

SNOW V: A new version of SNOW for 5G

Patrik Ekdahl², Thomas Johansson¹, Alexander Maximov², Jing Yang¹

¹ Department of Electrical and Information Technology, Lund University ² Ericsson Research, Ericsson

Outline

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Outline

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Stream Ciphers

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

LUND UNIVERSITY

Stream Ciphers

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- Often constructed using linear-feedback shift registers (LFSRs) + a Non-Linear Part to disrupt the linearity of LFSR
 - Easy implementation and very fast in hardware environment

Stream Ciphers

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- Often constructed using linear-feedback shift registers (LFSRs) + a Non-Linear Part to disrupt the linearity of LFSR
 - Easy implementation and very fast in hardware environment
- Popular stream ciphers: Salsa20, Grain, SOBER, *SNOW*, ZUC, etc.

SNOW 3G

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- SNOW 1.0: Proposed by Thomas Johansson & Patrik Ekdahl in 2000, NESSIE candidate
- SNOW 2.0: Improved in 2003, included in ISO/IEC 18033-4 standard
- SNOW 3G: 2006, one of the three confidentiality/integrity algorithm standards for 3G/LTE

SNOW 3G

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- SNOW 1.0: Proposed by Thomas Johansson & Patrik Ekdahl in 2000, NESSIE candidate
- SNOW 2.0: Improved in 2003, included in ISO/IEC 18033-4 standard
- SNOW 3G: 2006, one of the three confidentiality/integrity algorithm standards for 3G/LTE

- LFSR (512 bits in total) + Non-linear Part (FSM, finite state machine)
- Word-based, hardware-oriented, especially efficient in hardware environment

SNOW 3G Application

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

Every user has a unique master key K embedded into the SIM card/ stored at HSS(Home Subscriber Server), to generate session keys and distribute to base stations (BSs) and Mobility Management Entity (MME)

SNOW 3G Application

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- Every user has a unique master key *K* embedded into the SIM card/ stored at HSS(Home Subscriber Server), to generate session keys and distribute to base stations (BSs) and Mobility Management Entity (MME)
- SNOW3G IP core is embedded into the physical boards of mobile phones / BS / MME
- User / BS / MME: keystream = SNOW3G(K_{session}, IV)

SNOW 3G Application

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- SNOW3G IP core is embedded into the physical boards of mobile phones / BS / MME
- User / BS / MME: keystream = SNOW3G(K_{session}, IV)
- Speed is lower than 20Gbps (the expected downlink speed in 5G)

5G

- SNOW \
- **Performance Analysis**
- **Security Analysis**
- Conclusion

- **Structure**: SDN-based, nodes are virtualized (No specific hardware cores)
- Targeted data rate: 20Gbps (downlink) 10Gbps (uplink)

5G

Motivation

- SNOW \
- **Performance Analysis**
- Security Analysis
- Conclusion

Challenges

- **Structure**: SDN-based, nodes are virtualized (No specific hardware cores)
- **Targeted data rate**: 20Gbps (downlink) 10Gbps (uplink)

The speed of SNOW needs to be > 20 Gbps under software environment.

G

Motivation

- SNOW \
- Performance Analysis
- Security Analysis
- Conclusion

Challenges

- **Structure:** SDN-based, nodes are virtualized (No specific hardware cores)
- Targeted data rate: 20Gbps (downlink) 10Gbps (uplink)

The speed of SNOW needs to be > 20 Gbps under software environment. Opportunities

■ SIMD (Single Instruction Multiple Data) structure: CPUs can handle large registers split into blocks of various sizes (8-, 16-, 32-, 64-, 128-, 256-, 512-bits)

Intrinsic instructions: e.g., AES-NI set for AES, high speed in software

SIMD Structure

(intel) Intrinsics Guide	(_mm_search)?				
Technologies	m512i _mm512_4dpwssd_epi32 (_m512i src, _m512i a0,vp4dpwssd				
MMX	_m512i a1, _m512i a2, _m512i a3, _m128i * b)				
SSE	n512i _mm512_mask_4dpwssd_epi32 (_m512i src, _mmask16 vpidpwssd				
SSE2	k, _m512i a0, _m512i a1, _m512i a2, _m512i a3, _m128i ★ b)				
· SSE3	n512i _mm512_maskz_4dpwssd_epi32 (_mmask16 k, _m512ivp4dpwssd				
SSSE3	<pre>src, _m512i a0, _m512i a1, _m512i a2, _m512i a3, _m128i * b)</pre>				
SSE4.1	.m512i _mm512_4dpwssds_epi32 (_m512i src, _m512i a0, _vp4dpwssds				
SSE4.2	_m512i a1, _m512i a2, _m512i a3, _m128i * b)				
 AVX 	n512i mm512 mask 4dowssds epi32 (m512i src. mmask16 vp4dowssds				
AVX2	k, _m512i a0, _m512i a1, _m512i a2, _m512i a3, _m128i * b)				
EMA	n512i mm512 maskz 4dowssds epi32 (n512i src. vp4dowssds				
AVX-512	<pre>mmask16 k, m512i a0, m512i a1, m512i a2, m512i a3, m128i *</pre>				
KNC	b)				
SVML	n512 nn512 4fmadd ps (n512 a, n512i b0, n512i b1, v4fmaddp)				
 Other 	m512i b2, m512i b3, m128i * c)				

Outline

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Construction

LFSR

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- **Circular Construction**: Two LFSRs defined on two finite fields feeding to each other $g^A(x) = x^{16} + x^{15} + x^{12} + x^{11} + x^8 + x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$, with root α $g^B(x) = x^{16} + x^{15} + x^{14} + x^{11} + x^8 + x^6 + x^5 + x + 1 \in \mathbb{F}_2[x]$, with root β
- Proven to have a maximum period 2⁵¹² 1

procedure LFSRupdate() for i = 0..7 do $a_{16} \leftarrow b_0 + \alpha a_0 + a_1 + \alpha^{-1} a_8 \mod g^A(\alpha)$ $b_{16} \leftarrow a_0 + \beta b_0 + b_3 + \beta^{-1} b_8 \mod g^B(\beta)$ $A \leftarrow (a_{16}, a_{15}, \dots, a_1)$ $B \leftarrow (b_{16}, b_{15}, \dots, b_1)$

FSM

Motivation

SNOW V

- Performance Analysi
- Security Analysis
- Conclusion

procedure FSMupdate() $T^{2} \leftarrow (a_{7}, a_{6}, \dots, a_{0})$ $tmp \leftarrow R^{2} \boxplus_{32} (R^{3} \oplus T^{2})$ $R^{3} \leftarrow AES^{R} (R^{2}, C^{2})$ $R^{2} \leftarrow AES^{R} (R^{1}, C^{1})$ $R^{1} \leftarrow tmp$

Two round key constants C^1 and C^2 are set to zero. *Note*: When used in AEAD mode, the value of C^1 is different (non-zero).

Keystream Generation

SNOW V

Algorithm 2 SNOW-V algorithm 1: procedure SNOW-V(k, iv)2: Declaration of internal parameters: 3: $a = (a_{15}, a_{14}, \ldots, a_0)$ 4: $b = (b_{15}, b_{14}, \dots, b_0)$ 5: R^1, R^2, R^3 6: Initialization(k, iv) $i \leftarrow 0$ 7: 8: while more keystream blocks needed do 9. $T^1 \leftarrow (b_{15}, b_{14}, \dots, b_8)$ $z_i \leftarrow (R^1 \boxplus_{32} T^1) \oplus R^2$ 10: 11: FSMupdate()LFSRupdate()12:13: $i \leftarrow i + 1$

Algorithm 1 SNOW-V initialization 1: procedure INITIALIZATION(k, iv) K/IV Setup $(a_{15}, a_{14}, \ldots, a_8) \leftarrow (k_7, k_6, \ldots, k_0)$ 2: 3: $(a_7, a_6, \ldots, a_0) \leftarrow (iv_7, iv_6, \ldots, iv_0)$ $(b_{15}, b_{14}, \ldots, b_8) \leftarrow (k_{15}, k_{14}, \ldots, k_8)$ 4:5: $(b_7, b_6, \ldots, b_0) \leftarrow (0, 0, \ldots, 0)$ $R^1, R^2, R^3 \leftarrow 0, 0, 0$ 16 rounds 6: for i = 0...15 do $z \leftarrow (R^1 \boxplus_{32} T^1) \oplus R^2$ 8: FSMupdate()keystream feeds 9: 10:LFSRupdate() back to LFSR 11: $(a_{15}, a_{14}, \ldots, a_8) \leftarrow (a_{15}, a_{14}, \ldots, a_8)$

keystream

Initialization is used to fully mix K and IV. after which the output should be random.

Motivation

SNOW V

- **Performance Analysis**
- **Security Analysis**
- Conclusion

AEAD: authenticated encryption with associated data, provides confidentiality, integrity, and authenticity assurances on the data

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- AEAD: authenticated encryption with associated data, provides confidentiality, integrity, and authenticity assurances on the data
- GMAC (Galois Message Authentication Code) is used to generate authentication tag

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- AEAD: authenticated encryption with associated data, provides confidentiality, integrity, and authenticity assurances on the data
- GMAC (Galois Message Authentication Code) is used to generate authentication tag
- Keystream generation process is the same as in the normal mode, except
 - $C^{1} = 0x0024406480A4C0E40420446084A0C4E0$

Motivation

SNOW V

- Performance Analysis
- Security Analysis
- Conclusion

- **AEAD**: authenticated encryption with associated data, provides confidentiality, integrity, and authenticity assurances on the data
- GMAC (Galois Message Authentication Code) is used to generate authentication tag
- Keystream generation process is the same as in the normal mode, except
 - $C^{1} = 0x0024406480A4C0E40420446084A0C4E0$

Sender:

T = GMAC (keystream2, AAD, Ciphertext)

Receiver:

T' = GMAC (keystream2, AAD, Ciphertext), if T' = T

 $Plaintext=keystream1 \oplus Ciphertext$

else

Output Fail (data might be tampered)

Outline

Motivation

SNOW V

- **Performance Analysis**
- Security Analysis
- Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Hardware Implementation Aspects

Motivation

- SNOW V
- Performance Analysis
- Security Analysis

Conclusion

Four Hardware Implementations:

- SNOW V+1 external AES
- SNOW V+1 internal AES
- SNOW V+2 external AESs
- SNOW V+2 internal AESs

Hardware Implementation Aspects

Motivation

SNOW V

- Performance Analysis
- Security Analysis

Conclusion

Four Hardware Implementations:

- SNOW V+1 external AES
- SNOW V+1 internal AES
- SNOW V+2 external AESs
- SNOW V+2 internal AESs

Hardware Implementation Aspects

Motivation

SNOW V

Performance Analysis

Security Analysis

Conclusion

- SNOW V+1 external AES
- SNOW V+1 internal AES
- SNOW V+2 external AESs
- SNOW V+2 internal AESs

OUT_DATA

Software Implementation Aspects

SINCING V	

- **Performance Analysis**
- Security Analysis
- Conclusion

- SIMD structure:
 - Two LFSRs can fit into 2x 256-bit registers: ___m256i
 - Registers in FSM can fit into 3x 128-bit registers: __m128i
- Intrinsic instructions, e.g.,
 - AES round: _mm_aesenc_si128(__m128i a, __m128i RoundKey)
 - Arithmetic additions: _mm_add_epi32(__m128i a, __m128i b)

Speed incl.		Size	of plaintext (by	tes)	
initialization	2 ³² +	2048	256	64	16
AES256	9.17 Gbps	8.48 Gbps	7.98 Gbps	6.75 Gbps	2.62 Gbps
SNOW V	61.18 Gbps	56.55 Gbps	27.55 Gbps	10.46 Gbps	3.04 Gbps

Outline

Motivation

SNOW V

Performance Analysis

Security Analysis

Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Security Analysis

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

Common Attacks on Stream Ciphers:

Attack on Initialization

- Chosen-IV attack: adversary attempts to build a distinguisher to introduce randomness failures in the ouput by setting arbitrary IV values, e.g., MDM attack
- Differential Attacks: trace differences' transfer and discover where the cipher behaves non-random

Linear Distinguishing Attacks

Distinguish the cipher from random oracle

Time-Memory-Data Tradeoff Attacks

Balance/reduce one/two parameters in favor of the others

Slide Attacks

Analyze the key schedule and exploit weaknesses in it to break the cipher

Attacks on the Authentication Mode

18/22

Security Analysis

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

Common Attacks on Stream Ciphers:

- Attack on Initialization
 - Chosen-IV attack: adversary attempts to build a distinguisher to introduce randomness failures in the ouput by setting arbitrary IV values, e.g., MDM attack
 - Differential Attacks: trace differences' transfer and discover where the cipher behaves non-random

Linear Distinguishing Attacks

Distinguish the cipher from random oracle

Time-Memory-Data Tradeoff Attacks

Balance/reduce one/two parameters in favor of the others

Slide Attacks

Analyze the key schedule and exploit weaknesses in it to break the cipher

Attacks on the Authentication Mode

18/22

MDM Attack

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

MDM: Maximum Degree Monomial

Rationale: Every cipher can be regarded as a black box with a series of Boolean functions (in SNOW V initialization, we have $(128 \times 16 = 2048)$ Boolean functions)

- $c_0, c_1, \dots, c_{12\dots n}$ should be 0 or 1 with probability of 0.5
 - MDM: $c_{12...n} = \bigoplus_{x \in \{0,1\}^n} f_i(x)$
 - Run through all possible input values, and xor the corresponding outputs to get MDM

MDM Attack on SNOW V

- Select 1 to 24 bits from the (*K*,*IV*) space
- Run through all possible values, other bits are set 0
- Xor all the outputs to get the MDM
 - The results have a long zeros before random-like, e.g., 000...00010110...

MDM Attack on SNOW V

- The outputs of the first 7 rounds are not random, it would be not safe if we reduce the initialization rounds to 7 or fewer
- 16 rounds of initialization looks safe, it is not likely that an attacker would be able to build a distinguisher after 16 rounds

Outline

Motivation

- SNOW V
- Performance Analysis
- Security Analysis
- Conclusion

- Stream Ciphers
- SNOW 3G
- 5G Requirements
- SNOW V
 - Construction
 - Keystream Generation
 - AEAD Mode
- Performance Analysis
 - Hardware Implementation Aspects
 - Software Implementation Aspects
- Security Analysis
- Conclusion

Conclusion

- SNOW V
- Performance Analysis
- **Security Analysis**
- Conclusion

- We revised SNOW 3G to SNOW V to meet the 5G requirements on encryption speed under software environment, by taking advantage of modern CPUs':
 - SIMD structure to handle large registers and,
 - Intristic hardware-supported instructions
- In software, Snow V can perform up to ~60Gbps on a user-grade laptop (single thread); it performs faster than AES256 utilizing AES-NI.
- In hardware, Snow V can reach up to ~1Tbps.
- **Current status:** Security analysis is ongoing