
LUND UNIVERSITY

ETIN35 – IC Project 1 Report

UDP readout system for the physics department

Dimitar Dikov

2/22/2017

1

 ETIN35 – IC Project 1 Report

Table of Contents
I. Assignment: Readout system .. 2

a. Assignment specification: ... 2

b. System Implementation: ... 2

II. Implementation of the Serial Readout Unit (SRU): ... 3

a. CMD/STATUS UDP Ethernet EMAC and UDP command/status payload. ... 4

b. UDP command distribution. .. 7

c. DCS command decoder ... 8

d. DTC TX ... 10

e. DTC RX (Deserializer and Memory) ... 11

f. UDP Readout FSM and UDP EMAC. .. 12

g. Clock Generation ... 13

III. Implementation of the CPLD: .. 14

a. RDOClk and ADC clock... 15

b. Trigger Detection .. 15

c. DTC RX Decoder .. 16

d. Address/Data demux and Reply packer. ... 17

e. Saltro Interface Controller .. 19

f. DTC TX FSM and Serializers ... 21

IV. ASIC Synthesis & Place and Route implementation .. 24

a. Synthesis constraints used .. 24

b. Place and Route .. 24

V. FPGA & CPLD Synthesis. .. 25

VI. Implementation Results & Verification ... 26

VII. Conclusion ... 27

VIII. Literature... 27

Appendix 1: Synthesis script ... 28

Appendix 2: Place and route script ... 29

2

 ETIN35 – IC Project 1 Report

I. Assignment: Readout system

a. Assignment specification:
A prototype detector is to be developed that contains one SALTRO ADC chip and a CPLD Lattice LCMX02. The

communication between the CPLD and SALTRO is described in [1]. The CPLD will need to communicate via

Data Trigger Control (DTC) link [2] using Cat. 6 twisted pair cables with RJ45 connectors to a Scalable Readout

Unit (SRU). The SRU consist of a Xilinx Virtex-6 FPGA and it needs to convert the DTC link data to UDP packages.

The task of this project is to develop the logic in the CPLD and modify the existing FPGA RTL, including readout

protocols, data formatting, system controller, and clock management.

b. System Implementation:
The system contains 1 CPLD (Lattice MACHXO 2) and 1 FPGA (Xilinx Virtex-6 130T). The testbench

implementation of the system is shown on fig. 1. It consists of 5 main blocks:

 Saltro Emulation model – An emulation model of the digital part of the SALTRO ADC chip.

 Interposers – Delay blocks emulating a transmission delay over copper cables.

 CPLD – Provides decoding of DTC commands to the SALTRO chip and data serialization when

reading out the channels.

 SRU (Serial Readout Unit) – Generates trigger sequence for the CPLD/SALTRO, encodes DTC

commands and packages the readout data in UDP packets.

 Ethernet Simulation IP – Ethernet IP generated using Xilinx Custom IP Generator. Reads UDP

packets in raw format and sends them to the SRU, in 8b/10b encoded format.

CPLD

INTERPOSER

SALTRO
EMULATION

MODEL

IN
TE

R
PO

SE
R

SALTRO INTERFACE SALTRO INTERFACE

SRU
ETHERNET

SIMULATION
IP

ETHERNET 8b/10b INTERFACE

D
T

C
 IN

TE
R

FA
C

E
D

T
C

 IN
TE

R
FA

C
E

Figure 1: Testbench Architecture.

3

 ETIN35 – IC Project 1 Report

II. Implementation of the Serial Readout Unit (SRU):
On fig. 2. is shown the simplified SRU architecture.

Trigger Generation

DTC RX
(Deserializer and

Memory)

Readout FSM

Clock Generation

Slow Command UDP
Ethernet EMAC

UDP Cmd
Distribution

SRU Cmd decoder

Control cmd reply

DTC TX LINES

DTC RX LINES

Readout data

UDP TX/RX

UDP TX/RX

DTC TX

Control cmd

Fa
st

 c
m

d

rd
o

 c
m

d

DCS Cmd decoder

Readout UDP
Custom IP

Figure 2: SRU architecture.

 The SRU can support up to 40 DTC connections to 40 CPLDs. The architecture consists of:

 Slow control UDP Ethernet EMAC – This IP block contains Xilinx Custom IP Ethernet transceivers, MAC

and IP frame decoding [3]. Takes care of ARP and ICMP replies. Read/Write to CSR commands must

be send through this EMAC.

 UDP Cmd Distribution – Based on the Nodesel bits in the UDP packet, this module distributes the

command to each of the DCS Cmd decoders or the SRU Cmd decoder.

 SRU Cmd Decoder – This module contains the SRU CSRs, when Nodesel[40] is 1, the SRU would access

them.

 DCS Cmd Decoders – A total of 40 decoders. 1 for each DTC link. Decodes the 8bit data from the

UDP/Cmd distribution to 32bit address & data.

 DTC TX – Serializer and encoder for DTC commands/trigger information.

 DTC RX – Deserializer and memory block. Once the event information is transmitted, it saves it into

memory, which is accessed by the Read out FSM as soon as the event finishes.

 Readout FSM – Reads out the DTC RX memory and communicates with the Readout UDP Ethernet

EMAC by using AXI4 protocol. Currently supports only a single DTC link.

 Readout UDP Ethernet EMAC – Packs the AXI4 data into UDP packets. Takes care of retransmitting

packets if they are lost.

 Clock generation – Generates the necessary clocks and distributes them to each DTC module.

 Trigger generation – Generates the necessary trigger sequence for the SALTRO chip. Supports 3

different triggering schemes: periodic, external and via UDP write to a SRU CSR.

On fig. 3 is shown the ASMD diagram of the SRU.

4

 ETIN35 – IC Project 1 Report

Slow Command UDP Ethernet EMAC

UDP Command DistributionSRU CSRs

Readout FSM & UDP Custom IP

DTC<N> RX

DTC<N> TX

protocol = ARPprotocol = ARP

Ethernet RXEthernet TX

T

Wait for packet

protocol = ICMPprotocol = ICMP

F

T

protocol = UDPprotocol = UDP

F

F

Save Packet

F

udp port = patrolviewudp port = patrolview F

Send Reply

Calculate Reply

Send Command to DTC<N>

Nodesel = 41Nodesel = 41

T

Read SRU CSR

T

F

Deserialize data

Nodesel = NNodesel = NT
DTC TXDTC RX

F

Update SRU CSR or issue
FastCmd

WRITE CSRWRITE CSR

T

F

DTC packet = STATUSDTC packet = STATUS T

DTC packet = REPLYDTC packet = REPLY

F

T

DTC packet = EVENTDTC packet = EVENT

F

F

Save Event Data to Memory

T

Event finishedEvent finished

Ethernet TX

Read from Memory and
transmit data

F

T

Figure 3: SRU ASMD diagram.

a. CMD/STATUS UDP Ethernet EMAC and UDP command/status payload.
On table 1 is shown the frame structure of the UDP payload of a SRU control packet. This packet must be

crafted by the control software.

5

 ETIN35 – IC Project 1 Report

Table 1: UDP payload format for the SRU command frame.

31 Bit 0

RESERVED[10:0] NodeSel[40:20]

RESERVED[11:0] NodeSel[19:0]

WR CType RESERVED[9:0] Address[19:0]

 Data[31:0]

WR CType RESERVED[9:0] Address[19:0]

Data[31:0]

…

WR CType RESERVED[9:0] Address[19:0]

Data[31:0]

 Nodesel[41:0] - This field has 41 active bits, corresponding to 41 slave nodes, including one SRU node

and 40 DTC nodes. The 41st bit (NodeSel[40]) maps to the SRU. NodeSelH[39:20] maps to DTC39-

DTC20. NodeSel[19:0] maps to DTC19-DTC0. If the corresponding bit is set, this command frame will

be forwarded to the command buffers in the mapped slave DTC nodes.

 WR – This specifies the command type to be performed. “1” is Read, “0” is Write.

 Ctype – This bit specifies which chip the CPLD should address: “1” SALTRO, “0” CPLD.

 Address – This field depends on which chip is being addressed:

o For SRU and CPLD – The lowest 16 bits are used as a 16 bit address.

o For SALTRO – The lowest 20 bits are used as the address defined in the SALTRO

specification[1].

 Data – Data to be written, if write command, or 0s if read command.

 Reserved – Reserved for future use. Set to 0s.

Due to fifo limitations the maximum amount of commands per packet is 500.

Once the command packet is send from the host computer it is received by the Ethernet CMD/Status Ethernet

EMAC module in the SRU. It’s schematic is shown on fig. 4. It contains the following modules:

 Ethernet EMAC & LocalLink Wrapper – Generated IP core from Xilinx. Transmits/receives 8b/10b

encoded signals to/from the Ethernet network. Uses 2 LocalLink interfaces for TX and RX.

 RX frame decoder FSM and FIFO. – From all received packets, this module filters out only the ones

addressed to specific SRU IP/MAC address and protocol. Supported protocols are UDP, ARP and ICMP.

This module extracts some of the necessary data, like Source host, in order to reply correctly on an

ARP or ICMP request, Frame length. Contains a FIFO in order to buffer the incoming frame.

 IP Packet processing FSMs. – Contains FSMs that check if the packet frames are correct. If there is

an error in the received packet it will drop it. Packages the ICMP reply data into a frame, to be

transmitted, if the SRU is pinged via ICMP. Send the UDP payload for decoding of NODESEL fields.

 ARP reply FSM – Packs the ARP reply data from the RX Frame Decoder into LocalLink interface.

 IP Reply FSM – A FSM that select one of the 3 possible replies to send to the TX frame encoder.

 TX Frame encoder – Encapsulates the reply data with the Remote MAC/IP addresses and sends it to

the Ethernet Xilinx core.

6

 ETIN35 – IC Project 1 Report

Figure 4: CMD/STATUS Ethernet schematic.

On fig. 5 is shown the ARP RX and TX frame processing. There are 3 time periods. The first one is showing

the EMAC transmitting the received frame via the RX_LL interface. It is received by the RX frame decoder

and it is decoded to be an ARP request frame. During this time the reply frame is calculated. In the second

period the reply frame is send to the ARP Reply FSM, by asserting arp_req. This causes the FSM to store

the frame in a FIFO and when the whole reply is stored into it, arp_tx_good_frame and arp_reply are

asserted. In the third period the ARP LL TX interface is transmitting the reply frame to the TX reply mux

(IP Reply FSM).

ICMP RX frame decoding and TX reply is shown on fig. 6. The reply is processed in 3 stages. In the first

stage while the EMAC is transmitting the frame, the RX Frame decoder asserts icmp_frame signal (if the

protocol, ip address and packet type matches) which turns on the calculation of the ICMP checksum. The

second stage starts when the final byte of the ICMP request packet is decoded. The IP packet processing

FSM starts reading the FIFO soon after that. Since the header of the TX reply is known at this time, the

ICMP FSM packs it into another FIFO. After a while the payload of the request packet is inserted as the

payload of the reply packet and the rx_frame_processed signal is asserted. This releases the RX frame

decoder to monitor the next incoming packet, by deasserting the icmp_frame signal. In the third period

the ICMP reply packet is transmitted to the IP reply FSM which selects a packet to be transmitted via the

TX frame encoder.

7

 ETIN35 – IC Project 1 Report

Figure 5: ARP RX frame and TX reply.

Figure 6: ICMP RX Frame and TX reply.

The decoding of a UDP Command packet is done very similarly to the ICMP frame. It consists of 3 periods,

shown on fig. 7. While the EMAC is transmitting the packet, the frame decoder is monitoring. if the frame

is using UDP and the IP and MAC addresses match, it asserts the udp_frame signal. When the whole

packet is received, the IP packet processing FSM initiates the FIFO in the decoder. A very simple UDP FSM,

counts how many bytes have been received, and asserts the udp_rx_dv signal, which signifies the UDP

packet payload. The UDP bytes are transmitted on the udp_rxd bus. Once the frame is processed,

rx_frame_processed is asserted, thus releasing the RX frame decoder to receive new frames.

Figure 7: UDP RX Frame decoding.

b. UDP command distribution.
After the UDP command frame is extracted from the IPv4 packet, it is received by the UDP command

distribution module. There the UDP destination port is matched. The NODESEL fields are decoded and

8

 ETIN35 – IC Project 1 Report

demultiplexed into separate bus dcs_rx_dv[40:0]. Waveforms showing the decoding of a packet with

NODESEL0 (i.e. 1st DTC board) and NODESEL40 (i.e. SRU) are shown on fig. 8 and fig. 9. The FSM takes

one clock cycle to compute when to assert the dcs_rx_dv signal, thus the dcs_rxd is the delayed udp_rxd

by a cycle. The first 16 bytes from the frame contain the UDP source & destination addresses, frame length

and checksum. They also contain the 8 bytes encoding the NODESEL. Thus for the first 16 bytes the

dcs_rx_dv is always kept low. Then based on what the NODESEL bits that are set in the packet,

dcs_rx_dv[40:0] is asserted. Thus the dcs_rxd data is driving the 40 DTC transmitters and the SRU Cmd

decoder with the same data, but different “data valid” signals.

Figure 8: UDP payload addressed to NODESEL0, the first DTC board.

Figure 9: UDP payload addressed to NODESEL40, the SRU.

c. DCS command decoder
In order to support broadcasting read/write operations to 40 DTC boards each of the DTC link must have

its own command decoder. The block diagram of the DCS command decoder is shown on fig. 10. It consists

of a FIFO and an FSM. The FIFO is used to cross into the DTC clock domain and to store the commands

from the packet, since the DTC link is orders of magnitude slower than Ethernet. The FSM reads 2 32bit

words, containing the address and the data respectfully. The State diagram of the FSM is shown on fig.

11.

DTC TX

FIFO
8 to 32 bits

dcs_rx_d[7:0]
dcs_rx_dv

FSMFSM

rd_data[31:0]

fifo_rd_en

125MHz clk 40 MHz clk

udp_cmd_addr[31:0]
udp_cmd_data[31:0]

udp_cmd_dv

udp_cmd_ack

Figure 10: DCS command decoder block diagram.

The FSM initializes in st0, and waits until the FIFO is not empty to proceed to st1. St1 is a state where the

UDP frame payload must be fully loaded into the FIFO, this ensures that there is always even number or

32 bit words in the FIFO. During st2 and st3, a single command containing 32bit address and data is

readout, to the transmitter. Since the FSM is Moore and the FIFO has 1 cycle RD delay in st4 & st5 the

udp_cmd_addr and udp_cmd_data are available to be assigned. In st5 udp_cmd_dv is asserted, signaling

9

 ETIN35 – IC Project 1 Report

the DTC TX Serializer that there is a command valid and ready to transmit. When the DTC TX Serializer is

starting to transmit the command, it asserts udp_cmd_ack, releasing the FSM into st6, which select which

2 watchdog states it should go into, based on if this was the last command in the FIFO. The watchdog is

set to 160 cycles, since it takes a little over 128 cycles to transmit a command.

re
se

t

st0

fifo_rd_en== 1'h0;

clkcnt == 8'h0;
udp_cmd_dv == 1'b0;

udp_cmd_addr == 32'h0;
udp_cmd_data == 32'h0;

fifo_rd_empty == 1

st1

No change in registers,
waiting for dcs_rx_dv to

deassert

dcs_rx_dv | fifo_empty

fifo_rd_empty == 0
st2 – st3

fifo_rd_en == 1'h1;

!(dcs_rx_dv | fifo_empty)

st4

fifo_rd_en == 1'h0;
udp_cmd_addr =

rd_data;

st5

fifo_rd_en == 1'h0;

udp_cmd_data = rd_data;
udp_cmd_dv = 1'h1;

clkcnt++;

udp_cmd_dv_ack == 0

st6

fifo_rd_en == 1'h0;

udp_cmd_dv = 1'h0;
clkcnt == 0;

udp_cmd_dv_ack == 1

stf

clkcnt++;

clkcnt == 160

st7

clkcnt++;

fifo_rd_empty == 1

fifo_rd_empty == 0;

clkcnt == 160

clkcnt != 160

clkcnt != 160

Figure 11: DCS Command decoder FSM state diagram.

On fig. 12 waveforms of filling the FIFO with a UDP frame payload (containing 2 command) from the DCS

command distribution module, are shown. Soon after the first command is transmitted, followed by the

second one in a while.

Figure 12: DCS Command decoder – waveforms.

10

 ETIN35 – IC Project 1 Report

d. DTC TX
In order to support the 3 types of DTC commands [2] (Trigger, Slow Control Commands and Fast

Commands), the DTC TX module is connected to the three modules that issue them. To the DCS command

decoder – when issuing a CSR write/read command; The SRU CSR module – when a fast command is

issued; the trigger generation unit when triggering and abort command needs to be issued. The block

diagram is shown on fig. 13. It consists of a DTC packing FSM, 3 smaller FSMs which convert the command

pulses to a handshake interface, a serializer and output buffers. The handshake interface is required in

order to ensure the command will be executed, if the FSM is busy with another command.

Output DDR buffer

Output buffer

DTC TRIG LINES

DTC CLK LINES

Serializer

DTC packing
FSM

DTC packing
FSM

RDOcmd_ack
FSM

RDOcmd_ack
FSM

ABORTcmd_ack
FSM

ABORTcmd_ack
FSM

FASTcmd_ack
FSM

FASTcmd_ack
FSM

cmd/ack handshake

cmd/ack handshake

cmd/ack handshake

udp_cmd_addr
udp_cmd_data
udp_cmd_dv

dtc_pdin[7:0]

Trigger

dtc_clk

RDOcmd

ABORTcmd

FASTcmd

FASTcmd code

Figure 13: DTC TX block diagram.

The FSM diagram is shown on fig. 15. The FSM initializes in st0 and wait until a valid command is issued.

Based on which command is executed, it enters st1, st2, st4 or st13. In st1, st2 and st13, the corresponding

command code is asserted on dtc_pdin[7:0]. When entering st4, the read/write command code is asserted

and then the next 8 states are used to assert the 2 32bit words for address and data. A complete waveform

is shown on fig. 14. In the first period the read/write header code (0xE1) is asserted, then in the second

period the address, and in the third – the data is asserted. At the end of the waveform, it just so happens

there is a trigger sent unrelated to the CSR command.

Figure 14: Read Write command serialization and Trigger waveforms.

The dtc_pdin[7:0] gets serialized and that signal is driving the Output DDR buffer on negedge, while the

Trigger (FeeTrig) is driving it on the posedge, thus the DTC TX transfer is completed [2]. The 40 MHz dtc_clk

is directly driving the DTC CLK lanes.

11

 ETIN35 – IC Project 1 Report

st0

dtc_pdin == 8'h0;

re
se

t

st2

dtc_pdin ==
abortcmd_code;

abort_cmd_ack == 1;

st1

dtc_pdin ==
rdocmd_code;

rdo_cmd_ack == 1;

st13

dtc_pdin ==
FastCmdCode;

fast_cmd_ack == 1;

rdo_cmd_buffer == 1

abort_cmd_buffer == 1

fastcmd_buffer == 1

st14

dtc_pdin == 8'h0;

st4

dtc_pdin ==
rwcmd_code;

udp_cmd_dv == 1

st5 – st8

dtc_pdin ==
udp_cmd_addr;

st9 – st12

dtc_pdin ==
udp_cmd_data;

Figure 15: DTC TX FSM state diagram.

e. DTC RX (Deserializer and Memory)
The DTC protocol has 3 different packets [2] that are sent from the CPLD. The block diagram of the DTC

RX module is shown on fig. 16. The data is deserialized and send to the DTX RX Decoder. It is an FSM whose

state diagram is shown on fig. 17. In order to receive correct data, the serializer must be aligned to the

sync word “0xBC50”. This is done in the ALIGN state. Once that is done, the Decoder enters WAIT state.

Once a valid frame header is detected, it proceeds to the corresponding branch: STATUS, REPLY or EVENT.

In the STATUS branch, just the LSB bit is used, it signifies if the SALTRO chip has asserted the ERROR flag.

The REPLY branch consists of 4 stages, used to get the two 32bit words reply: address and data from a

CSR read command. In the EVENT branch, every 2 cycles it writes to the memory a single 32 bit word, until

the trailer is detected. Once the end of the event frame is detected, the Decoder signals to the Ram

Management that the writing to the ram has finished. The Ram Management asserts RamFlag, which will

stay high, until the Readout FSM asserts RdConfirm, when the final word was readout.

12

 ETIN35 – IC Project 1 Report

Input deserializer

DTC RETURN LINES

DTC DATA LINES

word align cmd (from CSR)

DTC RX Decoderdtc_rx_deser[15:0]

READOUT RAM

LL FIFO

readout data

cmd reply data

ErrFlag

RAM Management

WrConfirm

To UDP TX LL MUX

To/From
Readout FSM

RX LL reply

Ram RD interface

RdConfirm

Ram Flag

To CSR

Figure 16: DTC RX block diagram.

ALIGN

Waits for the alignment
of the deserializer to

finish.

re
se

t

WAIT

Wait for valid header or break of
alignment.

dcs_reply_load = (deser_dout ==
F7F7)? 1 : 0;

dtc_deser_align == 1

dtc_deser_align == 0
d

tc
_d

es
er

_a
lig

n
 =

=
0

dtc_deser_align == 1

STATUS

FEE_FLAG =
deser_dout[0]; deser_dout == 16'hDCDC

REPLY4

dcs_reply_load = 0;

dcs_cmd_update = 1;

deser_dout == 16'hF7F7

REPLY1 – REPLY3

dcs_reply_load = 1;

EVENT LOW

ram_en = 1;
ram_din = {16'h0, deser_dout};

deser_dout == 16'h5C5C

EVENT HIGH

ram_en = 1;
ram_wen = 1;

ram_din = {deser_dout,
ram_din[15:0]};

{ram_din, deser_dout} != C5D5C5D5C5D5

EVENT END

WrConfirm = 1;

{ram_din, deser_dout} == C5D5C5D5C5D5

Figure 17: DTC RX Decoder state diagram.

f. UDP Readout FSM and UDP EMAC.
A temporary FSM is implemented in order to convert the readout of a single DTC board to AXI4 stream

interface used by the Readout UDP EMAC, which is already synthesized IP, from another project.

13

 ETIN35 – IC Project 1 Report

In the beginning of a packet transfer shown on fig. 18 the FSM calculates the total amount of data in bytes

that will be transferred and asserts it on the tuser input of the AXI interface. Tvalid is asserted, when the

first byte is ready to be transmitted. After a while tready is asserted by the EMAC. The transfer continues

by sending a new byte each cycle as long as tready is high. When the last byte is to be transmitted, tlast is

asserted for a single cycle and tvalid is deasserted.

Figure 18: Beginning of event transmission to UDP Readout EMAC.

g. Clock Generation
The SRU supports clocks from external source or from on-board XTAL. The block diagram is shown on fig.

19. The LVDS clock lines come from their corresponding pads, and are buffered by an IBUFGS. Then a clock

mux can be programmed by software by writing a CSR to switch to the external clock. The dcsclk output

is used only when booting up, to drive the flash controller that programs the FPGA.

ext_clk lvds

IBUFGDSbrd_clk lvds

IBUFGDS

Clock MUX

brd_clk

ext_clk

DcsSrcSel (from CSR)

PLL

RX Deserializers

TX Serializers
dcsclk

RDOCLK

Phase FSM dout_deser[15:0]

Figure 19: Clock generation block diagram.

After the clock mux locks, the PLL starts locking and asserts SerClkLockSt when locked. After this point the

clocks are stable and can be used by the TX Serializers and the RX Deserializers. On fig. 20 is shown the

simulation power up and locking of the clock generation circuit. Since it’s crucial that the CPLD boards are

triggered at the same moment, the TX serializer clocks’ phase is constant and cannot be changed. The RX

deserializer clocks’ phase is tunable using an FSM and using the data feedback from the serializers. Though

this functionality has not been tested as part of this project.

Figure 20: Power-up simulation of the clock generator.

14

 ETIN35 – IC Project 1 Report

III. Implementation of the CPLD:
The CPLD architecture is shown on fig. 21. The main functional block are:

 RDOClk input buffer and ADCClk PLL– This module converts the LVDS DTC Clk into single line RDOClk

and from it a PLL generated the ADCClk sampling clock which is 2x or 4x slower than the RDOClk.

 DTC RX decoder – Decodes the DTC command on the DTC trig line. If it is a Write or Read CSR, it will

be sent to the Cmd/Data demux. If it’s a fast command it will send it to the Saltro Controller.

 Trigger decode – Decodes the Trigger command, and toggles the L1 & L2 lines respectfully.

 Cmd and data demux, Reply data packer – Distributes the Address/Data lines according to where they

are for, the CPLD CSRs or the SALTRO chips. Also packs the reply data when a read command is

executed.

 CPLD CSRs – Control Status registers for the CPLD.

 Saltro Interface controller & Readout LIFO – Converts the commands in the Saltro interface format.

Also converts the readout data format using a 40 bit wide LIFO and a 32 bit wide FIFO and sends it to

the DTC TX FSM.

 DTC TX FSM and Serializers – An FSM drives 2 DDR serializers which are transmitting readout or reply

data on the DTC data/return lines.

D
TC

 R
ET

U
R

N
 L

IN
ES

D
TC

 D
A

TA
 L

IN
ES

SA
LT

R
O

 IN
TE

R
FA

C
E

SA
LT

R
O

 IN
TE

R
FA

C
E

D
TC

 T
R

IG
 L

IN
ES

D
TC

 C
LK

 L
IN

ES

Saltro Interface Controller & Readout LIFO

Trigger Decoder DTC RX Decoder

L1 & L2 triggers

R
D

O
 c

m
d

A
B

O
R

T
cm

d addr/data demux
reply addr/data

packer

ad
d

r/
d

at
a

O
th

er
 F

as
t

C
m

d
s

RDOClk IBUF
ADCClk PLL

R
D

O
 &

 A
D

C
 C

lk

CPLD CSRscpld addr/data

sa
lt

ro
 a

d
d

r/
d

at
a

DTC TX FSM &
Serializers

re
ad

o
u

t
fi

fo
 d

at
a

csr reply data

Figure 21: CPLD Architecture.

15

 ETIN35 – IC Project 1 Report

The ASMD of the CPLD is shown on fig. 22

DTC RX & Trigger DecodersDTC TX Serializers and FSM

Saltro Controller

Addr/Data Demux and CSRs

Is it trigger?Is it trigger?

DTC RX

Wait for command

DTC TX

Trigger LinesSaltro Interface

T

Trigger the Saltro

Is it Fast CommandIs it Fast Command

F

F

Is it CSR CommandIs it CSR Command

Send Command to Saltro

T

F

Is it CPLD CSRIs it CPLD CSR

T

F

Is the data readout or
reply

Is the data readout or
reply

Send Reply to SRU

Save data in LIFO

reply

Serialize data

readout

Put Channel Readout Data in
FIFO

Read or Write CPLD CSRs

Figure 22: CPLD ASMD Diagram.

a. RDOClk and ADC clock
The CPLD works on 40 MHz RDOClk which is the same a the DTC clock. In order to control the resolution

vs sampling time, the ADC clock can be 2 times or 4 times slower than the RDO clock. The block diagram

of the clock generation is shown on fig. 23.

ILVDS bufferDTC CLK LINES ADCClk PLLdtc_clk

div4

div2

ADCClk

adc_clk_div (from CSR)

Figure 23: ADC clock PLL and DTC clock buffer.

b. Trigger Detection
The trigger sequence is detected by a detector, which consists of a shift register sampling the dtc_trig line

on negedge. Then the output of it is monitored by an FSM, which generated the L1 and L2 trigger. The

state diagram is shown on fig. 24. The FSM’s initial state is WAIT0. When the shift_reg has a value of “0x2”

16

 ETIN35 – IC Project 1 Report

it means that it has received a L1 trigger. Thus it asserts it on the next cycle, and enters Trig_L1 state,

where L1 trigger is hold low for another 10 clock cycles and then returns to the initial state.

When the shift_reg is “3”, the FSM changes state to WAIT1 where it detects if the L2 trigger is received or

there was an error in the trigger command. If a valid L2 trigger is received it enters Trig_L2 state, where

trig_l2_n is asserted for 2 cycles. If the trigger was not valid in WAIT1 state, the FSM enters WAIT3 state.

There a small timeout is added in order to ignore the false trigger. Since the trigger data is the only data

sent on negedge, it can be sent together with a Slow or Fast command, an example of which is shown on

fig. 25.

WAIT0

clkcnt = 0;
trig_l1_n = (shift_reg ==

4'b0010)? 0 : 1;

re
se

t

Trig_L1

clk_cnt++;
trig_l1_n = 0;

clk_cnt != 9

shift_reg == 4'b0010

clk_cnt == 9

WAIT1

clkcnt = 0;
trig_l1_n = 1;
trig_l2_n = 1;

shift_reg == 4'b0011

Trig_L2

clk_cnt++;
trig_l2_n = 0;

shift_reg == 4'b0110

clk_cnt == 1

WAIT2

clkcnt++;
trig_l1_n = 1;
trig_l2_n = 1;

clk_cnt == 5

clk_cnt != 5

shift_reg != 4'b0110

clk_cnt != 1

Figure 24: CPLD Trigger decode FSM.

Figure 25: Trigger detection in the middle of WR/RD command.

c. DTC RX Decoder
The DTC RX decoder is implemented similarly to the Trigger decoder. The dtc_trig line is sampled on

posedge by a shift register which trigger the FSM, that decodes the command. On fig.26 the state diagram

of the FSM is shown. It initializes in st0, in which it waits to receive a valid header code in the shift_reg. If

any of the 3 fast commands (channel readout, abort or reset) are received, the FSM enters the

corresponding state and asserts the specific command flag and return to the initial state. If a slow WR/RD

command header is received, the FSM enters stcmd1 state, where it waits for the shift_reg to receive the

address, data, Ctype and WriteRead flag. Then it enters stcmd2, where it asserts dtc_cmd_exec and the

address, data etc. fields. It waits in stcmd3 state until a dtc_cmd_ack is received from the cmd demux.

17

 ETIN35 – IC Project 1 Report

st0

clkcnt = 0;

re
se

t

shift_reg == 00E1

stcmd1

clkcnt++;
Waits for the shift_reg to be

filled with addr/data bits

cnt != d62

stcmd2

clkcnt++;
Assign cmd addr/data

from the shift_reg.
dtc_cmd_exec == 1;

cnt == d63

dtc_cmd_ack or timeout

!dtc_cmd_ack

strdocmd

clkcnt++;
rdo_cmd == 1;

shift_reg == 00E2

cnt == d11

cnt != d11

abortcmd

clkcnt++;
abort_cmd == 1;

cnt != d19

shift_reg == 00EA

cnt == 19

rstcmd

clkcnt++;
reset_cmd == 1;

shift_reg == 00E8

cnt == d11

stcmd3

clkcnt++;
dtc_cmd_exec == 1;

cnt != d19

Figure 26: CPLD DTC RX Decoder FSM state diagram.

d. Address/Data demux and Reply packer.
When the RX Decoder receives a Write/Read command, based on the Ctype (dtc_cmd_feenal) the demux

module sends the command to the CPLD CSRs or the Saltro Interface Controller. On fig.27 and fig.28 are

shown waveforms of Read and Write to the CPLD and to the SALTRO.

When a RD command is executed and an ack is returned by ether the CPLD CSRs or the SALTRO Controller,

and the command is READ, a small FSM shown on fig.29 is triggered. It asserts reply_ready. Which in turn

triggers the DTC TX FSM to start transmitting the reply data. While the TX FSM Is transmitting the data

frame_state is kept high, thus ensuring the CPLD will not send another reply_rdy request in that time. This

handshake is shown on fig.30.

Figure 27: Write CPLD CSR command waveforms .

18

 ETIN35 – IC Project 1 Report

Figure 28: Read SALTRO CSR command waveforms.

st0

reply_rdy = 0;

re
se

t

!(dtc_cmd_ack & dtc_cmd_rnw)

dtc_cmd_ack & dtc_cmd_rnw

!frame_state
st2

reply_rdy == 0;

frame_state

st1

reply_rdy == 1;
frame_state

!frame_state

Figure 29: DTC Reply_Rdy FSM state diagram.

Figure 30: Reply_Rdy and frame_state handshake.

19

 ETIN35 – IC Project 1 Report

e. Saltro Interface Controller
The Saltro Controller consists of 2 FSMs, a dual port RAM and a FIFO. The block diagram is shown on fig.31.

Every time the Saltro Controller receives a command, the Command Control FSM (CCFSM) takes control

of the bi-directional BD bus. The state diagram of the CCFSM is shown on fig.32. If the command is

Write/Read SALTRO CSR, the state machine enters st_cmd1, where the address and data are sampled, by

the bdout registers (those registers drive the BD bus, when cstbn is asserted), also “writen” is sampling

the command type. Then in st_cmd2, the chip select is asserted, sending the command to the SALTRO

chip. Based on, if the command is broadcast or not, the state enters a st_cmd3 (where it waits for ackn to

deassert and chip select is deasserted) or st_cmd4. In st_cmd4, after a few clock cycles the FSM returns

to the initial state.

When a Channel Readout (CHRDO) command is send the FSM enters st_trsf1, which initializes the

handshake with the second FSM in the controller. At his point the second FSM starts to wait for the trsfn

to assert and then deassert, which means that a single channel had been readout and put into the Channel

RAM. In st_trsf1 the Control FSM also checks, if the last channel has been readout or if the current channel

is masked. If the channel was masked, then the ch_addr is incremented in st_mask and the channel mask

register is shifted.

If the current channel has not been readout yet, the FSM goes to st_trsf2, where the bdout registers

sample the correct command. In this state, if the second FSM has not yet readout the channel ram from

the previous channel, it will delay the execution of the command. Also that will happen, if the 32bit fifo

will not be able to fit the new data coming in, since the bottleneck is the DTC TX bandwidth.

Once the Channel RAM has been read and the fifo can accommodate the new data, the FSM executes a

channel readout command for channel with address ch_addr in st_trsf3. The ram wr_addr is set to 0 in

order to start writing the ram from the start.

In st_trsf4, the FSM waits for ackn to be asserted or for timeout to occur. In st_trsf5 the chip select is

deasserted and the FSM is waiting for the transfer to initialize. If this doesn’t happen a timeout will occurs.

In st_trsf6 the FSM is waiting for the transfer to finish, at this state the wr_addr of the ram increments,

and the Channel ram is filled with data.

When a transfer is occurring the second FSM will assert con_busy, until all the data has been readout from

the RAM. This is because the RAM is implemented as a LIFO, and no new channel data can be read until

all of the previous channel data has been readout.

Once all the channels have been readout a Read Pointer increment command is issued in st_trsf7 &

st_trsf8, which completes the readout of one event.

40 bit Channel RAM

TX Serializers
40bit to 32bit

FSM

Sam
p

les

Sam
p

les

Sam
p

les

H
ead

er

...

wr_addr

rd_addr

trsfn

dstbn

BD[39:0]
ram_dout[39:0] 32 bit FIFOfifo_din[31:0] fifo_q[31:0]

Command
Control FSM

BD[39:0]
cstbn

fifo_rd_req

SA
LT

R
O

 B
U

S

writen

ackn

co
n

_b
u

sy

ch
_r

d
o

_e
n

fifo_almost_full

Address/Data Demux W/R cmd

Counter

DTC RX DecoderCHRDO or ABORT
cmd

fifo_wren

reg

BD[19:0]

saltro_cmd_tx
saltrocmd_ack

fifo_empty

Figure 31: Saltro Controller block diagram.

20

 ETIN35 – IC Project 1 Report

st_idle

 ram_addrclr = 1'b0;
 bdout = 39'h0;
 writen = 1'b0;
 cstbn = 1'b1;

saltrochmask_reg = saltrochmask;
 TimeOutCnt = 16'd0;

 saltro_chrdo_en = 1'b0;
 ch_addr = 8'h0;

re
se

t

st_cmd1

bdout = [saltro_cmd_addr,
saltro_cmd_data];

writen = saltro_cmd_rnw;

saltro_cmd_exec

st_cmd2

cstbn = 0;

st_cmd3

cstbn = 1;

ackn == 0

timeout

ackn == 1

BCAST & timeout

st_cmd4

ackn == 1

!timeout

timeout

st_trsf1

saltro_chrdo_en = 1;

chrdo_cmd

st_trsf8

cstbn = 0;

st_trsf7

bdout =
bcast_rp_inc_cmd;

timeout

ch_addr == 16

st_mask

saltrochmask_reg >> 1;
ch_addr++;

saltrochmask_reg[0] == 1

st_trsf2

bdout = ch_rdo_cmd;

st_trsf3

ram_addr_clr = 1;

satrochmask_reg >> 1;
cstbn = 0;
writen = 0;
ch_addr++;

else

con_busy | fifo_almost_full

else

st_trsf4

ram_addr_clr = 0;

ackn == 1

ti
m

eo
u

t

st_trsf5

cstbn = 1;
ackn == 0

trsfn == 1

timeoutst_trsf6

trsfn == 0

trsfn == 1 | timeout
trsfn == 0

!timeout

ackn == 0

abort_command

Figure 32: Saltro Controller CC FSM block diagram.

The readout waveforms of the first channel from the SALTRO are shown on fig.33. Once the readout

command is issued and the SALTRO chip returns ackn, the transfer of data starts. This causes the wr_addr

to increment and con_busy to be asserted. Once the transfer finishes, the fifo is starting to be filled with

data. Once all the ram has been readout, the next readout command is issued. On fig.34 is shown a

complete readout of the 16 analog channels. During the 5th channel readout, fifo_almost_full is asserted,

which prevents the Control Command FSM from issuing readout commands. Thus the spacing between

readouts is more spaced away.

21

 ETIN35 – IC Project 1 Report

Figure 33: Readout of a single channel.

Figure 34: Readout of 16 channels.

f. DTC TX FSM and Serializers
The DTC TX module consists of an FSM, a 2 bit counter, shift register and 2 serializers. On fig.35 is shown

the block diagram of the DTC TX module. The FSM is triggered when a Reply for a Read Cmd is received,

or a status request, or the event fifo is not empty. The FSM State diagram is shown on fig.36.

tx_word

DTC RETURN LINES

DDR Serializer DTC DATA LINES

DDR Serializer

txword_load

Shift registerDTC TX FSM

Counterbitcnt_flagAddress/Data Demux

DTC RX Decoder

Reply_rdy

Status request

Saltro Controller

fifo_empty

fifo_rd_req

Figure 35: CPLD DTC TX block diagram.

22

 ETIN35 – IC Project 1 Report

st0

tx_word = 16'hBC50;
frame_state = 0;

re
se

t

stst1 – sts4

tx_word = 16'hBC50;
tx_word = 16'hDCDC;

tx_word = status;
tx_word = 16'hBC50;

stcmd1 – stcmd7

frame_state = 1;
tx_word = 16'hBC50;
tx_word = 16'hF7F7;

tx_word = reply_addr[31:16];
tx_word = reply_addr[15:0];
tx_word = reply_data[31:16];
tx_word = reply_data[15:0];

tx_word = 16'hBC50;

!bitcnt_flag

!bitcnt_flag

reply_rdyStatus Request

stevent1

tx_word = 16'hBC50;
fifo_rd_req = 0;

stevent2

tx_word = 16'h5C5C;
fifo_rd_req = 0;

steventfe1

tx_word = 16'h8012;

steventfe2

tx_word = 16'h8012;

stevent3

tx_word = 16'hBC50;
fifo_rd_req = 0;

stevent4

tx_word = tx_word;

fifo_rd_req = 1;

stevent5

tx_word = tx_word;

fifo_rd_req = 0;

stevent6

tx_word = fifo_q[15:0];
fifo_rd_req = 0;

stevent7

tx_word = fifo_q[31:16];
fifo_rd_req = 0;

!fifo_empty

!bitcnt_flag

bitcnt_flag

!bitcnt_flag

bitcnt_flag

fifo_empty

bitcnt_flag

!bitcnt_flag

!bitcnt_flag

bitcnt_flag

!fifo_empty & !timeout

bitcnt_flag

!bitcnt_flag

!bitcnt_flag

bitcnt_flag & fifo_q[31:30] != 11

steventend1

tx_word = 16'hC5D5;
fifo_rd_req = 0;

!bitcnt_flag

steventend2

tx_word = 16'hC5D5;
fifo_rd_req = 0;

b
itcn

t_flag &
 fifo

_q
[3

1
:3

0
] == 2

'b
1

1

!bitcnt_flag

bitcnt_flag

bitcnt_flag

timeout

Figure 36: DTC TX FSM state diagram.

If a CSR reply is to be sent, the FSM enters stcmd1 to stcmd7, where on every 4th dtcclk cycle, the tx_word

gets updated firstly with the DTC header code for a reply “0xF7F7”, then the address and lastly, reply data.

Similarly, if a status request is received, the FSM enters stst1 to stst4, where the DTC header code “DCDC”,

then the status bits (currently only the LSB bit of the status bits are used).

If the event fifo is not empty the FSM enters stevent1, where a synchronizing word BC50 is added in order

to separate, the DTC packets. In stevent2, the DTC event header “0x5C5C” is asserted. In stevent3, the

event fifo is checked if it is empty. If this is the case, the TX FSM will assert a dummy 32 bit word

32’h80128012 while the Saltro Controller is able to read more channels. In stevent4, a request for data

from the fifo is issued. Then stevent5, is added as a delay state, while the fifo_q is available. In st_event6

and stevent7, the data from the fifo is transferred to tx_word. The FSM loops around to stevent3, if more

data need to be transmitted. If the event end is detected in stevent7, one more 32bit event trailer word

“C5D5C5D5C5D5” is transmitted and a status frame is added. The waveforms for the beginning and end

of an event packet transmit are shown on fig.37 and fig.38.

23

 ETIN35 – IC Project 1 Report

Figure 37: Beginning of event frame transfer.

Figure 38: End of event frame transfer.

24

 ETIN35 – IC Project 1 Report

IV. ASIC Synthesis & Place and Route implementation

a. Synthesis constraints used
 Maximum speed.

The CPLD design was synthesized for maximum speed using an unrealistically fast clock of 2 ns clock

period. Due to the CPLD containing proprietary Lattice IPs, they were black-boxed. Thus the area and

timing report of the synthesis is unrealistic with only 5.8 % of the area taken by logic and the rest taken

by the pads (Table 2).
Table 2: Area report for the ASIC synthesis.

Hierarchy Max. speed [µm2] Percentage

pads (wrapper) 390 237 100

Top 22817 5.8

 On table 3 is shown the number of sequential and combinational cells for the CPLD.
Table 3: Cell report for the ASIC synthesis.

Cell type Number

Combinational 21

Sequential 82

Critical path of the synthesized design is way off than realistically with only 3.07 femto seconds.

b. Place and Route
Place and Route was performed on the synthesized netlist in 65nm technology. The layout is shown on fig.39,

which is practically empty, due to the blackboxing of the custom IPs.

Figure 39: CPLD Layout.

25

 ETIN35 – IC Project 1 Report

V. FPGA & CPLD Synthesis.
On table 4 is shown the SRU post Place & Route report utilization of the Virtex 6 FPGA.

Table 4: SRU Virtex 6 Utilization.

Feature Used Available Percentage

Slice Registers 37 900 160 000 23%

Slice LUTs 32 913 80 000 41%

Slices 12 181 20 000 60%

RAMB36E1/FIFO36E1 99 264 37%

RAMB18E1/FIFO18E1 6 528 1%

BUFG/BUFGCTRL 16 32 50%

ILOGICE1/ISERDESE1 160 600 26%

OLOGICE1/OSERDESE1 41 600 6%

BSCAN 1 4 25%

BUFR 3 30 10%

EFUSE_USR 1 1 100%

GTXE 2 20 10%

IBUFDS_GTXE1 1 10 10%

MMCM_ADV 2 10 20%

STARTUP 1 1 100%

SYSMON 1 1 100%

TEMAC_SINGLE 2 4 50%

On table 5 is shown the post Place and Route utilization of the Lattice MachXO2 CPLD.

Table 5: Lattice MachXO2 CPLD utilization.

Feature Used Available Percentage

IOLOGIC 24 280 8%

SLICES 862 2160 39%

GSR 1 1 100%

EBR 7 10 70%

PLL 1 2 50%

26

 ETIN35 – IC Project 1 Report

VI. Implementation Results & Verification
The block diagram of the prototype system implemented in hardware is shown on fig.40. A PC is sending commands using

custom software. A 1GBit/s switch is used to route the commands and readout data, since the PC has only 1 LAN card. The

SRU is triggers using a special trigger UDP packet. The SRU generates a test pulse is send on a NIM output loaded with 50

Ω. This test pulse can be moved around by software with reference to the L1 trigger. The test pulse wire is taped across

the PCB traces of the analog channels, which capacitively couples with the edges of the pulse. Thus is simulates the signals

that will be in the detector. In order to verify internal and external signals, Xilinx ChipScope and Lattice Reveal were used

with corresponding JTAG programmers.

Prototype board

SRU CPLD SALTRO1GBit/s switchPC

slow control

readout
Ethernet DTC Saltro intf.

test pulse

ch1

ch16

50Ω ...

Lattice JTAG
Programmer

Xilinx JTAG
Programmer

Figure 40: Hardware implementation block diagram.

Due to limitations of how deep the DTC RX memory in the SRU is, and the Readout FSM, only a single jumbo Ethernet

frame per event can be readout. This is enough to readout 2-3 channels with up to 1024 samples. Or 16 channels with

about 150 channels each. On fig.41 are shown 2 events, with different sampling clock (i.e. the resolution is different), each

about 975 samples long.

a) b)

Figure 41: Readout of 2 channels with: a) 20MHz sampling clock b) 10 MHz sampling clock.

27

 ETIN35 – IC Project 1 Report

VII. Conclusion
It was a nice learning experience with this project and a lot of head scratching was done. The transition to 65nm was

relatively painless and took only a couple of days, affirming the notion of reusability. Having experience and scripts from

the 130nm synthesis and place & route saved a lot of time.

I learned than having a well-documented design is a must in being successful, since the code I took over, isn’t well

documented, and I spent a huge amount of time trying to figure out what it was doing.

The work on this projects will continue as my master thesis, by implementing support for 40 DTC boards readout each

with 128 channels. And also future improvements could be investigated such as power-saving and error checking.

VIII. Literature
1. SALTRO ADC chip specification: http://www.hep.lu.se/eudet/saltro/S-ALTRO_Documentation-1.pdf

2. DTC Link protocol specification:

https://twiki.cern.ch/twiki/pub/Sandbox/FanZhangSRUFiles/DTCLinkProtocolforEMCalPHOS20140311.pdf

3. UDP Command packet specification:

http://www.hep.lu.se/eudet/saltro/developdoc/SRUGbEDetectorControlSpecification14032601.pdf

http://www.hep.lu.se/eudet/saltro/S-ALTRO_Documentation-1.pdf
https://twiki.cern.ch/twiki/pub/Sandbox/FanZhangSRUFiles/DTCLinkProtocolforEMCalPHOS20140311.pdf
http://www.hep.lu.se/eudet/saltro/developdoc/SRUGbEDetectorControlSpecification14032601.pdf

28

 ETIN35 – IC Project 1 Report

Appendix 1: Synthesis script
Use: source cpld_synth.tcl

analyze -library WORK -format verilog "./bb_rtl_lib/ilvds.v";

analyze -library WORK -format verilog "./bb_rtl_lib/olvds.v";

analyze -library WORK -format verilog "./bb_rtl_lib/pll_adc.v";

analyze -library WORK -format verilog "./bb_rtl_lib/fifo_dc.v";

analyze -library WORK -format verilog "./bb_rtl_lib/ch_ram.v";

analyze -library WORK -format verilog "./bb_rtl_lib/event_fifo.v";

analyze -library WORK -format verilog "../cpld/bitddr.v";

analyze -library WORK -format verilog "../cpld/dtc_tx.v";

analyze -library WORK -format verilog "../cpld/dtc_rx.v";

analyze -library WORK -format verilog "../cpld/dtcTrigDecode.v";

analyze -library WORK -format verilog "../cpld/dtc_cmd.v";

analyze -library WORK -format verilog "../cpld/dtc_top_mcm.v";

analyze -library WORK -format verilog "../cpld/memory_interface.v";

analyze -library WORK -format verilog "../cpld/fed_build.v";

analyze -library WORK -format verilog "../cpld/altro_if.v";

analyze -library WORK -format verilog "../cpld/LGFlagModule.v";

analyze -library WORK -format verilog "../cpld/altro_top.v";

analyze -library WORK -format verilog "../cpld/Mcmtop.v";

analyze -library WORK -format verilog "./rtl_pads/boardcontroller_pad.v";

elaborate boardcontroller_pad -library WORK

Specify clocks & area constraints..

High Speed

create_clock -period 2 -name my_dtc_clk dtc_clk_p

set_clock_uncertainty 0.04 my_dtc_clk

set_fix_hold my_dtc_clk

Do the real synthesis.

compile -map_effort high

change_names -rules verilog -hierarchy

Save the stuff

write -hierarchy -format ddc -output ./netlists/boardcontroller.ddc

write -hierarchy -format verilog -output ./netlists/boardcontroller.v

write_sdf ./netlists/boardcontroller.sdf

write_sdc ./netlists/boardcontroller.sdc

Check the design

check_design

report_timing

report_constraint -all_violators

report_area -hierarchy

29

 ETIN35 – IC Project 1 Report

Appendix 2: Place and route script
Source the globals & the corners.

source ./boardcontroller.globals

Initialize the design

init_design

Connect the power nets.

clearGlobalNets

globalNetConnect VDD -type tiehi -inst *

globalNetConnect GND -type tielo -inst *

globalNetConnect VDD -type pgpin -pin VDD* -inst *

globalNetConnect GND -type pgpin -pin GND* -inst *

Set the dimentions of the die.

floorPlan -site CORE -s 1200 1200 20 20 20 20

Position the board controller instance.

setObjFPlanBox Module i_boardcontroller 200 200 500 500

Add Power Rings & Slices

set sprCreateIeRingNets {}

set sprCreateIeRingLayers {}

set sprCreateIeRingWidth 1.0

set sprCreateIeRingSpacing 1.0

set sprCreateIeRingOffset 1.0

set sprCreateIeRingThreshold 1.0

set sprCreateIeRingJogDistance 1.0

addRing -stacked_via_top_layer M7 -around core -jog_distance 0.4 -threshold 0.4 -nets {GND VDD} -

stacked_via_bottom_layer M1 -layer {bottom M3 top M3 right M4 left M4} -width 2 -spacing 2 -offset 2

Add the stripes

set sprCreateIeStripeNets {}

set sprCreateIeStripeLayers {}

set sprCreateIeStripeWidth 10.0

set sprCreateIeStripeSpacing 2.0

set sprCreateIeStripeThreshold 1.0

addStripe -block_ring_top_layer_limit M5 -max_same_layer_jog_length 0.8 -

padcore_ring_bottom_layer_limit M3 -set_to_set_distance 100 -stacked_via_top_layer M7 -

padcore_ring_top_layer_limit M5 -spacing 2 -merge_stripes_value 0.4 -layer M4 -

block_ring_bottom_layer_limit M3 -width 2 -nets {GND VDD} -stacked_via_bottom_layer M1

addStripe -block_ring_top_layer_limit M4 -max_same_layer_jog_length 0.8 -

padcore_ring_bottom_layer_limit M2 -set_to_set_distance 100 -stacked_via_top_layer M7 -

padcore_ring_top_layer_limit M4 -spacing 2 -merge_stripes_value 0.4 -direction horizontal -layer M3

-block_ring_bottom_layer_limit M2 -width 2 -nets {GND VDD} -stacked_via_bottom_layer M1

Place standard cells

setPlaceMode -fp false -prerouteAsObs {1 2 3 4}

placeDesign

setDrawView place

Create clk tree

clockDesign -specFile ./soc/clock.ctstch -outDir clock_report -fixedInstBeforeCTS

Add Fillers

addFiller -cell HS65_LH_FILLERCELL4 HS65_LH_FILLERCELL3 \

 HS65_LH_FILLERCELL2 HS65_LH_FILLERCELL1 -prefix fico

Add Filler IO cells

addIoFiller -cell IOFILLERCELL64_ST_SF_LIN -prefix if64

addIoFiller -cell IOFILLERCELL32_ST_SF_LIN -prefix if32

addIoFiller -cell IOFILLER16_ST_SF_LIN -prefix if16

addIoFiller -cell IOFILLER8_ST_SF_LIN -prefix if8

addIoFiller -cell IOFILLER4_ST_SF_LIN -prefix if4

addIoFiller -cell IOFILLER2_ST_SF_LIN -prefix if2

addIoFiller -cell IOFILLER1_ST_SF_LIN -prefix if1

Connect VDD & GND to the pads.

30

 ETIN35 – IC Project 1 Report

sroute -connect { blockPin padPin padRing corePin floatingStripe } -layerChangeRange { M1 M7 } -

blockPinTarget { nearestRingStripe nearestTarget } -padPinPortConnect { allPort oneGeom } -

stripeSCpinTarget { blockring padring ring stripe ringpin blockpin } -checkAlignedSecondaryPin 1 -

blockPin useLef -allowJogging 1 -crossoverViaBottomLayer M1 -allowLayerChange 1 -targetViaTopLayer M7

-crossoverViaTopLayer M7 -targetViaBottomLayer M1 -nets { GND VDD }

NanoRoute normal wires

setNanoRouteMode -quiet -timingEngine {}

setNanoRouteMode -quiet -routeWithSiPostRouteFix 0

setNanoRouteMode -quiet -routeTopRoutingLayer default

setNanoRouteMode -quiet -routeBottomRoutingLayer default

setNanoRouteMode -quiet -drouteEndIteration default

setNanoRouteMode -quiet -routeWithTimingDriven false

setNanoRouteMode -quiet -routeWithSiDriven false

routeDesign -globalDetail

sroute -noBlockPins -noPadRings -jogControl { preferWithChanges differentLayer }

fit

globalDetailRoute

Save design & netlists and other files.

saveDesign ./soc/boardcontroller.enc

saveNetlist ./netlists/boardcontroller_layout.v

#write_sdf -version 2.1 -interconn nooutport -view NOM ./netlists/boardcontroller_layout_NOM.sdf

#write_sdf -version 2.1 -interconn nooutport -view SS ./netlists/boardcontroller_layout_SS.sdf

#rcOut -spf ./netlists/boardcontroller_ss.spf -rc_corner SS

#rcOut -spef ./netlists/boardcontroller_ss.spef -rc_corner SS

#rcOut -spf ./netlists/boardcontroller_nom.spf -rc_corner NOM

#rcOut -spef ./netlists/boardcontroller_nom.spef -rc_corner NOM

