1

The Advanced-level course ”Advanced Web Security” is a 4.0 credit non-
mandatory course offered primarily to students on the C and D programs
at the faculty of engineering, Lund University. The course was first given in
the fall of 2012 and as it was to be developed from scratch there was much
freedom in choosing the type of assessment for the course. Most courses
at LTH are assessed by means of a written exam by the end of the course,
sometimes in combinations with projects and/or laboratories. While written

A System for Home Exercises Addressing the
SOLO Taxonomy, Fairness and Deep Learning

Martin Hell and Paul Stankovski

Department of electrical and information technology,
Lund University, Box 22100, Lund, Sweden
{martin.hell, paul.stankovski} @Qeit.lth.se

Abstract

This paper describes the assessment of students’ learning in the
course ” Advanced Web Security”at Lund University. The goal was to
create an examination process that was individual for each student,
fair, and inspired by the different levels in the SOLO taxonomy. The
assessment was based on home exercises and the rationale behind the
design of the problems as well as the evaluation results are presented.

Introduction and background

exams are comparatively cost efficient, they have several drawbacks.

e The time limit on a written exam may cause student to perform worse

than their actual capacity.

e [llness or other factors may affect the result for some students.

e Students study to pass the exam, affecting their possibilities for deep

learning.



e Only a fraction of the topics discussed during the course can be tested
on the exam due to the relatively short time frame in which it must
be conducted.

On the other and, it is fair and it is easy to guarantee that solutions were
worked out by the student alone. It was decided to do the majority of the
assessment through hand-in exercises instead, hoping to provide the student
with a way of avoiding the above issues. There was also one mandatory lab
which will not be discussed here.

The SOLO toxonomy is one way of structuring the levels of understand-
ing that a student go through when learning a subject. In SOLO there are
five levels.

1. Prestructural - The student misses the point.

2. Unistructural - The student has picked up on terminology and can give
simple explanations and connections.

3. Multistructural - Several aspects of a topic can be explained.

4. Relational - The student can compare the different aspects of a topic,
relate them to each other and apply them. The student can also see
how the different parts together make up a whole.

5. Extended abstract - The student can use the relations between the dif-
ferent aspects of the topic and extend it by generalizing the underlying
ideas and transfer the principles to new situations.

The different levels of the taxonomy were used as a basis for the structure
of the hand-in exercises. The course material consisted of lecture notes and
lecture slides.

2 The examination form

Assessment can be formative or summative. A formative assessment takes
place during the course and can be more integrated with the learning as
students can use the result of the assessment of one part when learning the
next. On the other hand, it is more difficult to integrate several parts of
the course. This is easier in a summative assessment, which instead has
the drawback that students tend to focus their studying to the end of the
course.



The type of the assessment is very important for the learning. When,
how and what the students study will depend on the form of assessment.
Hand-in exercises, similar to a home exam, prevents the students from just
memorizing facts and they can instead focus on understanding the material,
facilitating deep learning. Moreover, the time pressure is much less and the
students can to some extent decide when to solve the exam problems. Hand-
in exercises during the course will also make the assessment a part of the
learning process. The main drawback is the risk of plagiarism. It is much
more difficult for the teacher to verify that it is actually the student that
signed the exam that also solved the problems. Another drawback is that
students may focus on only learning what is asked for and misses several
important parts of the course material. Some of the hand-in exercises that
will be used has the form of small projects. A project has the advantage of
allowing the problems to be set in a more practical setting. This increases
the students’ motivation, again facilitating deep learning.

3 Creating home exercises

The home exercises were divided into three distinct types, each with their
own assessment criteria.

e A-type: These problems were rather straight-forward and aimed at
checking that the student had read and understood the material.

e B-type: These problems required the students to look for information
outside the given material.

o C-type: These problems required more work that the other types. It
could either be to write a program to simulate something, but it could
also be to write a short technical report that considered one part of a
lecture put into a wider context.

The A-type problems could usually be answered with one or two sentences.
They were primarily focused on assessing both declarative and functional
knowledge in the quantitative phase of SOLO, i.e., the unistructural and
multistructural levels of understanding. Some problems were also assessing
declarative knowledge in the relational level of SOLO, e.g., comparing and
contrasting different technologies, and explaining certain aspects of some
topic.

The B-type problems typically required a longer solution, sometimes
writing a small program and sometimes looking at a related topic and com-
pare it to what has been discussed on the lecture. These were intended



to have a clear focus on allowing assessment of declarative and functional
knowledge in the relational level of SOLO, i.e., a part of the qualitative
phase.

The C-type problems were in the spirit of a mini project. The students
had to understand a certain topic at a level that allowed them to either write
a computer program to simulate a certain situation, apply a technology in
a practical situation, generalize it to include new ideas or reflect on certain
aspects of a specific technology.

Applying the SOLO taxonomy was only one aspect in designing and
classifying the problems. Attention was also given to the law of higher
education (Hogskolelagen) which specifies that a course on advanced level
should (among other things) develop the student’s ability to work in an
environment with high demands on independency. The idea behind the B-
and C-type problems was also to a large extent based on this.

3.1 Solving home exercises

The most straightforward way for assessment is to let the student solve all
problems. This has several drawbacks that we wished to avoid.

e Friends that usually work together will solve the problems together.
We wanted to at least make it probable that they have worked out
solutions individually.

e Every student have different interests. We wanted to, at least to some
extent, let them choose which problems to work on. If they work on
problems they have chosen themselves, there is a higher probability
that they have an interest in what they are doing. Then they will put
more effort into the solution and also learn more.

There is a tradeoff between these two aspects. If we let them choose which
problems to solve, then friends will choose the same problems and cooperate.
Another aspect is the advantage of solving problems in small groups, allow-
ing the to discuss and reach a solution together. This was solved by making
a separation using the different types of problems. A-type problems where
individually solved and could not be freely chosen, while C-type problems
could be chosen by the students. They were also allowed to work in pairs on
the B- and C-problems as these were more difficult and required more time.



3.2 Problem selection

Several different variants of grading were discussed before the course started,
but we settled for a scoring system that was very easy to understand despite
different classes of problems and differences between the classes.

One problem set consisted of 8 A-type, 4 B-type and 1 C-type problem.
The selection of problems were done in the following way.

e The 8 A-type problems were randomly selected from a set of 16 prob-
lems. These were solved individually and determined using a SHA-1
hash of the student’s personal number together with fixed string (hash
salt) that was changed for each problem set. Thus, if two students had
several overlapping problems one week, the overlap was changed the
next week. This provided good randomization, both for problems and
for overlaps between students, but also added a nice extra feature; we
did not have care about that if problem ¢ in one set seemed a bit dif-
ficult we should make problem 7 less difficult in the next set in order
to stay fair. This was automatically solved by probability theory. The
use of a standardized hash function allowed anyone to easily reproduce
th choice of eight problems, for any student, any week, using a one-line
Linux command.

e The B-type problems were fixed and solved by everyone in groups of
two. Thus, all groups solved the same problems. As these required
more work than A-type problems, it was seen feature rather than a
problem that students could discuss these not only within the group,
but also between groups.

e The C-type problem was chosen by the students from a set of two
problems. Typically, one problem was a programming exercise while
the other problem consisted of studying some topic in more detail,
putting it into a new context or comparing it with similar technologies.
The findings were summarized in a 2-4 pages report.

3.3 Grading

Each A-problem was awarded 0-1 points, each B-problem 0-2 points and each
C-problem 0-8 points. Thus, they could get 0-8 points on each problem type.
With in total 5 problem sets, the maximum number of points were 40 for
each problem type. The grading was done as follows.

o A-type: Grade 3: 25, Grade 4: 33



e B-type: Grade 3: 20, Grade 4: 28
e C-type: Grade 3: 20, Grade 4: 28

The rationale behind this was the A-type problem tested more basic knowl-
edge and should require higher score for a given grade compared to the other
problems. Moreover, as these were solved individually, we could better ar-
gue that each student had actually worked through most of the material in
the course. Grade 4 was given if all types summed up to this grade. Grade 5
could be achieved by taking an oral exam, provided the home exercises were
graded 4. (For those very close to a certain grade for one type, we provided
a way to complement to that grade.)

4 FEvaluating the process

The course evaluation was divided into one formative and one summative
part. The goal of the formative part was to evaluate the course during its
execution, allowing real-time adaptations and improvements. This was done
using weekly or bi-weekly informal discussions with course representatives
(two students), and also by taking the opportunity to discuss the home
exercises during feedback sessions 5.

The summative course evaluation was conducted using the general CEQ),
but with the addition of a few course specific questions.

4.1 Formative evaluation

Results from the formative part quickly revealed that the course required
much more work than anticipated, and we decided to remove one problem
set from the original six.

Since there were four B-type exercises, it was common that students
divided them among themselves and solved two each. This was perhaps
related to the heavy work burden, but this strategy would probably be used
by many students even if the workload was lighter. Interestingly, this was
one of the aspects that we explicitly tried to avoid by making the A-type
problems individual. Making also the B-type problems individual would
of course address this problem, but it would make it much more difficult
to have a fair assessment, and the teachers’ workload would become much
heavier.



4.2 Summative evaluation

Our conclusions from the summative part were that the home exercices were
very appreciated. One course specific question was related to home exercises
and was formulated as.

I would have preferred a written exam at the end of the course instead
of hand-in exercises.

This question received an average score of —84 (where the choices were [-100
-50 0 50 100]). The question was of course very generally stated, and one
must be careful when drawing conclusions about our specific system for con-
ducting the home exercise assessment. Still, as the question was given in the
context of the course, the students seem to have appreciated the system. The
free text answers on the report gave more insight. The comments related to
the our particular system of home exercises are given below (translated to
English).

Good hand-in exercises system, much freedom of choice, which is good.
Good strategy for hand-in ezercises.

Hand-in exercises were very good. Both the fact that we had to work
both individually and in pairs, and the division into A- B- and C-type
questions. It was particularly good that we could choose the C-question
ourselves. This made it more fun.

...and a good system for home exercises.

If you attended the lectures, you could solve most A-type problems al-
most immediately.

The C-type problems requires us to apply the theory in a practical set-
ting. This happens otherwise too seldom according to me.

The programming problems where you put the theory into practice.

The home exercises forced you to go through all course material at
least once at some point and understand the majority of each topic.



It was unfortunate that it was not possible to get grade 5 on the home
ETETCISES.

5 Feedback to students

Feedback is an important part of the assessment. The grading must be
motivated and the students must have a chance to learn from their mistakes.
Still feedback is very resource consuming and with many students, grading
of the problems will alone consume most of the time can be put into the
course, economically speaking. While feedback in general is important, its
usefulness for a given student is likely to vary. Instead of giving feedback for
each student, we allocated office hours every week when students could come
and discuss their solutions and ask about the grading. Thus, we provided no
automatic feedback except the actual score for each problem, but gave them
the opportunity to receive detailed and extensive feedback if they wanted
to. The result of this experiment was somewhat surprising. Only very few
student took the opportunity to get feedback during office hours even though
we were careful when scheduling the office hours so that it would not collide
with other courses that most students took in parallel. Only about five
students visited the feedback session. On the other hand the students that
did visit the sessions typically did it every week.

To get more information about this behaviour, two course specific ques-
tion were added to the CEQ, see Figure 1.

It seemed that the students were in general satisfied with the possibility
to get feedback, though some did find it unsatisfactory. Students preferences
to which feedback strategy is best is more divided. Those that were happy
with no written feedback but extensive oral feedback are as many as those
with the opposite preference. Similar to learning approaches, it seems that
feedback preferences are very individual.

6 Lessons learned and future considerations

Scalability is probably one of the most difficult problems to solve in an
examination process that should be both individual and based on hand-in
exercises. The course had 40 students which turned out to be manageable,



Jag kinde att mojligheten till feedback pa
mldmningsuppgifter under kursens gang var +33
tillricklig.

Jag hade hellre fatt automatisk. men da mer

N P ! +0
begrinsad. feedback pa inlamningsuppgifterna.

-100 -50 0 +50 +100

Figure 1: CEQ evaluation results for two course specific questions.

but still required slightly more time than economy allows. Computer systems
like moodle can be used to automate parts of the process, but it can not be
used for all things, e.g., validating program code. While it can automatically
correct certain questions of multiple choice type, assessment according to
the higher levels of the SOLO taxonomy can not be done using multiple
choice [?].

We further experienced that it was sometimes difficult to categorize some
problems. A problem that required a small program to be written, more
involved calculations or a higher level of detail were not appropriate as A-
type problems since they were more difficult as the other A-type problems.
At the same time, they seemed too easy for B-type problems. Even though
the different types were designed to allow a wide range of problems, our clear
distinction between the A- and B-types (randomly selected and individual
vs. fixed and solved in pairs) sometimes felt too restrictive when designing
problems. One way to address this could be to allow students to choose
from a set of B-type problems, similar to the case with the C-type.

Having a set of only 16 A-type problems and randomly choosing eight of
these does give rather significant overlaps between different students (four
on average). As an important feature of these problems is that they should
be individually solved, these sets will be increased to 32 for the next course
instance, decreasing the average number of overlaps between two students



to two instead of four.

Another interesting aspect is when the problems should be handed out.
The A-type exercises could often be solved immediately if the students at-
tended, and paid attention to, the lecture. If problems are handed out
before the lecture, students could potentially check which A-type exercise
they have to solve and then focus on just understanding the parts of the
lecture that allowed to to solve “their” problems. An alternative is of course
to hand them out after the lecture, but a more interesting idea could be to
hand them out before, but not to reveal which eight A-type problems each
student had to solve. Then they would pay attention to all parts of the lec-
ture, while at the same time knowing exactly which aspects are considered
important (assuming all important aspects are covered by some problem).
This could very easily be achieved by just revealing the hash salt after the
lecture.

10



