Lecture 5: Diversity and more (chapter 5)

Diversity

Major topic in “Multiple antenna systems, EITN10". Briefly treated here

Assume signals of the form  s;(t)

Check: what information is contained above?
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Assume signals of the form  s;(t)

Check: what information is contained above?
M signal alternatives, N dimensional signal space
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Assume signals of the form  s;(t)

Assume a channel such that 1 (¢)




Lecture 5: Diversity and more (chapter 5)

Diversity

Major topic in “Multiple antenna systems, ELITN10"

Assume signals of the form

Assume a channel such that

Can happen, e.g., if

D1(f) D (f)
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Diversity

In signal space, we can write
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. . N
Diversity r()=3 nsjndu(t), j=0,,1,...,M—1
n=1

_041 0
a2

1

In signal space, we can write r = { ;

N 0

We are now interested in questions of the following form:

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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1

r =

Diversity

N

Let's start with a7 = oo = 1

$ 2 Difference ?

Signal space
(Received) &> ¢,

S1 So

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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1

Diversity .

N

Let's start with a7 = oo = 1

Q P2 Difference ?
Same E,/E,

Signal space

>8> O
S1 So

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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1

Diversity .

N

Let's start with a7 = oo = 1

P2 Difference ?
Signal space Same E,/E,
¢1 Same DO,I

S1 So

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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1

Diversity .

Y

Let's start with a7 = oo = 1

P2
Signal space
P1

S1 So

Difference ?
Same E,/E,
Same DO,I

No difference

Assume N=M=2 and two signal sets S; and S, where

s= v Ly e

What is the difference between these two?

||

1
—1

)
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1

Diversity .

N

Let's start with a7 = oo = 1

¢2 Alternative
Signal space explanation
®1

S1 So

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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Diversity

We now move to arbitrary values /1, (o

b Q(\/;) (\/)

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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Diversity

_0 OéN_

We now move to arbitrary values /1, (o

b Q(\/;) (\/) (\/a12+a22> For 5,

=[] m=aws)

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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Diversity

_O OéN_

We now move to arbitrary values /1, (o

b Q(\/;) (\/) (\/a12+a22> For 5,

Assume N=M=2 and two signal sets S; and S, where

s=0 b Lalh et A

What is the difference between these two?
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Diversity

Let us now compare to a system with N=1




Lecture 5: Diversity and more (chapter 5)

Diversity r= { ] -7

Let us now compare to a system with N=1
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Diversity

Let us now compare to a system with N=1

s={-va, va) PSQ< 0—2)@(

2Ny

3dB better for 7 = a9 = 1
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Diversity

| 0

Let us now move to random channels (and ignore S;)
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Diversity

Let us now move to random channels
Assume that
1. (1 and (Y9 are independent

2. Prob(Cvj. ="good") = Pg , Prob((Yx ="bad") = Pg = 1-P;

s L)

random
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Diversity

Let us now move to random channels
Assume that
1. (1 and (Y9 are independent

2. Prob(Cvj. ="good") = Pg , Prob((Yx ="bad") = Pg = 1-P;

[FTR) st

Take average
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- . Assume “good” = infinity
Di ver'sn‘y Assume "bad" =0

Let us now move to random channels
Assume that
1. (1 and (Y9 are independent

2. Prob(Cvj. ="good") = Pg , Prob((Yx ="bad") = Pg = 1-P;

[FTR) st
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

55 {Q (\/ ;) } )

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

AA) sta)
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

2 2 1
P,=F {Q <\/OA1 ; el ) } = Pr(a; = bad, ay = bad)E—I—Pr(al or ag = good) X0
0

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

[FTR) st
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

2 2 1
P,=E{Q o * + Jae| = Pr(a; = bad, as = bad)=
No 2

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

AA) sta)
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

2 2 11
2, =5 {Q (\/al + oz ) } = Pr(a; = bad, @y = bad)= = =P
No 2 2

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

[FTR) st
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

1
Pr(a; = bad)§ + Pr(a; = good) x 0

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

s={[w] [V ]

1
P,s :§Pé
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

s={[w] [V ]

1
PS :§Pé
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

[FTR) st

1 1
PS :ipé PS:EPB
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- . Assume “good” = infinity
Di versuTy Assume "bad" =0

1. (¢1 and (¢9 are independent

2. Prob(yvj. ="good") = Pg , Prob( ¢k ="bad") = Pg = 1-P¢

Concept of “diversity”
By sending over many independent fading channels,
BER is heavily reduced

Result for S, ?
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Diversity

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

4. Binary antipodal signaling




Lecture 5: Diversity and more (chapter 5)

. o

. . AsS “good" =
Diversity Assume-*bad” =

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N
4. Binary antipodal signaling ¢, — E { Eb sent Z |an|2}
n=1

N

Eb,sent
N
\/ N

Eb,sent
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. . AsS “go00d" =
DIVZPSITY Ass ad" =

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N
4. Binary antipodal signaling ¢, — {Eb L Z Ian|2} = E { Ep sent|an |’ }
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. . AsS “go0d" = infi
DIVZPSITY Ass ad" =

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N
4. Binary antipodal signaling ¢, — £ { Ebsont > Ian|2} = E { Ep sent|an |’ }
n=1

N
= Epsent(Peog + (1 — Pg)ap)




Lecture 5: Diversity and more (chapter 5)

. . AsS “go0d" = infi
DIVZPSITY Ass ad" =

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N
4. Binary antipodal signaling ¢, — £ { Ebsont > |an|2} = E { Ep sent|an |’ }
n=1

N
= Epsent(Peog + (1 — Pg)ap)




Lecture 5: Diversity and more (chapter 5)

. . AsS “go0d" = infi
DIVZPSITY Ass ad" =

1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N
4. Binary antipodal signaling ¢, — £ { Ebsont > |an|2} = E { Ep sent|an |’ }
n=1

N
= Epsent(Peog + (1 — Pg)ap)

Eb,sent
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Diversity
1. (¥1 and (x5 are independent

2. Prob(cxj ="good") = P, Prob( (Y. ="bad") = Pg = 1-Pg¢
3. good= (¥(; .,bad=0CB

N

. . . . Eb,sen
4. Binary antipodal signaling ¢, — E{ - > |an|2} = E { Ep sent|an |’ }

n=1

= Epsent(Peog + (1 — Pg)ap)
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. . AsS “good" = infi
Diversity Assume"bad” =

(X1 and (x9 are independent

. Prob(xj. ="good") = Pg , Prob( (¢, ="bad") = Py = 1-Pg
good= (¥¢; ,bad=CB

N
. Binary antipodal signaling ¢, — £ { Eb sen Z |an|2} = E { Ep sent|an |’ }
n=1

N
= Epsent(Peog + (1 — Pg)ap)
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Figure 5.22: The bit error probability versus & /Ny for the case Po = 0.9 and
ap = 0, with N = 1, 2, 5, 8.
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Figure 5.23: The bit error probability versus &,/Ny for the case N = 5 and
ap = 0, with P = 0.001, 0.5, 0.9, 0.95, 0.98.

N n Nen 2 E n+ (N —n)ak /a2
( n > FG(1-Pg) @ (\/Pgaé + (1 = Pg)a%k Ny N
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Figure 5.24: The bit error probability versus &,
0, with K 1, 38, 103, 169
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e 5.25: The bit error probability versus &,/Ng for the cas
0.5, with a%j ag, 0.001.0.1.0.25. 05.0.75

No error floors if ag>0
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Price to pay for diversity?
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Price to pay for diversity?

Cost of acquiring additional signal space basis function

a-((F)[B)) st

T

T One basis function needed

Two basis functions needed diversity order = 1
diversity order = 2

Assume diversity through frequency

Consequences?
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Price to pay for diversity?

Cost of acquiring additional signal space basis function

a-((F)[B)) st

T

T One basis function needed

Two basis functions needed diversity order = 1
diversity order = 2

Assume diversity through frequency

Consequences? Less bandwidth efficiency
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Assume diversity = 1 and an
operation point as below

2(’ f"\\i 1

C/wW Ep _27 "1
C/W

Impossible — =
region Ny — Np

P, =10""

—= 10log; o(Et, /Np)
20 [dB]

Figure 5.17: Sketch of the p versus &, /N performance for some of the schemes
studied in this section. Reliable communication is not possible above the capac-
ity curve (see (5.64).
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What happens if we now use diversity = 2

Assume diversity = 1 and an
operation point as below

2(’ “"\\i 1

Impossible

W Eb _
region —

— -

P, =10""

—= 10log; o(Et, /Np)
20 [dB]

Figure 5.17: Sketch of the p versus &, /N performance for some of the schemes
studied in this section. Reliable communication is not possible above the capac-
ity curve (see (5.64).
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What happens if we now use diversity = 2

Assume diversity = 1 and an
operation point as below

Ep, HOW ]
Impossible ==
region \__» o C/W

Moves somewhere —>
on this line

—= 10log; o(Et, /Np)
20 [dB]

Figure 5.17: Sketch of the p versus &, /N performance for some of the schemes
studied in this section. Reliable communication is not possible above the capac-
ity curve (see (5.64).
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What happens if we now use diversity = 2

Assume diversity = 1 and an
operation point as below

> C/ \\i 1

y Ep
. cw L — ===
InlpOSSlble \ —'—___“—“____,.""' NO C/W

region

Moves somewhere i
on this line

P =10""

T T —= 10log; o(Et, /Np)
5 10 5 20 [dB]

Figure 5.17: Sketch of the p versus &, /N performance for some of the schemes
studied in this section. Reliable communication is not possible above the capac-
ity curve (see (5.64).
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Generating Basis function in time

Assume that we have a bandwidth W Hz available
Assume that we have a time duration of T seconds available

How many orthonormal basis functions can be obtain, and what
do the look like?
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Generating Basis function in time

Assume that we have a bandwidth W Hz available
Assume that we have a time duration of T seconds available

How many orthonormal basis functions can be obtain, and what
do the look like?

Classical result: Sampling Theorem, Shannon '48

We can obtain 2WT orthonormal functions. (Figure D.21, p=0)
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Generating Basis function in time

Assume ‘l'haf T R e e VYN N Peprs I PN P
Assume that | 1/2W

How many ort}
do the look lil|

Classical resur

We can obtaii|

Sinc function (=sin(x)/x)
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Generating Basis function in time

Assume that we have a bandwidth W Hz available
Assume that we have a time duration of T seconds available

How many orthonormal basis functions can be obtain, and what
do the look like?

Classical result: Sampling Theorem, Shannon '48

We can obtain 2WT orthonormal functions.

Thus, with fixed bandwidth, we can reduce Ry, using diversity.

Same effect: Less bandwidth efficiency




Lecture 5: Diversity and more (chapter 5)

Non-coherent FSK

N(t) = \2E/T, cos(w;t +v;)+ N(t), 0 <t < T,
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Non-coherent FSK

2E] vj)+ N(t), 0<t<T.
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Non-coherent FSK

Assume unknown

r(t) = z(t) + N(t) = V2E/T, cos(w;t + N(t), 0<t<T.,
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Non-coherent FSK

Assume unknown

/

r(t) = z;(t) + N(t) = \/2E/T. cos(w;t +v;)+ N(t), 0 <t < T,

We have:

1. FSK signals

2. Unknown phase

3. Thus, we don't know the signal set at the receiver
4. We want to decode nonetheless
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Non-coherent FSK

Assume unknown

/

r(t) = zj(t) + N(t) = /2E/T, cos(w;t +v;)+ N(t), 0 <t <T,

We have:

1. FSK signals

2. Unknown phase

3. Thus, we don't know the signal set at the receiver

4. We want to decode nonetheless

5. From FSK-theory: Signals orthogonal if w;=2mn;/T, n; integer
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Non-coherent FSK

Assume unknown

r(t) = z;(t) + N(t V2E /T, cos(wit +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)
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Non-coherent FSK

Assume unknown

r(t) = z;(t) + N(t) = /2E/T, cos(w;t +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)

If vj = 0, O¢jsM-1 At position of transmitted symbol

1




Lecture 5: Diversity and more (chapter 5)

Non-coherent FSK

Assume unknown

r(t) = z;(t) + N(t V2E /T, cos(wit +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)

If V= 0, O¢j<M-1 However

cos(w;t + v;) = cos(w,t) cos(v;) — sin(w;t) sin(v;)

r1
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Non-coherent FSK

Assume unknown

r(t) = z;(t) + N(t V2E /T, cos(wit +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)

However If v; =7/2
cos(w;t + v;) = cos(w,t) cos(v;) — sin(w;t) sin(v;)
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Non-coherent FSK

Assume unknown

r(t) = z;(t) + N(t V2E /T, cos(wit +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)

However If v; =7/2
cos(w;t + v;) = cos(w,t) cos(v;) — sin(w;t) sin(v;)

= — sin(w;t)
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Non-coherent FSK

Assume unknown

r(t) = zj(t) + N(t) = \/QE,,:"T,. cos(w;t +v;)+ N(t), 0 <t <T,

First attempt: Use ¢, (t) = cos(w;t)

However If v; =7/2
cos(w;t + v;) = cos(w,t) cos(v;) — sin(w;t) sin(v;)

= — sin(w;t)

Signal is lost!

T
/ cos(w;t) sin(w;t)dt =0
0
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Non-coherent FSK

r(t) = zj(t) + N(t) = \/QE,,:"T,. cos(w;t +v;)+ N(t), 0 <t <T,

Second attempt: Use ¢, (t) = cos(wjt) ¢, (t) = sin(w;t)

Since sin(x) and cos(x) are orthogonal

Ts
we can expand the signal space /o cos(wjt) sin(w;t)dt = 0
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Non-coherent FSK

r(t) = z;(t) + N(t) = /2E/T, cos(w;t +v;)+ N(t), 0<t<T,

Second attempt: Use ¢, (t) = cos(wjt) ¢, (t) = sin(w;t)

Since sin(x) and cos(x) are orthogonal e
we can expand the signal space /o cos(wjt) sin(w;t)dt = 0

\/2E/T:s cos(v;)
—+/2E /T sin(v;)
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Non-coherent FSK

/

r(t) = zj(t) + N(t) = /2E/T, cos(w;t +v;)+ N(t), 0 <t <T,

Second attempt: Use ¢, (t) = cos(wjt) ¢, (t) = sin(w;t)

Since sin(x) and cos(x) are orthogonal

Ts
we can expand the signal space /o cos(wjt) sin(w;t)dt = 0

- . T Envelope detector

; X 2 | |2
2F /Ty cos(v;) +w e argmanm' I
—+/2E /T sin(v;) See book for error rate
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Non-white noise

ML and MAP and signal space derived under condition of flat noise PSD
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Non-white noise

In many cases, we have non-white noise. What to do?

/\_/\r\i“ﬂ\
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Non-white noise

In many cases, we have non-white noise. What to do?

/\_/\r\i“ﬂ\

Figure 3.20, p.177
N(t)

—— V(). V(f)

Rn(f) IV(F)I2Rn(1)
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Non-white noise

In many cases, we have non-white noise. What to do?

/\_/\r\i“ﬂ\

Figure 3.20, p.177 Select V(f) =
NGH) Rn(f)

—— V(). V(f)

Rn(f) IV(F)I2Rn(1)
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Non-white noise

In many cases, we have non-white noise. What to do?

Ro(f)

Figure 3.20, p.177 Select V/(f) =
NGH) Rn(f)

—— V(). V(f)

Rn(f) IV(F)IZRN(T) = Ro(f)
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Non-white noise

In many cases, we have non-white noise. What to do?

Ro(f)

Figure 3.20, p.177 Select V/(f) =
NGH) Rn(f)

—— V(). V(f)

Rn(f) IV(F)IZRN(T) = Ro(f)

Impact on basis functions?
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Non-white noise

In many cases, we have non-white noise. What to do?

Ro(f)

Figure 3.20, p.177 Select V/(f) =
NGH) Rn(f)

—— V(). V(f)

Rn(f) IV(F)IZRN(T) = Ro(f)

Impact on basis functions? Basis for {s;(t)} does not work
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Non-white noise

In many cases, we have non-white noise. What to do?

Ro(f)

Figure 3.20, p.177 Select V/(f) =
NGH) Rn(f)

—— V(). V(f)

Rn(f) IV(F)IZRN(T) = Ro(f)

Need to derive basis for {z;(t) = s;(t) * v(1)}



