Contents: III/V Nanowires

Vertical InAs NW transistors: C Thelander et al IEEE Electron Dev. Lett. 29, 2008 p 206 "Vertical Enhancement-Mode ..."

Lateral InGaAsAs NW transistors :

J Gu et al IEEE IEDM Tech Digest. 2012, p. 633 "20-80 nm channel length InGaAs "

Vertical InGaAs NW transitors: K Tomioka et al Nature. 488, 2012 p. 189 "A III-V nanowire channel on silicon ... "

Nanowire CMOS: A Dey et al Nano Lett 12, 2012, 5593 "Single InAs/GaSb ..."

Scaling in quantum capacitance limit: J Knoch et al IEEE Electron Dev. Lett. 29, 2008 p 372 "Outperforming the Conventional..."

Nanowire FETs: Why InAs?

Surface pinning in conduction band and good ohmic contacts!

Material property	Si	GaAs	In _{0.53} Ga _{0.47} As	InAs	InSb
Electron mobility (cm ² V ⁻¹ s ⁻¹)	1500	8500	14000	33000	78000
Saturation velocity (cms ⁻¹)	1x10 ⁷	1.2x10 ⁷	8x10 ⁶	3.5x10 ⁷	>5x10 ⁷
Band gap (eV)	1.1	1.4	0.75	0.36	0.17
Effective mass	0.19	0.067	0.041	0.023	0.014

Ashley et al IEDM 97

Wrapped Insulator-Gate Nanowire Field-Effect Transistor (WIGFETs)

SEM image of a matrix of CBE grown nanowires

Layout of a nanowire FET

- Surround gate gives strong gate coupling
- InAs high mobility channel
- Can include heterostructures in the FET
- Easy scaling to high current levels
- 3D architecture

SEM Images of Wrap-Gate FETs

Wrap-gates

80 nm diameter
3 μm wire length
0.8 μm gate length
Not intentionally doped n~2x10¹⁷ cm⁻³

Nanowire Transistor

Bryllert et al DRC 2005 Wernersson et al IEDM 2005 Bryllert et al EDL 2006

Processing Flow Short Gate Lengths

Nanowires after gate formation

40 nm SiN_x thickness

Wernersson et al SSDM 2006

50 nm L_g Transistors with Elevation Layer

Good Output Characteristics

10 nm HfO₂, 91 Nanowires in matrix Processed by QuMat Thelander et al EDL 2008

50 nm Lg Transistors with Elevation Layer II

V _D (V)	Average V _T (V)	Average g _m (S/mm)	Max g _m (S/mm)	Average <i>SS</i> (mV/dec.)	Min. <i>SS</i> (mV/dec.)
0.50	$\begin{array}{c} 0.05 \pm \\ 0.05 \end{array}$	0.44 ± 0.06	0.52	100 ± 8	88
1.00	$\begin{array}{c} 0.00 \pm \\ 0.04 \end{array}$	0.58 ± 0.12	0.80	150 ± 43	103

- + High g_m!
- + Good V_t control!
- + No gate leakage!
- + Low hysteresis (20mV)!

Benchmarking: MOS Devices

Gate Delay τ=(CV/I)

Energy Delay Product EDP=τ*CV²

Nanowire Capacitors

Device Structure

Roddaro et al APL 92, 253509 (2008)

Measured Data

Karlström et al Nanotechnology, 253509 2008

InAs NW MOS Capacitors

Carrier concentration 2x10¹⁸ cm⁻³ Quantum capacitance at ø 50 nm

20-80nm Channel Length InGaAs Gate-all-around Nanowire MOSFETs with EOT=1.2nm and Lowest SS=63mV/dec

J. J. Gu,¹⁾ X. W. Wang,²⁾ H. Wu,¹⁾ J. Shao,³⁾ A. T. Neal,¹⁾ M. J. Manfra,³⁾ R. G. Gordon,²⁾ and P. D. Ye¹⁾

¹⁾ School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47906, U.S.A. ²⁾ Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A. ³⁾ Department of Physics, Purdue University, West Lafayette, IN, 47906, U.S.A.

Tel: 1-765-494-7611, Fax: 1-765-496-7443, Email: vep@purdue.edu, jjgu@purdue.edu

parameters of InGaAs GAA MOSFETs.

device splits of InGaAs GAA MOSFETs. 20nm Lch (b) an InGaAs GAA FET with 4 wires.

Study on scaling of gate length Gate length 20-80 nm

Nanoelectronics: III-V Nanowires

4000

Device Performance

Fig. 4 Output characteristics of a 20nm L_{ch} InGaAs GAA MOSFET with Al₂O₃/LaAlO₃ gate dielectric (Sample A, EOT=1.2nm) and W_{NW}=20nm. I_s is used due to relatively large junction leakage current in I_d.

Fig. 5 Transfer characteristics of the same device shown in Fig. 4. $W_G = 100$ nm for $W_{NW}=20$ nm normalized to perimeter.

Fig. 6 Transconductance of the same device shown in Fig. 4.

Nanowire diameter 20 nm

Transconductance of 1.7 mS/µm at Vd=0.5V

Drive current of 0.63 mA/µm at Vd=0.5V

SS 75 mV/dec.

Device Performance II

Fig. 19 SS scaling metrics for samples A, B, and C with W_{NW}=20nm.

Fig. 20 DIBL scaling metrics for sample A. B. and C with W_{NW}=20nm.

Fig. 21 V_T scaling metrics for sample A, B, and C with W_{NW} =20nm.

Table 1: Performance benchmark of typical non-planar and ETB InGaAs MOSFETs

	This work**	Ref. [1]	Ref. [4]	Ref. [5]	Ref. [6]	Ref. [7]	Ref. [8]
In _x Ga _{1-x} As (x)	0.65	0.53	0.7	0.7	1	0.7	1
Structure	GAA	GAA	Tri-gate	GAA	GAA	FinFET	ETB
Fabrication	Top-down	Top-down	Top-down	Bottom-up	Bottom-up	Top-down	Top-down
L _{ch,min} (nm)	20	50	60	200	100	130	55
W _{NW(Fin),min} (nm)	20	30	30	90	15	220	
EOT (nm)	1.2	4.5	1.2	1.8*	1.1*	4.5*	3.5
SS [V _{ds} =0.5V] (mV/dec)	88	245	94*	98	140		-
SS [V _{ds} =0.05V] (mV/dec)	63	145	66	90*		230*	105
DIBL (mV/V)	7	210	60*	170*	60	135	84
g _{m,max} (mS/µm) [V _{ds} =0.5V]	1.74	0.45			1.23		

*Extracted/estimated from literature

**Reported values are best from all measured devices

Excellent scaling for SS DIBL, and Vt

Nanoelectronics: III-V

LETTER

A III–V nanowire channel on silicon for high–performance vertical transistors

Katsuhiro Tomioka^{1,2}, Masatoshi Yoshimura¹ & Takashi Fukui¹

Figure 3: Device fabrication processes: (a) InGaAs NW growth. (b) Atomic layer deposition of $Hf_{0.8}Al_{0.2}O_x$ and sputtering of W-gate metal. (c) Spin-coating of BCB polymer. (d) RIE of BCB, gate oxide and W metal. (e) Spin-coating of BCB and RIE etch back for electrical separation layer formation. (f) Drain and source metal evaporation.

Device Performance

Gate length 200 nm Nanowire diameter 60 nm 10 nanowires in the array Transconductance of 280 µS/µm at Vd=1V SS 98 mV/dec.

Non-Planar, Multi-Gate InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications

M. Radosavljevic, G. Dewey, J. M. Fastenau*, J. Kavalieros, R. Kotlyar, B. Chu-Kung, W. K. Liu*, D. Lubyshev*, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and Robert Chau

Intel Corporation, Technology and Manufacturing Group, Hillsboro, OR 97124, USA * IQE Inc, Bethlehem, PA 18015, USA

Intel IEDM 2010:

Lund University / Dept. of Electrical and Information Technology / May 6, 2013 - 17

Nanowire Inverters

Lund University / Dept. of Electrical and Information Technology / May 0, 2010 - 10

Nanowire Inverters

NANO

VERY abrupt heterojunction!

Sudden group-V contrast change indicates abrupt transition

Courtesy of Martin Ek

CULTURE * SIGIL

Lund University / Dept. of Electrical and Information Technology / May 6, 2013 - 20

InAs Circuits on 2" Si

Good wafers: 80% yield Area: 2000x6000 µm²

RF Compatible Transistors **Digital NOR Gates Single Balanced Differential Mixers** Digital Inverters **RF** Compatible Transistors mag

First test circuit: Balanced mixer

NANC

ELECTRONICS

GROUP

Design with 52 nanowire transistors Nanowire resistors Designed for 1 GHz input

Lund University / Dept. of Electrical and Information Technology / May 6, 2013 - 21

InAs Circuits on 2" Si

 $^{0.5}\,$ Jept. of Electrical and Information Technology / May 6, 2013 $\,$ - $\,$ 22 $\,$

Outperforming the Conventional Scaling Rules in the Quantum-Capacitance Limit

J. Knoch, W. Riess, and J. Appenzeller, Senior Member, .

Fig. 1. (a) Schematics of the wrap-gate transistor design under consideration. (b) Surface potential along the direction of current transport. The total charge in the channel is determined by all terminal voltages.

Fig. 2. Power delay product as a function of L and $d_{\rm oxc}$. The horizontal black dotted line shows the CL, where $P \cdot \tau = {\rm const.}$, and the straight black line belongs to the QCL with $P \cdot \tau \propto L$. The gray dashed line is the superposition of the two limiting curves showing an increasing scaling benefit in the QCL.

	Gate delay (diffusive) τ=C _g V _{dd} /I _d	Gate delay (ballistic) τ=C _g V _{dd} /I _d	Power –delay product
Classical Limit, CL	τ~L ²	τ~L	constant
Quantum Capacitance Limit, QCL	τ~L ²	τ~L	P*τ~L

 $I_d \propto \frac{l_{scat}}{l_{scat} + L} \frac{1}{L} \frac{C_{ox}C_q}{C_{ox} + C_q} (V_{gs} - V_t) v_{inj}$

Simulated performance

Movement of the band with the gate bias

Fig. 3. Conduction band profile for (a) a device with L = 120 nm a $d_{\text{ox}} = 9.6$ nm and (b) for a FET with L = 10 nm and $d_{\text{ox}} = 0.8$ nm showi that (a) is rather in the CL, whereas (b) is scaled toward the QCL. He $V_{\text{ds}} = 0.5$ V, and $V_{\text{gs}} = 0.5$ and 0.55 V.

Simulations of devices were carried out with the following parameters: $E_f^{\rm s,d} = 0.1 \text{ eV}$, $m^* = 0.1 m_0$, and $d_{\rm ch} = 3 \text{ nm}$; a midgap work-function metal was assumed as gate electrode, and $\Phi_{\rm bi} = 0.4 \text{ eV}$. Furthermore, $\varepsilon_{\rm cx} = 3.9$, and $\varepsilon_{\rm ch} = 12$.

Nanoelectronics: III-V Nanowire _____

QCL vs CL limit

Fig. 4. (a) Gate delay extracted from simulations versus L, d_{∞} for (hollow circles) scattering and (solid black squares) ballistic transport. The dashed black line is a quadratic fit to the data points. In the case of ballistic transport, the data points lie on a straight line. (b) Simulated $P \cdot \tau$ as a function of L and d_{∞} . The curves exhibit the same behavior as shown in Fig. 2, implying a significant scaling benefit in the QCL.

24