

CMOS Switched-R-C Techniques for Interference Rejection and Self-Interference Cancellation

Eric Klumperink A. Ghaffari, D.J. v.d. Broek, B. Nauta University of Twente, CTIT, IC Design Enschede, The Netherlands

Trend to remove dedicated filtering

Key Observations:

- $\Box \quad \text{Trend Analog} \Rightarrow \text{Digital}$
- Still analog needed for feasibility
- Flexibility ⇔ less RF pre-filtering
- Different names:
 - "SAW-less"
 - "Inductorless", "wideband"
 - Reconfigurable
 - Software Defined Radio (SDR)
 - Cognitive Radio
- Focus on flexible techniques to:
 - Handle blockers ⇔ high CP1dB, IIP3 needed
 - Reject interference flexibly filter/cancel selectively

Compression Problem

 \square P_{RF}=0 dBm \Leftrightarrow 1mWatt \Leftrightarrow .63 V_{pk-pk} in 50 Ω Typical supply: VDD=1.2V 6dB gain ⇔ clip to VDD! Compression: Vout reduced gain: A2<A1</p> ...to hard clipping/blocking renders "Cross-modulation" Higher order distortion terms (IIP3/IIP2 model NOT valid!) Higher Noise Figure ("Blocker NF")

in

- L-C "tracking" filter: $\omega_0 = \frac{1}{\sqrt{LC}}$ (limited tuning-range, limitted Q and big size)
- More flexibility: clocked switches + R + C
 - Interference cancelling high CP1dB Notch filter
 - Self-Interference Cancelling Full-Duplex Rx

Notch Filter via Switched-Cap Network

Notch= Up-Converted High-Pass Filter

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 7

8-path Notch-Filter

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 8

Approximate RLC Model

$$R_{P} = \frac{N^{2}(1 - \cos(2\pi / N))}{2\pi^{2} - N^{2}(1 - \cos(2\pi / N))}(R_{S} + R_{L})$$

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 9

Benchmark

- [1] A. Bevilacqua et al., "A 0.13 um CMOS LNA with Integrated Balun and Notch Filter for 3-to-5 GHz UWB Receivers," IEEE ISSCC Dig. Tech. Papers, pp. 420– 421, Feb. 2007
- [2] J. Y. Lin, H. K. Chiou, "Power –Constrained Third-Order Active Notch Filter Applied in IR-LNA for UWB Standards," IEEE Trans. Circuits Syst. II, vol. 58, no. 1, pp. 11-15, Jan. 2011.

Q-enhanced LC resonator embedded in an LNA

Comparison (I)

	Differential	Single- Ended	[1]	[2]		
Technology	CMOS 65nm	CMOS 65nm	CMOS 0.13um	CMOS 0.18um		
Active Area	0.87mm ²	0.87mm ²	1.6mm ^{2(*)}	0.51mm ^{2(*)}		
Power	3.5mW- 30mW	2mW-16mW	7.5mW	1.8mW		
Max. Rejection	21dB	22dB	44dB	35.7dB		
Rejection	>18dB over 6MHz	>18dB @ over 6MHz	>10dB over 20MHz	NA		
(*) Notch Filter + LNA 5dB with -10dBm Blocker						

Comparison (II)

	This Work Differential	This Work Sngl-ended	[1]	[2]
Gain	-1.4 to -2.8dB	-1.4 to -2.5dB	19.4dB(*)	14.7dB(*)
NF(dB)	1.6-2.5dB	<u>1.2-2.</u> 8dB	3.5dB(*)	5.3dB(*)
P _{1dB} (dBm)	6	2-6	-9.4(*)	NA
IIP3(dBm)	> +17	> +18	-2.9(*)	-2.5(*)
LO Leakage (dBm)	< -60	<-75	-	-
Tuning Range	0.1-1.2GHz	0.1-1.2GHz	4.7- 5.4GHz	5.4-6GHz

(*) Notch Filter + LNA

ISSCC '15 / JSSC Dec'15: A Self-Interference Cancelling Receiver for In-Band Full-Duplex Wireless with Low Distortion under Cancellation of Strong TX Leakage

Dirk-Jan van den Broek, Eric Klumperink, Bram Nauta

IC-Design group, University of Twente, the Netherlands

- TX and RX simultaneously at same frequency
- Why?
 - Up to 2x spectral efficiency

- TX and RX simultaneously at same frequency
- Why?
 - Up to 2x spectral efficiency
 - Simplified / flexible frequency planning

- TX and RX simultaneously at same frequency
- Why?
 - Up to 2x spectral efficiency
 - Simplified / flexible frequency planning
 - Reduced air interface delay (e.g. FD relaying)

- TX and RX simultaneously at same frequency
- Why?
 - Up to 2x spectral efficiency
 - Simplified / flexible frequency planning
 - Reduced air interface delay
 - Benefits / applications in higher layers
 - Simultaneous data & control
 - Reciprocal channel
 - ...?

• Why not? (1)

Challenge: Self-interference (SI)

Challenge: Self-interference (SI)

Self-interference Contributions

Focus on <u>one full-duplex node</u> and its SI-rejection

Self-Interference Cancellation (SIC

Handheld device \rightarrow varying antenna isolation

- \rightarrow e.g. 20 dB worst-case isolation
- \rightarrow 90 20 = 70 dB *cancellation* required

Self-Interference Cancellation

Handheld device \rightarrow varying antenna isolation

- \rightarrow e.g. 20 dB worst-case isolation
- → 90 20 = 70 dB cancellation required

Digital-only SI-Cancellation

Deterministic components \rightarrow cancel in digital Noisy components must be 90dB down before digital!!

Digital-only SI-Cancellation

RF + digital SI-Cancellation

RF + Digital SI-Cancellation

Self-interference-to-Noise-and-Distortion ratio

RF + Digital SI-Cancellation

RF + digital SI-Cancellation

Mixer-first architecture for good linearity

Cross-domain cancellation

Cancellation TX RF \rightarrow RX analog BB

Cross-domain cancellation

Combine phase, attenuation & downmixing

Short-range, low-power full-duplex High integration potential

- VM \rightarrow robust cancellation for changing near-field
- Attenuator sets VM range to worst-case SI

Mixers process full SI power:

Linearity crucial for high SINDR \rightarrow <u>Passive mixers</u> TIA and ADC after cancellation: relaxed

Main RX

Switched resistor to virtual ground
31 slices

SI-currents diverted through passive networks

• VM = sliced main mixer + <u>static</u> phase rotator

• VM = sliced main mixer + <u>static</u> phase rotator

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 39

• VM = sliced main mixer + <u>static</u> phase rotator

• VM = sliced main mixer + <u>static</u> phase rotator

- VM = sliced main mixer + <u>static</u> phase rotator
- 31 slices: ("5 bits")
- 32x32 grid
- 1024 points
 - → 28.5 dB worst-case cancellation

Single VM slice

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 43

Chip photograph

65nm CMOS 1.2V supply 1.4x1.4mm

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 44

Measured: Cancellation

- 20 tones in 16.25 MHz BW @ 2.5 GHz (WLAN-like)
- Emulated SI channel: arbitrary phase & amplitude
- On-chip VM finds best cancellation point
 - Search algorithm: power minimization

Measured: Cancellation

- 20 tones in 16.25 MHz BW @ 2.5 GHz (WLAN-like)
- Emulated SI channel: arbitrary phase & amplitude
- On-chip VM finds best cancellation point
 - Search algorithm: power minimization

Emulated SI-channel

Measured: Cancellation

Measured IM3 without SIC

- 2-tone self-interferer
- 2.5 GHz

SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 48

Resulting SINDR without SIC

- 2-tone self-interferer
- 2.5 GHz

Measured IM3 with SIC

- 2-tone self-interferer
- 2.5 GHz

Resulting SINDR with SIC

- 2-tone self-interferer
- 2.5 GHz

SINDR Comparison

• In 16.25 MHz BW

Derived SINDR

• In 16.25 MHz BW

Conversion gain under SI

Desired signal only compressed at >0 dBm SI

Linearity & cancellation: Summary			
Assuming 20 dB antenna-isolation			
	w/o cancell.	w/ cancell.	
Maximum link budget	66+20 = 86dB	69+20 = 89dB	
(SINDR + isolation)	86dB	89dB	

Linearity & cancellation: Summary				
Assuming 20 dB antenna-isolation				
	w/o cancell.	w/ cancell.		
Maximum link budget (SINDR + isolation)	86 dB ^{20dB} isol.	20dB isol. + 89 dB 27dB canc.		
Digital cancellation requirement (SINDR – cancellation)	66 dB	69–27 = 42 dB		

ADC and TX EVM requirements: reduced to feasible levels

Linearity & cancellation: Summary			
Assuming 20 dB antenna-isolation			
	w/o cancell.	w/ cancell.	
Maximum link budget (SINDR + isolation)	86 dB	89 dB	
Digital cancellation requirement (SINDR – cancellation)	66 dB	42 dB	
TX power @			

Linearity & cancellation: Summary			
Assuming 20 dB antenna-isolation			
	w/o cancell.	w/ cancell.	
Maximum link budget (SINDR + isolation)	86 dB	89 dB	
Digital cancellation requirement (SINDR – cancellation)	66 dB	42 dB	
TX power @ max. link budget (SI + isolation)	-8 dBm	2 dBm	

Short-range full-duplex achievable

Broadband RX performance

Performance summary

	Molnar, RFIC2014	This work	
Topology	Duplexer LNA's	SI-cancelling VM	
Technology	65nm CMOS 1.2/2.5V	65nm CMOS 1.2V	
Operating freq.	0.1 - 1.5 GHz	0.15 - 3.5 GHz	
Power cons.	43-56mW	23-56mW	
Noise figure	5-8dB	10.3-12.3dB (HD: 6.3)	
Baseband BW	-	24 MHz (2x12)	
TX/RX isolation	33dB	27dB	
SINDR in	57 dB peak	69.5 dB peak	
16.25MHz	@ -38 dBm SI*	@ -18 dBm SI	
Effective in-	-7.2 dBm*	+19 dBm	
band IIP3			
No antenna isolation assumed for fair comparison * Derived from reported IIP3's and NF			
SoS workshop: CMOS Switched-R-C Techniques for Int.Rej. and SIC Sep 24, 2015 60			

Conclusions

- Cancel strong interference by Passive switch-R-C
- Notch N-path filter: rejection at clock frequency
- SI-cancelling receiver in 65nm CMOS:
 - Phase / amplitude / downmixing: Vector Modulator
 - Frequency-flexible operation & cancellation
 - Mixer-first → Divert SI by passive networks
 → Good in-band linearity → high SINDR
 - Relaxed ADC and TX EVM requirements
- Total ~89 dB link budget potential in 16.25 MHz
 - Enables low-power, short-range full-duplex wireless