SiGe PLL design at 28 GHz

2015-09-23

Tobias Tired

Electrical and Information Technology Lund University

Presentation outline

- E-band wireless backhaul
- Beam forming concept
 - Linear timed and phased arrays
- Transmitter architecture

PLL architecture

- 28 GHz QVCO
- Current-Mode-Logic ÷16 divider
- Gilbert mixer phase detector
- Active low pass filter
- Phase control by current injection into phase detector
- Measurement setup
- Conclusions

E-band wireless backhaul

•The E-band at 71-76 GHz and 81-86 GHz: wireless point-to-point communication

• 5 GHz of spectrum \Rightarrow data rates of Gb/s

- costly optical fiber backhaul \Rightarrow wireless data link
- Heterogeneous networks: macro, pico and femto cells ⇒ large number of base stations

A wireless backhaul is highly advantageous

Beamsteering concept

- Beamsteering \Rightarrow equal to spatial filtering of radio signals
- Array of antennas ⇒ steered to block transmission to certain directions and to provide antenna gain to a desired direction

- Applications:
 - Radio communication
 - Surveillance
 - Radar
 - Sonar
 - Audio

Linear timed arrays

- Linear equally spaced array with 8 TX antenna elements
- Wave plane at transmit angle α

• Different time of departure Δt

$$\Delta t = \frac{(n-1)d\sin\alpha}{c}$$

c= light speed, d = element spacing

- Beamforming TX: aligns the signals to the antenna elements in time
 - Coherent combination to one direction and suppression to other directions

Use small fractional BW \Rightarrow Realization of time delay with **fixed phase shift** \Rightarrow Linear phased array

E-band transmitter architecture

- 84 GHz TX carrier from a 28 GHz QVCO
- 28 GHz I/Q mixer: upconversion of BB signal.
- Mixing of 56 GHz second harmonic in QVCO tail with 28 GHz
- Less I/Q phase error compared 84 GHz QVCO

•Phase control: PD output $\propto \Delta \Phi$ of f_{div} and f_{ref} \square Inj. DC: QVCO phase shift

E-band beam steering architecture

- Beam steering for two TX paths
- Layout: PLLs close to mixers
- Phase control: PD DC current injection
- HF routing: Only $f_{ref} \longrightarrow$ reduced phase/amp imbalance and P_{DC}

28 GHz QVCO with I/Q phase error tuning

Divide by 16

- Divider implemented with four cascaded CML blocks
- 1.5 V supply voltage Current consumption: 13mA
- PN at divider output: -134 dBc/Hz at 1 MHz offset
- Compared to -129 dBc/Hz from ideal division of min. sim. QVCO PN of -105 dBc/Hz @ 1MHz offset

Phase detector and active loop filter

- Phase control: DC current injection into PD
- PD output prop. to phase difference between f_{ref} and f_{div}
- \Rightarrow Phase difference forced on QVCO for constant frequency
- I_{DC} = 1.3 mA
- Low pass filter: Active RC filter plus passive RC pole
- $I_{DC} = 1 \text{ mA}$
- •Alter VCC_LF \Rightarrow tuning range \checkmark

Phase detector and active loop filter

Simulation results: PD and LF gain

•PD out prop. to phase difference of ${\rm f}_{\rm ref}$ and ${\rm f}_{\rm div}$

- PD: I_{DC} = 1.3 mA
 LF: I_{DC} = 2 mA
- PD gain: 0.55 mV/degree
- PD +LF gain: 8.6 mV/degree
- 24 dB gain in active LF
- 1.2 V output range

PLL simulation results

Simulator convergence within 10 minutes !

- Simulation tool: Cadence Spectre RF
- Extremely difficult to simulate a complete PLL
- ⇒ Use combination of Verilog-A modeling and schematics
- This work: Verilog-A model of QVCO
- Mimics QVCO with phase noise and K_{vco}
- Spectre RF PSS + pnoise + pstb

 \Rightarrow PN, BW and phase margin

Phase margin: 44° at 4.1 MHz offset

Measurement setup

- 1.75 GHz reference signal: split to balun + VNA input 1
- VNA input 2: Divider output $\Rightarrow \Delta \Phi$ measurement
- PN measurement: 28 GHz output down converted with LO >=26 GHz

28 GHz QVCO with phase error detector and tuner

QVCO measurement results Measured on previous chip

- K_{VCO} dependency of varactor voltage: $K_{VCO} = 200 \text{ MHz/V} @ V_{ctrl} = 6.0 \text{ V}$
- PN = -100 dBc/Hz
- At low V_{ctrl} : VCO varactor forward biased \Rightarrow PN /

PLL beam steering measurements

Conclusions

- Project status September 2015
- Beam steering 28 GHz PLL performance verified

28 GHz QVCO CML divider PD with phase control Active LF for extended tuning range

• Remaining work:

Simulation test bench for complete TX Measure three previously taped out SiGe E-band PAs

