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Abstract—Wireless-based positioning with large antenna ar-
rays is a promising enabler of the high accuracy positioning
services envisioned for 6G. These systems provide high spatial
resolution due to the large number of antennas, while enjoying
the benefit of sharing a common infrastructure between com-
munication and positioning. Among the available techniques for
wireless-based positioning, channel state information (CSI)-based
fingerprinting via neural networks (NNs) offers high accuracy
under challenging propagation conditions, without the need of
storing and accessing large amounts of measurement data during
inference. On the other hand, large antenna systems, such as
Large Intelligent Surfaces (LIS), benefits from a distributed
architecture and local processing of wireless signals received
from nearby antennas, producing intermediate results that can be
aggregated, and therefore considerably reducing the demand on
interconnection bandwidth. In this work, we propose a method
to perform positioning of users based on estimated CSI in a
LIS built from panels. Following this method, panels provide
a parameterized probability density function for the location of
each user, which can be shared conveniently and fused in different
panels or a central processing unit (CPU), providing high
positioning accuracy using very low interconnection bandwidth.

I. INTRODUCTION

6G is envisioned to enable services based on high position-

ing accuracy in indoor and outdoor venues [1]. It is well known

that large antenna arrays with very high spatial resolution are

expected to be part of 6G radio-access systems. In addition

to enabling the promised high communication data-rates, they

can also provide high positioning accuracy. This facilitates a

common infrastructure for communications and positioning,

which is quite beneficial from cost and maintenance points

of view. Large Intelligent Surfaces (LIS) is a technology

providing these two capabilities [2], [3].

However, such large antenna systems, despite their benefits,

present formidable implementation challenges, where compu-

tational and interconnection resources face critical bottlenecks

that need to be overcome in order to realize these systems.

In order to alleviate these limitations, a panelized LIS with

tree topology has already been proposed for communication

purposes [4], where panels contain processing capabilities

to perform local baseband processing, with very little or

limited cooperation among them. Individual panel results are

aggregated before reaching the central processing unit (CPU),

reducing considerably the interconnection bandwidth com-

pared to a centralized LIS architecture, where raw baseband

samples are shared with the CPU during the uplink detection

phase, with the additional high computational burden.

In order to ensure LIS is able to support positioning appli-

cations (apart from communication ones), we explore efficient

algorithms that can be mapped onto the tree-based panelized

topology with distributed processing proposed in [4] without

much hardware overhead. Following this idea, in this work

we propose a method to perform positioning of users that suits

such architecture. In this method, each panel estimates channel

state information (CSI) (functionality available already in

communication), which is further processed by a local neural

network (NN) in order to map CSI to positioning information.

Neural networks have recently been applied to wireless

positioning [5]–[15], mainly in the Massive MIMO arena, but

also for indoor applications, for example based on WiFi. Most

previous work is based on centralized processing providing

point estimates of the user location. Recently, [15] proposed a

distributed scheme for indoor positioning with probabilistic

description and support for fusion of position information

from several access points. Models based on probabilistic

descriptions are far superior to the ones based on point

estimates for one fundamental reason: probabilistic results

contain a measure of the uncertainty in the estimate (an

estimate with very high uncertainty does not provide much

information), which is of great importance as it allows the

model to express its uncertainty in the result based on the

observations; in addition, uncertainty is the base for fusion

of different estimates, which allows them to be properly

weighted. Following this reasoning, in our proposed method

panels provide a parameterized probability density function for

the location of a certain user, which can be conveniently shared

and fused in different panels, tree processing nodes, or in the

CPU, providing high accuracy using much lower interconnec-

tion bandwidth than the centralized architecture, where panels

would share their estimated CSI with the CPU, and one NN

would process all incoming CSI to deliver a position estimate.

As we will see in Section V, this decentralized approach can

achieve few hundred times reduction in the interconnection

data-rate.



II. SYSTEM MODEL

The system under consideration is graphically represented in

Fig. 1. We consider a single-antenna user u 1 whose position,

denoted by pu = (xu, yu, zu) ∈ R
3, is to be estimated. The

user is transmitting a signal which is received by multiple pan-

els forming a LIS. Each panel contains Mp antenna elements,

together with radio-frequency, analog and baseband (BB)

processing capabilities in order to perform down conversion

of the received signal and obtain CSI. Once CSI is available

locally at a panel, a machine learning algorithm based on

neural networks produces a probabilistic description of the

user position, denoted by pi(p
u) for panel i. In other words,

pi(p
u) is the probability density of the user being in position

pu. Multiple probability functions, from different panels, can

be fused into a single probability density function, which can

be used for further fusion down the pipeline with other panels

or sensors, or to obtain a point estimate of the user location.

A. Signal Model

We consider a LIS containing a total of M active antenna

elements, and divided into P square-shaped panels, each with

Mp elements, such that Mp · P = M . We assume an OFDM-

based transmission system, centered at carrier frequency fc,

with a bandwidth BW across which Nsc equally spaced

subcarriers contain pilots for channel estimation.

The M×1 received vector at the LIS for a certain subcarrier

is given by

y = hx+ n, (1)

where x is the transmitted pilot signal for which we, without

loss of generality, assume x = 1, h is the channel response

vector, and n ∼ CN (0, σ2

nI) is an M × 1 i.i.d. noise vector.

We model the line-of-sight (LoS) channel between the user

at location pu and a LIS antenna element at location p by the

complex value [3]

h(p,pu) =
1

du

√
cosφ(p,pu) exp

(
−j

2πdu
λ

)
, (2)

where φ(p,pu) is the relative orientation angle between

the user antenna and the LIS antenna element at p. When

φ(p,pu) = 0 the LIS antenna is facing perpendicularly to

the incoming wavefront. du = ‖p − pu‖ is the distance

between the user and the antenna. λ is the wavelength at

the corresponding subcarrier frequency. For our analysis we

will consider more realistic channel models, concretely based

on multipath propagation caused from specular reflection in

walls, where a certain reflection coefficient is assumed, being

denoted as α, and 0 ≤ α ≤ 1. The channel in this case is

modeled as linear combination of individual components with

respective reflection coefficients, this is
∑

αihi, where αi and

hi are the reflection coefficient and channel associated to the

i-th multipath component respectively.

1Extension to multiple users is straightforward under the assumption that
the channel responses are independently measured.
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Fig. 1: System model with a single-antenna user transmit-

ting. Two distant panels provide an individual probabilistic

description of the user’s location, which is fused into a single

probability function.

B. User position density model

In this work panels output the inferred probability distribu-

tion of the user position, which we model as a multivariate

Gaussian distribution, this is pi(p
u) = N (µi,Σi) for the i-

th panel, where µi ∈ R
3 is the mean, and Σi ∈ R

3×3 the

covariance. The reason to select the distribution as Gaussian

is twofold: the distribution is represented exclusively by the

tuple {µi,Σi}, requiring only a reduced number of values

to be shared with the fusion module, and the fusion process

becomes relatively simple, as further described in Section IV.

III. POSITIONING VIA NEURAL NETWORKS

As presented in the Introduction, NN have recently been

used for user positioning in wireless systems. It provides a

low complexity approach for inference, as an alternative to

CSI-based fingerprinting stored in a data-base.

A. Feature extraction

In our analysis we model the CSI estimate as CN (h, σ2

nI),
and it is used during training and inference 2. These user-

specific complex-valued CSI obtained at pilot subcarriers are

separated into real and imaginary parts and stacked together

in a feature vector ĥ.

B. Neural Network with probability

The NN architecture is illustrated in Fig. 2. After the

channel is estimated and the feature vector (ĥ) formed, four

dense layers are used (three with ReLU activation functions

and one with linear outputs). The output of the last dense

layer is the probability distribution parameters {µ,Σ}. These

parameters completely represent the distribution, and can be

used during inference for point estimate (i.e. selecting the

mean µ) and for fusion (see Section IV).

The last layer (dashed line in the figure) is the probabilistic

layer and provides the probability density function using the

2We remark that we consider a noisy channel estimate in our analysis during
training and inference.
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ĥ

P
ro

b
.

L
ay

er

200 100 20 5

{µ,Σ}
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Fig. 2: Processing pipeline for positioning inference in a panel, including channel estimation block and neural network.

Acronyms: CE = channel estimation, DP = dropout, BN = batch normalization. Probabilistic layer is only used during training

(dashed line). Numerical values represent dimensionality (real numbers) of the data exchanged assuming Mp = 64 and Nsc = 8.

2D positioning assumed.

input parameters. This is only used during training, and is

described in more detail in next subsection.

The numerical values depicted in Fig. 2 correspond to the

case of users positioned on a plane (used in our analysis

in Section V), therefore a 2D multivariate distribution is

generated. In this particular case, the mean µ as a 2×1 vector,

and the covariance Σ as a 2×2 matrix which, due to symmetry,

only has three quantifying values.

C. Training Neural Networks with probability layers

The goal of training is to learn the NN parameters, here

named θ, comprising weights and biases. In this section, and

for clarity, we note that the NN outputs are a function of

the input channel estimate ĥ and θ, this is µ ≡ µ(ĥ, θ), and

Σ ≡ Σ(ĥ, θ). As commented before, the probabilistic layer

is only used during training. Its mission is to provide the

corresponding probability density functions, which is required

for computing the loss function.

The loss function used in this work is the Negative Log-

Likelihood function, defined as

NLL(θ) = −
∑

n

log{p(pu
n|ĥn; θ)}, (3)

where p(pu|ĥn; θ) = N (µ(ĥn, θ),Σ(ĥn, θ)), and {ĥn,p
u
n}

is the training set made with different locations covering the

area of service. For simplicity, we assume no error in the

estimate of these locations. For a certain training location pu
n,

the channel estimate is obtained ĥn, and the corresponding NN

output for the current θ is calculated: {µ(ĥn, θ),Σ(ĥn, θ)}.

Given these input parameters, the probabilistic layer provides

the full probability density, which is used to compute the

likelihood, by evaluating the probability density at training

location pu
n, as p(pu

n|ĥn; θ), as shown in (3). High values

of likelihood (or equivalently lower values of NLL) indicate a

good fit between the parameterized distribution and the ground

truth location. The sum covers usually a subset of the training

set (minibatch), and gives a cost value. This cost function is

minimized using the Adam optimizer [16], whose outcome

is the maximum likelihood (ML) solution (which minimizes

the NLL), this is θML = argminθ NLL(θ), which is used for

inference.

Additionally during training, and to take the effect of noise

distribution into account, we take Nrep samples per training

location in the training set. This means that for each location

we sample the random variable ĥ multiple times. This also

imply to augment the size of the training set (even though the

number of physical locations remains the same).

IV. PROBABILITY FUSION

The goal of probability fusion is to consolidate a finite

number of probability distributions into a single one. In our

case, we are interested in the fusion of probability densities

provided by the panels as shown in Fig 1. Given that the

individual density functions are Gaussian, Gaussian confla-

tion represents a convenient fusion method, as it ensures

the resulting distribution is also Gaussian, and leads to the

classical weighted least squares method, providing the best

unbiased and maximum likelihood estimators [17]. Following

this method, the fused distribution is proportional to the

product of the individual ones.

As mentioned before, the Gaussian conflation of P individ-

ual Gaussian distributions is also Gaussian, with covariance

and mean represented respectively as

Σf =

(
P∑

i=1

Σ−1

i

)−1

, (4)

and

µf = Σf

(
P∑

i=1

Σ−1

i µi

)
. (5)

V. SIMULATION RESULTS AND ANALYSIS

The scenario considered for our analysis is a volume of

size (width×depth×height) = (10m × 10m × 0.4m). The

volume has four solid reflecting walls covering the sides (we

do not consider reflection in floor and roof). Four panels of

size (0.4m × 0.4m) are installed on the walls, occupying

the center of each, as shown in Fig. 3a with red lines. The



Panels 0 0, 1 0, 1, 2 0, 1, 2, 3

mean error 31 4.2 2.7 3.0

std error 21 4.1 2.1 2.3

TABLE I: Mean and std error for panel 0 inference and fusion

results in experiment where user is in nine locations, depicted

in Fig. 3 . Units in cm.

users are located on the plane crossing the panels by half,

this is (x, y, 0), assuming panels are within (x, y,−0.2m) and

(x, y, 0.2m). The panels are trained individually according

to the method described in Subsection III-C. The system

parameters are: Mp = 64, fc = 3GHz (λ = 10cm), BW =

100MHz, Nsc = 8, Nrep = 10, and noise variance σ2

n = 0.002.

For simplicity we only consider one specular reflection in

the walls with α = 0.1 3. We first consider 9 locations for

inference (red dots). In Fig. 3a it is shown the result of

inference of panel 0 (bottom) as 2 std ellipses (black) and

the respective means (blue dots). We observe that the angular

accuracy is quite good for all positions, while the distance

accuracy gets worse for points further away from the panel,

as they lay outside of the near-field region and less information

about the distance is contained in observed, the increasingly

planar, wave front. Error values are shown in Table I, where

error is measured between the distribution mean (µ) and the

ground truth. Figure 3b shows the result of the fusion between

panel 0 (bottom) and 1 (left), with an important improvement

in accuracy as both panels complement each other 4. Results

of extended fusion process is shown in Fig. 3c and 3d, with

incremental improvements in the accuracy.

Fig. 4 shows the result of another experiment, where we

analyze 100 locations for a square-shaped trajectory. For some

of them, 2 std and mean results of inference from panel 0 are

shown in Fig. 4a, while 4b shows only the mean values of

all locations. Error results are shown in Table II. Result of

fusion between panel 0 and 1 is shown in Fig. 4c and 4d for

2 std and mean, where we observe an important improvement

in accuracy, similar to the observed in previous experiment.

Results of the fusion of panels 0, 1 and 2 are shown in Fig.

4e and Fig. 4f. The result of fusion of all panels is shown in

Fig. 4g and 4h.

From interconnection bandwidth point of view, there is a

significant reduction in exchange of data compared to the

centralized approach. Each panel shares 5 values (in case of

2D), instead of 1024 required by ĥ, which is a 200x reduction.

VI. CONCLUSIONS

In the preset work we have introduced a novel method for

wireless positioning in distributed Large Intelligent Surfaces

using neural network with probabilistic layer. Each panel

forming the LIS provides a probabilistic description of the

user location based on the local channel estimate, that can later

3Extension to more advanced channel models is left for future work.
4The uncertainty in the distance shown by panel 0 is compensated by the

high accuracy in the angle from panel 1 and vice versa.

Panels 0 0, 1 0, 1, 2 0, 1, 2, 3

mean error 15 5.7 4.3 3.5

std error 11 3.0 2.3 1.7

TABLE II: Mean and std error for panel 0 inference and fusion

results in experiment with square-shaped trajectory, depicted

in Fig.4. Units in cm.

be fused to a single probability distribution comprising infor-

mation from more/all panels. By choosing a parameterized

probability distribution, as the Gaussian, only the parameters

need to be inferred, considerably reducing the interconnection

bandwidth with the fusion module or CPU. Our analysis show

that by fusion of two panels is enough to achieve fraction of

wavelength accuracy level in a scenario with users distributed

over a 100λ× 100λ area.

VII. ACKNOWLEDGMENT

This work was supported by ELLIIT, the Excellence Center
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Fig. 3: Results of inference on 9 user locations. Top view of the scenario. Red lines represent panels, and red points denote

ground truth locations. Blue points denote mean of distribution, and black 2 std ellipse. Fig. 3a represents results from panel

0. Fig. 3b represents the result of the fusion of panels 0 and 1. Fig. 3c represents the result of the fusion of panels 0, 1 and
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Fig. 4: Results of inference on 100 user locations forming a square-shaped trajectory. Top view of the scenario. Left column:

Red points denote ground truth. Blue points denote mean of inferred distribution, and black 2 std ellipse. Fig. 4a represents

results from panel 0 (only 20 out of 100 locations are shown for convenience). Figures 4c, 4e, and 4g represent different results

of fusion with different panels. Right column: Figures 4b, 4d, 4f, and 4h show the mean. Colors used are only intended to

ease the visual association between estimated and true locations, given the high number of points.


