Overview of ad hoc wireless networks (I)

• Definition
 – Ad hoc: for the particular purpose in hand or in view
 – Ah hoc wireless networks: Self-configured wireless mobile nodes without established infrastructure

• Characteristics
 – Nodes handle control and networking tasks
 – Peer-to-peer communication
 – Multihop routing
 – Not flat depending on design requirement

Overview of ad hoc wireless networks (II)

• Two design issues of ad hoc networks
 – Mobility
 – Energy efficiency
Applications (I)

• Data networks
 – Data exchange between devices like laptops, palmtops, PDAs
 – Challenges are high data rate and cost
 – 802.11a and 802.11b standards

• Home networks
 – Communication between electronics in and around home
 – Challenges: varied QoS, cost, standardization and energy
 – 802.11a and 802.11b standards

Applications (II)

• Device networks
 – Short-range wireless connection between devices
 – Challenge is energy
 – Bluetooth standard

• Sensor networks
 – Large number of sensors used to sense, detect and track
 – Challenges are energy, size and cost
 – PicoRadio

Cross layer design (I)

• Why cross-layer design?
 Inflexibility, suboptimality and poor performance of layered approach

• How it can be done?
 – Information exchange across all layers in protocol stack
 – Adaptivity and optimization with respect to global system constraints and characteristics

Cross layer design (II)

• To design an adaptive cross-layer protocol stack
 – What information should be exchanged and how that information should be adapted to?
 – How should global system constraints and characteristics be factored into protocol design at each layer?
Link layer design issues (I)

- Max. data rate
 - The goal is to reach fundamental capacity limit
 - Due to energy constraints, it is not possible to reach this max. data rate
 - We need a new definition for capacity limit which proposed as capacity per unit energy or capacity in bits
 - Energy constraints nodes can transmit finite no. of bits

- Coding
 - Error control coding techniques can reduce transmit power

Link layer design issues (II)

- Multiple antennas
 - Techniques:
 - Diversity
 - Beamsteering
 - MIMO
 - Trade-off between multiple antennas and energy consumption

- Power control
 - Key role on energy-efficient cross-layer design

- Adaptive resource allocation
 - Adapts link transmission scheme to experienced channel, interference and data characteristics

MAC layer design issues (I)

- Medium access control (MAC) protocol
 - Determines how different users share available spectrum

- Two components of spectrum allocation
 - Channelization: How to divide spectrum into different channels
 - Channel access: How to assign different channels to different users

MAC layer design issues (II)

Channelization Methods

- Frequency division
 - System bandwidth divided into nonoverlapping channels
 - Simple to implement, inflexible, limited no. of users

- Time division
 - Time divided into orthogonal time slot
 - Difficult to implement, flexible, limited no. of users

- Code division
 - Data modulated by orthogonal or semi-orthogonal spreading code
 - Complex, flexible

- Hybrid combinations of these methods
 - Trade-off between frequency, time and code channelization
MAC layer design issues (III)

Channel access

- Random access
 - Channels are allocated to users that need them
 - Techniques:
 - aloha, slotted aloha,
 - CSMA, aloha with CSMA, four-way handshake (802.11)
 - RX and TX busy tone transmission
 - Issues: collision, hidden terminals, exposed terminals
 - Energy efficient technique: limit transmitting and receiving time period

- Scheduling
 - Channels are assigned to users to avoid conflicts
 - Scheduled access and aloha combination for ad hoc networks (PRMA)
 - Energy efficient technique: schedule optimization

Network layer design issues (I)

- Neighbor discovery
 - Process of determining number and identity of network nodes with which direct communication can be established given max. power level and min. link requirements

- Network connectivity
 - Ad hoc networks assume a fully-connected network
 - Connectivity gets influenced by
 - Node mobility
 - Link layer parameters
 - Power efficiency

Network layer design issues (II)

Routing

- Flooding
 - Highly robust to changing network topology
 - Little routing overhead
 - Wasting bandwidth and battery power
 - Proper for small networks

- Centralized routing
 - Efficient due to optimality
 - Cannot adapt to fast changes
 - Requires much overhead
 - Proper for small networks

Network layer design issues (III)

Routing

- Distributed routing
 - Little routing overheads
 - Adapts quickly to changes
 - Suboptimal

- Reactive routing
 - Globally efficient
 - Little overhead
 - Significant delay \(\rightarrow\) combination of proactive and reactive

- Multi-hop routing gets influenced by
 - Mobility
 - Energy efficiency
Network layer design issues (IV)

- Scalability and distributed protocols
 - How scalable the distributed control network algorithm are

- Network capacity
 - How to improve per-user rates in a large network

Application design issues

- Application must adapt to time-varying QoS due to dynamic characteristics of network

- Application must adapt itself to offered QoS

Summary

- In energy constraints systems
 - Cross-layer design saves energy across entire protocol stack
 - Adaptive solutions and optimized algorithms based on design requirements improve performance and minimize energy consumption
 - Trade-off between local algorithm and global system energy saving

List of interesting papers