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Channel model

Reflector:  dominating power, less amount, resolvable,
Scatter:      weaker power, larger amount, not resolvable, and not ignorable



PDP of received signal vs PDP of DMC



What is RIMAX?

A Flexible Algorithm for Channel Parameter Estimation from Channel 
Sounding Measurements.

Please refer to the dissertation:
Andreas. Richter, "Estimation of radio channel parameters: Models and algorithms", Technische
Universität, 2005, ISBN 3-938843-02-0.



Multipath Components (MPC) 
Introduction



Propagation path 



SISO signal and channel model in time domain 
with omni-directional antennas at Tx and Rx

𝑦 𝑡 = 𝛾𝑝 ⋅ 𝑔𝑅 𝑡 ∗𝑡 𝑔𝑇 𝑡 ∗𝑡 𝑥 𝑡 −
𝑙𝑝

𝐶0
⋅ 𝑒

−
𝑗2𝜋𝑓𝑐𝑙𝑝

𝐶0

𝑥 𝑡 : transmitted signal; ∗𝑡: time domain convolution;

𝑔𝑅 𝑡 : receiver impulse response; 𝑔𝑇 𝑡 : transmitter impulse response; 

𝑓𝑐: carrier frequency; 𝐶0: speed of light;

𝑙𝑝: propagation length;

𝛾𝑝: all effects which are frequency independent, e.g. free space loss, complex antenna gain, 

loss on scattering or reflection, etc.



SISO signal and channel model in frequency domain

𝑌 𝑓 = 𝑋 𝑓 ⋅ 𝛾𝑝 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ 𝐺𝑅𝑓 𝑓 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒
−
𝑗2𝜋𝑓𝑐𝑙𝑝

𝐶0

Where 𝜏𝑝 =
𝑙𝑝

𝐶0

Time invariant frequency response:

𝐻 𝑓 = 𝛾𝑝 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ 𝐺𝑅𝑓 𝑓 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒
−
𝑗2𝜋𝑓𝑐𝑙𝑝

𝐶0

Time variant frequency response:

𝐻 𝑓, 𝑡 = 𝛾𝑝 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ 𝐺𝑅𝑓 𝑓 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒
−
𝑗2𝜋 (𝑙𝑝+𝑣𝑝𝑡)

𝜆𝑐
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Antenna Polarization
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𝐸90

𝜃𝑇

𝐸𝜃𝑇

Radiation pattern

𝐸0 = 0

Field strength at angle 𝜃𝑇



Antenna Radiation Pattern
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Link to Cisco site

https://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennas-accessories/prod_white_paper0900aecd806a1a3e.html


SISO signal and channel model in frequency 
domain with polarization
𝐻 𝑓, 𝜑𝑇 , 𝜗𝑇 , 𝜑𝑅 , 𝜗𝑅 , 𝑡
= 𝐺𝑅𝑓 𝑓 ⋅ 𝒃𝑅 𝜑𝑅 , 𝜗𝑅 ⋅ 𝚪𝑝 ⋅ 𝒃𝑇 𝜑𝑇 , 𝜗𝑇

𝑇 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒−𝑗2𝜋𝛼𝑝𝑡

Where 
𝑏𝑇 𝜑𝑇 , 𝜗𝑇 , 𝑓 = 𝑏𝑇𝐻 𝜑𝑇 , 𝜗𝑇 , 𝑓 bTV 𝜑𝑇 , 𝜗𝑇 , 𝑓 ∈ 𝐶1×2

𝑏𝑅 𝜑𝑅 , 𝜗𝑅, 𝑓 = 𝑏𝑅𝐻 𝜑𝑅 , 𝜗𝑅 , 𝑓 bRV 𝜑𝑅 , 𝜗𝑅 , 𝑓 ∈ 𝐶1×2

𝚪𝑝 =
𝛾𝐻𝐻,𝑝 𝛾𝑉𝐻,𝑝
𝛾𝐻𝑉,𝑝 𝛾𝑉𝑉,𝑝

∈ 𝐶2×2



Extension to multipath and MIMO system
Extended to multipath channel, 𝑃 is the multipath number.
𝐻 𝑓, 𝜑𝑇 , 𝜗𝑇 , 𝜑𝑅 , 𝜗𝑅 , 𝑡

= 𝐺𝑅𝑓 𝑓 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ ෍

𝑝=1

𝑃

𝒃𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝒃𝑇 𝜑𝑇, 𝜗𝑇
𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒−𝑗2𝜋𝛼𝑝𝑡 ∈ 𝐶1×1

Extended to MIMO case:

𝑯 𝑓,𝜑𝑇 , 𝜗𝑇 , 𝜑𝑅 , 𝜗𝑅 , 𝑡

= 𝐺𝑅𝑓 𝑓 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ ෍

𝑝=1

𝑃

𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝑩𝑇 𝜑𝑇 , 𝜗𝑇
𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒−𝑗2𝜋𝛼𝑝𝑡 ∈ 𝐶𝑀𝑅×𝑀𝑇

𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 =

𝒃𝑅,1 𝜑𝑅,𝑝, 𝜗𝑅,𝑝
⋮

𝒃𝑅,𝑀𝑅
𝜑𝑅,𝑝, 𝜗𝑅,𝑝

R2 → 𝐶𝑀𝑅×2

𝑩𝑻 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 =

𝒃𝑅,1 𝜑𝑅,𝑝, 𝜗𝑅,𝑝
⋮

𝒃𝑅,𝑀𝑇
𝜑𝑅,𝑝, 𝜗𝑅,𝑝

R2 → 𝐶𝑀𝑇×2



Frequency domain sample

𝐻𝑓 𝑡 =

𝐻(−
𝑀𝑓 − 1

2
𝑓0, 𝑡) 0

0 ⋱

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0

0 𝐻(+
𝑀𝑓 − 1

2
𝑓0, 𝑡)

∈ 𝐶𝑀𝑓𝑀𝑅×𝑀𝑓𝑀𝑇



Representation in matrix form (SISO)

𝒃𝑅 𝜑𝑅 , 𝜗𝑅 ⋅ 𝚪𝑝 ⋅ 𝒃𝑇 𝜑𝑇 , 𝜗𝑇
𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝

= 𝑏𝑅𝐻 𝜑𝑅 , 𝜗𝑅 , 𝑓 bRV 𝜑𝑅 , 𝜗𝑅 , 𝑓 ⋅
𝛾𝐻𝐻,𝑝 𝛾𝑉𝐻,𝑝
𝛾𝐻𝑉,𝑝 𝛾𝑉𝑉,𝑝

⋅
𝑏𝑇𝐻 𝜑𝑇 , 𝜗𝑇 , 𝑓

bTV 𝜑𝑇 , 𝜗𝑇 , 𝑓

= 𝑏𝑅𝐻 𝜑𝑅 , 𝜗𝑅 , 𝑓 ⋅ 𝛾𝐻𝐻,𝑝 ⋅ 𝑏𝑇𝐻 𝜑𝑇 , 𝜗𝑇 , 𝑓

+𝑏𝑅𝐻 𝜑𝑅 , 𝜗𝑅 , 𝑓 ⋅ 𝛾𝑉𝐻,𝑝 ⋅ 𝑏𝑇𝑉 𝜑𝑇 , 𝜗𝑇 , 𝑓

+𝑏𝑅𝑉 𝜑𝑅 , 𝜗𝑅 , 𝑓 ⋅ 𝛾𝐻𝑉,𝑝 ⋅ 𝑏𝑇𝐻 𝜑𝑇 , 𝜗𝑇 , 𝑓

+𝑏𝑅𝑉 𝜑𝑅 , 𝜗𝑅 , 𝑓 ⋅ 𝛾𝑉𝑉,𝑝 ⋅ 𝑏𝑇𝑉 𝜑𝑇 , 𝜗𝑇 , 𝑓



Representation in matrix form (multipath)

σ𝑝=1
𝑃 𝒃𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝒃𝑇 𝜑𝑇 , 𝜗𝑇

𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 =

𝑏𝑅𝐻 𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻 𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝}

𝑏𝑇𝐻 𝜑𝑇,1, 𝜗𝑇,1, 𝑓

⋮
𝑏𝑇𝐻 𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓

+⋯



Representation in matrix form (multipath MIMO)

෍

𝑝=1

𝑃

𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝑩𝑇 𝜑𝑇 , 𝜗𝑇
𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 =

𝑏𝑅𝐻,1 𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,1 𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋮ ⋱ ⋮
𝑏𝑅𝐻,𝑀𝑅

𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,𝑀𝑅
𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅

𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝}

𝑏𝑇𝐻,1 𝜑𝑇,1, 𝜗𝑇,1, 𝑓 … 𝑏𝑇𝐻,𝑀𝑇
𝜑𝑇,1, 𝜗𝑇,1, 𝑓

⋮ ⋱ ⋮
𝑏𝑇𝐻,1 𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓 … 𝑏𝑇𝐻,𝑀𝑇

𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓
+ ⋯



Representation in matrix form (multipath MIMO)

• σ𝑝=1
𝑃 𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝑩𝑇 𝜑𝑇 , 𝜗𝑇

𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 =

•

𝑏𝑅𝐻,1 𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,1 𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋮ ⋱ ⋮
𝑏𝑅𝐻,𝑀𝑅

𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,𝑀𝑅
𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅

• 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝}

𝑏𝑇𝐻,1 𝜑𝑇,1, 𝜗𝑇,1, 𝑓 … 𝑏𝑇𝐻,𝑀𝑇
𝜑𝑇,1, 𝜗𝑇,1, 𝑓

⋮ ⋱ ⋮
𝑏𝑇𝐻,1 𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓 … 𝑏𝑇𝐻,𝑀𝑇

𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓
+ ⋯

𝑩𝑅𝐻(𝝋𝑅 , 𝝑𝑅)

𝑩𝑇𝐻
𝑇 (𝝋𝑇 , 𝝑𝑇)



Representation in matrix form (multipath 
MIMO)
𝐻 0,0 = 𝐺𝑇𝑓 0 ⋅ 𝐺𝑅𝑓 0 ⋅

൥
𝑩𝑅𝐻 𝝋𝑅, 𝝑𝑅 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} ⋅ 𝑩𝑇𝐻

𝑇 𝝋𝑇 , 𝝑𝑇 +

𝑩𝑅𝐻 𝝋𝑅, 𝝑𝑅 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝑉𝐻,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} ⋅ 𝑩𝑇𝑉
𝑇 𝝋𝑇 , 𝝑𝑇 +

𝑩𝑅𝑉 𝝋𝑅, 𝝑𝑅 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝑉,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} ⋅ 𝑩𝑇𝐻
𝑇 𝝋𝑇 , 𝝑𝑇 +

൧𝑩𝑅𝑉 𝝋𝑅, 𝝑𝑅 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝑉𝑉,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} ⋅ 𝑩𝑇𝑉
𝑇 𝝋𝑇 , 𝝑𝑇



Representation in matrix form (multipath 
MIMO, frequency domain sample)

• 𝑯 𝑓,𝜑𝑇 , 𝜗𝑇 , 𝜑𝑅 , 𝜗𝑅 , 𝑡 =

• 𝐺𝑅𝑓 𝑓 ⋅ 𝐺𝑇𝑓 𝑓 ⋅ σ𝑝=1
𝑃 𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝑩𝑇 𝜑𝑇 , 𝜗𝑇

𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ⋅ 𝑒−𝑗2𝜋𝛼𝑝𝑡

𝐻𝑓 0 = 𝑮𝑅𝑓 ⊗𝑩𝑅𝐻 ⋅ 𝐈 ⊗ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻 ⋅ 𝑑𝑖𝑎𝑔 𝑣𝑒𝑐 𝑨𝜏
𝑇 ⋅ 𝑮𝑇𝑓 ⊗𝑩𝑇𝐻 +⋯

𝑮𝑅𝑓 = 𝑑𝑖𝑎𝑔 𝐺𝑅𝑓 −
𝑀𝑓 − 1

2
𝑓0 … 𝐺𝑅𝑓 +

𝑀𝑓 − 1

2
𝑓0 ∈ 𝐶𝑀𝑓×𝑀𝑓

𝑨𝜏 𝜏 =
𝑒
−𝑗2𝜋 −

𝑀𝑓−1

2 𝑓0𝜏1 𝑒
−𝑗2𝜋 −

𝑀𝑓−1

2 𝑓0𝜏𝑝

𝑒
−𝑗2𝜋 +

𝑀𝑓−1

2 𝑓0𝜏1 𝑒
−𝑗2𝜋 +

𝑀𝑓−1

2 𝑓0𝜏𝑝

Kronecker product

𝑨⊗𝑩 =
𝑎11𝑩 … 𝑎1𝑛𝑩
⋮ ⋱ ⋮

𝑎𝑚1𝑩 … 𝑎𝑚𝑛𝑩



Representation in vector form (multipath MIMO)

𝑣𝑒𝑐 ෍

𝑝=1

𝑃

𝑩𝑅 𝜑𝑅,𝑝, 𝜗𝑅,𝑝 ⋅ 𝚪𝑝 ⋅ 𝑩𝑇 𝜑𝑇 , 𝜗𝑇
𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝜏𝑝 ∈ 𝐶𝑀𝑅𝑀𝑇×1

=

𝑏𝑅𝐻,1 𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,1 𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋮ ⋱ ⋮
𝑏𝑅𝐻,𝑀𝑅

𝜑𝑅,1, 𝜗𝑅,1, 𝑓 … 𝑏𝑅𝐻,𝑀𝑅
𝜑𝑅,𝑝, 𝜗𝑅,𝑝, 𝑓

⋄

𝑏𝑇𝐻,1 𝜑𝑇,1, 𝜗𝑇,1, 𝑓 … 𝑏𝑇𝐻,1 𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓

⋮ ⋱ ⋮
𝑏𝑇𝐻,𝑀𝑇

𝜑𝑇,1, 𝜗𝑇,1, 𝑓 … 𝑏𝑇𝐻,𝑀𝑇
𝜑𝑇,𝑝, 𝜗𝑇,𝑝, 𝑓

⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} + ⋯

= 𝑩𝑅𝐻 𝝋𝑅, 𝝑𝑅 ⋄ 𝑩𝑇𝐻
𝝋𝑇 , 𝝑𝑇 ⋅ 𝑑𝑖𝑎𝑔 𝛾𝐻𝐻,𝑝 ⋅ 𝑑𝑖𝑎𝑔{𝑒−𝑗2𝜋𝑓𝜏𝑝} ℎ𝑒𝑟𝑒 ⋄ means Khatri-Rao product, 

i.e. column wise Kronecker product
𝐴 ⋄ 𝐵 = 𝑎1⊗𝑏1 … 𝑎𝑛 ⊗𝑏𝑛



Representation in vector form (multipath 
MIMO, frequency domain sample)

𝒔 𝜽𝑠𝑝 = 𝑣𝑒𝑐 𝐻𝑓 0

= 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝐻 ⋄ 𝐺𝑠𝑓 ⋅ 𝐴𝜏 ⋅ 𝛾𝐻𝐻 + 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝑉 ⋄ 𝐺𝑠𝑓 ⋅ 𝐴𝜏 ⋅ 𝛾𝐻𝑉 +

𝐵𝑇𝑉 ⋄ 𝐵𝑅𝐻 ⋄ 𝐺𝑠𝑓 ⋅ 𝐴𝜏 ⋅ 𝛾𝑉𝐻 + 𝐵𝑇𝑉 ⋄ 𝐵𝑅𝑉 ⋄ 𝐺𝑠𝑓 ⋅ 𝐴𝜏 ⋅ 𝛾𝑉𝑉

= 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝐻 ⋄ 𝐵𝑓 ⋅ 𝛾𝐻𝐻 + 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝑉 ⋄ 𝐵𝑓 ⋅ 𝛾𝐻𝑉 + 𝐵𝑇𝑉 ⋄ 𝐵𝑅𝐻 ⋄ 𝐵𝑓 ⋅ 𝛾𝑉𝐻 + 𝐵𝑇𝑉 ⋄ 𝐵𝑅𝑉 ⋄ 𝐵𝑓 ⋅ 𝛾𝑉𝑉

= 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝐻 ⋄ 𝐵𝑓 𝐵𝑇𝐻 ⋄ 𝐵𝑅𝑉 ⋄ 𝐵𝑓 𝐵𝑇𝑉 ⋄ 𝐵𝑅𝐻 ⋄ 𝐵𝑓 𝐵𝑇𝑉 ⋄ 𝐵𝑅𝑉 ⋄ 𝐵𝑓

𝛾𝐻𝐻
𝛾𝐻𝑉
𝛾𝑉𝐻
𝛾𝑉𝑉

= 𝐵 𝝁 ⋅ 𝜸

Where , 𝐵𝑓 = 𝐺𝑠𝑓 ⋅ 𝐴𝜏 = 𝐺𝑅𝑓 ⋅ 𝐺𝑇𝑓 ⋅ 𝐴𝜏

Parameter vector to estimate:

𝚯𝑠𝑝 = 𝛼𝑇 𝜏𝑇 𝜑𝑇
𝑇 𝜗𝑇

𝑇 𝜑𝑅
𝑇 𝜗𝑅

𝑇 ℜ 𝛾𝐻𝐻
𝑇 ℑ 𝛾𝐻𝐻

𝑇 ℜ 𝛾𝐻𝑉
𝑇 ℑ 𝛾𝐻𝑉

𝑇 ℜ 𝛾𝑉𝐻
𝑇 ℑ 𝛾𝑉𝐻

𝑇 ℜ 𝛾𝑉𝑉
𝑇 ℑ 𝛾𝑉𝑉

𝑇



Dense Multipath Components 
(DMC) Introduction



DMC model

Parameters characterize DMC  𝜽𝑑𝑚𝑐 = 𝜏𝑑 α1 𝛽𝑑 𝛼0



DMC model

The proposed model (2.60) describes the power delay profile (PDP) of 
the dense multipath components, which is an exponential decay over 
the time-delay.



Frequency domain covariance matrix

Φℎℎ 𝜏1, 𝜏2 = 𝐸 ℎ 𝜏1 ℎ 𝜏2
∗

Ψ𝐻𝐻 𝑓1, 𝑓2 = 𝐸{𝐻 𝑓1 𝐻 𝑓2
∗}

Discrete version:

Covariance function of the 
channel impulse response

Covariance function of the 
channel transfer function

This is a Toeplitz matrix

𝑹𝑓 = 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑘 𝜽 , 𝑘𝐻 𝜽



Overall channel model



Complete radio channel model

𝒉 = 𝒔 𝜽𝑠𝑝 + 𝒅𝑑𝑚𝑐 = 𝑩 𝝁 ⋅ 𝜸 + 𝒅𝑑𝑚𝑐

𝒅𝑑𝑚𝑐~𝒩𝑐(0, 𝑹(𝜽𝑑𝑚𝑐)), complex circular symmetric Gaussian process.

𝒉~𝒩𝑐(𝒔(𝜽𝑠𝑝), 𝑹(𝜽𝑑𝑚𝑐))

Global maximization algorithm



How RIMAX works



RIMAX: an alternating way of channel estimation

Step 1

Step 2

Step 3

Step 4

Step 5



Step 1: BLUE (Best Linear Unbiased Estimator)

If the noise parameter 𝜽𝑑𝑎𝑛is known, then maximization problem reduces to 

෡𝜽 = 𝑎𝑟𝑔 min
𝜽

𝒙 − 𝒔 𝜽
𝐻
𝑹𝑛𝑛
−1 𝒙 − 𝒔 𝜽

= 𝑎𝑟𝑔 min
𝜽

𝒙 − 𝑩 𝝁 ⋅ 𝜸 𝐻𝑹𝑛𝑛
−1 𝒙 − 𝑩 𝝁 ⋅ 𝜸

With BLUE

ෝ𝜸 = 𝑩𝐻 ෝ𝝁 ⋅ 𝑹𝑛𝑛
−1 ⋅ 𝑩 ෝ𝝁

−𝟏
⋅ 𝑩𝐻 ෝ𝝁 ⋅ 𝑹𝑛𝑛

−1 ⋅ 𝒙

Replacing 𝜸 by its estimator ෝ𝜸 yields

෡𝜽 = 𝑎𝑟𝑔 min
𝜽

𝒙𝐻𝑹𝑛𝑛
−1𝒙 − 𝒙𝐻𝑹𝑛𝑛

−1𝑩 𝝁 ⋅ 𝑩𝐻 𝝁 𝒙𝐻𝑹𝑛𝑛
−1𝑩 𝝁

−1
𝑩𝐻 𝝁 𝒙𝐻𝑹𝑛𝑛

−1𝒙

Match filter tries all the possible parameters combination of 𝝁, and find the best one.



Step 2: to find new MPC

Remove the contribution of the tracked MPC, we get 𝒙𝑟 and search fro 
new MPC iteratively, stop until the signal power is lower enough.

𝒙𝑟 = 𝒙 −෍

𝑝=1

𝑃

𝑠 ෡𝜽𝑠𝑝,𝑝



Step 3: Gauss-Newton algorithm introduction

Given 𝑚 functions 𝒓 = (𝒓1, … , 𝒓𝑚) of 𝑛 variables 𝜷 = 𝛽1, … , 𝛽𝑛 , with 𝑚 ≥ 𝑛 , the Gauss-Newton 
algorithm iteratively finds the value of the variables that minimizes the sum of squares

𝑆 𝜷 =෍

𝑖=1

𝑚

𝑟𝑖
2(𝛽)

Starting with an initial guess 𝜷 0 for the minimum, the method proceeds by the iterations

𝜷(𝑠+1) = 𝜷(𝑠) − 𝑱𝑟
𝑇𝑱𝑟

−1𝑱𝑟
𝑇𝒓 𝜷 𝑠

Where 𝒓 and 𝜷 are column vectors, the entries of the Jacobian matrix are

𝐽𝑟 𝑖,𝑗 =
𝜕𝑟𝑖 𝛽

𝑠

𝜕𝛽𝑗



Step 3: Gauss-Newton algorithm

Gaussian-Newton algorithm

𝜽𝑛+1 = 𝜽𝑛 + Δ𝜽

Where, 

Δ𝜽 = 𝑫𝐻𝑫 −1𝑫𝐻 ⋅ 𝑣𝑒𝑐 𝑹𝑥𝑥 − 𝑹 𝜽𝑛



Step 3: Jacobian of DMC
𝜕

𝜕𝜃𝑖
𝑹 𝜽𝑑𝑚𝑐 = 𝑡𝑜𝑒𝑝

𝜕

𝜕𝜃𝑖
𝑘 𝜽𝐷𝑀𝐶 ,

𝜕

𝜕𝜃𝑖
𝑘𝐻 𝜽𝐷𝑀𝐶



Step 3: Estimation of DMC parameters with 
Gauss-Newton algorithm



Step 4: MPC parameters estimation 

Probability dense function of MPC

Take the logarithm form yields the log-likelihood function

The first order partial derivative with respect to the parameters 𝜽𝑠𝑝 of 
the log-likelihood function is called score function



Step 4: MPC parameters estimation
The first order derivation to specific parameter 𝜃𝑖 is as follow:

If we define the Jacobian of 𝒔 𝜽 as

Then we can get score function as

And  the second order derivation of log-likelihood function (Fisher 
information) as:



Step 4: MPC parameters estimation

For Gauss-Newton algorithm

Levenberg-Marquardt Method



Step 4: MPC parameters estimation



Step 5: check the reliability of MPC

The problem is to check how reliable the MPC is, and decide if we want 
to keep it or discard it.

Since the estimation is asymptotic distribution of

The valid MPC should fulfill the following criteria:

Which means we require that the certainty of the estimated path 
magnitude must be larger than its uncertainty.


