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Differential equations

Assume that we have a differential equation of the type
dud
dt

=
u Au

Given an initial value u(0) the solution becomes( )
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Differential equations (cont.)

and the solution can be expressed in terms of ”ordinary” exponentials:... and the solution can be expressed in terms of ordinary  exponentials:
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Linear combination of N ”pure solutions”
depending only on eigenvalues and

corresponding eigenvectors
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Differential equations – stability

Im

From previous slide:
Stable
region

Unstable
region

( ) 11
0 1 1

Nttt
N Nt e c e c eλλ−= = + +Λu S S u x x… Re

Stability depends on the eigenvalues:

stable if all eigenvalues satisfy

t ll t bl if d ll th th

Re 0kλ <

Re 0λ Re 0λ <neutrally stable if some                       and all the other

unstable if at least one eigenvalue has

Re 0kλ = Re 0mλ <

Re 0kλ >
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Matrix exponential – a warning

M ti f th t i ti l l t th ti f diMany properties of the matrix exponential are analogus to the properties of ordinary
exponentials

... but there are differences!

Example:

a b a be e e+ =
+A B A B

Ordinary exponential

e e e+ ≠A B A BMatrix exponential

Equality holds, however, 
if A and B commute, i.e., 

if AB = BA.
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Matrix exponential – how to calculate

There are many suggested methods for calculating matrix exponentials.

Diagonalization is one way, if the matrix in the exponent can be diagonalized:

1t te e −=A ΛS S 1−⎡ ⎤=⎣ ⎦A SΛS

If A is nil-potent, i.e., Am = 0 for some m, we can use the definition (finite sum): 
1 km 1

0 !
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Matrix exponential – how to calculate

If A is a projection matrix, i.e., if A2 = A the definition gives: 
k k k
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For the full treatment:
C. Moler & C van Loan. Nineteen Dubious Ways to Compute the Exponential of a
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y p p
Matrix, Twenty-Five Years Later. SIAM REVIEW (electronic publ. 2003)

Matrix exponential - determinant

The determinant of an matrix exponential is:

( ) ( )trdet tte e= AA( )

If A can be diagonalized:
Important consequence: A matrix exponential is always 

If A can be diagonalized:

( ) ( ) ( ) ( ) ( ) ( )1 1det det det det det dett t te e e e− −= = = =A Λ Λ ΛS S S S
invertible, since its determinant cannot be zero! 
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EIGENVALUES ARE IMPORTANT!

We have seen that eigenvalues are important in many situations. They determine the
stability of both difference and differential equations ... they can help us to find solutions
to many problems formulated in terms of matrix equations ... etc.y p q

To get some more feeling for the eigenvalues of matrices, let’s take a look at Gershgorin’s
Cricle Theorem. [Only briefly explained in the textbook.]
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Gershgorin’s circle theorem

Given an NxN matrix A define the following sums of magnitudes of off-diagonal elementsGiven an NxN matrix A define the following sums of magnitudes of off diagonal elements
in each row:

N

R a=∑ ,
1

k k l
l
l k

R a
=
≠

= ∑

Now, each eigenvalue of A is in at least one of the following (Gershgorin) disks:

{ }:z z a R− ≤{ },: k k kz z a R− ≤

Thi th b d t i kl b d th it d f i l iThis theorem can be used to quickly bound the magnitude of eigenvalues, in some
situations find out if a matrix is non-singular (if all eigenvalues are non-zero), if a
system of difference or differential equations are stable (not always possible), etc.
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Gershgorin’s circle theorem (cont.)

The Gersgorin circle theorem is suprisingly simple to prove.
Let x be an eigenvector of an NxN matrix A = [am,n], with corresponding eigenvalue λ, i.e.,
Ax = λx.

Furher, assume that the kth element xk of x is the one with the largest magnitude (cannotk g g (
be zero!).

Ax = λx now gives (look at element k):
N N
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=∑ ( ), , ,
1

N

k l l k k k k k k k
l
l k

a x x a x a xλ λ
=
≠

= − = −∑⇒

1≤
⇒ , ,

1

N

k k k k l l
l

a x a xλ
=

− ≤∑ , ,
1

N
l

k k k l
l k

x
a a

x
λ

=

− ≤∑⇒
1≤

1l
l k
=
≠

1l k
l k
=
≠

⇒ , ,

N

k k k la aλ − ≤∑ DONE!
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1l
l k
=
≠

Gershgorin’s circle theorem (cont.)

By rows Im
Use the theorem on the
following matrix:

= diagonal elements of A = eigenvalue of A

10 5 4
3 5 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥A

,
1

N

k k l
l
l k

R a
=
≠

=∑
By rowsfollowing matrix:

3 5 0
2 7 10

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

A
1

2

5 4 9

0 3 3

R

R

= + =

= + =
Re

3 2 7 9R = + =

By columns Im
Conclusions:
- A is invertible (by rows)
- No eigenvalue has magnitude

,
1

N

l k l
k
k l

R a
=
≠

=∑
No eigenvalue has magnitude
larger than 17 (by columns).

- No eigenvalue has a
magnitude less than 1 (by rows).

1

2

3 2 5

5 7 12

R

R

= + =

= + =

Re
... more ?
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3 4 0 4R = + =



Gershgorin’s circle theorem (cont.)

We know that all eigenvaues must be in at least one of the Gershgorin disks i e allWe know that all eigenvaues must be in at least one of the Gershgorin disks, i.e., all
eigenvalues are found SOMEWHERE INSIDE THE UNION of the Gersgorin disks.

Can we say anything more about where eigenvalues are?

Example 1 (fully joined union):
Im

Example 2 (three disjoint sets)
ImIm Im

Re Re

Where are the
eigenvalues in
these cases?
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Gershgorin’s circle theorem (cont.)

An extra result concerning the location of eigenvalues in the Gershgorin disks:g g g

If the union of all Gershgorin disks consists of several disjoint subsets, each
such subset contains a number of eigenvalues corresponding to the number
of disks forming the subset.

Example 2 on previous slide:
Im

Three eigenvalues
in this subset!

Re

The eigenvalues can 
be anywhere in the 

subset!

One eigenvalue
in each of these!
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Gershgorin’s circle theorem (cont.)

A i l ill t ti f h t th lt th i lidA simple illustration of how to prove the result on the previous slide:

An arbitrary square matrix A can be written in the form:

11 1 11 10N Na a a a⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥A

… …
# % # % # % #

1 1 0N NN NN Na a a a
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A # % # % # % #
" "

D = diagonal entries B = off-diagonal entries
Now, define a matrix G(α) as

( ) +G D B( )α α= +G D B
where α is a real number in the interval [0,1].

W h ( )0G D ( )1G A
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We have: ( )0 =G D ( )1 =G A

Gershgorin’s circle theorem (cont.)
We know three things:

1. The eigenvalues of G(0) are exactly the diagonal entries (of A).1. The eigenvalues of G(0) are exactly the diagonal entries (of A).

2. The eigenvalues of any matrix are continuous functions of 
the matrix entries (or α in this case). If matrix elements change
smoothly, there are no ”jumps” in the eigenvalues.smoothly, there are no jumps  in the eigenvalues.

3. For each value on α, Gershgorins circle theorem tells us in which
set all eigenvalues of G(α) are.

Now the trick: A smooth transition from α = 0 to α = 1Now, the trick: A smooth transition from α = 0 to α = 1 
Im Im Im

Re Re Re

α = 0 α = 0.5 α = 1

The eigenvalues that start at the diagonal entries (α = 0) cannot escape to another DONE!
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g g ( )
disjoint subset of the Gershgorin disks, since they are continuous functions of α. DONE!



Symmetric/hermitiany
matrices
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Hermitian matrices

A H iti t i h th tA Hermitian matrix has the property

H=A A

Hermitian (or real symmetric) matrices have the following properties:

1. xHAx is real for all complex vectors x.

2. every eigenvalue is real.

3 two eigenvectors coming from different eigenvalues are orthogonal3. two eigenvectors coming from different eigenvalues are orthogonal.
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Hermitian matrices [cont.]

1. xHAx is real for all complex vectors x.

Let’s see what we get when we take the complex conjugate of the
scalar xHAx:

( )HH H H H H= = =x Ax x Ax x A x x Ax

xHAx equals its own complex conjugate => REAL!
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Hermitian matrices [cont.]

2. every eigenvalue is real.

λ=Ax x
We have

λ=Ax x
multiplying by xH from the left gives

H Hλ=x Ax x x
Real RealReal

Prop 1.
Real

which forces λ to be real.
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Hermitian matrices [cont.]

3. two eigenvectors coming from different eigenvalues are orthogonal.

1 1 1λ=Ax x
We have

2 2 2λ=Ax xand1 1 1λAx x 2 2 2λAx xa d

We can show that

( ) ( )H H H Hλ = =x x Ax x x A x( ) ( )1 1 2 1 2 1 2

1 2 1 2 2
H H

λ

λ

= =

= =

x x Ax x x A x

x Ax x x
or (eigenvalues are real, Prop 2.)

1 1 2 2 1 2
H Hλ λ=x x x x
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which for different eigenvalues can only be true of x1 and x2 are othogonal.

Unitary matrices

U it t i th l i l t f l th l t iUnitary matrices are the complex equivalents of real orthogonal matrices.

A real orthogonal matrix Q has orthonormal columns:A real orthogonal matrix Q has orthonormal columns:

T =Q Q I

A complex unitary matrix U has orthonormal columns:

H =U U I
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Spectral theorem

Th i ti f l H iti t i l d t f th tThe previous properties for complex Hermitian matrices lead to one of the most
important results in linear algebra – the spectral theorem:

REAL CASE
A real symmetric matrix A can be factored into QΛQT. The ortonormal
eigenvectors of A are in the orthogonal matrix Q and the corresponding
eigenvalues in the diagonal matrix Λ

REAL CASE

eigenvalues in the diagonal matrix Λ.

f H

COMPLEX CASE
A Hermitian matrix A can be factored into UΛUH. The ortonormal
eigenvectors of A are in the unitary matrix U and the corresponding
eigenvalues in the diagonal matrix Λ.

The above are ”simply” special cases of the general results on matrix
diagonalization when eigenvalues are distinct. They can, however, be proven
true also for repeated eigenvalues
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true also for repeated eigenvalues.

Spectral theorem [cont.]

The spectral theorem implies that a Hermitian matrix

1 1| | Hλ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

u

1

| |
N

H
Nλ

⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A u u
u

" % #
| | n Nλ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦u

can be written as a sum of N rank-1 projection matrices:

N
H

n n nλ=∑A u u
1n=

If the eigenvalues of A (nonnegative, real) are sorted in decreasing order, we can make
”good” low-rank approximations of A by limiting the number of terms we use in the above sum
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good  low-rank approximations of A by limiting the number of terms we use in the above sum.



Similarity transformationsy
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Similarity transformations

We have discussed several forms of factoring matrices based on eigenvalues
and eigenvectors:g

1−=A SΛS 1−=Λ S AS [Diagonalization]

1 T−= =A QΛQ QΛQ
1 H−= =A UΛU UΛU

1−=Λ Q AQ
1−=Λ U AU

[A symetric]

[A Hermitian]= =A UΛU UΛU

These are all are all on the form: 

=Λ U AU

1−M AM
which we call a similarity transformation of A.

We say that M-1AM is similar to A, but in what way?
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Similarity transformations [cont.]

If B = M-1AM, then A and B have the same eigenvalues and every eigenvector x
of A corresponds to an eigenvector M-1x of B. 

Assume Ax = λx and A = MBM-1 then
B has same eigenvalue as A ...

1 λ−= =Ax MBM x x 1 1λ− −⇒ =BM x M x

... but a new eigenvector

Th i i th t tb k b t thi if i t t d!
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There is more in the textbook about this if you are interested!

Some notes on applicationspp
of Hermitian matrices
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Correlation

Assume that x is a zero-mean stochastic vector.

The autocorrelation is defined as the expectation:

{ }HE=xxR xx{ }
This autocorrelation matrix is Hermitian and can therefore be factorized as

H=R UΛU
Given this spectral factorization we can make the following transformation

Hy U x

xxR UΛU

This is called the Hotelling 
t f f ( f th K h=y U x

which results in a new, zero-mean, stochastic vector y with autocorrelation matrix 

{ } { } { }H H H H HE E ER yy U xx U U xx U

transform of x. (c.f. the Karhunen-
Loewe transform)

{ } { } { }
H H H

E E E= = =

= = =

yy

xx

R yy U xx U U xx U

U R U U UΛU U Λ Elements of y are 
l t d!
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xx uncorrelated!

OFDM 
System modelSystem model

T er
ia

lkx ,0

x

ks ,0

ks ,1

k – symbol
m – sample

b i

-p
oi

nt
 ID

F

ra
lle

l t
o 

sekx ,1

hTXCP

,
n       – subcarrier
L       – CP length
Tsamp – sampling period
hTX – TX filter

( )ts

21 3

N
-

P
ar

kNx ,1−
kNs ,1−

hTX TX filter

3=L 8=N

N-point IDFT: 10for  2exp1 1

0
,, −≤≤⎟

⎠
⎞

⎜
⎝
⎛= ∑

−

=

Nm
N
mnjx

N
s

N

n
knkm π

1

2
Adding CP: 1for   ,, −≤≤−= + mLss kmNkm

( ) ( ) ( )( )⎟
⎠

⎞
⎜
⎝

⎛
−+−= ∑ ∑

−N

sampsampkmTX mTTLNktsthts
1

,* δTX filtering:
3
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( ) ( ) ( )( )
⎠⎝

∑ ∑
−=k Lm

sampsampkmTX ,g

OFDM 
System model [cont ]System model [cont.]

( )t
Channel Noise

( )thch( )ts

( )tn
( ) ( ) ( ) ( )tnthtstr ch += *

tt

( ) ( )

}

chT

CP CP CP CP

( )ts ( )tr

t }

chT
t}

sampLT
As long as the CP is longer than the delay spread of the
channel, LTsamp > Tch, it will absorb the ISI.
By removing the CP in the receiver, the transmission becomes
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ISI free.

OFDM 
System model [cont ]System model [cont.]

Tal
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l ky ,0

y

kr ,0

kr ,1

q – symbol
p – sample

b i( )

-p
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FT
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l t
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ra ky ,1

hRX CP

,
n       – subcarrier
L       – CP length
Tsamp – sampling period
hRX – RX filter

( )tr

21 3

sampT

N

S
er

kNy ,1−
kNr ,1−

hRX RX filter

3=L 8=N

Sampling: ( )sampk kTzz ´´ =

( ) ( ) ( )trthtz RX *´ =RX filtering:
1

2

N-point DFT: 10for  2exp
1

,, −≤≤⎟
⎠
⎞

⎜
⎝
⎛−=∑

−

Nn
N
npjry

N

qpqn π 3
Removing CP: ( ) 10for  ´, −≤≤= ++ Npzr pLNqqp
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0 ⎠⎝= Np



OFDM 
System model [cont ]System model [cont.]

Simplified model under ideal conditions

kH ,0 kn ,0

p
(slow enough fading and sufficient CP)

kx ,0 ky ,0

H n ( ) ( ) ( ) ( )thththth RXTXi l **=
Total filter in the signal path:

kNx ,1− kNy ,1−

kNH ,1− kNn ,1−
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )fHfHfHfH

thththth

RXTXsignal

RXTXsignal

**=

Given that subcarrier n is
transmitted at frequency fn
the attenuations become:

( )nsignalkn fHH =,
OFDM systems 
have N between 
64 (WLAN) and 
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6 ( ) a d
8192 (DigTV).

OFDM 
System model [cont ]System model [cont.]

W h d d ith OFDM t i d lWe have ended up with an OFDM matrix model:

= +y Xh n

where y is the received vector, X a diagonal matrix with the transmitted constellation
points on its diagonal, h a vector of channel attenuations, and a vector n of receiver noise.

For the purpose of channel estimation, assume that all ones are transmitted, i.e., that
X = I. We now have a simplified model:p

= +y h n

Further assume that the channel is zero-mean and has autocorrelation Rhh while
the noise is i.i.d zero mean complex Gaussian with autocorrelation Rnn = σ2I. We also
assume that h and n are independent
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assume that h and n are independent.

OFDM
Channel estimationChannel estimation

Wh i t t l li ti tWhen we receive y, we want to apply a linear eastimator

� =h Ayy
that minimizes the mean-squared error

�{ }2
MSE E= h h{ }MSE E= −h h

This gives the minimizing matrix

( ) 11 1 2σ
−− −= = = +hy yy hh yy hh hhA R R R R R R I

Even with known R and
and a resulting linear MMSE estimator

� ( ) 12σ
−

= +hh hhh R R I y

Even with known Rhh and 
σ2, making a precalculated 

matrix possible, each 
channel estimation requires 
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( )hh hh y
N2 operations.

OFDM 
Channel estimation [cont ]Channel estimation [cont.]

Can we simplify the calculation?

� ( ) 12H H −
h UΛU UΛU I

p y

Let’s use the fact that Rhh is Hermitian and can be factored as UΛUH:

( )
( )

2

12

H H

H H H

σ

σ
−

= +

= +

h UΛU UΛU I y

UΛU UΛU UU y( )
( )( ) 12H H

σ

σ
−

= +

= +

UΛU UΛU UU y

UΛU U Λ I U y( )( )
( ) 12H H

σ

σ
−

+

= +

UΛU U Λ I U y

UΛU U Λ I U y( )
( ) 12 Hσ

−
= +

y

UΛ Λ I U y
In reality, it turns out 

that U is very close to 
the FFT matrix
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( )
the FFT matrix.

Diagonal matrix



OFDM 
Channel estimation [cont ]Channel estimation [cont.]

What have we obtained?

HU U( ) 12 −
Λ Λ I( ) 12 −

R R I

Full NxNy �h y N Diagonal NxN N �h

HU U( )2σ+Λ Λ I( )2σ+hh hhR R I

Full NxN
matrix

multiplication.

y h y N-
point
IFFT

Diagonal NxN
matrix

multiplication.

N-
point
FFT

h

COMPLEXITY
(operations)

2
2 2

2

log log
2 log

N N N N N
N N N
+ +

= +

2N
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2g

OFDM 
Channel estimation summaryChannel estimation summary

108

ns
)

Complexity gain can be

106

y 
(o
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ra

tio
n Complexity gain can be

several orders of
magnitude for large
OFDM systems.
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101 102 103 104
102

N b f b i [N]

E
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Number of subcarriers [N]


