Integration of III-V semiconductors with Si

Mattias Borg

On the agenda

Part 1:

- Why go for III-Vs?
- Challenges of integration
- Integration techniques
 - Buffer layer epitaxy
 - ELO

<u>Part 2:</u>

• ART

- Nanowire epitaxy
- TASE
- RME
- The future

Si integrated circuits

- Si electronics for 50+ years!
 →Established, inexpensive, versatile
- Billions of transistors/chip (all "identical"!)
- Si CMOS \rightarrow Greatest engineering feat of mankind

End of the Si roadmap

- Power leakage is the problem
 - Leakage through gate dielectric, I_{GD} (dynamic)
 - Leakage in off-state, I_{DS,off} (static)
 - Core clock speed increase stalls

So why III-V's?

- \rightarrow Electron mobility better
- \rightarrow Direct band gaps
- III-V CMOS instead of Si?
- Can extend application space
- III-Vs should be integrated with Si!

Challenges of integration Lattice-mismatch

How thick can you grow?

- *h* = *layer thickness*
- $E_{strain} \propto h$
- Not stable when
 E_{strain} > critical thickness, *h_c*

Strain relaxation

Pseudo-morphic heterostructure

Relaxed heterostructre

Example – InAs on Si

$$f = \frac{a_e - a_s}{a_s}$$

- 1. How large is the lattice mismatch (f)?
- 2. What is the critical thickness?
- 3. What growth mode to expect?

Answers:

- 1. 11.5%
- 2. Basically zero
- 3. Island growth

 \rightarrow InAs integration on Si seems quite hopeless

Challenges of integration *Crystal structure*

<u>Si</u>

Diamond structure

Two interlaced face-centered cubic (fcc) lattices

The second lattice is translated a/4*(1,1,1)

Zinc-blende structure

Same structure as diamond but **one fcc lattice has group III** and **the second one has group V species**

Anti-phase boundary defects

DF-TEM of CuAlNi shape-memory alloy http://labs.mete.metu.edu.tr/tem/projects/apb/apb.html

Integration strategies

• Goal: Maximize quality, minimize cost

Typical Temperature: 500-800°C

Epitaxial integration methods

Aspect ratio trapping (ART)

selective epitaxy (TASE)

Template-assisted

Nanowire epitaxy

Rapid Melt Epitaxy

Epitaxial lateral overgrowth (ELO)

Buffer layer epitaxy

Buffer layer epitaxy

- Idea: Reduction of defects in top layer by containing defects in a thick "buffer" layer.
- Why? Dislocations can terminate when merging

Julian et al JCG 2014

Common strategies

Off-cut substrates

Maximizes nucleation density

Fischer et al. JAP 1986

Grassman et al. TED 2010

Superlattices

Two-step buffer

- Nucleation step: low temperature, high growth rate
 - \rightarrow Creates dense network of dislocated islands
- Buffer step: standard growth conditions to merge film

Multiple nucleation steps

Ghalamestani et al. JCG 2011

InAs nanowires grown on the InAs buffer

Epitaxial Lateral Overgrowth (ELO)

InP seed on (001) Si substrate, covered with SiO₂ mask

SiO₂ trench to facilitate selective area growth

♥ Defect-free area of epitaxial lateral overgrown region of InP on Si

Wierzbicka et al. JAP 2009

Problem of merging growth fronts

- Faceting can cause voids
- Crystal misalignment can cause defects

Anti-phase boundary

Break

Epitaxial integration methods

Aspect ratio trapping (ART)

selective epitaxy (TASE)

Template-assisted

Rapid Melt Epitaxy

Epitaxial lateral overgrowth (ELO)

Buffer layer epitaxy

Aspect ratio trapping (ART)

- Idea:
 - Based on ELO concept but no merging
 - High aspect ratio windows (trenches) to catch all defects
- Progress lead by IMEC, Sematech
- Completely compatible with Si CMOS fin processes (replacement fin)

Defect "trapping" in ART

• Defects (dislocation threading, twins, stacking faults) occur on (111) planes

[001]

[110

- Defects across the trenches terminate on oxide
- Defects along the trench may not be trapped

Julian et al JCG 2014

(a) $x^{1/2}$ (110)20 nm (110)

Orzali et al. JAP 2015

Latest status

- V-groove at bottom deemed crucial
- IMEC:
 - Two-step growth to create a dense twin network
 - Mg Counterdoping to increase resistivity in InP

Orzali et al. JAP 2015 (SEMATECH)

Nanowire epitaxy - VLS

- VLS Vapour Liquid Solid
- Selective growth seeded by liquid particle
 - Extrinsic particle (Au, Ag, Al, Sn, ...)
 - Self-assisted (Ga \rightarrow GaAs, In \rightarrow InAs)
- Gives nanowire structures along [111]B (usually)
- Strain relaxation by
 - elastic relaxation at small dimensions (some claim)
 - Point contact to Si → Contained misfit dislocation network at heterojunction (observed)

Plissard et al. Nanotechn. 2011

Nanowire epitaxy – Selective area

- No seed \rightarrow abrupt junctions, CMOS compatible
- Twin defects are necessary!! → Prismatic crystal shape
 - (111)B top and {110} side facets
- Aspect rato given by growth rate anisotropy
- Excellent devices demonstrated by Hokkaido group

Gate voltage, V_{G} (V)

Tomioka et al. Nature 2012

Limitations of nanowire epitaxy

- Non-polarity of Si

 → Equivalent
 nucleation directions
- Vertical or inclined nanowire growth

Tomioka et al. Nano Lett. 2008

- Axial growth rate varies with
 - diameter
 - neighborhood
- Radial growth
- \rightarrow Morphology variations

Template-Assisted Selective Epitaxy (TASE)

- Developed by IBM
- Based on a combination of ELO, ART and nanowire concepts

Device crystal defect Device

Key concepts:

- 1. Limit epitaxy to start from a single nucleation point
- 2. Assist the crystal growth to desired shape by confining epitaxy within an oxide template.

Benefits:

- Avoids typical crystal defects (anti-phase boundaries, dislocations)
- Allows for precise control of crystal morphology
- Allows for in-plane heterostructures, co-planar with Si
- Wide range of materials possible (arsenides, phosphides, nitrides, antimonides, ...)

Vertical nanowire TASE process

Etch out sacrificial NW

Deposit conformal SiO₂

α-Si selective wet etch

InAs on Si(111)

InAs on Si(001)

🚇 Borg et al. Nano Lett. 2014

- Selective InAs growth on Si within nanotubes.
- Nanowire growth is conformal to template walls.
- Vertical direction independent on substrate orientation.

Effect of template on growth

- Effectively lower As/In ratio in tubes
- Vapor diffusion less effective in smaller tubes
 → As/In reduces further in smaller tubes
 - \rightarrow Growth rate is affected

Horizontal TASE Process

Material quality

- Interface misfit dislocation network at Si/III-V junction.
 - Never have observed dislocation threading
- Crystal is predominately zinc-blende
- Twinning prominent in arsenides
 - Either across nanowire or along
 - Can be controlled by III-V ratio and T
- GaSb: Twin-free is possible

90%, twins across wire

10%, twins along wire

InAs finFET crossection

Electrical quality

- TASE allows for growth of complex nanostructures
 → Ideal Hall devices are possible
- Electrical evaluation of 23 nm thick InAs nanostructures
 - Transmission line measurements and Van der Pauw/Hall
- Hall setup:
 - +/- 0.1 T (permanent magnet)
 - Pressure 5x10⁻⁴ mbar

Schmid et al. APL. 2015, Schmid et al DRC 2015

$$\sum_{n=1}^{\infty} \rho_{c} = 9.5 \times 10^{-8} \text{ Ohm} \cdot \text{cm}^{2}$$

$$<\rho> = 2.89 \text{ m}\Omega\text{cm}$$

$$= 1257 \text{ Ohm/sq}$$

VDP → R_{sheet} = 1281 Ohm/sq V_H = -171 µV → n = 3.3x10¹⁷ cm⁻³ → μ_e ~ 5400 cm²/Vs

Compares well. Surface-limited

Device implementations

Vertical Tunnel Field effect-transistors

finFETs for III-V CMOS

Performance at this point limited by device processing, not materials

Rapid Melt Epitaxy

Pioneered by Stanford (Plummer group)

Feng EDL 2006

SiO₂

0.2 μm

Ge Rapid Melt Epitaxy

III-V RME

Chen (Plummer) EDL 2010

- Deposited Ga-As was As-rich
- After RME the material was stoichometric
- Excess As pushed to end
- $\rho_{GaAs} = 20 \text{ mOhm-cm}$
 - i.e. Si background doping!

Ternaries in RME

The future

Integrated III-V Comm/Optical/Quantum technology

