Chapter: 14

LTE radio access: An overview

Deepak Dasalukunte
Department of Electrical and Information Technology
Outline

- LTE transmission schemes
 - OFDM in downlink
 - DTFS-OFDM/SC-FDMA in uplink
- Channel dependent scheduling and rate adaptation
 - Uplink/downlink scheduling
 - Inter-cell interference coordination
- Hybrid-ARQ
- Multiple antenna support
- Multicast broadcast support
- Spectrum flexibility

Changes introduced in LTE as compared to HSPA
LTE transmission schemes

• OFDM based
• Robust channel frequency selective channels
• Though frequency selective channels can handled by equalization, the complexity becomes extremely high for mobile terminals operating at bandwidth > 5MHz
• OFDM can be better in such scenarios where BW>5MHz.
• Additional benefits
 – Access to frequency domain for channel dependent scheduling vs. time domain only scheduling in HSPA
 – Flexible Tx bandwidth – varying number of sub-carriers (BB perspective)
 – Broadcast and multicast transmission straightforward with OFDM
LTE transmission schemes (2)

- **Uplink**: DFT spread OFDM
 - Low Peak-to-average power ratio
 - Efficient usage of PA in mobile terminal
 - Equalization of frequency selective channel in uplink is not an issue
 - No low-power requirements
 - More powerful signal processing
- **LTE uplink**: orthogonal separation of uplink transmissions in time and/or frequency
 - Avoids intra-cell interference
- The available bandwidth is shared between terminals for uplink transmissions: referred to as SC-FDMA (multiple access in freq domain)
Channel dependent scheduling and rate adaptation

- Shared channel transmission
 - Similar to HSDPA: time and channelization codes are shared
 - LTE: time and frequency shared
- Scheduler determines overall downlink system performance
- Channel dependent scheduling
 - LTE has access to frequency domain as well (OFDM and DTFS-OFDM)
 - LTE can also account for channel variations in frequency domain when scheduling
 - Useful when channel is varying slowly in time (slow speeds)
Channel dependent scheduling and rate adaptation (2)

- **Downlink scheduling**
 - Channel status reports from terminal.
 - Instantaneous channel quality in both time and frequency.
 - Scheduled terminal can be assigned arbitrary combination of 180KHz wide resource blocks in 1ms duration.

- **Uplink scheduling**
 - Orthogonal separation of uplink transmissions.
 - Uplink scheduler: allocates resources in time and frequency.
 - Decisions about scheduling once per 1ms: what mobile terminals, time intervals, frequency resources, what transport format
Channel dependent scheduling and rate adaptation (3)

• Inter-cell interference coordination
 – no intra-cell interference due to orthogonal transmissions.
 – LTE performance: mostly about inter-cell interference vs. WCDMA
 – Limit how U/L D/L schedulers use the frequency bands (between the cells)
 • Restricted band used for higher data rate transmissions in adjacent cell.
 – Scheduling strategy to co-operate with the situation in neighboring cells
 • Implementation issue, no specs in the standard.

• Hybrid ARQ with soft combining
 – Very similar to HSDPA
 – Multiple parallel stop-and-wait hybrid ARQ processes
 – Incremental redundancy
Multiple antenna support

- LTE specs from the beginning supports multiple antennas at both terminals and base station
- Multiple antennas: receive diversity
- At base station: transmit diversity and beam-forming.
- Spatial multiplexing: several parallel channels

- Different techniques in different scenarios
 - Beam-forming when terminal at cell edge
 - Spatial multiplexing at high SNR and SIR.

- Base station selects the configuration to be used
Multicast and broadcast support

- Multi-cell broadcast: transmitting same information from several cells
 - Terminal can exploit this information from several cells to get better signal quality
 - WCDMA already had this, where the terminals could soft-combine the signals from multiple cells.
 - LTE goes further, by syncing the transmission timing between the cells
 - Implies the terminal sees that there is a single signal arriving from ONE base station.
 - As if the signal experiences one multipath channel
 - Referred to as Multicast-Broadcast Single Frequency Network (MBSFN)
 - Assumes tight sync and time alignment
Spectrum flexibility

• Highlight of LTE radio access
 – Flexibility in duplex arrangements
 – Frequency bands
 – Varying sizes with the spectrum

• Flexibility in duplex arrangement
 – FDD (paired spectrum) and TDD (unpaired spectrum)
 – Support for both paired and unpaired spectrum already in specs since rel99
 – Also supports half-duplex
Spectrum flexibility (2)

- Flexibility in frequency-band-of-operation
 - Frequency-bands different mobile radio technologies operate at:
 - GSM, CDMA200 etc.
 - Also non-mobile radio spectrum: broadcast spectrum
 - Expected to able to operate depending on the availability of spectrum
 - New spectrum for mobile communication: 2.6 to 3.5 GHz
 - Spectrum currently used for LTE
 - Present broadcast spectrum
 - LTE should be able to operate between 450MHz to 3.5GHz (at least)

- Bandwidth flexibility
 - Allow other radio access technologies to migrate to LTE
 - High data rates when there is availability in bandwidth
 - Currently, only limited set of transmission bandwidth specified
 - Depending on the migration scenarios that might seem relevant
 - RF specs needs modification to support other bands-of-operation