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Nanoelectronics: Power and Delay 

Contents: Power and Delay  
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J Rabaey et al ”Digital Integrated Circutis” 

 

Integration of III/V HEMTs on Si : 
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CMOS Dynamic and Static  

Power Consumption 
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Nanoelectronics: Power and Delay 

Advantages with CMOS: 

 

Full logic swing 

High noise margin 

Superior robustness 

Absence of steady state power consumption 

 

Robust low-power digital technology 
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Calculate the charging energy: 

Calculate the stored energy: 
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Dynamic Power Consumption 
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Nanoelectronics: Power and Delay 

During charging (low-to-high  

transition) half energy is  

stored on capacitor, half 

energy is dissipated in  

the transistor 

 

 

During discharging (high-to-low  

transition) half energy is  

stored on capacitor, the stored 

energy (half energy) is dissipated in  

the transistor 

Example: 0.25 mm CMOS  

f=500 MHz  CL=15fF/gate 

VDD=2.5V 

Pdyn=50 mW 
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Direct-Path Current Power Consumption 
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Nanoelectronics: Power and Delay 

During the finite time switching, 

a direct current is flowing  

in the transistor pair 

 

Assume triangular  

current peaks 
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Reduction via Design of Load Capacitance 

Nanoelectronics: Power and Delay 

Using a large load capacitance, 

the voltage remains across 

the NMOS transistor during 

the switching cycle, which  

limits the  current flow in the  

direct current path. 
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Static Power Consumption 

Nanoelectronics: Power and Delay 

Leakage current typically 10-100 pA/mm2. Drain area 0.5 mm2 and  

1 million gates with VDD=2.5 V gives 0.125 mW. But strong  

temperature effects! 

DDVstatIstatP 
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Subthreshold Leakage 

Nanoelectronics: Power and Delay 

As the drive voltage is reduced, the threshold voltage should also be scaled 

(recall Vt~VDD/3!). This implies that the subthreshold current is substantially increased. 

 

Consider a 0.25 mm NMOS transistor with SS of 90 mV/dec. and Vt=0.5 V. At  

VGS=0 V it consumes about 10-11 A. Reducing the threshold to 0.3 V increased the  

Current a factor 170! This gives a power consumption of 106x170x10-11x1.25=2.6mW. 

A reduction in Vt to 0.1 V gives a power consumption of 0.5 W! 

The threshold voltage reduction corresponds to a performance improvement 

 of 25 and 40 %, respectively. 

POWER DOWN! 
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Put It All Together! 

Nanoelectronics: Power and Delay 
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2

Typically dominant 

Can be reduced 

Will be more important  

in scaled technologies 
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The Power-Delay Product 

Nanoelectronics: Power and Delay 
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Introduce the power-delay product  

as a quality measure of a logic gate: 

If the gate is switched at full speed, the PDP corresponds 

To the average energy consumed per switching event 

(0->1 or 1->0 transition) 

pavtPPDP 
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Better, The Energy-Delay Product 

Nanoelectronics: Power and Delay 
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Introduce the energy-delay product, which  

balances the performance and energy consumption! 

tp is the propagation delay (gate delay) and fmax=1/(2tp) 
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Voltage Dependence on EDP!!! 

Nanoelectronics: Power and Delay 
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But what is  and VTe?? 

Nanoelectronics: Power and Delay 
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Transistor model in linear region: 
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Transistor model in saturation region: 
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Compare ballistic model: 
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But what is  and VTe?? 

Nanoelectronics: Power and Delay 
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Use the average transistor resistance: 

Expand linear model to saturation region (VDSAT=VGS-VT): 
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Note VGS=VDD!!: 
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But what is  and VTe?? 

Nanoelectronics: Power and Delay 
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Assume equal threshold voltages and saturation voltages for NMOS and PMOS! 
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-  buffer layer techniques are available  

- comparable mobility 

 

Nanoelectronics: Power and Delay 
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Nanoelectronics: Power and Delay 

Comparable RF-data! 

- well behaved IV characteristics! 

- good DC numbers at 80 nm Lg 

- comparable RF data to lattice  

matched devices 
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- 4 types of transistors 

- Schottky barrier and insulator thickness 

- good DC characteristics 

- weak scaling with gate length 

 

 

Nanoelectronics: Power and Delay 
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Nanoelectronics: Power and Delay 

Scaling with Schottky barrier  

and insulator thickness 

- Tight control needed to improve  

the performance 
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Improved speed and/or reduced power consumption 

- Depending on bias condition benefits  

can be found in the areas of speed and/or  

power dissipation 

- Well selected technology is required 

to maximize Ion/Ioff ratio 


