

Hardware Accelerators for Massive MIMO

Hemanth Prabhu, Lund University, LUND, Sweden

Outline

- Why hardware accelerator
- Detector in LUMAMI
- ASIC implementation of pre-coders
- Pre-coding strategies for hardware imparity
- Conclusion

Linear pre-coders and detectors

• Linear Pre-coder

• Similarly uplink can be performed using linear detectors.

Processing Cost

• Complexity break-down for ZF detector/pre-coder

$$H^{\dagger} = H^H (HH^H)^{-1}$$

Inner matrix multiplication $-0.5 MK^2$ Matrix Inversion $-cK^3$ Matrix-vector multiplication $-N_{int}(K^2 + MK)$

- Needs to be performed frequently (coherence time) and also over the sub-carriers.
- Hence the demand for hardware accelerators

Linear Detector in LuMAMI

Neumann Series to perform matrix inversion

$$oldsymbol{Z}^{-1}pprox \sum_{n=0}^L ig(oldsymbol{I}_K -oldsymbol{X}^{-1}oldsymbol{Z}ig)^noldsymbol{X}^{-1}$$
 ,

requires simple matrix multiplications, and has high degree of re-use.

5

FPGA Results

- Occupies 270 DSP blocks, 15% of Kintex-7 410T
- Clock frequency of 150 MHz.
- Takes around 0.11 ms to perform detection over 150 subcarriers.

Pre-coder in ST-28nm

The implementation has 4 modules

- QR decomposition for precoding
- Cholesky decomposition for detection
- PAR aware pre-coding
- JTAG based test logic

Algorithm Evaluation

NS – Neumann Series (L – iterations) LDL – Cholesky

Decomposition

Beta is the ratio of number of base station antennas to users.

Top Level Architecture for pre-coder

Systolic Arrays --- high throughput, high flexiblity, simple scheduling, and easy design/verification.

Avoid generating Q matrix and inverse of R matrix explicitly.

Unified Processing Element

ASIC Results

- Supports antenna configurations upto 128x8 (128 base-station antennas and 8 users).
- Total die area of 1mm² with max freq of 250MHz at 1 V, and power consumption of 29mW.
- Performance
 - Performs 8x8 QR decomposition in 72 cycles.
 - Performs 8x8 cholesky based data detection in 325 cycles.

ST 28nm FD-SOI implementation

Pre-coding strategies to tackle PAR

- PAR is a well known problem in OFDM based systems, with techniques like "tone reservation" to tackle it.
- Massive MIMO inherently has a large degree of freedom (antennas) which can be utilized to reduce PAR.
- One technique we coined as "Antenna Reservation"
- Constant Envelope pre-coding

PAR Aware Pre-coding – Antenna Reservation

- Low complexity and existing architecture can be re-used for this technique.
- Lowers back-off by 3 dB with only 15% increase in complexity

Constant Envelope pre-coding

Pre-coding also can be seen as

 $\underset{\boldsymbol{x}}{\text{minimize}} \quad ||\alpha_{\text{Tr}} \, \boldsymbol{s} - \boldsymbol{H} \boldsymbol{x}||_2$

An additional stringent constraint can be added to completly matigate PAR.

This strigent constraint based pre-coding can be solved using cordinatedescent method.

Conclusion

The matrix properties arising in massive MIMO can be utilized to implement efficient hardware.

Neumann series is very good for implementing fast proto-types on FPGA and for hardware re-use.

The large degree of freedom (antennas) is exploited to reduce PAR and can be used to tackle other hardware impairments.

