Linear Algebra for

Wireless Communications DI G cee

Assume that we have a differential equation of the type

Lecture: 6 C(jj_ltl Au
. . . Given an initial value u(0) the solution becomes
Differential equations, u(t)=e"u(0)
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Differential equations (cont.) Differential equations — stability

Im
... and the solution can be expressed in terms of "ordinary” exponentials:
Zit Stable Unstable
¢ i ide: region region
From previous slide:

u(t)=SeMS™u, =ce”x, +...+c e™'xy Re

— ‘. — Stability depends on the eigenvalues:
S c=0C +...+C
- . - DRI N

stable if all eigenvalues satisfy Re ﬂk <0

e Linear combination of N "pure solutions”
depending only on eigenvalues and
corresponding eigenvectors

neutrally stable if some Re ﬂk = 0 and all the other Re ﬂ’m <0

unstable if at least one eigenvalue has Re ﬂk >0
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Matrix exponential — a warning

Matrix exponential — how to calculate

Many properties of the matrix exponential are analogus to the properties of ordinary
exponentials

... but there are differences!

Example:
. ) a+b anb
Ordinary exponential e =€ee
Matrix exponential e’““ z eAeB
Equality holds, however,
if A and B commute, i.e.,
if AB = BA.
2010-03-10 Ove Edfors

There are many suggested methods for calculating matrix exponentials.

Diagonalization is one way, if the matrix in the exponent can be diagonalized:

pAl _ geitgt |:A — SAS_l:I

If A is nil-potent, i.e., A™ = 0 for some m, we can use the definition (finite sum):

m-1 tk
At k
e =) A —
o k!
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Matrix exponential — how to calculate

Matrix exponential - determinant

If A is a projection matrix, i.e., if A2 = A the definition gives:
0 o .tk 0 tk

tk
eA‘=ZA"—:ZA"E:I+k§AE

k=0 k ! k=0

:I+Ailt(—k|:I+A(e‘ -1)
k=1 ™ =

For the full treatment:
C. Moler & C van Loan. Nineteen Dubious Ways to Compute the Exponential of a

Matrix, Twenty-Five Years Later. SIAM REVIEW (electronic publ. 2003)
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The determinant of an matrix exponential is:

det(eAt) _ etr(At)

Important consequence: A matrix exponential is always

If A can be diagonalized: invertible, since its determinant cannot be zero!
det(e* ) =det(Se*S™) = det(S)det (e )det(S™) = det (e ) =
et
— det _ ot .. gt — glhther At _ gli(A)
o/nt
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EIGENVALUES ARE IMPORTANT!

Gershgorin’s circle theorem

We have seen that eigenvalues are important in many situations. They determine the
stability of both difference and differential equations ... they can help us to find solutions
to many problems formulated in terms of matrix equations ... etc.

To get some more feeling for the eigenvalues of matrices, let’s take a look at Gershgorin’s
Cricle Theorem. [Only briefly explained in the textbook.]
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Given an NxN matrix A define the following sums of magnitudes of off-diagonal elements

in each row:
N
Rk = Z‘ak,l‘
1=1

1k

Now, each eigenvalue of A is in at least one of the following (Gershgorin) disks:

{z:]z-a,|<R}

This theorem can be used to quickly bound the magnitude of eigenvalues, in some
situations find out if a matrix is non-singular (if all eigenvalues are non-zero), if a
system of difference or differential equations are stable (not always possible), etc.
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Gershgorin’s circle theorem (cont.)

The Gersgorin circle theorem is suprisingly simple to prove.

Let x be an eigenvector of an NxN matrix A = [amvn], with corresponding eigenvalue A, i.e.,
AX = Ax.

Furher, assume that the kth element x, of x is the one with the largest magnitude (cannot
be zero!).

Ax = Ax now gives (look at element k):

N N
IZak,,xI =X = IZakllxI = A% =3 % =(A—a, )%
=1 =1

12k

<1
N N
= Ji-aglx]<Ylaalx] = [A-ag]<a
I=1 -1
Ik 1=k
N
= V“_ak,k‘ < z‘ak,l‘ DONE!
I;k
2010-03-10 Ove Edfors 11

Use the theorem on the X = diagonal elements of A O = eigenvalue of A
following matrix: By roxvs [
10 5 4 R, :Z‘ak‘l‘ E
1=1
A= 3 5 O 1k +
R =[5l =9 wm@% e
2.7 -10] g -pg+f=3 ;
. R, =|2|+[7|=9 E
Conclusions:

- Ais invertible (by rows)

- No eigenvalue has magnitude By columns
larger than 17 (by columns). R = N
- No eigenvalue has a I ;‘ak "
magnitude less than 1 (by rows). kel
R =[3+|2|=5
... more ?
R, =[5 +|7|=12
R, =|4|+|0] =4
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Gershgorin’s circle theorem (cont.)

Gershgorin’s circle theorem (cont.)

We know that all eigenvaues must be in at least one of the Gershgorin disks, i.e., all
eigenvalues are found SOMEWHERE INSIDE THE UNION of the Gersgorin disks.

Can we say anything more about where eigenvalues are?

Example 1 (fully joined union): Example 2 (three disjoint sets)

Im

Re Re

Where are the
eigenvalues in
these cases?
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An extra result concerning the location of eigenvalues in the Gershgorin disks:

If the union of all Gershgorin disks consists of several disjoint subsets, each
such subset contains a number of eigenvalues corresponding to the number
of disks forming the subset.

Example 2 on previous slide:
Im

Three eigenvalues
in this subset!

The eigenvalues can
be anywhere in the
Re subset!

One eigenvalue
in each of these!
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Gershgorin’s circle theorem (cont.)

Gershgorin’s circle theorem (cont.)

A simple illustration of how to prove the result on the previous slide:

An arbitrary square matrix A can be written in the form:
a, ..oay | [ay 0 ... &,

dy; o Ay Ay Ayy 0

~ I _
Y Y

D = diagonal entries B = off-diagonal entries

Now, define a matrix G(a) as

G(a)=D+aB
where a is a real number in the interval [0,1].
We have: G(O) =D G(l) =A
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We know three things:
1. The eigenvalues of G(0) are exactly the diagonal entries (of A).
2. The eigenvalues of any matrix are continuous functions of

the matrix entries (or a in this case). If matrix elements change
smoothly, there are no "jumps” in the eigenvalues.

3. For each value on a, Gershgorins circle theorem tells us in which
set all eigenvalues of G(a) are.
Now, the trick: A smooth transition froma=0toa =1
Im

%Re

a=0 a=0.5 a=1

The eigenvalues that start at the diagonal entries (a = 0) cannot escape to another

!
disjoint subset of the Gershgorin disks, since they are continuous functions of a. DONE!
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Symmetric/hermitian
matrices
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Hermitian matrices

A Hermitian matrix has the property

Hermitian (or real symmetric) matrices have the following properties:

1. xHAx is real for all complex vectors x.
2. every eigenvalue is real.

3. two eigenvectors coming from different eigenvalues are orthogonal.
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Hermitian matrices [cont.]

1. xHAx is real for all complex vectors x.

Let’s see what we get when we take the complex conjugate of the
scalar x"Ax:

xTAx =(XHAX)H =x"A"x=x"Ax

xHAXx equals its own complex conjugate => REAL!
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Hermitian matrices [cont.]

2. every eigenvalue is real.

We have
AX = AX

multiplying by x" from the left gives

xTAx = Ax"x

\

Real Real
Prop 1.
which forces A to be real.
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Hermitian matrices [cont.] Unitary matrices

Unitary matrices are the complex equivalents of real orthogonal matrices.
3. two eigenvectors coming from different eigenvalues are orthogonal.

A real orthogonal matrix Q has orthonormal columns:
We have T
QQ=I
Ax, =A4X, and AX, =X,
We can show that

(lel)H X, = (Axl)H X, =x, A"x,

_ < H _ < H
=X, AX, =X, 4X,
or (eigenvalues are real, Prop 2.)
H _ H
AX, X, = XX,
which for different eigenvalues can only be true of x, and x, are othogonal.

A complex unitary matrix U has orthonormal columns:

u'u=1
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Spectral theorem Spectral theorem [cont.]

The spectral theorem implies that a Hermitian matrix

H
| | /11 - W -

The previous properties for complex Hermitian matrices lead to one of the most
important results in linear algebra — the spectral theorem:

REAL CASE . .
A real symmetric matrix A can be factored into QAQT. The ortonormal A= u o Uy ) :
eigenvectors of A are in the orthogonal matrix Q and the corresponding
eigenvalues in the diagonal matrix A. | | ﬂ'n — Uy -
COMPLEX CASE can be written as a sum of N rank-1 projection matrices:
A Hermitian matrix A can be factored into UAUH. The ortonormal
eigenvectors of A are in the unitary matrix U and the corresponding N H
eigenvalues in the diagonal matrix A. A= Z lnllnlln
n=1
The above are "simply” special cases of the general results on matrix
diagonalization when eigenvalues are distinct. They can, however, be proven If the eigenvalues of A (nonnegative, real) are sorted in decreasing order, we can make
true also for repeated eigenvalues. "good” low-rank approximations of A by limiting the number of terms we use in the above sum.
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Similarity transformations

Similarity transformations

2010-03-10 Ove Edfors
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We have discussed several forms of factoring matrices based on eigenvalues
and eigenvectors:

A= SAS_l A = S_IAS [Diagonalization]

A= (21\(2_1 = QAQT A= Q_lAQ [A symetric]
A =UAU'=UAU" A=UTZTAU [AHemitian]

These are all are all on the form:
-1
M AM
which we call a similarity transformation of A.

We say that M-'AM is similar to A, but in what way?

2010-03-10 Ove Edfors 26

Similarity transformations [cont.]

If B = M-'AM, then A and B have the same eigenvalues and every eigenvector x
of A corresponds to an eigenvector M-'x of B.

Assume Ax = Ax and A = MBM-! then
B has same eigenvalue as A ...

| i
AX = MBM *x = Ax — BM x = AM x

| t 1
... but a new eigenvector

| There is more in the textbook about this if you are interested! |

2010-03-10 Ove Edfors
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Some notes on applications
of Hermitian matrices
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OFDM

Correlation

System model

Assume that x is a zero-mean stochastic vector.

The autocorrelation is defined as the expectation:

w
o
=~

[ | k  —symbol
H Xo,k - y
I{XX =E {XX } 1 Sk |8 m  —sample
Xk L ] n  —subcarrier
This autocorrelation matrix is Hermitian and can therefore be factorized as . =1 « o S(t) L — CP length
H . % . 5 cP =Y i Tsamp — Sampling period
R _=UAU - 2] S @ 2) ® hry — TX filter
Sy (a8
Given this spectral factorization we can make the following transformation XN-1k N Lk ] =3 N-=8
H This is called the Hotelling —_——
y = U X transform of x. (c.f. the Karhunen- @ I
Loewe transform) . . 1 1
which results in a new, zero-mean, stochastic vector y with autocorrelation matrix N-point IDFT. S, = an K exp[]Z;r 7) O<ms<N-1 T
_ H) _ H_H _yTH H
Ryy_E{yy }—E{U XX U}—U E{XX }U Adding CP: Sy = Sy, fOr —L<m @II.I.lI —
-U"R_U=U"UAU"U=A Elements ofy are X erng: )=, (03 oL CFA
X uncorrelated! - mk samp samp N2 V4
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OFDM OFDM

System model [cont.] System model [cont.]

Channel Noise
ln(t)
st) | P A r()=st)*h, () +n() L Ly, [a —symbol
\—b 21 e |- ’ p —sample
= r(t) Teamp o i Yik |n - subcarrier
Ty — e —2[cr 2| - |2 L —CPlength
1X2 3 g * 'g . Tsamp — S@Mpling period
@© . . . _
s(t) rt) UE ok B — RX filter

RX filtering:  Z(t)=hey (t)*r(t) @ /\ .

t

I =] Ynoik -3 N=8
H CcP |!I| ‘P ——
—
T h

— t ‘ A ARV a v/
LTemp Sampling:  Z,=2(kT,.n,) @ |

As long as the CP is longer than the delay spread of the . ] _ f 0<p<N-1 T

channel, LT, > T, it will absorb the ISI. Removing CP: T4 = ig (N+L)ep TOTOS P

By removing the CP in the receiver, the transmission becomes N-point DFT: Ynq =2 Toq exp(— jZEWp) forO<SN<N-1 @ | !

IS| free. p=0
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OFDM

System model [cont.]

Simplified model under ideal conditions
(slow enough fading and sufficient CP)

'HO,k nO k

Xok _’®_’€9_‘ Yok Total filter in the signal path:
hsignal (t) = hTX (t)* h(t)* th (t)

* Hyak Mk °
) : Hgrar ()= Hox (F)*H()*H o ()
XN-1k @ () Y-k o " ™

Given that subcarrier n is
transmitted at frequency f,
the attenuations become:

OFDM systems
have N between Hn,k = Hsignal (fn)
64 (WLAN) and
8192 (DigTV).
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OFDM

System model [cont.]

We have ended up with an OFDM matrix model:
y=Xh+n

where y is the received vector, X a diagonal matrix with the transmitted constellation
points on its diagonal, h a vector of channel attenuations, and a vector n of receiver noise.

For the purpose of channel estimation, assume that all ones are transmitted, i.e., that
X = 1. We now have a simplified model:

y=h+n

Further assume that the channel is zero-mean and has autocorrelation Ry, while
the noise is i.i.d zero mean complex Gaussian with autocorrelation R,,, = a2l. We also
assume that h and n are independent.
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OFDM

Channel estimation

OFDM
Channel estimation [cont.]

When we receive y, we want to apply a linear eastimator

ﬁsz

that minimizes the mean-squared error

A 2
MSE = E h—hH

This gives the minimizing matrix

-1
_ -1 _ -1 _ 2
A=R, R, =R,R; =R, (R, +5°T)
Even with known R, and

02, making a precalculated
matrix possible, each

~ A
_ 2 . . .
h = th (th +0 I) y<| channel estimation requires

and a resulting linear MMSE estimator

N2 operations.
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Can we simplify the calculation?

Lot use the fact hat Ry is Hermitan and can be factored as UAUY:
h=UAU" (UAU" +0%1) 'y
= UAU" (UAU" + 620U ) Ty
= UAU" (U(A+0)U" )y
= UAU"U(A+0%1) UMy

2 -1 H —/_| In reality, it turns out
:UA(A+G I) U y that U is very close to

the FFT matrix.

Diagonal matrix
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OFDM

Channel estimation [cont.]

What have we obtained?

R,, (R,, +0°1)

Ut A(A+o) U

y Full NxN ﬁ y N- Diagonal NxN N- ﬁ
— matrix [— |:> point matrix pointF—>

multiplication. IFFT multiplication. FFT

COMPLEXITY
(operations)
2
N Nlog, N +N +Nlog, N
=2Nlog, N+ N
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OFDM

Channel estimation summary

10

Complexity gain can be
several orders of
magnitude for large
OFDM systems.

=N
(=)
=)

=y
o
£

Estimation complexity (operations)

10’ 1 = 3 4
10 10 10 10
Number of subcarriers [N]
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