬁoxE:)-(aika [anieEDE ) €9 ds
° : keC. (10

> > ~ >
where f(ko)—jilfj(ko)aj and analogously for aj(ko).

The elimination of the surface fields will be done by another
application of the integral representation Eq. (3). This time S
consists of S; and a finite part of So and an upper half sphere,
such that outside S is inside V;. Let the radius of the half

sphere go to infinity and assume as before the appropriate radia-

tion conditions. We get:
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+ \E‘ZV*{V * SSS G‘x(v'x-é:(?'))c.;(?,?'; k,) AS)} 'r"gi\/: (15)
]

We will primarily use the equation above when T is outside
v, - First we introduce suitable expansions of the surface fields

ﬂoxﬁz and ﬁlxﬁg. In [41 the following expansions were introduced:

%W .
- - - - Lk
?\oxE\<F)=£d{b\ Gox{cjoa( ,)+ij(k\)} e ' sinx, dx, (16)
- +
—
/r\\‘x—E»,:(?')= 2. ®,, ﬁ‘x Re,q/n(kz?') (17)
n

The expansion on the surface So is an expansion in plane waves,
both up- and downgoing while on Sl'we use an expansion in regular
spheriéal vector waves. Furthermore, the determination of the
coefficients in the related expansions of the relevant derivatives
of these fields can be discussed in a way which is directly ana-
logous to the lossless case., (However, we emphasize that con-
siderable work remains to be done in order to determine the class
of surfaces SO and Sl for which the required relations between

the expansion coefficients is rigorously valid [l], [3], [4].)

The completeness of these expansions in the lossless case is

found in [4] and in the lossy case the derivation is formally

analogous.
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The application of the integral representation Eg. (15) inside
V2 and above So is formally the same as in the lossless case and
for details in this matter we refer to Ref. [4]. The boundary con-
ditions, Eq. (2), the surface field expansions, Eq. (16)-(17), and
the expansion of the Green's dyadic in spherical vector waves,

Eq. (9) , are applied and we get:

2% . R

\E d(b1 é -[:;(-\z\) e,‘k‘-r 3\“0(1 do(‘ = ‘“ié\' q)n(k‘?) an' (RQ‘RQ) 0('“, (18)
*

T - - ;?.? ) y .

§d(s‘é Lik)e ' sina, do = 1 :Zn.' Re,LP“(k,r) Q““- (OuflR&) ! (19)

The first equation holds for all ; above SO and outside the cir-
cumscribing sphere of Sy4 while the Eq. (19) holds for all T in-
side the inscribed sphere of S,. The derivation of these two equa-
tions in the lossless case relies on a "limiting absorption prin-
ciple", i.e. the wave number has a small imaginary part, which
eventually goes to zero. However, in the situation treated here,
when losses are present no such limiting procedure is necessary.
The derivation of the Egs. (18)-(19) are otherwise analogous to

the lossless case. Furthermore, we have introduced the Qﬁn—matrices

of the scatterer Sl’

) - 1 T !
Q,; (0t Re) = k1A (en (k7)) x Rey (P +
Sy
—ty ; - { (20)
+C, Ll)n(kt?‘) % (V X Re,l‘l"n'(k‘?‘\)} c\ S
and Qnd(Re,Re) is analogously defined but with regular spherical

vector waves in all places.

The next step will be to eliminate the r dependence in the

two equations above. In the first equation we make use of the
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transformation between plane and spherical vector waves, see
Eq. (6). As was pointed out above, the integral over «,B8 on both
sides are a two-dimensional Fourier integral in kx,ky and by

use of the inverse transform on a plane 2=constant we obtain

> - A : - A -~

Pl)=2x L Bok) Q. (Re Re) &, keC, (21)
nn

In Eq. (19) we first make a scalar multiplication on both sides

with Kn(f) followed by an integration over the unit sphere. We

get by use of Eg. (10)

= -~

VALY

>t A .
Xd{s‘ j k) B, k) sina doy= - I}',ZZ' an'(()u'l"Ee,) «,! (22)
° C. n

where B! (k) is identical to B_(k), but with (-i)**?7T exchanged

with i¥T27T,

The derivation of Eg. (21) relies on the inverse two-dimensional
Fourier transform and it should here be noted the importance of ex-
panding the transformation, see Eqg. (6), and the surface field Eq.

(16) in terms of integrals with the same contours c,. Fof both this
transformation and the surface fields we have the possibility of
choosing different integration contours (cf. the appendix for a
discussion of the more detailed choice of contours). However, when
applying the inverse transform we then have to pay attention to
the analytic properties of the integrands, since when the contours

differ from C,, k. and ky are not real everywhere., In this paper

X

we will always use the C, contours, i.e. the contours where both

kX ang ky are real, and in this way we can avoid any discussion

of the analytic properties.
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In [ﬂ] the field Egc. was calculated. In the case where
losses are present the derivation of this field is formally iden-
tical, and will therefore only be outlined here without any details.
Here we will focus on the field in Vl’ which in e.g. many pros-

pecting applications is of great importance.

The field in Vl is given by Eg. (15). The elimination of the
surface fields in this equation will be quite analogous to the
computation of the field ﬁzc'. It is also obvious that the deriva-
tion below are valid also ig the lossless case. The most straight-

forward region to compute the field El in is outside the circum-

scribing sphere of Sl, i.e. when r>max |r' . In this special case

r'eS1

we can make use of the same expansion of the Green's dyadic over
the whole surface Sl’ i.e. in spherical waves. However, we note
that calculations of the scattered field in vy inside the circum-
scribing sphere of Sl can also be made, with the appropriate modi-
fications (for "near-field" calculations within the T-matrix
approach see e.g. Bringi and Seliga [Q}). The surface field expan-
sions, Eq. (16)~(17), are inserted and we get (the derivation of
this equation is analogous to the Eq. (19), and again, as pointed
out above, we do not rely on any "limiting absorption principle™
in this lossy case):

T T -
E_‘L?pédp‘go?.(-\:)ef ' sinat du, - 0 Ll",,(k,?-") Q,,“'(Re,,Re.) oA, (23)

C. nn

The prescribed incoming field amplitude a(k_ ) in Eq. (14)
is now used to eliminate the surface field expansion amplitudes
a(ky), B(K)) and o!. We insert Eq. (2) and (16) in Eq. (14) and

get:
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FIQ

1%
2 . - >
0y CARER .gd[s‘{ {_u;\,(k') +£ pir(k‘)} QM (ko,k‘) SIw, d«,

-—5
ke C (24)

Here we have introduced the generalization of the an,—matrix

Eq. (20) to the infinite surface Syt

- A - A ;-\:o"_\:g _-ﬁ' !
Oy (R, %) s, SHstg)-moxag ~c a1 T dg s
Se

The formal solution of Eq. (21), (22) and (24) will be found

by an elimination of the an,—coefficients in Eq. (21) and (22)

- -
B(R)=2T B k)T acy o

where

A%
- =t .
C.= Jd{h j Z(k‘)-%n (?(J sink, dx, (27)
° C-
-1
T =- Q. (Re\Re) Qe (Ou’f‘Re,) (28)
n'

The cn-quantity is the spherical projection of the plane wave amp-
litude Z(El) later determined by a matrix equation. The T matrix
characterize the scatterer Sl’ i.e. it contains its shape, boundary
conditions etc. If we encounter a situation where we have several
buried scatterers or inhomogeneous ones the formal structure of

the equation is the same, but with the relevant T-matrix inserted.

We proceed by formally inverting Eq. (24) (this can be done

algebraically when SO is a plane, see below) and we get with Eg. (26)
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- . L .
Oﬁl(k‘) = -LZJ': {d(}oj o '(ko) Qul (k”kO\ SmO(odo(o +

$1y
PAT jdrs‘ éf..ﬂk,\ FRERECIY

) ) >
k k) sing, dx,  kec (2%
ndf o

~

g t 2t 7 . . .
=B sa. imi lv B' .ZB +a. is defined. The reflection
Here an‘Bn aJ and similarly ni=2n" 2y : ‘

coefficient mjj’ (El,fl') for the surface SO from below is ana-

logous to the T-matrix for the scatterer Sl and is defined

as:

Ry (k= zfd f Qi (& ) 0 (B, &,

7o OC i hko) i ko)ki)s\.nxodxo

kec, kec
~€-_C+,k‘e - (30)
We construct the basic matrix equation for determining the coeffi-

A

cients € by multiplying Eq. (29) with B;j(k

l) and sum over j and

integrate over Fl and &l over a C_ contour. We get:

Cot L Apac,)=d

o (31)
where
w
A =-27 fd(slfs"m dx Sdp Ss\n« cllx x
n“ (o}
- - 1' A
B '(k VT &30 Gk k) B k) (32)
iy | '
. . - = - -y A
d -l SA § sinn. du Xd(s fsinadu, ! (@) G (k6 B (k) (33
u,o PC- 1 ‘0 OC_ A \ \ 1

Thus we obtain an equation which is formally the same as in the
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lossless case. Again the iteration of Eq. (31) reflect the multiple
scattering phenomenon between the surface So and the scatterer S,,

and we refer to [A] for more details on this subject.

The final expression for the field El outside the circum-
scribing sphere of Sl' Egq. (23), can eventually be written in
terms of the cn—vector by introducing the Egs. (29), (22), (27)

and (28)

® - Ix
- A bk'-‘z{ . - -1 - .
)= - k) Qo (kg k dx,
E. ()= 5 id(s ja e L{d{)ogao.\‘(ko) i Uk, ) sy, dx, +

ww
+23 Jdp § Bk To 0 Ry (kR shoscd } sine e, ~
Ce

nn 0 J

"HTt'qu)(kr) =
no'

a pd i (34)
- i, o -— -t -
= E, (F)+2% t3-'“(F) Ut & = ’-luzZ"*Pn(k‘?) e

nn nn
The total field El has been divided into three terms with the
following definitions:

e -1
"ﬁd\f k‘ W - -y . .

(F)=—L§ .Ed fa. l !dpoé aj (k,) Q-“'(ko‘k\) sing, d, sing, dx, (33

W z
?m zzjia(,, 3 “ I AP"S%nx(?:,\@\-.,(i,(\:(\sim{ax‘\s,;nu\au\ (36)
Ayo o c, 4

=>dir,
1

present, while the two remaining terms reflect the presence of

The field E is the transmitted field as if no scatterer is
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the scatterer; a field which could be called the scattered field
Eic‘. In terms of a multiple scattering interpretation, which is
discussed in more detail in Bl, the second term on the right hand
side of Eg. (34) can be interpreted as the sum of all those con-
tributions, which is reflected the last time at the surface S
Similarly, the third term corresponds to the contributions reflec-
ted the last time from the inhomogeneity. Of course both these
contributions added contain all the multiple scattering effects

between S, and the inhomogeneity, via Cn' the solution of Eq.

(31) .

As we have seen, the consideration of the field El is quite
analogous to the derivation of the scattered field Egc. in VO'
which in the lossless case is found in (}]. In the lossy case

the formal derivation of Egc. is the same and we here just state

the result.

ch.(?‘ - E:c du('r) . Es(. ,anom, “_) - Eic.,dfc.(-‘:‘*_zl‘ En(F) 'T‘_m‘ c'n' (37)
where
T - _.'lﬂ'
- 1 A o
ESC"A“(?\EZ. Sd[\oj 368" jdfb"j R.. (ko k m (k )smaL do. » Sinx dog
(o] "nl o c+ “ (] C.
W o M
A kT A =
F@e-uzdp, ) 3¢ Sd(*tj Byl L oy (o0 ~
i’ Cy ° C,

.Scl(s JQ "(k k ) (R"'( LK) Sinol“elo("] sink,dut, sink dxg (38)

w -
Ro(k k)= ZS SQ o (K, k\O. (k k) Sina, A, keg,, k,eC. (39)
~\ \]
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Rjj'(ﬁé’ﬁb') is the reflection coefficient for the surface So
from above, cf. Eq. (30).

So far we have considered the general case, and have not
introduced any specific geometry. The inversion of Eq. (24) in
the general case, when SO is rough, is indeed a difficult prob-
lem. However, when one haé‘a "finite hill" one can find an algo-
rithm so that the interaction between the hill and the inhomoge-
neity is taken intoaccountEUﬂ. The numerical computations in this
paper will only consider a plane surface SO and for this case most

of the ecuations can be simplified. We get for a plane surface So

(Z=zo=constant) (cf. the lossless case):

w - . % 2 2l 2 2y
= die. 2 ko oy 2 LX) K le-an)2
Ed M=% Idfs 5$-e_k‘ o (k! )elz ( . 5‘““’5\40)
1 i °o ‘C- [ A BJ(A‘)
- a e 22, (& a) -
T.@=-2Lfdp,J5; ¢ By Ry(a) €™ sind, d, Y
» 3 o (%C_ 4 4
” B2, (k)2 —
A= ;{AP .(B (R B ()R e sing, dy, g 40
iy 2 2 1 2\
SRR (X WA b AU Vo
_ . - oMKmh,y o Co <ind (43)
dn‘?i‘l("oé_"‘su"’\ By (ky ) € o o4
- . = ' k % 20 ik
Ezc.,dnn(-‘:)zzjd S o (k )R (A) e Siglkeh) vk 8 Smkodoc (44)
‘\ ]
w - wh o2 2k L‘Q
= Hegko Ko Teiz (K .)l.-(ko'&\) : (45)
F7 )=“\f‘—§{dpoé K3 % A ay ="
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The Fresnel reflection coefficients are @JJ :

Ros S8 ok (Y™ (1)
cok, (1- Woer k, (1= (Vi) (46)

B, ()

R, (A)= Nald) R o (R
DY T (R ¢ (k-4

1 is the reflection coefficient for an incoming wave polarized

along a; and R2 for a wave polarized along éz Dj(x) and Nj(x)

are the denominator and nominator in the reflection coefficient

respectively, and Ai=ki sina,; i=0,1. All square roots are definéd

such that Im(ki—&?l/Z)O. We have also introduced the follwoing no-

tation for the transformed arguments in Eqg. (40)-(45)

g T

. : . 2 .2 \a
k‘ = k1 (Smo(‘r.os!s‘) sind, S\nfs”- ((kﬁ) - smzx‘) )
A— - . -

k, = (Sm&‘cos(},hs\nx‘smfsh-cosm‘)

- . . .
ko = ko(S\nKOCOSPO\S‘n“og‘nPo,- Cos*")

AL SN 2 - /
k, = —k- (S\noLOC,oSPO Siny Sm(bo' ((-‘-:i) ~ anzo(o L)
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III. Numerical applications

The final Egs. (40)-(45) given in the preceding section
will now be applied in some numerical examples. These illustrations
include both field computations above theground (the electric
field) and below the interface (the magnetic field). The source
that excites the inhomogeneity is chosen to be a vertical dipole
source; in the case of electric field an electric dipole, while
_in the magnetic case a magnetic dipole. The dipole source located

at a source point Pz(pt,O,zt) is given by [lil:

B il T-1i |

'S i A

“*inc. _, =72 Vx VK € ]} (47)
Ho o (®y |~ Lox(2 WY

If we place the source on the surface SO (zt=zo)'then Eq. (43)

simplifies into

m

- R
- 2o (i ket dt ik,zo (1 (e f(1-1)2
n . . k 2' 2‘ ‘Il e )
Lk L(1+1) ;0 k,H—(‘-:)H-t)) sCk b

* ]m(kogt(\-t")'/‘){i,mSNSU Pem(“_(%‘)z“-é”"") -

Vg, 1 z'l,, m kot Vh
"%reztz{-(e'"‘*‘)FQ‘:;\((Ll‘-‘lf‘)’"U-tL)) )- (8“‘)(1‘(‘%)(1**:)) P ((1_(‘;‘)(1_&/)] (48)

.)

Here the definitions of spherical harmonics and normalization

follow Ref. Dﬂ.

The numerical examples are separated into two groups; one

in which we compute the electric field above the ground and one
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where we focus on the magnetic field below the interface. In all
numerical examples we have chosen a moderate contrast in the
parameters between VO and Vl‘ These values are chosen here since
they are believed to illustrate "worst case" applications of the
above formalism (i.e. using the full struéture of the equations,
without further specializations). Numerical computations for va-
lues of the parameters corresponding to high contrasts and losses
will be performed in the future. In this case it is possible to
introduce further simplications by using asymptotic methods for
the strongly oscillating integrals. Work in this direction is in

progress., Parameters in common in all the numerical examples are:
r .
k‘/k‘o= 10+ 5

P"r/"vo‘-= 1

koz,= 0.8

The inhomogeneity, completely specified by its T-matrix, is
here taken as a perfectly conducting spheroid. The semiaxis in the
direction of rotational symmetry is a and the semiaxis in the per-
pendicular direction is b. The T-matrix for the spheroid is gene-
rated numerically for an orientation of the rotational symmetry
axis along the z-axis, and is then rotated by means of the three-
dimensional rotation matrices [121 to an arbitrary orientation.
The orientation of the symmetry axis is given in spherical angles
¢,Xx. This procedure allows us to calculate the T-matrix for in-
homogeneities which are asymmetrically oriented both with respect

to the interface and to the source position. Thegeneratién>of the
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T-matrix for a large class of asymmetrical scatterers can thus

be performed efficiently, since the rotational matrices are fairly
easy to generate numerically. To get the result for a different
orientation of the scatterer only these matrices have to be recal-
culated; the T-matrix along the symmetry axis is the same as before.
The steps of computation of the scattered field for a given inhomo-

geneity are in short:

1) Compute the'dn~vector, Eg. (48) for a given source position P.

2) Compute the Ann,—matrix, Egq. (42).

3) Compute the field vector ?n(%) or '?:n(%) , Eq. (41) or (45)
.+
r.

for a given array of field points

4) Generate the Tnn,—matrix of the inhomogeneity oriented

along the z-axis.

5) Rotate the Tnn,-matrix by applying the rotation matrices.

6) Solve Eg. (31) for the cn~vector.

7) Combine the quantities in Eq. (37) or (34).

A variation of a single parameter or a different choice of
inhomogeneity (concerning e.g. both shape and orientation) does
not affect all steps above; most of them need not be repeated. Only
a few items have to be recalculated and this feature makes the for-
malism efficient in situations where one is interested exploring

the effect of these types of parameter variations.

Many of the quantities contain an integral over a C, or C_
contour. These inteugrals have to be computed numerically, and we
use a fast, improved quadrature, which in a subdivision of the

integration interval uses the previously computed function va-
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lues. The integrand usually contains an exponential factor, which
makes the convergence very rapid. In those integrals where such
an exponential factor is absent or is small, we use a different
method. Since the integrals have oscillating integrands we divi-
de the integration interval into parts, according to e.g. the
nulls of the integrand so that the total integral becomes an
alternating series. We then apply an Euler transformation to

the series, which improves the convergence of the series very

efficiently.

The computer time required in the various steps above varies
considerably and only a rough estimate can be given. The steps 1),
2), 4), 5), 7) have usually an execution time of less than 2 min.
c.p.u. on an IBM370/3031 or IBM 360/65. Item 3) is the most time-
consuming step, which for an array size T and a truncation order
used in the numerical examples considered here, takes about 10 min.
c.p.u. The radial and the azimuthal dependence in the pertinent
integrals can be separated in such a way that all azimuthal de-
pendence is a common factor outside a remaining integral, which
only depends on the p and z coordinates. Step 6) takes only a
couple of seconds c.p.u. to evaluate. However, it should be noted
that the various.execution times here given highly depend on the
truncation size of the matrices, prerequired accuracy in the eva-
luation of the integrals, array size of measuring points in ﬁn(g)
or ? n(f) etc., and we should also observe that the constituent
parts in the scheme above can be used again in various combinations
which reduces the computational costs considerably. The above
c.p.u. times refer to computations to about three significant

figures in the final results. In many practical applications one
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does not of course need such a high accuracy and the c.p.u.

time requirements are reduced accordingly.

In a series of plots, Figures 3-6, we illustrate the anoma-
lous scattered electric field on the surface SO (z=zo) in a region
close to the inhomogeneity. These plots show computer interpolated

surfaces of constant amplitude of the anomalous scattered electric

SC.,anom.

field Eo

. Due to the computer interpolation.algorithm these
figures contain some irregularities, which are not present in the
original computations. These figures show different field components
for various scatterers, which are perfectly conducting spheroids -
both prolate and oblate - of diverse orientations, both with res-
pect tothe surface SO and to the source position. In Fig. 7 we4
show the quotient of the vertical components of the anomalous
scattered electric field and the incoming electric field along

the x-axis. The pattern these plots exhibit are fairly complex,

but seem to fit reasonably well to the radiation pattern of a
'simple dipole, which replaces the scatterer. In order to achieve
this the orientation of the dipole has to be adjusted. The re-
sulting optimal orientation was found to agree reasonably well
with what was to be expected from the relevant source, treated

as a source in a homogeneous space (no interface So). The present
more accurate computations can be used to investigate when these

simple dipole-excitation models are valid.

The second part of the numerical illustrations given in this
paper is the magnetic field below the surface S,. Here we have
calculated the magnetic field - both the direct and scattered -
along a straight line with a specific direction. Along these

"drillholes" the field component along the line is depicted in
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Fig. 8-10. The "drillhole"“ starts at the coordinates (xo,yo,zo)

and has a direction given by the spherical angles (n,y). The
source in these calculations is a vertical magnetic dipole lo-
cated on the surface SO at (pt,O,zO). In each plot we illustrate
the field component along the drillhole for various scatterers -
perfectly conducting spheroid of different orientations. As ex-
pected we get the highestresponse from the obstacle at the posi-
tion closest to the inhomogeneity. Although the scatterer is
rather small and the drillhole does not come too near the obstacle,
we have a rather high signal return from the inhomogeneity; which

in some situations is more than 10%.
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AEEendix

waves.

The transformation between spherical waves and plane waves
for a real wave number is discussed in detail in [131. The exten-

sion to complex wave numbers is found in this appendix.

Consider the following integral for 2z»0:

.~
ik-¢

v
A
. ‘ Al
Sd[’as Yn(\de SN dw (r.1)
o C
+

Here we have adopted the notations

fz(x,y,z)zrf

r=(siné cosé, sinb6 sin¢g, cose) (Ar.2)

> L iw
k:(kx,ky,kz):kk:lkle k

[a}

k=(sina cosg, sino sing, cosa)

The complex contour C+ in the a-plane (see Figure 2) is a contour
from a=0 to a=1/2-R-i» subject to (a=za'+ia", where a',a" are real

numbers) .

] | 2.3
tanh « +tana tany =0 (-3
We will here assume ® € (0,n/4). This restriction can be relaxed
but it is sufficiently general for our purpose (remember
Imk2>0, Rek2>0). The case #=0 is excluded since that is the

situation analysed by DBanos and Maximon 113].
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The integral in Eq. (A.l) is essentially a two-dimensional
Fouriertransform in (kx,ky); first rewritten in polar coordinates
A=k sina and B and then finally transformed into the spherical
angles a,B. For more details see Bano s [}4]. We have here explicit-
ly assumed z>0 (¢<7n/2) but for z<0 the C+—contour is replaced by
the C_-contour and a similar analysis will hold. Note that on

both these contours we have

Im(k sina)=0

Im(zk cosa)0 (A.4)

Re (k sina)30

The C,-contour defined by Eq. (A.3) transformed to the t=cosa-plane

i(m/2-R)

is a contour (see Figure 1l1) from t=we to t=1 subject

to (t=t'+it")

(t'tankht“)(t‘-t“tana) = tany (A.5)

The integral (A.l) is easily shown to be uniformly conver-
gent for all T when zzc>0, where c¢ is any positive number (cf.
the exponential decaying factor). We also note that the integrand
is an analytic function except for the branch voints t=t1 of the
assoclated Legendre functions P?(cosa) in Yn(ﬁ) and for the essen-
tial singularity at infinity for the exponential function. It is
permitted to deform the contour C, to any contour T provided no
singularities are crossed. For convenience we will deform the
4-contour to T as depicted in Figure 12 or in the coso-plane, see

Fig. 13. The constant ao=ﬂ/2—iag is any complex number where ag
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satisfies

sioh . > Ycos B (2.6)

The reason for this deformation of C+ is to simplify the analysis
given below. We note that the first part of I' (from o=0 to a=a0)

is identical to the corresponding part of the contour used in {}3].

The evaluation of the integral in Eq. (A.l) is done by
first making a rotation of the .coordinate system (a,B) to a co-
ordinate system (n,y). Here n is the new polar angle, specified as the
angle between %k and §, and y is the new azimuthal angle (see Fig.

14) . The spherical harmonics Yn(k) is transformed according to

(4

(A
V.= T D, (48,0 Y (q, W) )

This relation holds for real angles (a,B8), but can be analytical-~-
ly continued to complex angles (a,B) (note that the m' summation
is finite). We have here changed from real combinations of the
spherical harmonics to complex ones which have an azimuthal de-
pendence eimB (this is merely a matter of convenience and in
accordance with references [12] and (13]). The final result holds
for real combinations too. Furthermore, we can without loss of
generality take ¢=0. The case$+0 is an azimuthal rotation with
a trivial shift in the B interval. The relation between .the two
coordinate systems (o,8) and (n,¥) is [}i} (¢=0) :

cos = sin B s‘moccos(s + cos8 cosx

s'mrlcos‘\’= cosB s{noccos(L - sinBcosa (2.8)

s{mls'\n&l-' = SINK sinfs
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The Eq. (A.l) can be rewritten as

ik

FA ) -

f d{SS Yn(/l:) e Teian dw =

o [

B(

(t)
= Z' %m’m 0 9 0 jdq,] Y{ ) vkrcosn
" ¥'

Lﬂtgnmdq(A9)

la(a,B)l
The Jacobian !3(n,y) ! is easily found:

66

We observe that the Jacobian is non-zero for lcosn|$l, and thus

L {go_c > 3% dp ]

the transformation non-singular, see l§33 and below.

1|<.
SdPSY (K) e rsin«du=

(2.10)

zbmm(oeo)fdﬂ Yo lq ¥) e kreos " sinn dy

The contours y' and r' are the transformed contours of the (a,B)

variables given by Eq. (A.8). (Note that I'' is a function of V)

Our goal is now to deform the contours in the right hand side
of Eq. (A.10) to the original contours.(we[O,Zﬁ]and nel or equi-
valently neC+). For this step to be valid we have to make sure that
no singularities of the integrand are crossed. The endpoints of

the integral also have to be the same.

In the discussion of the contour deformations it is convenient
to divide T into two parts: one from the origin to the point o
and from o/ to infinity respectively. The deformation of the first

part of the T contour, where o is real and a=n/2+ia", —agsawgo
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is found in [13]. There a detailed analysis is found of how to re-
arrange the integrations in the real region, and how to let the
starting point of the n variable remain at n=0 (0»0 corresponds

to n»0). We see thét the map of the real part of I' is real, and
the rearrangement can be interpreted as a transformation on the
unit sphere. A discussion of how to circumvent the singular points
cosn=t1 is also found in [lﬂ. The rearrangement discussed above
can also be performed for the original contour C+, but then much

harder to illustrate.

We now discuss the final part of the T' contour, i.e.

L1}
.tanhao

tan

lyse the asymptotic behaviour of TI' as a»m/2-® -iw, According to

o=a'-ia", arctan ( )¢ o'$1/2 and aeC , aWS—ag. First we ana-

@]

Eq. (A.8) we have:

cosn=sin6 sina cosB + cos 8 cosa

Asymptotically we have

arq(cosq} = -%+¥2 - arctan(tanBeosp) 2>~ (3.11)

and we see that arg (cosn) € [n/Z-X—B, n/2-& + 9], see Fig. 15.

Furthermore we have

arﬂ( kcosq) = W/2 - arctan ( tan Qcos(!») o("—> - @ (A.12)

and we conclude that arg (k cosn)E.[n/Z—e, w/2+3] as o"+»-o. Thus
for'9<ﬂ/2 we have arg (k cosn) ¢ (0,7) as a"+-=», which ensures the
correct convergence properties at infinity. In the n-plane this

corresponds to (see Figure 16)
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n~> ~®+"z-arctan (éanBcosF) ~1® a> Vz-R-1e0

The remaining step is to make sure that we do not cross the
singular points cosn=t1 as we deform the remaining part of I''. We
have, see Eq. (A.8)

cosn= sina sin® cosB + cosa cos?d

It is fairly easy to see that for a=a'+ia" with o’ arbitray and

u"é—aa, where aa is given by Eg. (A.6) we have
|cosn|>1
Thus we see that the last part of T' (d=d'+ia", a"s—ug) does

not enclose the singular points cosn=%1l. Neither does the last
part of T'' enclose both cosn=1 and cosn=-1, since the curve

never enters the third quadrant of the cosn plane. (The last

part of TI' starts in the first or second quadrant, depending
on B, and ends in the sector arg(cosn)e[m/Z—R -8, n/2—ﬁ,+6],
and the first part of TI', where o is real or o=w/2+ia";

-o€0"¢0, has only values .in the first and second quadrant) .

The integration variable § can then easily be changed to the real
interval we[p,zﬂ. The endpoints of the deformed curve remain
the same; we have y=nm when g=nnw. From Eg. (A.8) we can solve for

v, and we get (y=y'+iy" and see Fig. 17):

! .
tan \l»‘ = A sip
a A}+E}—Sﬁhﬂ%

fank\ztpuz ___2J§§ﬁ41____

Az-l- B" + s;nz‘[s

(A.13)
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where

'

\

) ' " -1
Az CosBcos[s - sinBtana (1 -tankio )(tanhz*"* ta“z“’)

. -1
| B=~smnb tanha ( 1+tan2’e(‘)( banh%w' + tanzo(')

Thus we have analysed the contours y' and T' and justified
the deformation of these contours to the original vye [O,Zn] and
nel or neC, and showed that this deformation is valid. We have,

see Eq. (A.10)

X3 — u) aw .
Aok tkrcosn .
.!C‘(‘bé Yn(k)e rSmoLdOC= 2%' ﬁm'm (“’)B)O) {dq’é ch’(rl‘q') e qS\m-]ch\
+ »
0 ikrcosn .
= &om(c\>,e,o) Z‘“Xl"é P[(u)srl) e L sian c!q =
: A 4
-2 i’ h@;(kr) Y (M zavi $ (k) (n.14)

In this last equation we have returned to the more general situation
where ¢+0, see the discussion above, and furthermore we have used
the integral representation of h’fl) (z) [15] and the definitions

ot & W) (4,000 [12), i.e.

1
V) -1 L2t
hp(2)= 1 .(Pt(t\ e dt ve(~ar31"|\'—ar32)

ooe,x?(iv)
! A - I&-Ll
%(()1‘(39‘9)0): Yn(”/Xlo Xto‘ Wt

A completely analogous analysis can be made for z<0 but this time

with the contour C_ and we can here conclude:

-q_’

LY
- _LJ A ikr
q’,\(krh it Jdp f Y.(kYe sinado 2%0 (3.15)
Cy
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For an z%*0 the integral in Eg. (a.l15) is a uniformly convergent
integral and differentiation under the integral sign can be

justified. The spherical vector waves ﬁn(kg) can thus be formed

0, \ 1 T
k"t“(k’{-’)i{mm (‘va) (k?\l’n(k'\-’\) T~12 (A.16)

In proving the transformation between spherical vector waves and
plane vector waves we will essentially follow the presentation

found in [8]. First we consider:

:l: 2. 0 'R (A.17)
i L) = By tie) A ()

For definition of the vector spherical harmonics see [4]. We
will also need the following identity [61. (Note that we for con-
venience are using the complex combination of the spherical har-

monics, i.e. no o index.)

- -~ A 1 A
Am(?’ = Atm{((\ [ VYCm(t‘) xr=
(r.18)

z a_\(

AN A A A A
(F) £ + &, Yoo L) €yt Q’zY(m(ﬂ 2

Lt

where'a_,a+,az are contants depending only on £ and m and where

(A,19)

We get with Eq. (A.1l5)
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—y

0 A A A A A
b, (k¥)= ht(m{a_‘{{w(?) €.+ o, Y (D E, + 0, Yp, (M 2]

2 -~

A ‘f j" A~ ke

= ot 3[5 Anlkle swxdo 2% 0 (A.20)
0 c,

The spherical vector wave for 1=2 is found by differentiation

under the integral sign, and we get

)
. (A.21)

Thus finally we have

b1y -

h : - A 1k? |

k‘)“(k?')=ff _Sd[ls E“(k) e Q;nu do 2)40 (n.22)
o c,

where §n(ﬁ) is defined in Eq. (7).
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Figure captions

Fig. 1
Fig. 2
Fig, 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Geometry and notations.
The integration contours C, and C_.
The amplitude of the x-component of the anomalous

scattered field |§§c.,anom.

‘x| on the surface Se

(k,2,=0.8) for a buried perfectly conducting spheroid.

The semi axis in the direction of rotational symmetry
is koa=0.3 and the other semi axis is kob=0.15. The

orientation 6f the symmetry axis is 6=x=7m/6. The source

is located at kopt=6 and the scale factor is 10_6.

+SC. ,anom.

The same as Fig. 3 but the z-component IEO -z |

shown and 6=w/3, x=1/2, kopt=3 and the scale factor is

1072,

The same as Fig. 3 but koa=0.15, kop=0.3 and 6=7/6,
x=31/4, kopt=3 and the scale factor is 10—5.

The same as Fig. 3 but koa=0.15, kob=0.3, kopt=0 and

the scalar factor is 10_4.

The variation in |Egc.,anom. -élﬂﬁinc' -2] for data

as in Fig. 5 along the x-axis. The scale is in percent.
The amplitude and phase variation of the field compo-

nent of the scattered magnetic field ﬂ-ﬁic' along a drill-
hole (t is a parameter along the drillhole). The drillhole
starts at ko(xo,yo,zo)=(l,0,0.8) and has the direction

n=5n1/6, Y=m. The source is located at kopt=3. Data for

the obstacle koa=0.l, kob=0‘2

a) b=m/2, x=0

b) 6=n/6, x=m/4
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Fig.
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The amplitude of the field component of the scattered

mangetic field In'ﬁic'

kO (XOIYOIZO)=(—11110-8)I n=51/6, IJ’=3'"/21 kOpt=3

| along the drillhole

koa=0.l, kob=0.2 and a) ¢=1/6, x=1/4, b) p=n/3, X=1/2.
The amplitude and phase variation of the field component
of the total magnetic field n-H, along the drillhole for
data as in Fig. 8 b). The dashed line is field component
for a homogeneous ground.

The C, contour in the complex cosa-plane (®=1/6).

The T contour (X =w/6).

The T contour in the complex cosc-plane

Notations of angles in the rotated coordinate system.
The variation in cosn as a function of o for fixed 6 (a
varies along the complex part of T' ; the dotted line is
the variation of o along a=m/2-iv, v=[0,a8]; 6=57n/12,
X=n/6 a) cosB=-1, b) cosB=-1/2, c) cosB=0,

d) cosB=1/2, e) cosB=1.

The variation of n as a function of-a for fixed 0.

For data see Fig. 16.

The variation of § as a function of B for fixed «

(6=51/12, ¥=n/6, sinha"=-1/cos®, tana'=-tanho"/tan® ).
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Abstract

In this paper we will consider scattering of elastic waves
in a half space. The half space isan isotropic, linear and homo-
geneous medium except for a finite inhomogeneity., The T-matrix
method (also called the "extended boundary condition method" or
"null‘field approach") is extended to derive expressions for the
elastic field inside the half space and the surface field on the
interface. The assumptions on the source that excites the half
space are fairly weak., In the numerical applications found in
this paper we assume a Rayleigh surface wave to be the incoming
field, and we only compute the surface displacements. We make
illustrations on some simple types of scatterers (spheres

and spheroids; the latter ones can be arbitrarily oriented).



I Introduction

In this paper we consider scattering of stationary elastic
waves from a buried inhomogeneity. We will adopt a formalism re-
cently developed for scattering of stationary scalar (acoustic)
and electromagnetic waves in a geometry similar to the one treated
here 1—2). This formalism is an extension of the T-matrix method
(also called the "extended boundary condition method" or "null
3-5)

field approach") first given by Waterman (for the elastic

case see also Ref. 6) for scattering from finite scatterers.

To our knowledge, very few results exist for elastic waves,
apart from purely numerical ones, which apply to the geometry we
consider in this paper. In a number of papers Datta et al. 7-8)
analyse the two-dimensional scattering of elastic waves by a crack
(buried or edge) and a cylindrical inhomogeneity in a half space.
Some authors have also considered the two-dimensional scattering

of a pulsed Rayleigh surface wave by a cylindrical obstacle, see

Ref. 9 and further references given there.

Scattering of elastic waves in a layered half space (no fi-
nite inhomogeneities present) has been studied intensively and

a number of textbookslo_ll)

analyse this scattering problem
thoroughly. Different types of incoming fields, which excite the
layered half space, and their effects upon scattering, are usually
considered in detail. Furthermore, the timedependent scattering
solution of a layered earth structure is of primary interest in

many applications and also this topic is thoroughly studied in

these textbooks.

The formalism considered in this paper starts by applying a

surface integral representation of the field. The free space



Green's dyadic is expanded in both plane and spherical vector
waves. The pertinent surface fields are expanded in these basic
waves; the plane wave system applies to the infinite interface,
while the spherical waves are more adapted to the finite inhomo-
geneity. The surface integral representation will give us a
matrix equation, and the formal inversion of the matrix in a
power series can be interpreted as the multiple scattering
contributions from the interface and the obstacle.

In this paper we assume that the sources are located below
the interface, but no further assumptions are made. A similar
formulation can be derived when we have the sources located above
the interface or inside the inhomogeneity. However, we will not
pursue these situations any further in this context, but refer
to Refs. 1-2 for some additional details concerning these types
of source locations. Since losses usually are fairly small for
elastic waves in the ground, we consider in this paper only
the lossless case. However, an analogous formulation can be derived
when losses are present, and as found in the electromagnetic
case 12), losses do not introduce any further complications. In
modelling elastic wave propagation in the ground it is usually a
good approximation to take the upper half space as vacuum. The
general case, when we have elastic waves propagating in the upper
as well as the lower one, can with appropriate modifications be
obtained from this specialized situation and we emphasize that
the formal structure of the theory remains unchanged. Furthermore,
we will derive the basic equations when the inhomogeneity is a
cavity, but any obstacle can be considered, as long as its

T-matrix is known (for more details see Refs. 5, 6, 13 and 14).



II Basis functions

In this preparatory section we introduce the vector basis

functions corresponding to the equation of motion for the

->
displacement u in an elastic solid

(/) 99T = (1/K) UxVxU + U= 3 (1)

We have here assumed stationary conditions with the time factor
exp(-iwt) suppressed. The transverse and longitudinal wave num-
bers are k§=pw2/u and k;=pw2/(x+2u), respectively, where p is
the density and » and 1 are the Lamé& parameters of the elastic

solid.

We will need both the plane and spherical vector basis func-
tions of Eq. (1), and also the transformations between these two
sets. The plane waves are the natural set for expanding the Green's
dyadic and the surface field in the integral over the infinite
surface in the integral representation and the spherical waves

are in the same way natural when dealing with the bounded inhomo-

geneity.

We define the plane vector waves to be

%5 o(/H'T exp(zer)

=&

(g, )E'(\A/HT exp(th r) 2

= A > A N . -
‘PE,(X; r= X/HT\' (k"/ks) ’ e,xp(xk?%-r)



~

where y=(sinocosB, sino sinB, cosa) and where o and B are the

other two spherical unit vectors. B belongs to thereal interval

[O,Zﬁjand o belongs to some contour in the complex plane (see

further below). The first of the basis functions is transverse,
vertically polarized (SV), the second is transverse, horizontally

polarized (SH), and the third is longitudinal (P). We will further

need the functions 3;(y;f) which have the i in the exponent

changed to -i.
The outgoing spherical vector waves are defined as

—

ot = LT 2 97 H ) Yo (D))
R e 1) R Ugr)

I

]

Hl

b _1 A A
Wt (P = (2] "(‘/k\wvx[?é’{(kﬁY¢mltrs}= (3)

-

= Auermt (F) d(k,.)[ksr (kgr) kg +

+ [t(tﬂﬂ Awml(?) h?(ksr)/ksr

.k\j (¥y= Q“’/k )yz(‘/k \V[hm(k?r\ let?)] =

3omi
= v/, )’Yz{ dh dhylker) »

@
R iy~ A hlker)
dlkp0) Azml(') + (LY} Z'A“.ml(r) }

kpr
where hé*) is the spherical Hankel function of the first kind.

The normalized real spherical harmonics are:

A m JERY cosmd
YVemg (F) = €1) Jeml‘{‘;‘ Lok Bl cos 6) (Smmc?)



t=1,2,3, o=e,o0, m=0,1,...,%, 2=0,1,..., e, =26, o and the vec-

tor spherical harmonics are:

—~ A _J - i
Aot (F) 2 CUET - O LF Y p (M) = -Fx A 4 ()

- N -1 (4)
Kot (8 2 (T 00 et 1) = B Kygmp (1)

>4

Al A
armt T2 T YT“\(.(;\'\

When convenient we will abbreviate the indices as follows:

- -

L‘)n-é q)urmt A = K

n trml

We will also need the regular functions Re_xEn obtained by taking

spherical Bessel rather than Hankel functions.

Transformations between plane and spherical vector waves

are given by Danos and Maximon 15) for the scalar case (i.e.

the longitudinal part) and Devaney and Wolf 16) for the transverse

part. Here we use the following compact way of writing these

transformations:

n-’
A o : T oA = (5)
;1) = =i T B (R (7)

A, ™A

Lt
Req"n (Fy = iz:‘] £d§ Bn;\(x\ ﬁ(K"F) (6)



The sum over n indicates a sum over 1, ¢, m and & and j is

summed from 1 to 3. The integrals are in fact double integrals;

~ 2T
we have introduced the shorthand notation jdys j ds J sinada.
0

The integration contours C+ and C_ are given in Fig. 1, C+ is
relevant if 2>0 and C_ if z<0. The transformation functions are

essentially the components of the vector spherical harmonics 2):

.-t'sr_“ A Y A
e

B (})= 4

3 t- 81'.,1 A

F'An"f‘ (8)

A e A s A
— . A+8r]
and an has the first factor changed to i . We note that

an is zero for =3 and j=1,2 or 1=1,2 and j=3 so that the trans-
verse and longitudinal waves do not couple - as of course they

cannot,

The free space Green's dyadic corresponding to Eq. (1) sa-

tisfies (T is the unit dyadic)

M) oo S - (1R) vxvx& @ @)« SR = -ISE-7) (o

and radiation conditions at infinity. By considering the trans-
verse and longitudinal parts separately it is easy to obtain the

expansion of the Green's dyadic in plane vector waves (see also

Ref. 2)

> ( . A o A_-H
G(?szl?éc{g @j(xsr)@j(x,r) 2% 2 (10)



The corresponding expansion in spherical vector waves can be

found in e.g. Ref, 13:

<> ' - - - iy -
G2 = 1T Re®, (7)) YT (an

Apart from the Green's dyadic we will also use the Green's stress
triadic - or rather the Green's surface traction dyadic. It has

the same relation to the Green's dyadic as the surface traction

has to the displacement (cf. Eg. (16)):

- Y
N-Z=ARVC tLpyn G +}»?\X(VXE) (2)

where n is the normal to the surface under consideration. From

this equation and Egs. (10) and (11) we can then obtain the ex-

pansions of the Green's surface traction dyadic in plane and

spherical vector waves (cf. the symmetry properties of & :

A S . S AT R A ST Ao (13)
n-ZlrrFy=212% dx JC(GP:\(X')V)) CP-(X r) 222

a>
M1
W
14
u
sM
4
P
€
(N
e
N
S
=—€-
e
-
N
1 -

o= 14
&Pn(r) r4v (14)

1]
sM
¥
h
70
(4
=)
TS
=

where (cf. Egs. (12) and (16))

-

n Z}*fs—n- Ll)“ 1'/"I'\”‘(V’("l)n)

£J

£(d)= AT

and similarly for E(%;) and %(Re$n).



IIT General formalism

This section contains a more detailed description of the
geometry and develops the fundamental equations of the formalism,
The formalism is in many respects a generalization of the similar
acoustic and electromagnetic scattering problems 1_2). However,

a number of problems not appearing in these cases emerge here,
and these will be discussed in the appropriate contexts. With

a few exceptions we use the notations and symbols (or generalized

versions of these) found in Refs. 1-2.

We séudy a geometry of the scattering problem as depicted
in Figure 2. We consider two half spaces Vs and \21 whose
interface is SO and for simplicity we take Vo as vacuum. The
volume Vl is assumed to consist of an isotropic and linear me-
dium of Lamé& parameters A, p, density p and wave numbers kp and
ks' Furthermore it is assumed homogeneous, except for a finite
inhomogeneity V2 (bounded by Sl)’ which we for simplicity take
as a cavity. We assume the surface So to be bouncded by two paral-
lel planes z=2z_ and z=z _, and the direction perpendicular to these
planes is defined as the z-direction. No further assumptions on the
surfaces SO and Sl are made, besides the rather implicit assumption
that they are sufficiently regular to allow an application of the
divergence theorem on every finite part of Vq- The formalism does
not depend explicitly on the location of the origin, but we assume

we can pick an origin inside vV, and furthermore such that O<z_.

This simplified situation (but still sufficiently general
for the structure of the basic equations to be the same as in the

general case) ,which we analyse here have only wave propagation in



10.

one of the volumes, namely Vl' Thus we study the displacement

+i ,+>sc.

field G=u- +u in V,, where the incoming field u' has sources

in Vi and the boundary conditions appropriate to the present

problem:

(-\:"\=8 on S

t. 0
- (15)
‘£*_(?!)=-0 on S>‘
where the surface traction E is defined as:
- d A =
L™ =2 VW + M3 U )+ pnx (V% w () (16)

The basic equations of the formalism are derived from the follow-

ing integral representation 6 :

s, (17)
b ] -~
kS =" ) A —y ! ! Uu(r) Fé\/
- 1
RN AT ITESER e
0 réV,
Here the boundary conditions have already been applied. The
definition of the Green's surface traction is given by Eg. (12).
In the derivation of Eg. (17) we have assumed the displacement
field 4 to satisfy appropriate radiation conditions, which even-
tually will give zero contribution from a surface integral over

a lower half sphere as the radius increases to infinity.

The next step in the formalism will be the introduction of
suitable expansions of the surface fields 3+. Since our special

choice of boundary conditions, cf. Eq. (15), does not introduce



any derivatives of the surface fields, we have a greater free-
dom in choosing suitable expansion systems. The expansions here

adopted are:

W, (®r= 7 o, Re (¥) (18)
n

To@)= T dy ad ;?("-?‘) (19)
W-)3C+X5X4X) |

This is an expansion in regular spherical vector waves on the
surface 55 and a plane vector wave expansion for the surface
field on So' For the plane wave expansion we have chosen to ex-—
pand in up-going plane waves, i.e. an expansion on the contour
C,.

The prescribed incoming field can also be expanded in suit-
able expansion systems. We apply these expansions in two regions;
one near the origin and one above the plane z=z_. In these

regions we have the following convergent expansions of the

incoming field (which has its sources located in Vﬁ:

ﬁ
-, e )
wWeey = Eankek\’n(?) r< ;r)m\r\ (20)
n €5,

»i -~ A A, D A =

= - . . > (21)

u (%) Zédx Q"JLX\?A(X)” 22, |
J Y

The expansion coefficients a, and aj(;) can be considered as pre-

scribed and our primary interest in this paper will be to find

an expression for the surface field ﬁ_ (or the amplitude
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aj(§) in Eq. (19)).

Consider now an T inside the inscribed sphere of S, and
such that r<z_. In the integral representation Eq. (17) we in-
sert the appropriate expansions of the Green's surface traction
dyadic, see Egs. (13)-(14) and furthermore we use the surface
field and incoming field expansions, see Egs. (18)-(20), and

get:

Z:a Re“" (?) = L?l' g‘JX ﬁ(x;?) ({dx ocil('g') an(%’x') -
i (22)

=12 Q) Re P (P

Here we have introduced the Q -matrix for the surface Sl

nn'
and the corresponding quantity Q ,(y y ') for the infinite sur-

face So' They are defined as:

ks | eq’-(r\-’t(q" *) d (23)

|r
1

Ar o ks (D2 .-y & At '
thx,thFg‘PA(x)r) t(ﬁ(x,r))ds (24)

0

> . .
For an r above S_ satisfying z>z_ and |r|>max |¥'| we can
resl

again apply the intégral representation Eq. (17) and we get as

above:

ZSC‘&“(@‘P(K)” szdg b7 )fdx o)) Qi (¥ -

N (25)

=120 RelQ, oy Ll’n(F-")
nn'
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Here the Rean,-matrix is defined as in Eqg. (23) but with regular
functions in both places. We note that ij,(;,;') appearing in

Egs. (22) and (25) have different ranges for ; in the two equa-

tions,

The next step is to eliminate the r dependence in the Egs.
(22) and (25), so as to get two relations between the unknown
coefficients aj(;) and ap, . To obtain these relations we make
transformations between the spherical and plane wave system.
Thus in Eq. (25) we introduce the transformation between the
outgoing spherical and plane vector waves, see Eqg. (7), and in
Eg. (22) the transformation between the plane and the regular
spherical vector waves, see Eq. (5). By the linear independence
of the basic expansion systems we get (notice that the integral
contour .fd; is essentially a two-dimensional Fourier integral
in the hgiizontal components of ; and we merely apply the two-

dimensional invers transform on Eg. (25)):

1- A A ) Ay g A AY )
A= lz.j,éd'f En;\(X)édx‘ui ) Q\‘“ (K,x) - L§ Q. %, (26)
- +

0j(§)=1Zddf o' {) Qp(§ §) *2Z By ReQu s FeC, 27
A C+ nn
These two equations give the relation between the two unknowns
aj(§) and opr SO formally the surface field ﬁ_ can be computed
by an inversion of these equations. In the general case of a
rough interface SO this is a laborious problem, and we will in
this context only give the formal solution of the equations.

However, in the plane surface case we can give more explicit ex-
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pressions.

Finally we focus on the scattered field u--° in Vl' which
is given by the upper part of Eq. (17). We here give the
explicit expression of the field in the region below the plane
z=z _ and outside the circumscribing sphere of Sl' In this region
it is possible to introduce the same expansions of the Green's
surface traction over the entire surfaces SO and S,+ respective-

ly. We get in analogy with the derivation above:

4, .
. (28)
+i% q)n(,?\ReQ“'OL‘
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IV _Computation of the scattered and surface fields

The Egs. (26) and (27) will in this section be inverted
formally and the final expressions for the scattered and surface
fields in Vl given. In the later part of the section we will
specialize the equations to a flat surface, which is the configu-

ration used in the numerical computations.

Formally we can introduce the inverse of ij(y,y'), y,y'eC+,

and solve Eq. (27) for oy (y) The Egs. (26) and (27) can be re-

written:

BT Ry

=A% E“i' ('g') ReQyq o(,:} -1 4 Q) &, (29)

ok(x)*-szdx 03 .o (-2 2 ByiRebay) e

Here we have introduced the formal reflection coefficient from

below for the surface SO:

R"'(« I\‘)= Zjd Q ,( ~1 All %:) AGC Alec (31)
I\ X’K B J"C g M XX -.\3 x X -)K +

+
Eg. (29) is now a matrix equation in the unknown surface field

amplitudes a. - We can write this equation in a more attractive

way, by defining the following spherical projections:

& Ay

doz an-iZddf By (DA R o) () 32
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R ?Sé X ,\\mJa Rhf(x,x')%,{j(g‘\ (33)

C = -1 %]‘ Que X, (34)

We get:

2::E> “\“\C‘ = cin (35)

The T-matrix T for the scatterer Sl is defined in the conven-

nn'

tional way,

-1
36
Tog = =% ReQur Oy (36)
n

The known quantity d, defined in Eqg. (32) contains two parts,
one, a,, which is the expansion coefficients of the incoming
field in spherical vector waves, and a second part, which can be
interpreted as the incoming field reflected once at the surface
So from below, and then transformed to the spherical basis by the
transformation function B;j(;). The matrix quantity Rn
be interpreted as a projection of the reflection coefficient

nt can also

Jjwy,y) on the spherical basis.

We can finally write down the solution of the surface field

amplitude aj(;) as a function of c, ~ the solution of Eq. (35).

n

-1 A
Ave oo 3 % M : AT et (37)
“1‘8)"‘?5‘512( Qi Oy ){ oy (Y + Z'ZZ:..' B“J(X) L € 3 yecC,
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The final expression for the surface field 3_, see Eq. (19),
can then be found, and we also give the expression of the scat-

tered field G°C* in the region discussed in connection with

Eq. (28).
- ~dir. = anom. _, - dir. = - — (38)
W)= U (B + 0. (P = W_ (F) +2'_',‘ Fn(r) Von Cp'
nn
asc. L?) = a‘scwdm(F) . -asc.,anom, (P =
i -
= WOTTEy o+ Z T AP Tacy ¥ L4 (B T,cn (39)

The new fields defined in the equations above are:

> dir

02 @®e-i T Jay ?-(A'?)sa“a—-!'“%')a-’(“) (40)
RSP AR SN SRS SUTR R RS
o 4 A A o /\ L, A
Pz 2 -Z.'(S;dl( j‘K)r)JdX KX "J (f) (41)
' i, - A . A - Al o AA M
8 (r}ezgdxﬂ(x,r){dg R“ (X~X)aj (x) (42)

?F,,(F)am_: J dg :ﬁj(g')i:)]dx -U (g %‘ 6‘) (43)

We can here identify the fields Gflr' and $5¢-dir. as the total

field and total scattered field, respectively, as if no inhomoge~-

neity were present. The anomalous part of the fields reflects the

presence of the inhomogeneity,
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In the analysis found above we have explicitly assumed the
inhomogeneity to be a cavity. This assumption can readily be
relaxed and a more complex inhomogeneity can be considered,
e.g. a layered obstacle or an assembly of scatterers, see
Refs. 5, 6, 13 and 14. Formally the theory remains identical,

but with the appropriate T-matrix inserted.

The expressions above are of limited practical value if the
inverse of ij,(;,;') cannot be found explicitly, and we
therefore give corresponding formulas when we have a plane inter-
face So’ defined by 2=z . In this case Eq. (27) is reduced to
an algebraic expression, since ij,(;,;') essentially becomes a
two-dimensional delta function, so that Eq. (27) can easily be

solved for aj(y). For this special case we get the following more

explicit version of Egs. (32), (33), (40) and (41).

. A T A A #‘ .
dur et T IR By ) Ry (o )

1.
.Rn L= 5<JA ny ) Reor (Y 2| v
" 2'% e % B i) RM (X)Eng(x ) )

_ﬁd'l\" -y . A-g A._’ -1 A . A*

W. (r\=-§'zéflx<(>i(x)r]Qﬂ,(x\a&(x ) (46)
=R - SA;\ -'v. A ~\’ A . Ay

B e 2,% % Xﬂ(X)H Q5 Y B, () (47)

We have here introduced the following notations
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Ru(y) 2 [”%’;hfshs; ( lfs- zg)z] expl2:2,h ) /Ds(oc)

A o |
Riy(})= ~kalkp) Hahy (Ky-292) explizlhgh, ) /A (%)

(48)

Ru(%\ = explZiz hg)
Ra(§) = 7k g hop (- 242) explizhypeb, ) /060
Ras(}) 2 U hphyn = (K- 2g5) T explzizghyp) /D)

A A AL A=
an.(X) = R,_|(X) = st(x) - R:z(x\ 20
which are essentially the reflection coefficients for a flat

elastic - vacuum interface, see e.g. Ref. 9. Furthermore,
-1
Qu () = i NL&)/ Bglad
-1 A . 3, ; -
Q4 = -u(f ksv(‘%s/ kz;h?s)[kt'z"}t’z“ssh?s] elzo(h” ") Ns("a/ By ()

D (Y) = 20

o< >

(49)

- A .

0 (D=ilth) (g, ! kg K2 2hy ) €500\
G ()= i N /by w)

-1 A

R 13)= 0y ()= @ (§)= 05, (}) 20
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The following quantities appear in Rjj,(y) and QE%,(y)

% .
Bi(&\ = qqi hvi hsi,+ ( k:-Z.q:;) 1= Py
N ()= Zkihsih?" /(%z*hsih\’i) ol O 0
;= kysinx 1=p,s

I .. | /.
h;ga(k?-@;')h z’z‘=?‘s and Im( V20

Finally ;* in Egs. (44)-(47) indicates that o should be exchanged
with
‘) 3
J i 2,
3
T- - - arcsin[Fs/kJsinat
T-& arcsin([3/k)sinat] 51)
3 - T -
3y m- arcs\n[(kP/ks\slnu] - ho

where j and j' are as in Egs. (44)-(47). This exchange is due to
the mode conversion and change in direction of propagation on re-

flection of a plane wave by the flat elastic - vacuum interface.
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V__Numerical applications

To show the applicability of the theory in the preceding
sections we now give some numerical examples. We then let the
infinite surface So be the flat surface 2=z and we take the
upper half space 2>z, as vacuum. On the other hand we do not
specify the bounded inhomogeneity - in fact we will treat both a

cavity and an elastic obstacle.

The incoming field will be taken as a Rayleigh surface wave
with unit amplitude in the z-direction travelling in the positive
x-direction. Apart from being an example of great interest this
choice also has the advantage that the sum of the incoming and
directly scattered field (cf. Eq. (46)) is trivially known, This
would not be true if we e.q. Ltéok the incoming field to be
generated by a point source. We note that for an incoming Ray-
leigh wave, whose sources can be considered as a surface distri-
bution on So' the integral representation, Eq. (17), has to be
interpreted differently. The surface field 3_ in the integral
over SO is only the scattered surface field and not the total
surface field. Furthermore, for the incoming Rayleigh wave the
directly scattered field, Eq. (46), vanishes (since this incoming

wave satisfies the boundary condition on SO).

There is another way to fit an incoming Rayleigh wave into
the present formalism and that is to consider the Rayleigh wave
to be excited by a point source on the surface (in the limit from
below) pushed to infinity with an appropriate growth in strength.
This approach is further developed in the appendix where we also

show the equivalence of this approach and the one where we look
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upon the Rayleigh wave as generated by a surface source distri-

bution.

The main steps in the numerical procedure are:

1) Compute dn’ Eg. (44).

2) Compute the transition matrix for the obstacle Tnn" Egq. (36).

3) Compute the spherical projection of the reflection coefficient
Rnn" Eg. (45).

4) Compute fn(;), Eq. (47), for an array of measuring points on
So'

5) Solve Eqg. (35) for <, and compute the scattered surface field,

cf. Eq. (38).

We note that steps 1), 3) and 4) are independent of the obstacle,
so if we keep everything fixed except the properties of the ob-
stacle we only have to repeat steps 2) and 5) for each new ob-

stacle, thus greatly enhancing the efficiency of the method.

The computation of dn (see Eq. (A.10) for an explicit for-
mula) is straightforward and need not be further commented on,
and for comments on the computation of Tnn' we refer to Refs. 5, 6,

13 and 14.

The B-integral in Rnn' and fn(f) can be performed analyti-
cally and this essentially gives diagonality in m for Rnn' and a
cylindrical Bessel function for fn(;); the remaining o-integral
along C, must be computed numerically. We note that the integra-
tion contour must first be deformed to avoid the Rayleigh pole
(the zero of D_(a) and D,(a)), which is situated on C,. In fact we
perform the integrations in the g-plane (cf. Eg. (50)) from the origin
along a half-circle in the fourth quadrant and then out along

0 0] —) + 03 » » 13 .
the real axis. First, Fn(r) is written in cylindrical coordinates
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as the angle dependence then only appears as trigonometric func-
tions multiplying the integrals. Thus fn(§) needs only to be
computed along a ray as a function of the radius p on the sur-
face. We have chosen to compute fn(f) in 35 points: for

Ogkpgl in steps of 0.1, for 1l<kpg3 in steps of 0.2 and for
3<kpgl0 in steps of 0.5. In between we use interpolation tech-
nigues - the irregularities shown in the level plots and for kp
close to -10 in the other plots are due to limitations in these
techniques. The last item in the numerical scheme given above
only involves matrix manipulations. The matrix inversion required
in solving Eq. (35) for <, is usually performed by a simple itera-

tion procedure 1).

In the numerical examples we have kept the depth Z of
the origin and the Poisson ratio v of the half space fixed:
kzo=l and v=0.3. We remark that kzo=l corresponds to about a
third of the Rayleigh wavelength, so that the inhomogeneity is
quite close to the surface SO..When we in two examples below
consider other depths of the obstacle this is accomplished not by

changing kzO (which requires the recalculation of dn’ R and

nn'
fn(?) as remarked above), but instead by a translation of the

transition matrixl3). Below we also show examples where the sym-

metry axis of the obstacle is not in the z-direction. As in the

1) 2)

acoustic and electromagnetic cases the transition matrices

are then obtained by first calculating it for the symmetry axis

17)
in the z-direction and then rotate it. The rotation matrices 17
are diagonal in the t-index (and in the %-index) so they are in

fact the same for the elastic case as for the acoustic and electro-

magnetic cases.
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In Fig. 3 we show the surface displacements in the x- and
z-directions along the x-axis (remember that the incoming Ray-
leigh wave travels in the positive x-direction) for a spherical
éavity of radius ka=0.3 and depth kzo=l. In Fig. 3a the absolute
values of the total fields [ux| and |uz| are shown, and as in all
other plots we show we note that the deviations from the undis-
turbed values |ux|=0.656 and |u2|=l (obtained from Egs. (A.9)

and (A.6) for v=0.3) is concentrated around kx=0 as expected,

but also in the backward direction where we get ripples with a

wavelength which is half of the Rayleigh wavelength. These
ripples are what we should expect from two waves with the same
wavelength travelling in opposite directions, and this is born
out by Figs. 3b and 3c where the absolute values and real and
imaginary parts of the scattered fields are shown. The real and
imaginary parts correspond to two fixed times, so these plots
clearly show that apart from near the origin the scattered field
on the surface is mainly an outgoing circular Rayleigh wave

which we expect to fall off as the square root of the distance from

the origin.

The same types of plots are shown in Fig. 4, this time for
a prolate spheroidal cavity with axes ka=0.6 and kb=0.2 with the
symmetry axis in the x-direction and depth kzo=l; We note that
Figs. 3 and 4 are quite similar although the sphere tends to

scatter somewhat more than the spheroid.

We next consider some elastic obstacles. We then take the
following material parameters: p'/p=1.5, u'/u=4 and v'=0.28
(where primed quantities refer to the obstacle). In Figs. 5 and

6 we give data along the x-axis for two spheres of the same
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radius ka=0.5 but with different depths: kzo=0.8 and kzo=1.2,
respectively. We note that the influence of the depth is quite
small and this is also true for variations in the form and
orientation of the obstacle which can be seen by comparing
Figs. 5 and 6 with Fig. 7, showing corresponding plots for an
oblate spheroidal elastic obstacle with axes ka=0.3 and kb=0.6

whose symmetry axis makes the angle 7/3 with the z-axis and the

azimuth angle 7/4 with the x-axis.

Finally we give some level plots showing the fields in
the circle kp<10, thus giving a good overall picture. In Fig. 8

we show |u for the shallowly buried sphere of Fig. 5 and in

I
X
Fig. 9 level plots of all three components of the scattered field
of the oblate spheroid in Fig. 7; for the y-component this is
also the total field. We note the asymmetries in the scattered
field in Fig. 9 due to the asymmetrical obstacle. We remark that
far from the origin the level plots are not so accurate, mainly

because the points where we calculate the fields are a little

sparse (the angle increment is w/8 and the radial was given above).
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VI Discussion

Elastic wave propagation in an elastic half space has been
the subject of this paper. We have explicitly taken the half
space above the ground as vacuum and furthermore we have assumed
ih the derivation of the eguations that the inhomogeneity was a
cavity. This latter property can easily be relaxed, as pointed out
above, and the proper T-matrix inserted, which is relevant to the
inhomogeneity considered. Furthermore, it is straightforward to
relax the assumption of vacuum above the interface. Analogously
to the generalization for the buried obstacle, we exchange the
reflection coefficients and Q functions to the appropriate ones,
and the rest of the formalism remains the same as long as we are
interested in the field below the ground. For a field computation
above the ground we have to employ the surface integral represen-
tation once more, but now to the upper region (for further details

see Refs. 1-2).

The numerical examples in this paper have only used one
type of incoming field - the Rayleigh wave - and furthermore
we have only focused on the field on the interface. Another case
of interest is a point source, which can be located on or below
the ground. The numerical calculation of the field below the ground
can also be of interest in some situations, and this fiela can be

computed in analogy to the surface field ﬁ_,

A layered earth, with the inhomogeneity below all the layers,
is a straightforward extension of the formalism above (formally
an exchange of the pertinent reflection coefficients of the ground) .

If we, however, consider a geometry where the inhomogeneity is lo-
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cated between any layers, we get a more intricate scattering

problem and further studies on this type of extension are re-

quired.
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Appendix: The point source and the Rayleigh wave

This appendix shows how dn (cf. Eq. (44)) for an incoming
Rayleigh wave can be obtained from a simple point source, whose
location we push to infinity with a suitable increase in strength.
This limiting procedure will also be compared with another more
direct way of finding dn for an incoming Rayleigh wave. We then
explicitly start with a Rayleigh wave as an incoming field,
despite the fact that the sources of the Rayleigh wave are a
surface distribution and should therefore not be treated in the
same way as e.g. an incoming plane wave or point source. Never-
theless, we end up with identical expressions for d . For a di-
pole source at r —(xt,O Z ), polarized in the z—dlrectlon and of
strength C we have the following expression for the dn—vector,
see Eg. (44) (we have heré chosen the integration variable as

q=qs=qp):
An‘-‘- le?;gzl:“(?k)'\' CVnidg]m(axQ/&(g‘) X
limbe,Sq, PTG + e, g ((Lomet) P LA-GTRE) -

= (R0 1-q7i .Ptm(\h—q’/k:m(q/ksdkt-i) ’

*explizg (K- )[(k Lq_)*'LNk qu (gf"k)l
+ H(tﬂ\]\["%m%m (q/kgl) explizl o) (Kv/ ks)‘h. ¥
XP d CJf/ U-lq. o ‘lkP qf —(k +Zg) k Zq_ ﬂ} (A.1)
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Here

 \bam @t+) (t-m\T.‘ 3
I‘nE Ce) €m Uri{ts) (tam)t ks

3

Ng)z 4 VkE-q \Ke-q + (K- 29)

and the integration contour should go just below the real axis

to avoid the singularities of the integrand.

We notice that the pertinent integrals can be written as:
- _ m Y, 2,2
I=ldq ] e fi B U147 /deg)

and a similar integral, where kz is replaced by kg in

P?( Jl—q /k). The function f(q) is odd in g, and all square

roots occurring in the integrand have a non-negative imaginary

part. Manipulating the Bessel functions we get 18):

1-% H(:(grxh\f(gr\ ?:(walk’;) /b(gp dq (2.2)

(Notice that P?({ 1—q2/k§) contributes with a factor (-1)" when

changing g to -g in the argument.)

The contour along the real axis will now be deformed and we
have to consider the contributions from the branch points
q=iks and q=ikp and the poles q=ikR (defined below) of the inte-
grand in some detail. The cuts in the complex g-plane are defined
by Im(kilp-q2)1/2=0. In the lossless case, which is the situation

analysed here, these cuts degenerate to a finite part along the

real axis and a semi-infinite part along the imaginary axis,
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see Fig. A.l. The Rayleigh pole q=ikR is defined by

D(%\:O (A.3)

R), which both are located
2

on the Riemann sheet considered here, i.e. Im(kslp~q2)l/2>0

This equation has two real roots (g=%k

We will consider the situation where X, +-«. The dominant

t
term of the Hankel function for large argument is 18):
o Yy (2~ Y2l W) -
H, )~ (2/72)" e arq 2€ (-7,2¥)

For large negative values of Xy we close the integration contour
in the lower half plane. The semi-circle does not give any con-
tribution to the value of the integral, and we can deform the
contour to two branch line integrals plus a Rayleigh pole contri-
bution. The branch line integrals give a contribution of the

-1/2

order o(|x ), which is comfortably seen if we rewrite the

el

branch line integrals as:

® k? . \‘s .
- v ‘ ]
e ag + fg g et Mag « 1L g e ag

For more details we refer to the monograph on asymptotic ex-

pansions by Olver 18).

Thus we have

I = =T H&:‘\(kk\xt\) {('k\l\ L~|)m P:‘(I‘J k;/kzs‘1 \ /b' (‘tkg)

-1
/2') (A.4)

¥ 0 (lxi\
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dn’ see Eag. (A.l), can thus be written down and we have

. ‘ = X
X ' D (.kk\

APALIL (ng”z' R P

d.=1Ck 1 ‘P NEAESTI

S
1. "' _ }.‘_C ( 'Vz (A.5)
*{ (Xt,\’%t,z\ Bm(-‘."%.o3 A +}"L‘3 an( h-%p, 0\ B oHxg )

Here we have introduced the symbols:

élod kg"kz;

A= - Lko/k,
T 2
. -y -1 Nko =K
B= o2 lkg-205) (E-)™ (kpk ) "
. (A.6)
ks&n«.s: k?smm‘,‘* kk 0(1,,0(56 C+_ A

The strength C is now specified as

By -1 lxlk r_— .7
_LBkR\LL‘l LR g“k /k k (A7)

and we finally get in the limit as |x[»w.

dpe (508, ) AR (Fe ) 6 BB ()] e

(The first term in Eq. (A.5) does not contribute since
vy (T4) =O(Ixtl )

By a very similar procedure we can also show that the direct-
ly scattered field, Eq. (46), becomes just the Rayleigh wave,

Eg. (A.9) below.



32.

To see the analogy with an incoming Rayleigh wave it is con-

venient to derive dn in a different way, where we introduce the

Rayleigh wave explicitly into the formalism. Consider an incoming
Rayleigh wave propagating in the positive x-direction and of
unit magnitude in the z-direction on the surface z=z . Straight-

forward calculations give:

w (?)=Aaex?(ikkx+lk;-k: z )+

+BY (k"/ks\sl" explikge+ K-k, 2) (5.9)

~

Here A and B are given by Eg. (2.6), and the unit vectors o

and y are specified by the spherical angles Ty and T (g=0) ,
respectively, see Eqg. (A.6). It is easy to see that the z-component
of the field in Eq. (A.9) has unit magnitude and it is further-
more straightforward to show that it satisfies the boundary condi-
tion ¥=0 on the surface z=2 . If we formally insert this field

in dn, see Eq. (44), the contribution from the integral va-

nishes (as the field satisfies the boundary condition there is no
wave first reflected by SO), and the remaining first term, the

spherical expansion in the vicinity of the origin, is found from

Eg. (5). We have

: ¥ t
&= il (5,43 Ao (-, 0 + 8¢, BB, (7%, 0) ] (310

This expression for dn is identical to the one found from the more
elaborate procedure above, in which the limiting process for the

position of a point source was considered.



33.

References

1. G. Kristensson and S. Strdm, "Scattering from buried
inhomogeneities — a general three-dimensional formalism",
J. Acoust. Soc. Am. 64, 917-936 (1978).

2. G. Kristensson, "Electromagnetic Scattering from Buried
Inhomogeneities - a General Three-dimensional Formalism”,
Rep. 78-42, Inst. Theoretical Physics, G&teborg (1978), to
appear in J. Appl. Phys.

3. P.C. Waterman, “New‘Formulation of Acoustic Scattering",

J. Acoust. Soc. Am, 45, 1417-1429 (1969).

4, P.C. Waterman, "Symmetry, Unitarity, and Geometry in
Electromagnetic Scattering", Phys. Rev. D3, 825-839 (1971).

5. P.C., Waterman, "Matrix theory of elastic wave scattering",
J. Acoust. Soc. Am. 60, 567-580 (1976).

6. V. Varatharajulu and Y-H. Pao, "Scattering matrix for elas-
tic waves. I. Theory", J. Acoust. Soc. Am. 60, 556-566 (1976).

7. S.K. Datta, "Diffraction of SH-Waves by an Edge Crack",

J. Appl. Mech. 46, 101-106 (1979).

8. S.K. Datta and N. El-Akily, "Diffraction of elastic waves
by cylindrical cavity in a half-space", J. Acoust. Soc.
Am. 64, 1692-1699 (1978).

9. F. HO6llinger and F. Ziegler, "Scattering of pulsed Rayleigh
surface waves by a cylindrical cavity", Wave Motion 1,
225-238 (1979).

10. W.M. Ewing, W.S. Jardetzky and F. Press, "Elastic Waves in
Layered Media", (McGraw-Hill, New York 1957).
11. J. Miklowitz, "The theory of elastic waves and waveguides",

(North-Holland, Amsterdam 1978).



12,

13.

14,

15,

le6.

17.

18.

34.

G. Kristensson, "Electromagnetic scattering from a buried
three-dimensional inhomogeneity in a lossy ground", Rep.

79-29, Inst. Theoretical Physics, G&teborg (1979).

A. Bostrdm, "Multiple-scattering of elastic waves by
bounded obstacles", Rep. 79-4, Inst. Theoretical Physics,
Goteborg (1979), to appear in J. Acoust. Soc. Am.

A. Bostrdm, "Scattering by a smooth elastic obstacle",
Rep, 79-14, Inst. Theoretical Physics, GOteborg (1979).
M. Danos and L.C. Maximon, "Multipole Matrix Elements of the
Translation Operator", J.Math. Phys. 6, 766-778 (1965).
A.J. Devaney and E. Wolf, "Multipole expansions and plane
wave representations of the electromagnetic field",

J. Math. Phys. 15, 234-244 (1974).

A.R. Edmonds, "Angular Momentum in Quantum Mechanics",
(Princeton Univ. Press, Princeton 1957).

F.W.J. Olver, "Asymptotics and special functions",

(Academic Press, New York 1974).



35.

.Figure captions
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The integration contours C, and C_.

Geometry for a buried obstacle.

Displacements for a spherical cavity with ka=0.3 and
kzo=l.

Displacements for a spheroidal cavity with ka=0.6,
kb=0.2, kzo=l and the symmetry axis along the x-axis.
Displacements for an elastic sphere with ka=0.5 and

kz =0.8.

Displacements for an elastic sphere with ka=0.5 and
kzo=l.2.

Displacements for an oblate elastic spheroid with ka=0.3,
kb=0.6 and the symmetry axis making the angle 7/3 with
the z-axis and the azimuth angle n/4 with the X—-axis.
Level plots of |u | for the same obstacle as in Fig. 5.

The scale factor is 10—2.

scC.

Level plots of a) lug

[, b) lu;C‘], c) lu:c'] for the

same obstacle as in Fig. 7. The scale factor is 10—2.

Cuts, poles and integration contour for Eg. (aA.2).
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Abstract

In this paper we will prove the uniqueness of a solution
to the Helmholtz equation for two halfspaces of different media
in n dimensions. The theorem allows a finite number of bounded
inhomogeneities in each halfspace. The surface separating the
halfspaces is assumed to be a cone of arbitrary cross section
far away from the origin and is furthermore assumed to be
smooth. We assume all space to be lossless and in each half-
space we assume a radiation condition to be fulfilled. The
boundary conditions at .the interface are a general coupling
in the field and its normal derivative with constant coeffi-

cients.



I Introduction

The first uniqueness theorem for the Helmholtz equation
for the exterior problem was shown by A Sommer feld [l]. In the

exterior problem the field outside a bounded surface S satisfies

[ *b-0 1.1

k is here a real or complex constant and at the surface S cer-
tain boundary conditions are assumed to be satisfied. To obtain
a welldefined problem he introduced a radiation condition foxr

large distances from the obstacle - a boundary value at infini-
ty. The solutions of Eq. (1.1) separate in two classes, satis-

fying either

bq) R -
or -bkq’=0(r') C->w

orx

M- ol e

The first class holds for the outgoing spherical waves (if we
take the conventional time dependence to be e—iwt) while the
second is satisfied by the ingoing spherical waves. From po-
tential theory this property was unfamiliar, and in his paper
Sommerfeld clarifies the differences between the static and

the wave solution. He adopts the outgoing spherical wave, and

the radiation condition thus reads

%# ‘1k}P=-O(FA) uniformly in all angles as Y=« (1.2)



An additional condition for large distances was also intro-

duced:

$-0)  roe 1.3)

This is the "condition of finiteness" which was later proven
to be superfluous by W. Magnus [2]. In a number of papers

[_3] - [7)] the results have been sharpened and also generalized
to an arbitrary number of dimensions. Some of the papers use
a slightly weakened form of Sommérfeld's radiation condition,

first found in Rellich [3]:

%
.“ %%‘L\(Lp‘ ds = o) > 0 (1.4)
()

Here I(r) is a large sphere of radius r.

If the bounding surface S is infinite, we then have a more
limited number of results. The pioneer paper is (3], which estab-
lishes uniqueness for the solution for Helmholtz' equation in
R"” when the infinite surface S intersects the plane xn=constant

for each X and furthermore

A A 1.5
VX, <0 on S (1-3)

where G is the outward-directed normal to S. The radiation con-

dition to be satisfied at infinity is a modified type of Eqg.

(1.4) -~ 1 is now a plane x =constant and the radial derivative

is replaced by %% . The importance of Eq. (1.5) is also discus-
n

sed and an example proving the non-uniqueness of a solution for

Helmholtz' equation for a geometry violating Eq. (1.5) is given.



Further results are given in [83.

Additional results for boundary value problems, where the
surface S is infinite is given in [é} - [121. D.S. Jones [9]
gives a uniqueness theorem for surfaces which for large distan-
ces are cones of arbitrary cross sections, and these results
are extended by F.M. Odeh [lil who shows uniqueness if %%50
on the surface for large r. By analytic arguments W.L. Miranker
DJJ shows uniqueness results for domains in which a cone with
an angle greater than n/2 can be inscribed, but.certain restric-
tions on the normal derivative which have to be introduced make
the result less general. A two dimensional formulation is found
in [ld}, where the infinite boundary is a straight line for
large r. A number of Russian authors [133 - [16] have also stu-
died various aspects of the problem, mostly extensions to diffe-
rential equations of more general elliptic type and in the 1li-
miting case where the losses vanish. Some results for boundary
value problems with infinite boundary for a general type of
elliptic differential equation have recently been published by
V. Vogelsang [lf] - [;81. These theorems are essentially exten-

sions of the results of Rellich,

The geometry in all these theorems proving uniqueness for
Helmholtz' equation with an infinite boundary is such that the
surface gets wider for increasing r. This is achieved by assum-
ing conical shapes or by assuming that Egq. (1.5) is satisfied.
This guarantees that the energy radiates to infinity as required

by the radiation condition, e.g. Eq. (1.4).

The results for Helmholtz' equation in infinite domains are,

as may be seen from the brief review above, both diverse and



comprehensive. Uniqueness is established for many situations

of interest in applications for both finite or infinite bounding
surfaces as well as for real or complex wave numbers. Now fo-
cusing on geometries with penetrable media we find that the
results here are very scarce. Werner E}93 has analysed the
unigueness of the solution for Helmholtz' equation in the case
where we have penetrable obstacles of finite extensions. A very
specialized situation where the surface is infinite is found

in [}2}. Odeh here analyses two halfspaces separated by a flat
interface. The boundary conditions on the interface are very

restricted, but the result holds for real wave numbers.

The aim of this paper is to derive a uniqueness theorem
for a more general geometry in the lossless case, and for a
general type of boundary conditions. In section II we will give
the principal definitions and symbols used in this paper. The
lemmas and the uniqueness theorem are proven in section III,
while conclusions and a discussion of applications are found

in section IV.



II Principle definitions and notations

In this section we will define the notations found in
this paper and state the problem more precisely.

Consider two infinite halfspaces Vl and V2 in

radial distance is defined in the usual way as r2=

»

: J
j=1
separated by an infinite surface S as depicted in the figure.

We will assume the interface S to be sufficiently smooth, so
that an application of Green's theorem at every finite part

of Vl and V2 is valid. Sufficient conditions for this to hold

are found e.g. in [Zd] - [22]. The volumes V, and V, are assumed
to be homogeneous and isotropic with wave numberskl and k2 res-

pectively, except for a finite number of inhomogeneities Vi and

Vé (if several inhomogeneities are present, let Vi and Vé be a

notation for the sum of obstacles in each volume respectively,

even though the boundary conditions and wave numbers may differ).
For simplicity we take Vi and Vé
(wave numbers ki and ki) and bounded by Sy and 82 respectively.

homogeneous and isotropic

Let O be an arbitrarily chosen origin (this will be specified
later), and let Vl(R) and V2(R) denote the interior of a hyper-
sphere, centred at the origin of radius R, in Vl and V2, res-
pectively. The portion of the hypersphere in V; is denoted
Zl(R) and ZZ(R) is defined similarly. The intersection of the
hypersphere and S is called C(R) and the part of S enclosed

by the hypersphere is denoted S(R). The normal ; of § is di-
rected into Vi while the normals § for Sl and S, are conventio-

nally taken as directed outwards.

We will assume all space to be sourcefree, since in proving



the uniqueness theorem we study the difference between two

solutions having the same sources. Thus, when we consider

the difference, the source term disappears, and we will in

this paper study fields satisfying the following conditions.

1.
(¥* )P -0
‘2. ! -
(Vz+k:\)‘¥i(r)=0
2. 2
k >0 k >0
3. Boundary conditions
2¥, 2,
quv A bV
B\q)\:' qu’z

¢’
RS

!

} )

Aj Ay By, By
r SRiB- AT
C.S E /\j E’.\

zev; , Yel'(V))

Fev, welv))

3= h2

=42

on S

are complex constants subject to

j=1,2, where Cj are nonnegative real

numbers



4. The surface S is conical outside a given radius, i.e.

3RO such that for ;|:>,Ro we have

a) ;-£=0 on S (This specifies our origin O)

b) a finite number of inhomogeneities and Vj(Roy:Vﬁ, i=1,2

5. Radiation conditions

015 - gy -

l‘si ‘lk:\q’“ dS= o) R2e0 j=1,2

&R

Here and below Z will denote the complex conjugate of the complex

number Z.

The second condition states that all media are lossless.
The lossy case will not be analysed here, but it can be expected
to be easier due to damping. The third condition gives the con-
ditions at the boundaries, and in this paper we will assume both
the field and its normal derivative to be discontinuous. The
coupling constants A and B can be complex or real such that the
constants C=AB are nonnegative real numbers. The theory allows
any A or B to be zero, and in this special case the fheory
is the problem treated by Jones [9]. The fourth condition
requires the shape of S to be conical for large r, and also
limits the number of inhomogeneities in 41 and V., to be finite.

2

The choice of origin is now also fixed due to the condition

£-G=O for large r. The radiation condition which will be adopted

here is the radiation condition discussed by e.g. Rellich Eﬂ



and Jones [91. See also Wilcox [?j] for additional comments on
the choice of radiation condition. Notice that the fifth item
is non-linear. However, the Minkowski's inequality proves that
the sum or difference of two fields satisfying condition five

still satisfies the radiation condition.

It is convenient to work with field quantities where a
~specific radial dependence has been extracted, so as to make
the remaining radial dependence of the fields easier to study.

We will therefore adopt the following notation.

Cb (r)-&? rnT q) (%)

(2.1)

n
The V, operator is defined on the unit sphere {YeR :|f[=l} and

1
is independent of the radial coordinate r. A direct computation

of the gradient in spherical coordinates

A.= T cos %n_,

Kae1= © s'\n%“_\cos%n_,_ 0< %n_, &

: 0¢ Yoy, ..., ¥, £ 2T
X.= s, SinVap ..o SinY,

shows this but it is also a general result from differential

geometry, (for more details see e.dqg. [24}). If the Laplace-
. 2 .
Beltrami operator on the unit sphere in R" is denoted Vi and is

denoted V2 in R" itself, we have the following relation (see [25]

(2.2)
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Helmholtz' equation can be rewritten in terms of the

field<¥jwith vi and radial derivatives as

" 2
q:i»f%z.q:‘cb:\ + (kj—pntr\\ cl>3=0 (2.3)

where

_ (n-){n-3) (2.4)
Fn(r)‘ e

We notice that the quantity pn(r) which depends on the dimension

n is nonnegative, except for n=2. We also define the solid angle

Q for a part of a hypersphere I in rR? as the projection on

the unit sphere

Os= Z/r"" (2.5)

(r here is used both as a notation for the surface and for its
measure) . This solid angle @ for Zj(R) is a constant for r;RO,

with RO chosen as in condition 4.

Green's theorem for two fields u and v defined on the

hypersphere will be used extensively, see e.g. [24]

-‘l:z‘ $S[VV:‘\L+V“\LV‘Vlds=““:$v$cv‘ud{ (2.6)
C

Z

Here I is a part of the hypersphere of radius r and C is its
periphery defined in n-2 dimensions, and Vo is the outward normal

to the periphery C (see figure).

In the following section we will prove the uniqueness of

the fields wj and wﬁ j=1,2, satisfying the conditions 1-5 defined
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above, i.e. we will show that the only possible solution to
conditions 1-5 is the trivial solution wjgwﬁgo j=1,2. The main
building blocks in this theorem will be four lemmas which will
be proven first. The first three will make no use of the radia-
tion condition 5, i.e. they give some general features of fields
satisfying conditions 1-4 for large radial distances. These
"lemmas are extensions to and modifications for the present si-
tuation of lemmas given by Kato [26]. However, in this paper we
will not rely on any symmetry properties on V2 as in [?6], but
will make use of Green's theorem on the hypersphere. The last
lemma, which includes the radiation condition 5, will serve

as a contradiction to the former, leaving just the trivial zero-

solution as the only remaining solution.

Some quantities will appear often, so for convenience we
define, for r)RO, the following functions depending on the radi-

al distance r.

ELr\s';'t‘.\ jg[l‘l’il&*kz‘ﬂlz]clsz. (2.7)

2,
A 2 o
Gl s E -1y, ” ‘V\ﬂ\ dsu (2.8)
3:1 .SL:‘

Here Qj is the solid angle for zj(r), which, as pointed out

earlier, is a constant for r}RO.
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III Uniqueness theorem for permeable media

We will in this section prove the uniqueness theorem for
a configuration as depicted in the figure and with the assump-

tions and definitions stated in section II.

Lemma l: Consider two fields ¢j satisfying condition 1-4 in the

preceding section. We then have for r;RO:

G(r)-% ;2 f \V<\> ‘de o+ anerJM\ do (3.1)

-Q. ltl Jl

Proof: Take the derivative of Eq. (2.7) for r)RO. Then we

get, since Qj is constant for r>,Ro

r-;m-z,aemu & + ki $lda

3= .SLJ

We insert Eq. (2.3) and get

Eltr)= ZReZ H[P,, '}:z.Vfcb&]I;dSz.

J"\ S}-j

We apply Green's theorem Eg. (2.6) and have

! % 1 !
E=2ReZ [pad:dl +hvd: v 4 ) de
The contribution from C will disappear

(3.2)

%iﬂ AR A!—J[eb' -1 2] dl
e
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since for r>,RO we have vy r=0 and

+ 3 VCb =39 V4> -—éj

av

By use of the boundary conditions on S (see condition

3 in section II) and the definition in Eqg. (2.1) we
a9

can show the continuity of $3 =3 across S -
S - = _nelgne g é:l; h"l"_
Srabc Z(PR O N (rE ) AR (R

PV IR (3.3)

since v-.r=0 for rzRO and wj can be differentiated

>

along r on S. The contribution from Eq. (3.2) is thus

zero and we have

Eos 2 pa 2 SS PRARERES D1} 5 L 1vgl "da ]
& A J

since vy is independent of r.

From Eq. (2.8) we get with the expression of E' (r)

G'Lr)- Zz: &lvﬂb\dmvnmdrz ﬁ\c\sldn
s 4

and the lemma is proven.

The quantlty F(m r), Wthh will be used in the following

lemma, is defined as

Flm= Zﬁ[leb\ (kz-%+"‘~('r—:z*—ﬂ)\¢?lz-'\'-‘z.lV,¢?lz}ds)_ (3.4)

‘\1\ _Q.
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m___m : .
4ﬁ==r 4% j=1,2, m is an arbitrary positive integer

p-]
T =sr by j=1,2

o= R m\nka Re o
1= =12

Lemma 2: Let conditions 1-4 in section II be fulfilled. Then

there are positive integers m_, m; and a number ¥R

such that

a) dr(r F(n\(ﬂ for all mymy and all r2R,

b) F(mo‘r) >0 for all ryry unless ¢jso j=1,2

Proof: For rzR we have

£(¢ thr\\l erezﬁ[cb o (iG-S » mmedgngn

stl Sll r* 3 A

__L t’n % o m% L%
o O 04T e L (k- B 1471+ 147 ] da
It is straightforward to prove, using Eq. (2.3), that

¢? satisfies the following differential equation

1 '
1 2 2 m(mﬂ)
§7 HTH4T- B2 4D ¢ BV (- p) 4 -
We thus get after some algebra

S (A () = 2r Re'é [ (145 ) + (4~ 2 i
i |

i m L(gim ™ tho®m :
+ c‘:"\ 4’_\ (rpa-a) -7 (Vﬁb:‘ ’Vttbj * 4’1 VAD‘\)]ASL (3.5)
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The last term in the integrand disappears by use of
Green's theorem Eq. (2.6) and the continuity of

! 8¢

¢J 3;], since on C we have

50 38 (e F e PEN IR < (e )

Furthermore, from H®lder's inequality for integrals on

thehypersphere‘we have the following estimate

Rgzwn a) SH> $dsy - (r\Pn\+a)zIS\¢ W& da >

\\“-W-J
¥ ~(rlpalsa) B \ﬂw\ da | I \4:5\39_
|
Thus we can write Eq. (3.5) as

&= (FFlm) - Z-TZHU'#“HZ"NQ*(\(& S)4TI
. Rehrpn ¢ ¢rt] da s
zrz{ﬂm Famet) + 04~ 52) 1471 ] d

AR

‘o ‘ m )

~Cripalsa) {f1artdn (L lentds |
S;i SLJ

The right hand side is a quadratic form which is

greater than zero if

2z \ &
@ma)(Ki~2%) 27 (ripal+a) = JL"(‘--—————“ SIS R %) 56

. 2__8.__2 _&22
Since kj 5 = kj 5r K >0 for r7/RO and the

right hand side of Eg. (3.6) is independent of m and
bounded for large r we can find my such that Eg. (3.6)

is fulfilled for all m),ml and r}Ro, i.e.
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d
E'F(TLF("\.F“ »0 for all mym; and all ryR_

and the first part of the lemma is proven.

If ¢j¥0 then there exists an r bRO such that

1

ZL, SS \C\>led-9-> 0] for r=r
sy !

(If this is false for every ri}Ro then ¢j=0 for all
r¥R, and by the properties of solutions to Helmholtz'

eguation . is zero everywhere.) We can write F(m,r)
d j

Egq. (3.4) as

Flmr= rzmi Hhﬂr‘h**’; \L-\- (kz-%: * m—t:.“:—'))lé‘-‘\z- . lv‘tbj\z]c\_g (3.7)
Moy

For an ry chosen as above let mdpml, where m, is given

by the first part of this lemma, such that F(mo,rl)>0.

But according to the first part of this lemma we then

have

F(mo)r) v 0

for all r:r zRO

1

. 2 . . . . .
since r F(mo,r) is a nondecreasing function in r, i.e.
F(mo,r) can not change sign. The proof of lemma 2 is

thus completed.

The next lemma, in which we will use the previous one,

reads:



Lemma 3: Let conditions 1-4 be fulfilled and furthermore

SS lﬂ\> 'da - 0U) r-ro
r‘sv-l |
If ¢j¢0 then there exists an infinite sequence
{r }:=l such that ru+W, u>w and G(rp)>0.

Proof: Define a set T such that

T={ryr,: f‘—;f SS.H::‘\ZSQ. <o}
]

M a

T is an infinite set and furthermore contains arbitra-
rily big elements. This is a consequence of the assump-

tion

{‘-‘ ”\4, 'da = oW C >
sy

For an r ¢ T we have

——

. &b dsz:“zjad—zﬁ\cbldn

‘Sl l‘ As\SL

[

Thus we have for r €T
!

H\<t>+ 4>\c\g.<z kil rz\cb de

“‘-l _Q_.\ J’l\ S?.

We can now estimate F(m,r ) (for definitions see Eqg.
u

(3.4) or (3.7))

let

Flmre) < 3 | X.[lcbil"».(kz‘—%ﬂ - Z“"")l<t>\~ FlV,#j\]dSL
4

l:\

17.
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Let m=m , where m is chosen according to lemma 2 b)

For all rueT such that ru>,rl>,Ro (rl given by lemma 2 b)) we

have
o _ mal2mast)

0<Flmys ¢ & [t - £ 4 (5 PR
Let r,3ry such that %2 = %‘; KZ)EQ}%M. Then

2
for all rueT such that r 3 r, we have

u

0< Flmg,mu) 4T Gl > Glru) >0

and the lemma is proven.

The last lemma makes explicit use of the radiation
condition (condition 5 in section II) and furthermore

contradicts lemma 3 as will be seen in the theorem below.

Lemma 4: Let conditions 1-5 be fulfilled. Then

{f N’ldS = ol1)

Z. (R) Row i=1,2

i1 Z’—“J“\ dg =o0)

The radiation condition 5 can explicitly be written as

& > »¥:
(13- Pl s - LIRS gm0 ds
Z.\(.k) Z&(R)
Multiply both sides by C;/k; and sum over j=1,2. We
get

2% ¢ 2 2 4’
o= S F LR l+l]A5+zZImUSc4" ds)

R RN (3.8)
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We now apply Green's first formula in R"® (this is ana-
logous to Eg. (2.6) which holds on the hypersphere)
on the field da and its complex conjugate in Vj and

Vﬁ j=1,2. We get for j=1,2

ff 2% xas=-£$«»-§ias+ss\\»§-‘hds «Jffliots- klMAV

ZiR) S(R) 5 Vi(R)
EH) *ds SSJ[\W'Z k M)\}A\/
S0 Y

The plus sign holds for j=1 and the minus for j=2. This

is a consequence of the direction of the surface normal

A

v on S.

We have so far not specified the smoothness properties
assumed for the surface S, Sl and 82. These properties
are here assumed to guarantee the finiteness of the sur-
face integrals over S, Sl and 82 above. This property

was not used in the preceding lemmas.

The last term in Eq. (3.8) can be rewritten as

o8, .
I.rn Z. v“ds = 1lm N d
[JJZ (?3 )-1 [z Séjcl iMids]

C e - b 2% s -0
S(R)

since C. wjagj is continuous over S, S, and 52 by the

boundary conditions 3. Thus we have from Eq. (3.8)
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é%ﬁ[‘bwz k \“\’\]clS—o(\ R o
I *Zim

Since each term is positive the statement of the

lemma is proven.

We have now collected results enough to prove the main

theorem of this paper.

Theorem: Let wj and ¢3 j=1,2 be fields satisfying conditions
1-5, defined and discussed in section II. The only

possible solution to this problem is the solution which

is zero everywhere.

Proof: Lemma 1 gives for rRj

G'(r\= = Z!Ilvd: Fds + 2P, (r) ReZ ﬁc{wb ds

J"SZJ

Furthermore we have (¥= rn||n kJ\
&.

0<% I 1gewgds - 2 U igfadigyl *2Redidi I

\‘:1 _Q A’\ Sl.‘

and we can write (if n#2 use the plus sign, if, n=2 the minus sign)

Gty ~lel[l+\+n\¢\]dn+ r,_,z Hiveldsay

Y <]

y- Mz_\ SS[\<l>l+k 14 *1da + r«.,zjﬂlv+\a_w_-
"“-Q-A

= ~_|Ei‘_‘l’_\(;u)+‘z', .(S(rs" 3“?%(\)W14>3\<JSL>/

RN
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ol
- LEﬁ&__ G(r) for all ryr 3R,
where r3 satisfies
LPa () = Inal ln-al
rs v TR Yl &

Thus we have the following differential inequality

)
G () + NG %0 (3.9)
where f(r)= lpn(rﬁ/% =bn/r2. The solution to Eq. (3.9)
is

.

Gr) 2 G(r,) exp{-.( fd’.)c“‘.l = G() exp[ bn(JF "'\L'éﬂ -for v,
% ~ |

Lemma 4 gives

ﬂ H:\ da =0y R

331 .Q.j

Lemma 3 now states that there exists an arbitrarily
large r, such that G(ro)>0 provided ¢j#0 and we thus

have 1lim G(r)>0 unless ¢j50. On the other hand we have
Y5>

lim G(r) € lim Ewry= Lim Z .U [\CF\ k l<\>\ } da

o r3 ,\,“Jﬂ.n“

Furthermore lemma 4 gives

Z.U\cb\dn. 2c Sfl““\%—q’-\ dS=ot) R~
3= s Zm

This last step can be shown by H6lder's inequality.

We thus have

lim Ga(n <0

e
This contradicts 1lim G(r)>0 and we have ¢j50 everywhere.
o
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IV Conclusions and applications

We have in this paper shown the uniqueness of the solu-
tion for Helmholtz' equation in the lossless case for a special
class of infinite surfaces, namely those which eventually be-
come conical. As a special case, if Aj or Bj equals zero, we

have the result of Jones ﬁﬂ.

The proof of the theorem in several places relies on the
fact that £-3=0 for IR, - This property makes it possible to
differentiate one of the boundary conditions in the radial di-
rection. A uniqueness theorem, valid for a more general geometry
thus must in some parts use different techniques and arguments.
In ref. [12] it is stated that the case with losses (complex
kj) can be proven by simple boundedness conditions but this is
not carried out in detail. The theorem proven in this paper can
not be extended to complex values as it stands, but we expect
that only slight modifications will be required in order to make
this extension possible. The boundary conditions assumed in this
paper are fairly general, but an interesting extension would be
to investigate how more general conditions would affect the
uniqueness. At present this is an unsolved problem. The volumes
Vi and Vé were assumed homogenous and lossless, but these assump-

tions can easily be relaxed.

The uniqueness theorem for Helmholtz equation together with
the derived growth properties at large distances is of great
interest in many situations. One application, which recently
has appeared, is the question of completeness of various sys-

tems of functions on a given surface, finite or not, see e.q.
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[gi] - ‘}d}. This question is of special interest for eigen-
functions to Helmholtz equation for surfaces which are not
coordinate surfaces to the eigenfunctions. The technique used
by Millar [29] relies on the uniqueness results (in the use
of eitherDirichlet.or Neumann boundary value problems) for

the corresponding geometry, in the interior and the exterior

case,
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