Diversity

Major topic in "Multiple antenna systems, EITN10". Briefly treated here

Assume signals of the form

$$s_j(t) = \sum_{n=1}^N s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$$

Check: what information is contained above?

Λ7

Diversity

Major topic in "Multiple antenna systems, EITN10"

Assume signals of the form

$$s_j(t) = \sum_{n=1}^N s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$$

Check: what information is contained above? M signal alternatives, N dimensional signal space

Diversity

Major topic in "Multiple antenna systems, EITN10"

Assume signals of the form

$$s_j(t) = \sum_{n=1}^{N} s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$$

Assume a channel such that

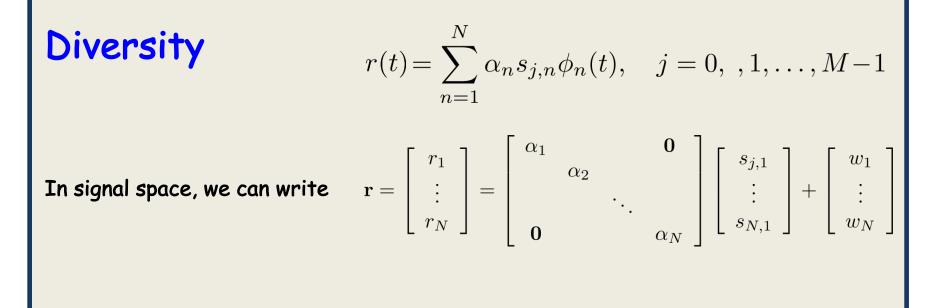
$$r(t) = z_j(t) + N(t)$$

 ΛT

$$=\sum_{n=1}^{N} \alpha_n s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$$

Diversity

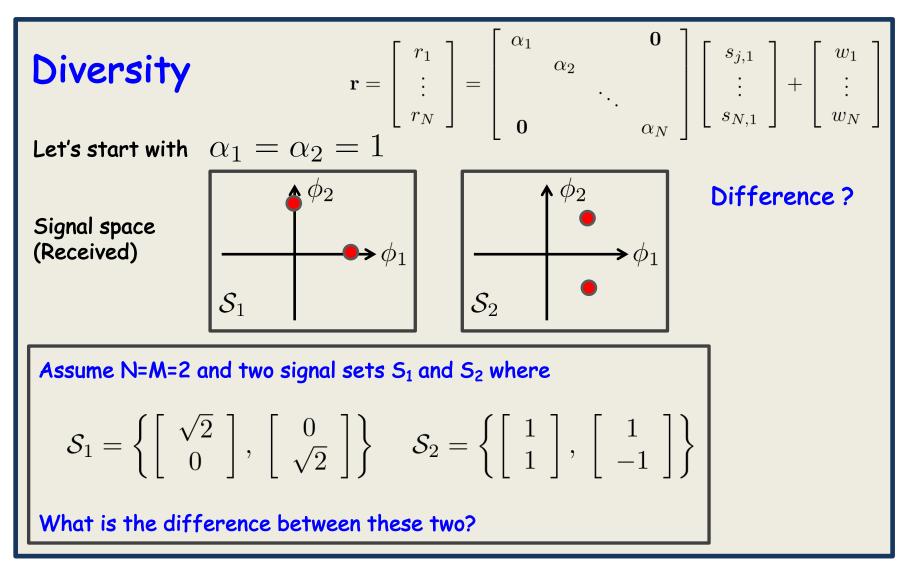
Major topic in "Multiple antenna systems, EITN10" Assume signals of the form $s_j(t) = \sum s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$ n=1Assume a channel such that $r(t) = z_i(t) + N(t)$ Can happen, e.g., if $= \sum_{n=1}^{N} \alpha_n s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1$ $\Phi_1(f) \qquad \Phi_N(f)$ n=1f

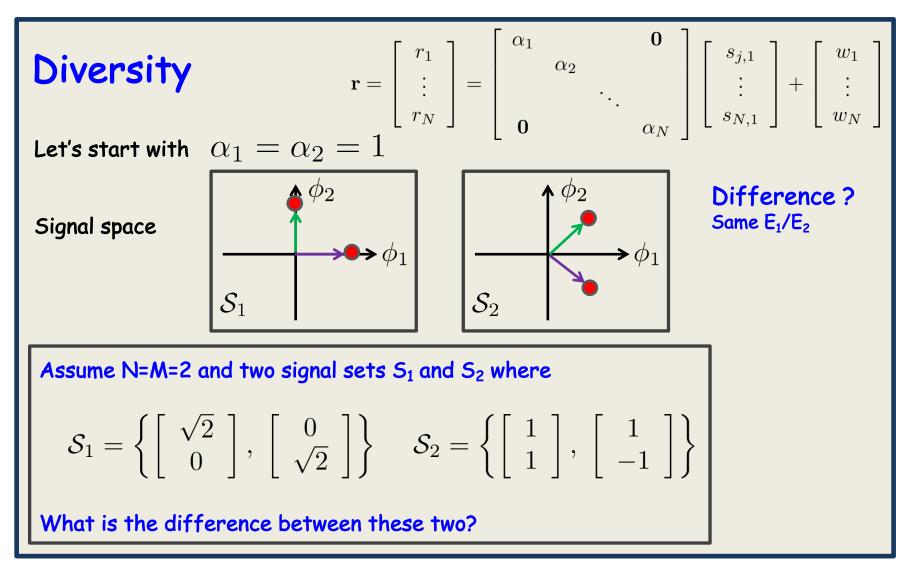


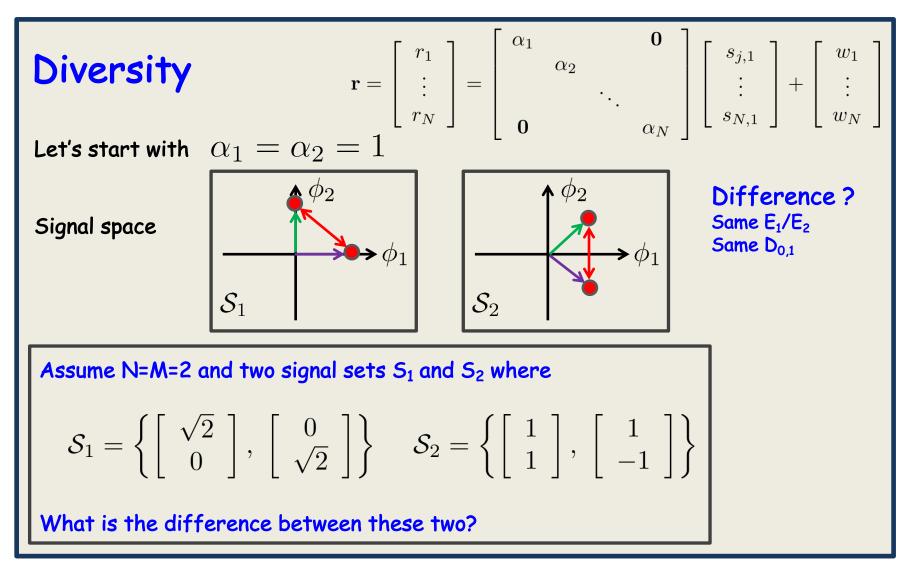
$$\begin{aligned} \mathbf{Diversity} \qquad r(t) &= \sum_{n=1}^{N} \alpha_n s_{j,n} \phi_n(t), \quad j = 0, \ , 1, \dots, M-1 \\ \text{In signal space, we can write} \qquad \mathbf{r} &= \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} \alpha_1 & \mathbf{0} \\ \alpha_2 & \vdots \\ \mathbf{0} & \alpha_N \end{bmatrix} \begin{bmatrix} s_{j,1} \\ \vdots \\ s_{N,1} \end{bmatrix} + \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} \\ \text{We are now interested in questions of the following form:} \\ \end{aligned}$$

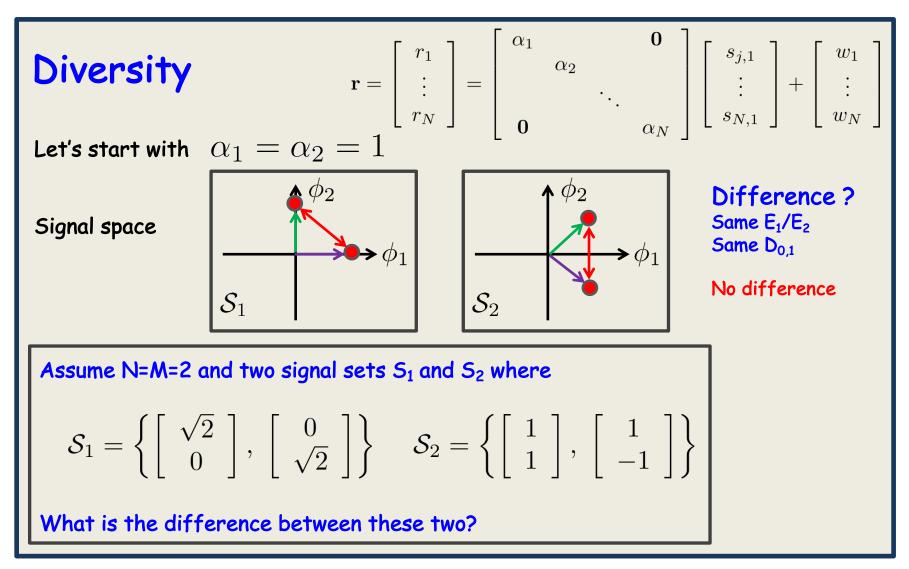
$$\begin{aligned} \text{We are now interested in questions of the following form:} \\ \mathbf{S}_1 &= \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \end{aligned}$$

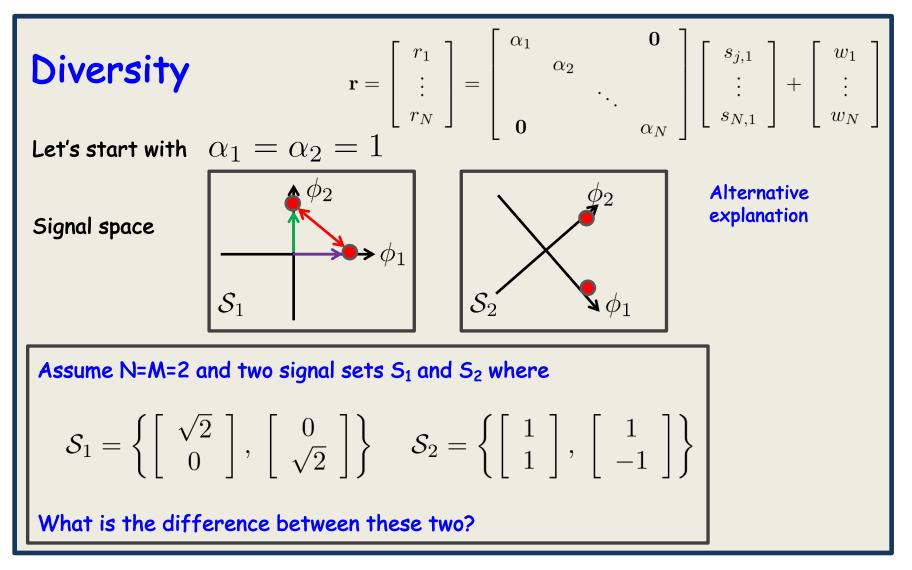
What is the difference between these two?

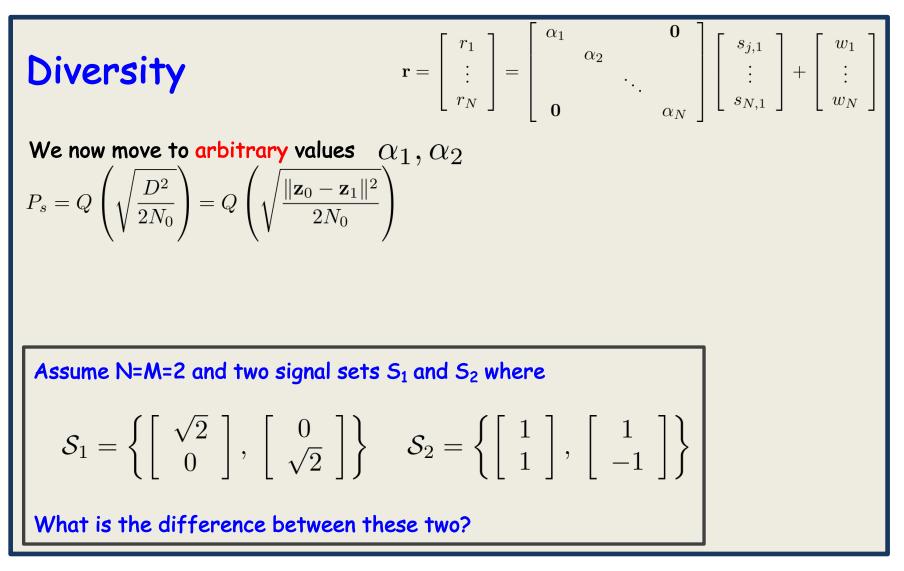


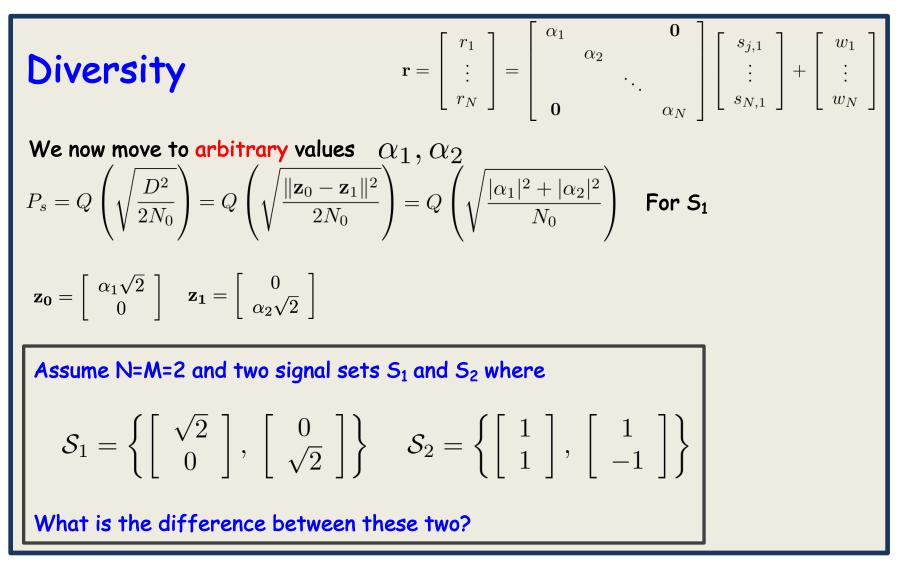


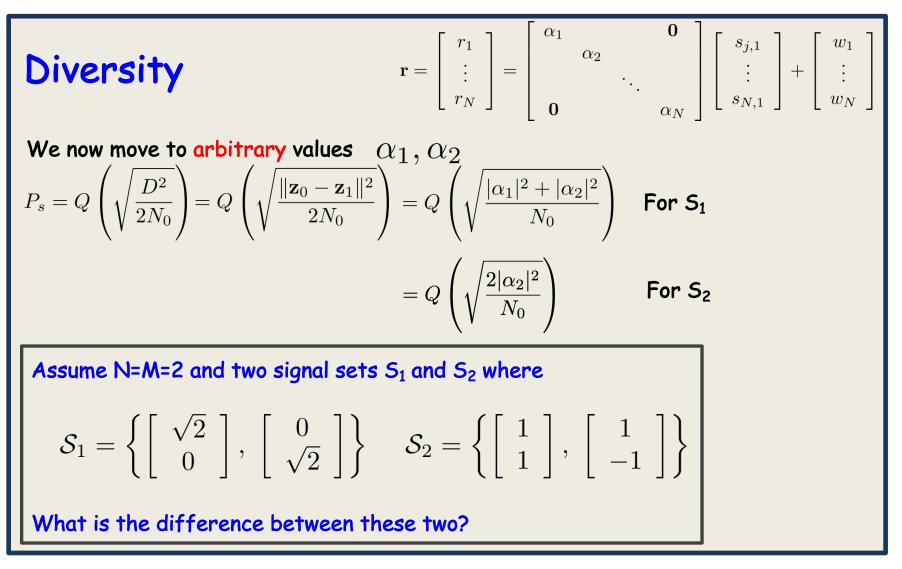












Diversity
$$\mathbf{r} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} \alpha_1 & \mathbf{0} \\ \alpha_2 & \vdots \\ \mathbf{0} & \alpha_N \end{bmatrix} \begin{bmatrix} s_{j,1} \\ \vdots \\ s_{N,1} \end{bmatrix} + \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix}$$
Let us now compare to a system with N=1
$$S_3 = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$

$$S_1 = \left\{ \begin{bmatrix} \sqrt{2} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

$$P_s = Q\left(\sqrt{\frac{D^2}{2N_0}}\right) = Q\left(\sqrt{\frac{|\alpha_1|^2 + |\alpha_2|^2}{N_0}}\right) \qquad Q\left(\sqrt{\frac{2|\alpha_2|^2}{N_0}}\right)$$

Diversity

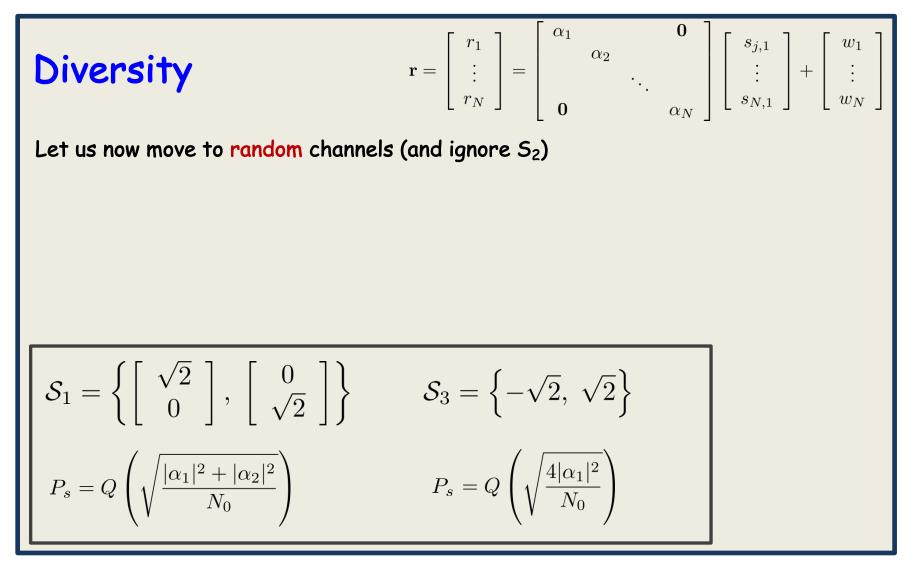
$$\mathbf{r} = \begin{bmatrix} r_{1} \\ \vdots \\ r_{N} \end{bmatrix} = \begin{bmatrix} \alpha_{1} & 0 \\ \alpha_{2} & \vdots \\ 0 & \alpha_{N} \end{bmatrix} \begin{bmatrix} s_{j,1} \\ \vdots \\ s_{N,1} \end{bmatrix} + \begin{bmatrix} w_{1} \\ \vdots \\ w_{N} \end{bmatrix}$$
Let us now compare to a system with N=1

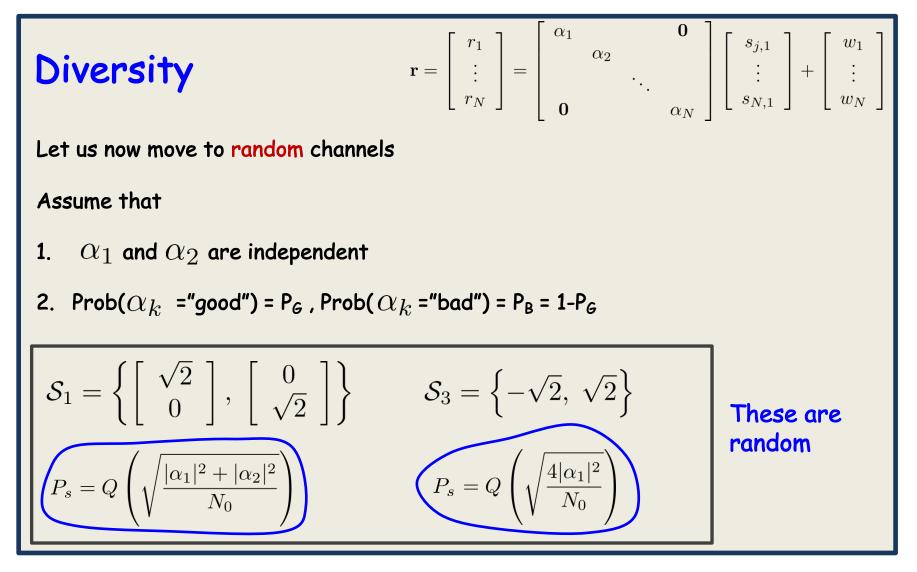
$$S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\} \quad P_{s} = Q\left(\sqrt{\frac{D^{2}}{2N_{0}}}\right) = Q\left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}}\right)$$

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \quad S_{2} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

$$P_{s} = Q\left(\sqrt{\frac{D^{2}}{2N_{0}}}\right) = Q\left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}}\right) = Q\left(\sqrt{\frac{2|\alpha_{2}|^{2}}{N_{0}}}\right)$$

$$\begin{split} \mathbf{Diversity} \qquad \mathbf{r} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} \alpha_1 & 0 \\ \alpha_2 & \\ & \ddots & \\ 0 & & & \alpha_N \end{bmatrix} \begin{bmatrix} s_{j,1} \\ \vdots \\ s_{N,1} \end{bmatrix} + \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} \\ \\ \mathbf{Let us now compare to a system with N=1} \\ \mathcal{S}_3 = \left\{ -\sqrt{2}, \sqrt{2} \right\} \qquad P_s = Q\left(\sqrt{\frac{D^2}{2N_0}}\right) = Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right) \\ \\ \mathbf{3dB better for} \quad \alpha_1 = \alpha_2 = 1 \\ \\ \hline \mathcal{S}_1 = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad \mathcal{S}_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \\ P_s = Q\left(\sqrt{\frac{D^2}{2N_0}}\right) = Q\left(\sqrt{\frac{|\alpha_1|^2 + |\alpha_2|^2}{N_0}}\right) \qquad = Q\left(\sqrt{\frac{2|\alpha_2|^2}{N_0}}\right) \end{split}$$





 $\mathbf{r} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} \alpha_1 & \cdots & \mathbf{c} \\ & \alpha_2 & & \\ & & \ddots & \\ \mathbf{c} & & \mathbf{c} & \\ \mathbf{c} & & \mathbf{c}$ Diversity Let us now move to random channels Assume that $lpha_1$ and $lpha_2$ are independent 2. Prob(α_k ="good") = P_G, Prob(α_k ="bad") = P_B = 1-P_G $\mathcal{S}_1 = \left\{ \left| \begin{array}{c} \sqrt{2} \\ 0 \end{array} \right|, \left[\begin{array}{c} 0 \\ \sqrt{2} \end{array} \right] \right\}$ $\mathcal{S}_3 = \left\{ -\sqrt{2}, \sqrt{2} \right\}$ $P_s = E\left\{Q\left(\sqrt{\frac{|\alpha_1|^2 + |\alpha_2|^2}{N_0}}\right)\right\} \qquad P_s = \left\{Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right)\right\}$ Take average

Diversity

Assume "good" = infinity Assume "bad" = 0

Let us now move to random channels

Assume that

1. $lpha_1$ and $lpha_2$ are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = E \left\{ Q \left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}} \right) \right\} \qquad P_{s} = \left\{ Q \left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}} \right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = E\left\{Q\left(\sqrt{\frac{|\alpha_1|^2 + |\alpha_2|^2}{N_0}}\right)\right\} = \Pr(\alpha_1 = \text{bad}, \alpha_2 = \text{bad})\frac{1}{2} + \Pr(\alpha_1 \text{ or } \alpha_2 = \text{good}) \times 0$$

1. α_1 and α_2 are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = E \left\{ Q \left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}} \right) \right\} \qquad P_{s} = \left\{ Q \left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}} \right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = E\left\{Q\left(\sqrt{\frac{|\alpha_1|^2 + |\alpha_2|^2}{N_0}}\right)\right\} = \Pr(\alpha_1 = \text{bad}, \alpha_2 = \text{bad})\frac{1}{2}$$

1. α_1 and α_2 are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = E \left\{ Q \left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}} \right) \right\} \qquad P_{s} = \left\{ Q \left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}} \right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_{s} = E\left\{Q\left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}}\right)\right\} = \Pr(\alpha_{1} = \text{bad}, \alpha_{2} = \text{bad})\frac{1}{2} = \frac{1}{2}P_{B}^{2}$$

1. $lpha_1$ and $lpha_2$ are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = E \left\{ Q \left(\sqrt{\frac{|\alpha_{1}|^{2} + |\alpha_{2}|^{2}}{N_{0}}} \right) \right\} \qquad P_{s} = \left\{ Q \left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}} \right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = \left\{ Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right) \right\} = \Pr(\alpha_1 = \operatorname{bad})\frac{1}{2} + \Pr(\alpha_1 = \operatorname{good}) \times 0$$

1. α_1 and α_2 are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = \frac{1}{2}P_{B}^{2} \qquad P_{s} = \left\{ Q\left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}}\right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = \left\{ Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right) \right\} = \Pr(\alpha_1 = \mathrm{bad}) \frac{1}{2}$$

1. $lpha_1$ and $lpha_2$ are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = \frac{1}{2}P_{B}^{2} \qquad P_{s} = \left\{ Q\left(\sqrt{\frac{4|\alpha_{1}|^{2}}{N_{0}}}\right) \right\}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = \left\{ Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right) \right\} = \Pr(\alpha_1 = \operatorname{bad})\frac{1}{2} = \frac{1}{2}P_B$$

1. α_1 and α_2 are independent

2. Prob(
$$\alpha_k$$
 ="good") = P_G , Prob(α_k ="bad") = P_B = 1-P_G

$$S_{1} = \left\{ \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix} \right\} \qquad S_{3} = \left\{ -\sqrt{2}, \sqrt{2} \right\}$$
$$P_{s} = \frac{1}{2}P_{B}^{2} \qquad P_{s} = \frac{1}{2}P_{B}$$

Assume "good" = infinity Assume "bad" = 0

$$P_s = \left\{ Q\left(\sqrt{\frac{4|\alpha_1|^2}{N_0}}\right) \right\} = \Pr(\alpha_1 = \operatorname{bad})\frac{1}{2} = \frac{1}{2}P_B$$

1. $lpha_1$ and $lpha_2$ are independent

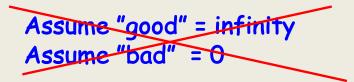
Diversity

 $P_s = \frac{1}{2}P_B^2$

2. Prob(
$$\alpha_k$$
 ="good") = P_G, Prob(α_k ="bad") = P_B = 1-P_G

Concept of "diversity" By sending over many independent fading channels, BER is heavily reduced

$$P_s = \frac{1}{2}P_B$$



- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $Prob(\alpha_k = "good") = P_G$, $Prob(\alpha_k = "bad") = P_B = 1-P_G$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling

Assume "good" = infinity

Assume "bad" = 0

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathcal{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathcal{B}} = 1 \operatorname{P}_{\mathcal{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling $\mathcal{E}_b = E\left\{\frac{E_{b,sent}}{N}\sum_{n=1}^N |\alpha_n|^2\right\}$

$$\mathbf{s_0} = -\mathbf{s_1} = \begin{bmatrix} \sqrt{\frac{E_{\mathrm{b,sent}}}{N}} \\ \vdots \\ \sqrt{\frac{E_{\mathrm{b,sent}}}{N}} \end{bmatrix} \quad \mathbf{z_0} = -\mathbf{z_1} = \begin{bmatrix} \alpha_1 \sqrt{\frac{E_{\mathrm{b,sent}}}{N}} \\ \vdots \\ \alpha_2 \sqrt{\frac{E_{\mathrm{b,sent}}}{N}} \end{bmatrix}$$

Assume "good" = infinity

Assume "bad" = 0

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathcal{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathcal{B}} = 1 \operatorname{P}_{\mathcal{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling $\mathcal{E}_b = E\left\{\frac{E_{b,sent}}{N}\sum_{n=1}^N |\alpha_n|^2\right\} = E\left\{E_{b,sent}|\alpha_n|^2\right\}$

Diversity

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathsf{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathsf{B}} = 1 \operatorname{P}_{\mathsf{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling

$$\mathcal{E}_b = E\left\{\frac{E_{\text{b,sent}}}{N}\sum_{n=1}^N |\alpha_n|^2\right\} = E\left\{E_{\text{b,sent}}|\alpha_n|^2\right\}$$
$$= E_{\text{b,sent}}(P_G\alpha_G^2 + (1 - P_G)\alpha_B^2)$$

Assume "good" = infinity

Assume "bad" = 0

Diversity

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathsf{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathsf{B}} = 1 \operatorname{P}_{\mathsf{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling

$$\mathcal{E}_b = E\left\{\frac{E_{\text{b,sent}}}{N}\sum_{n=1}^N |\alpha_n|^2\right\} = E\left\{E_{\text{b,sent}}|\alpha_n|^2\right\}$$
$$= E_{\text{b,sent}}(P_G\alpha_G^2 + (1 - P_G)\alpha_B^2)$$

Assume "good" = infinity

Assume "bad" = 0

$$P_s = E\left\{Q\left(\sqrt{2\frac{\mathcal{E}_b}{N_0}}\right)\right\}$$

Assume "good" = infinity

Assume "bad" = 0

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathsf{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathsf{B}} = 1 \operatorname{P}_{\mathsf{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling $\mathcal{E}_{b} = E\left\{\underbrace{\frac{E_{b,sent}}{N}\sum_{n=1}^{N}|\alpha_{n}|^{2}}_{n=1}\right\} = E\left\{E_{b,sent}|\alpha_{n}|^{2}\right\}$ = $E_{b,sent}(P_{G}\alpha_{G}^{2} + (1 - P_{G})\alpha_{B}^{2})$

$$P_s = E\left\{Q\left(\sqrt{2\frac{\mathcal{E}_b}{N_0}}\right)\right\} = E\left\{Q\left(\sqrt{2\frac{E_{\mathrm{b,sent}}}{NN_0}\sum_{n=1}^N |\alpha_n|^2}\right)\right\}$$

Assume "good" = infinity

Assume "bad" = 0

- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathcal{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathcal{B}} = 1 \operatorname{P}_{\mathcal{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling $\mathcal{E}_b = E\left\{\frac{E_{b,sent}}{N}\sum_{n=1}^N |\alpha_n|^2\right\} = E\left\{E_{b,sent}|\alpha_n|^2\right\}$ = $E_{b,sent}(P_G\alpha_G^2 + (1 - P_G)\alpha_B^2)$

$$P_{s} = E\left\{Q\left(\sqrt{2\frac{\mathcal{E}_{b}}{N_{0}}}\right)\right\} = E\left\{Q\left(\sqrt{2\frac{E_{b,sent}}{NN_{0}}}\sum_{n=1}^{N}|\alpha_{n}|^{2}\right)\right\}$$
$$= E\left\{Q\left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2} + (1-P_{G})\alpha_{B}^{2}}\frac{\mathcal{E}_{b}}{N_{0}}\frac{1}{N}\sum_{n=1}^{N}|\alpha_{n}|^{2}}\right)\right\}$$

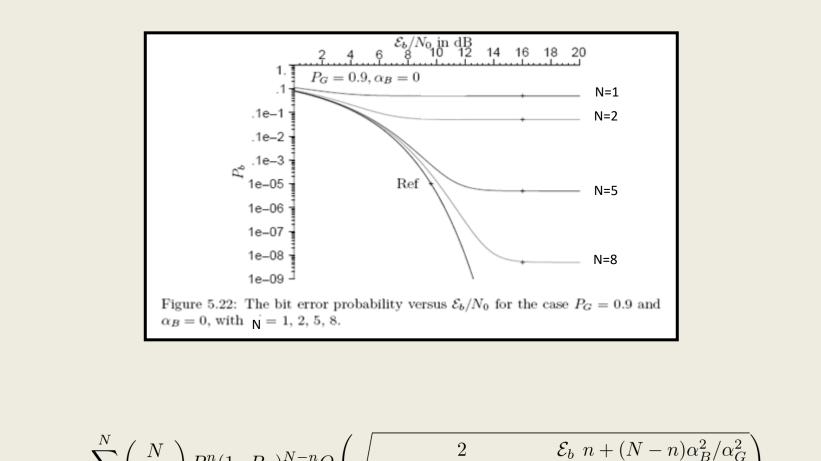
Assume "good" = infinity

Assume "bad" = 0

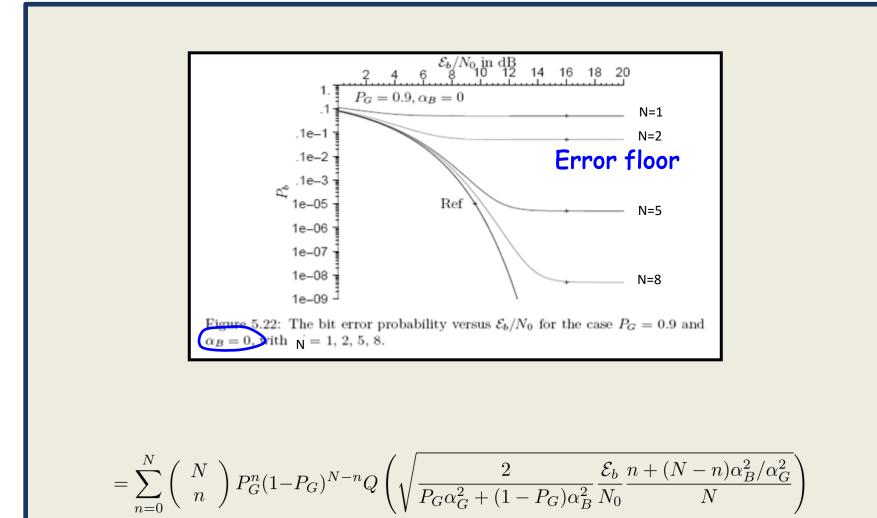
Diversity

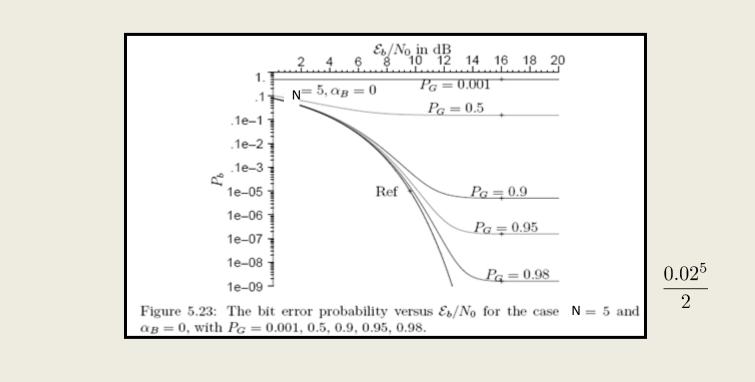
- 1. $lpha_1$ and $lpha_2$ are independent
- 2. $\operatorname{Prob}(\alpha_k = \operatorname{"good"}) = \operatorname{P}_{\mathcal{G}}$, $\operatorname{Prob}(\alpha_k = \operatorname{"bad"}) = \operatorname{P}_{\mathcal{B}} = 1 \operatorname{P}_{\mathcal{G}}$
- 3. good = α_G , bad = α_B
- 4. Binary antipodal signaling $\mathcal{E}_b = E\left\{\frac{E_{b,sent}}{N}\sum_{n=1}^N |\alpha_n|^2\right\} = E\left\{E_{b,sent}|\alpha_n|^2\right\}$ = $E_{b,sent}(P_G\alpha_G^2 + (1 - P_G)\alpha_B^2)$

$$P_{s} = E\left\{Q\left(\sqrt{2\frac{\mathcal{E}_{b}}{N_{0}}}\right)\right\} = E\left\{Q\left(\sqrt{2\frac{E_{b,sent}}{NN_{0}}}\sum_{n=1}^{N}|\alpha_{n}|^{2}\right)\right\}$$
$$= \sum_{n=0}^{N} \binom{N}{n} P_{G}^{n}(1-P_{G})^{N-n}Q\left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2}+(1-P_{G})\alpha_{B}^{2}}\frac{\mathcal{E}_{b}}{N_{0}}\frac{n+(N-n)\alpha_{B}^{2}/\alpha_{G}^{2}}{N}}\right)$$

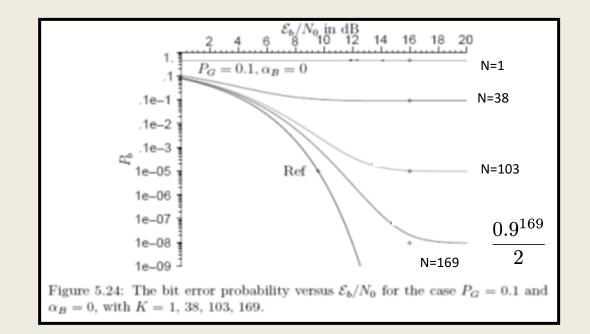


$$=\sum_{n=0}^{N} \binom{N}{n} P_{G}^{n} (1-P_{G})^{N-n} Q \left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2} + (1-P_{G})\alpha_{B}^{2}}} \frac{\mathcal{E}_{b}}{N_{0}} \frac{n + (N-n)\alpha_{B}^{2}/\alpha_{G}^{2}}{N} \right)$$

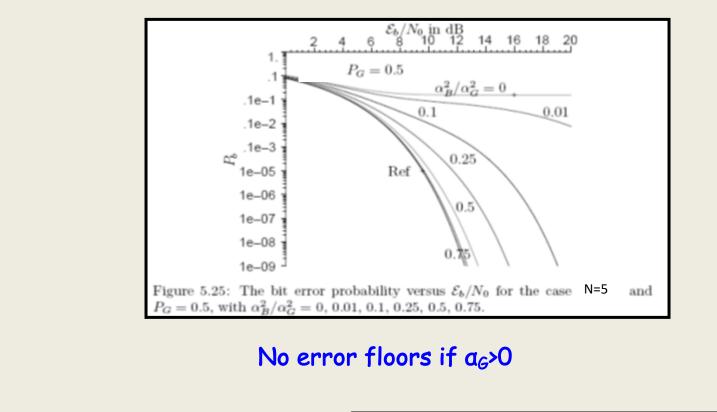




$$=\sum_{n=0}^{N} \binom{N}{n} P_{G}^{n} (1-P_{G})^{N-n} Q\left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2}+(1-P_{G})\alpha_{B}^{2}}\frac{\mathcal{E}_{b}}{N_{0}}\frac{n+(N-n)\alpha_{B}^{2}/\alpha_{G}^{2}}{N}}\right)$$



$$=\sum_{n=0}^{N} \binom{N}{n} P_{G}^{n} (1-P_{G})^{N-n} Q\left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2} + (1-P_{G})\alpha_{B}^{2}} \frac{\mathcal{E}_{b}}{N_{0}} \frac{n + (N-n)\alpha_{B}^{2}/\alpha_{G}^{2}}{N}}\right)$$



$$=\sum_{n=0}^{N} \binom{N}{n} P_{G}^{n} (1-P_{G})^{N-n} Q\left(\sqrt{\frac{2}{P_{G}\alpha_{G}^{2} + (1-P_{G})\alpha_{B}^{2}}}\frac{\mathcal{E}_{b}}{N_{0}}\frac{n + (N-n)\alpha_{B}^{2}/\alpha_{G}^{2}}{N}\right)$$

Price to pay for diversity?

Price to pay for diversity?

Cost of acquiring additional signal space basis function

$$\mathcal{S}_1 = \left\{ \left[\begin{array}{c} \sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ \sqrt{2} \end{array} \right] \right\}$$

$$\mathcal{S}_3 = \left\{ -\sqrt{2}, \ \sqrt{2} \right\}$$

One basis function needed diversity order = 1

Two basis functions needed diversity order = 2

Assume diversity through frequency

 $\begin{array}{c|c} \Phi_1(f) & \Phi_N(f) \\ \hline & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\$

Price to pay for diversity?

Cost of acquiring additional signal space basis function

$$\mathcal{S}_1 = \left\{ \left[\begin{array}{c} \sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ \sqrt{2} \end{array} \right] \right\}$$

$$\mathcal{S}_3 = \left\{ -\sqrt{2}, \ \sqrt{2} \right\}$$

One basis function needed diversity order = 1

Two basis functions needed diversity order = 2

Assume diversity through frequency

 $\Phi_N(f)$

 $\Phi_1(f)$

Consequences? Less bandwidth efficiency

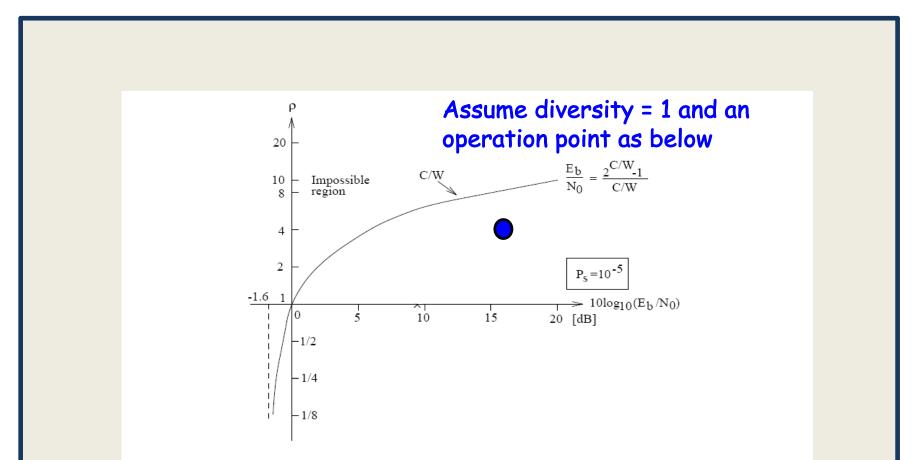


Figure 5.17: Sketch of the ρ versus \mathcal{E}_b/N_0 performance for some of the schemes studied in this section. Reliable communication is not possible above the capacity curve (see (5.64).

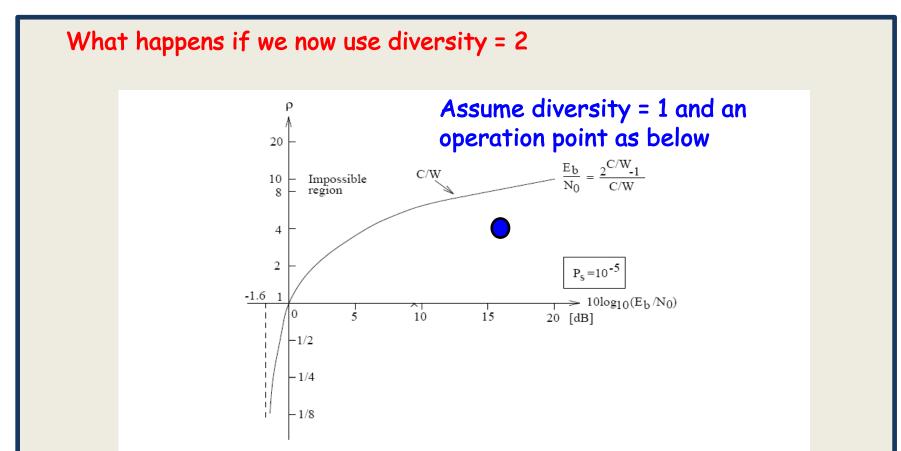
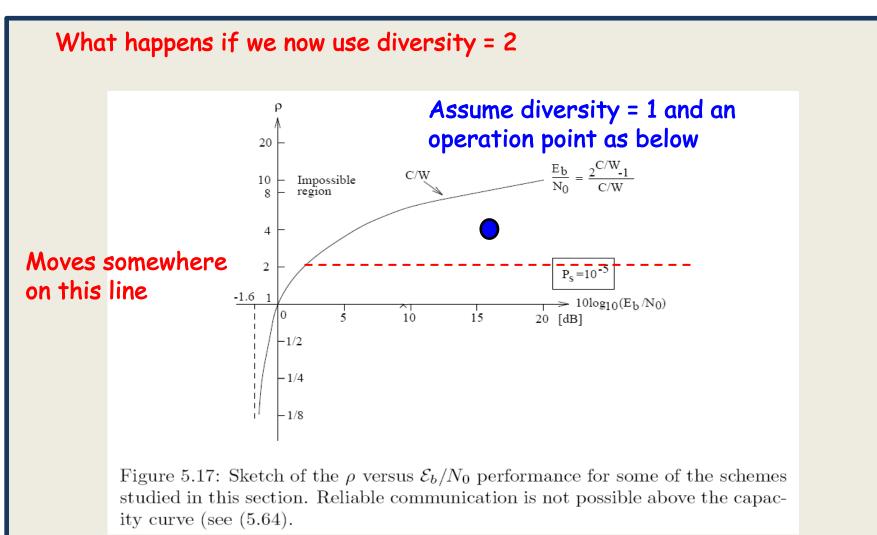
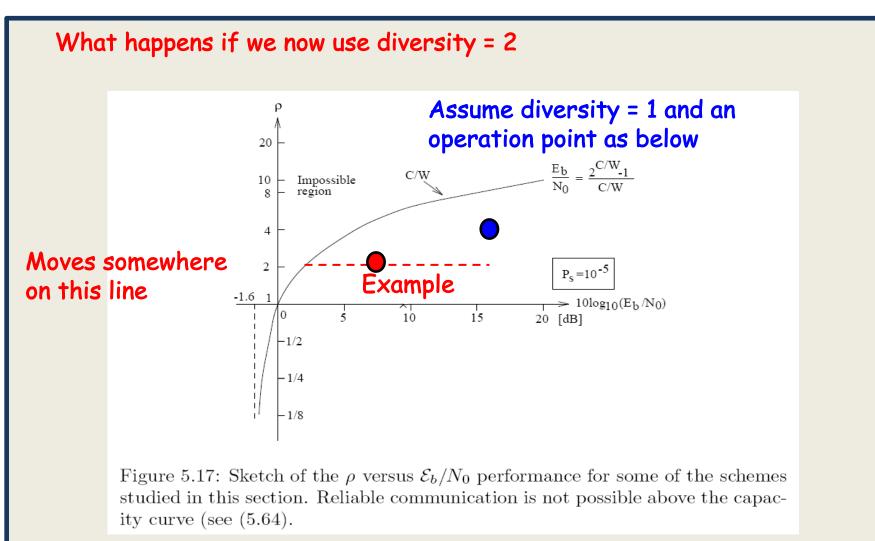


Figure 5.17: Sketch of the ρ versus \mathcal{E}_b/N_0 performance for some of the schemes studied in this section. Reliable communication is not possible above the capacity curve (see (5.64).





Generating Basis function in time

Assume that we have a bandwidth W Hz available Assume that we have a time duration of T seconds available

How many orthonormal basis functions can be obtain, and what do the look like?

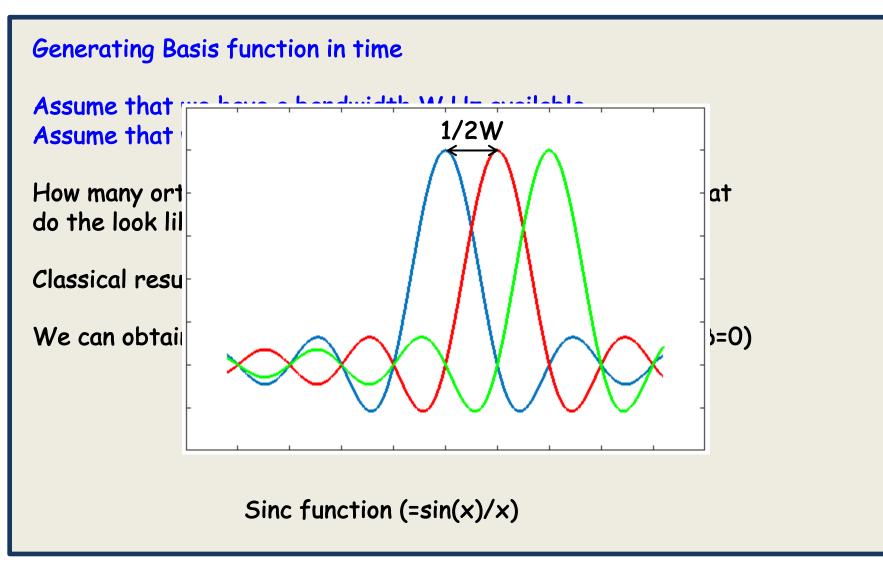
Generating Basis function in time

Assume that we have a bandwidth W Hz available Assume that we have a time duration of T seconds available

How many orthonormal basis functions can be obtain, and what do the look like?

Classical result: Sampling Theorem, Shannon '48

We can obtain 2WT orthonormal functions. (Figure D.21, β =0)



Generating Basis function in time

Assume that we have a bandwidth W Hz available Assume that we have a time duration of T seconds available

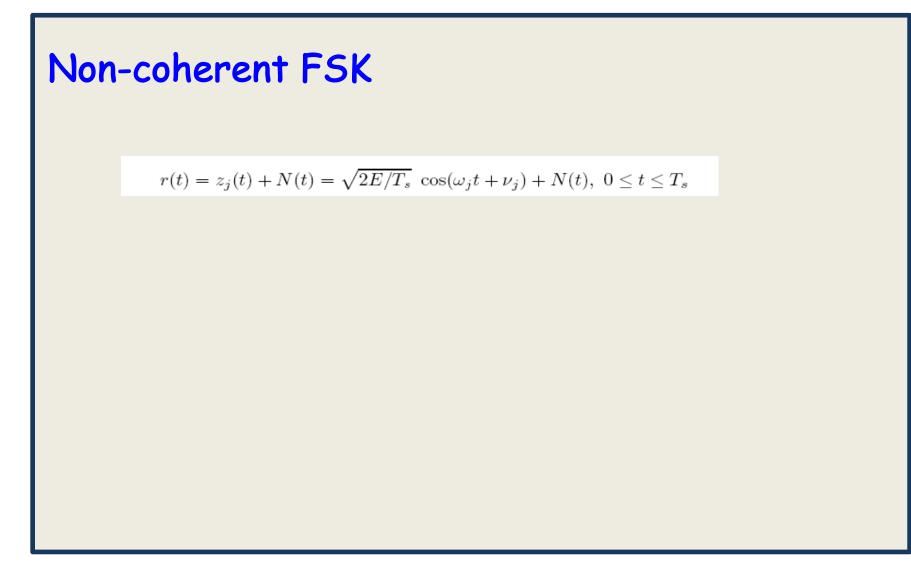
How many orthonormal basis functions can be obtain, and what do the look like?

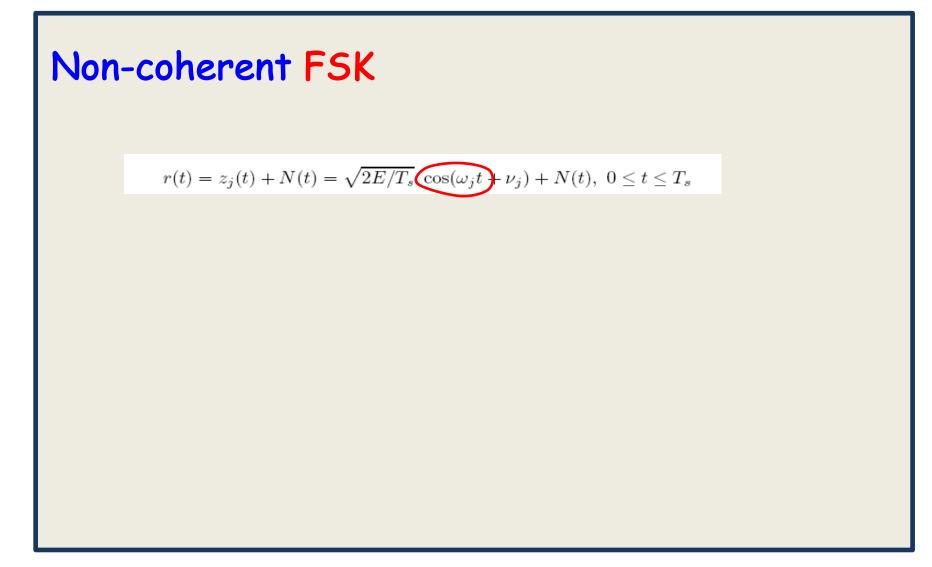
Classical result: Sampling Theorem, Shannon '48

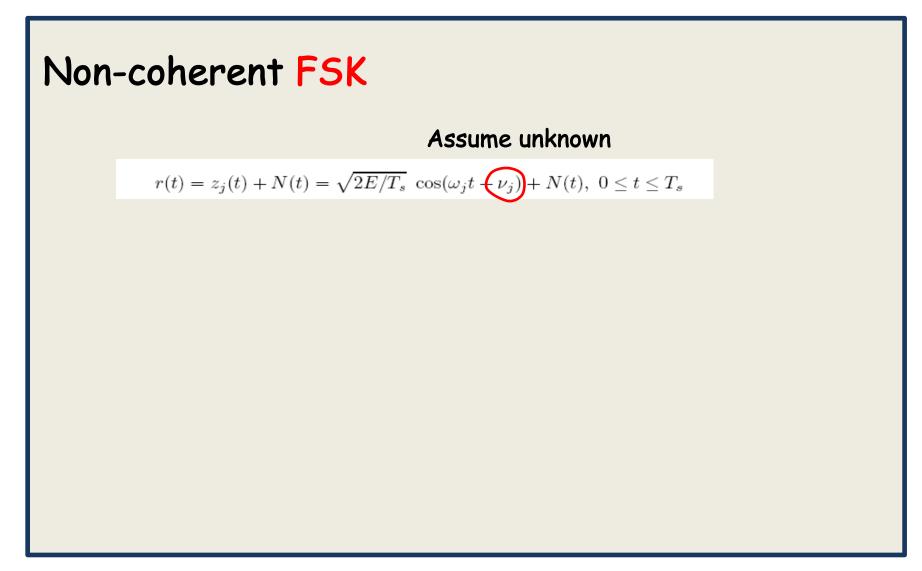
We can obtain 2WT orthonormal functions.

Thus, with fixed bandwidth, we can reduce R_b using diversity.

Same effect: Less bandwidth efficiency



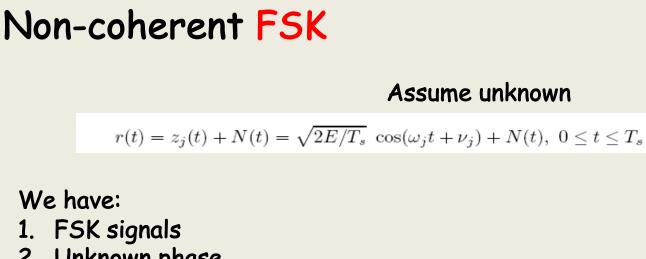




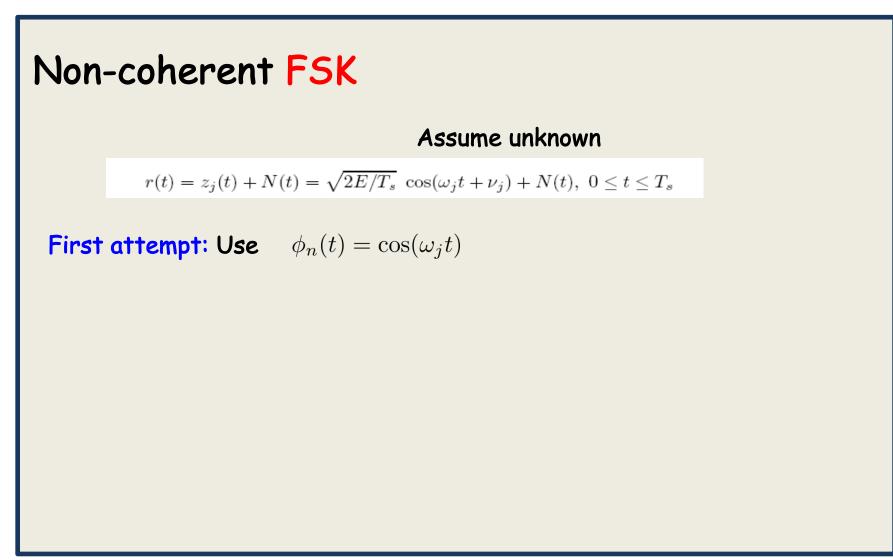
Non-coherent FSK Assume unknown $r(t) = z_i(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_i t + \nu_i) + N(t), \ 0 \le t \le T_s$

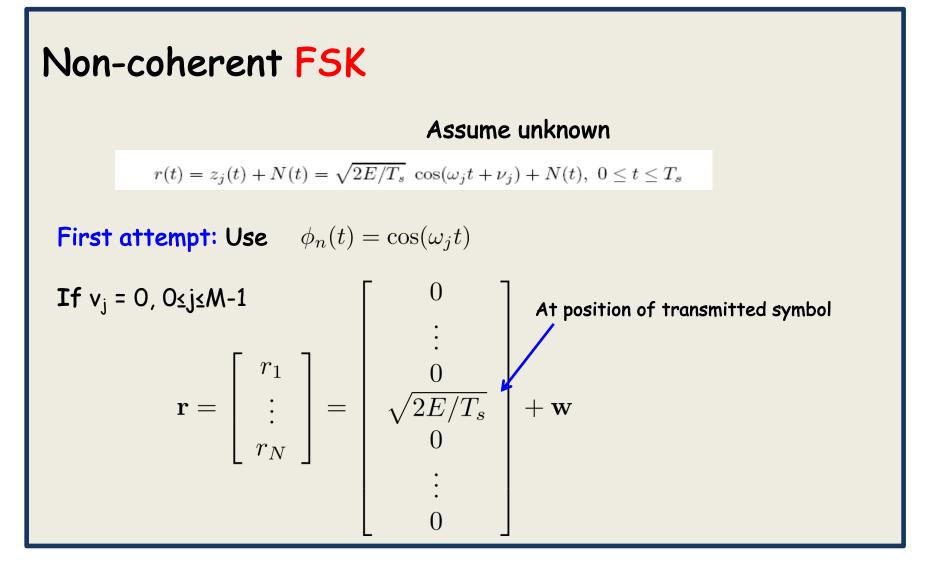
We have:

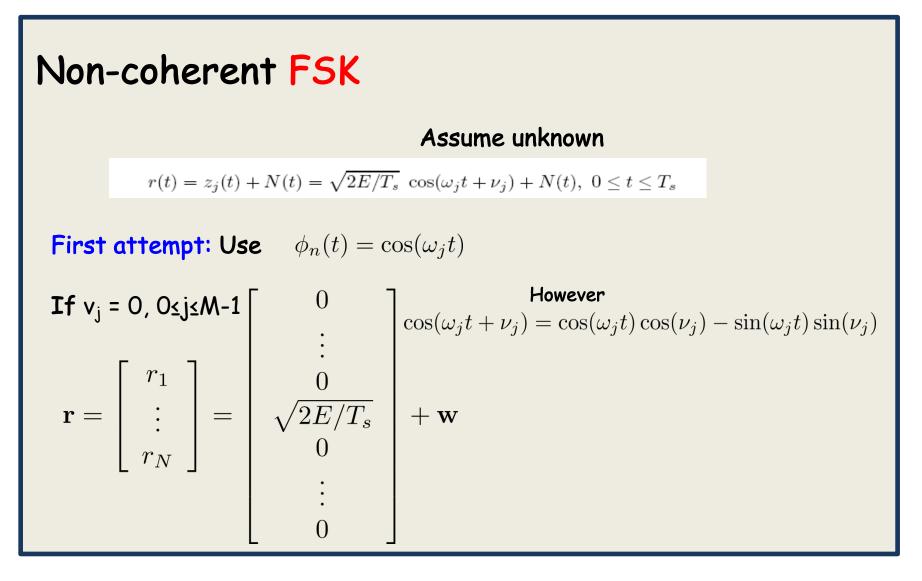
- 1. FSK signals
- 2. Unknown phase
- 3. Thus, we don't know the signal set at the receiver
- 4. We want to decode nonetheless



- 2. Unknown phase
- 3. Thus, we don't know the signal set at the receiver
- 4. We want to decode nonetheless
- 5. From FSK-theory: Signals orthogonal if $w_j=2\pi n_j/T_s n_j$ integer







Non-coherent FSK Assume unknown $r(t) = z_i(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_i t + \nu_i) + N(t), \ 0 \le t \le T_s$ First attempt: Use $\phi_n(t) = \cos(\omega_j t)$ $\mathbf{r} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \sqrt{2E/T_s} \\ 0 \end{bmatrix} + \mathbf{w}$

Non-coherent FSK Assume unknown $r(t) = z_i(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_i t + \nu_i) + N(t), \ 0 \le t \le T_s$ $\mathbf{r} = \begin{bmatrix} r_1 \\ \vdots \\ r_N \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sqrt{2E/T_s} \\ 0 \end{bmatrix} + \mathbf{w}$ First attempt: Use $\phi_n(t) = \cos(\omega_j t)$

Non-coherent FSK Assume unknown $r(t) = z_i(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_i t + \nu_i) + N(t), \ 0 \le t \le T_s$ First attempt: Use $\phi_n(t) = \cos(\omega_j t)$ However If $\nu_j = \pi/2$ $\cos(\omega_j t + \nu_j) = \cos(\omega_j t) \cos(\nu_j) - \sin(\omega_j t) \sin(\nu_j)$ $= -\sin(\omega_i t)$ $\mathbf{r} = \begin{vmatrix} r_1 \\ \vdots \\ r_2 \end{vmatrix} = \begin{vmatrix} 0 \\ \vdots \\ 0 \end{vmatrix} + \mathbf{w}$ Signal is lost! $\int_0^{T_s} \cos(\omega_j t) \sin(\omega_j t) \mathrm{d}t = 0$

Non-coherent FSK

$$r(t) = z_j(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_j t + \nu_j) + N(t), \ 0 \le t \le T_s$$

Second attempt: Use $\phi_n(t) = \cos(\omega_j t)$ $\tilde{\phi}_n(t) = \sin(\omega_j t)$ Since sin(x) and cos(x) are orthogonal we can expand the signal space $\int_0^{T_s} \cos(\omega_j t) \sin(\omega_j t) dt = 0$

Non-coherent FSK $r(t) = z_i(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_i t + \nu_i) + N(t), \ 0 \le t \le T_s$ Second attempt: Use $\phi_n(t) = \cos(\omega_j t)$ $\tilde{\phi}_n(t) = \sin(\omega_j t)$ Since sin(x) and cos(x) are orthogonal we can expand the signal space $\int_{0}^{T_s} \cos(\omega_j t) \sin(\omega_j t) dt = 0$ $\mathbf{r} = \begin{bmatrix} \vdots \\ r_j \\ \tilde{r}_j \\ \vdots \end{bmatrix} = \begin{vmatrix} \frac{\vdots}{\sqrt{2E/T_s}\cos(\nu_j)} \\ -\sqrt{2E/T_s}\sin(\nu_j) \\ \vdots \end{vmatrix} + \mathbf{w}$

Non-coherent FSK $r(t) = z_j(t) + N(t) = \sqrt{2E/T_s} \cos(\omega_j t + \nu_j) + N(t), \ 0 \le t \le T_s$ Second attempt: Use $\phi_n(t) = \cos(\omega_j t)$ $\tilde{\phi}_n(t) = \sin(\omega_j t)$ Since sin(x) and cos(x) are orthogonal we can expand the signal space $\int_{0}^{T_s} \cos(\omega_j t) \sin(\omega_j t) dt = 0$ $\mathbf{r} = \begin{bmatrix} \vdots \\ r_j \\ \tilde{r}_j \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\vdots}{\sqrt{2E/T_s}\cos(\nu_j)} \\ -\sqrt{2E/T_s}\sin(\nu_j) \\ \vdots \end{bmatrix} + \mathbf{w} \quad \begin{array}{c} \hat{m} = \arg\max_j |r_j|^2 + |\tilde{r}_j|^2 \\ \mathbf{See \ book \ for \ error \ rate} \\ \mathbf{See \ book \ for \ error \ rate} \\ \end{array}$ **Envelope** detector

ML and MAP and signal space derived under condition of flat noise PSD

