Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutitiplied with a complex constant

Underspread channel: $B_{\mathcal{D}}T_m \ll 1$

Conditions for Frequency-non-selective, slowly fading channel

$$k_w T_m \approx \frac{k_w}{f_{\rm coh}} \ll T_s \ll t_{\rm coh} \approx \frac{1}{B_{\rm D}} \quad \frac{t}{t_{\rm coh}}$$

$$\frac{t}{\mathrm{coh}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\mathrm{coh}}}{k_w} \approx \frac{1}{k_w T_m}$$

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutitiplied with a complex constant

Underspread channel: $B_{\mathcal{D}}T_m \ll 1$

Can we have Frequency-non-selective, slowly fading channels if

 $B_{\mathcal{D}}T_m \approx 1$

Conditions for Frequency-non-selective, slowly fading channel

$$k_w T_m \approx \frac{k_w}{f_{\rm coh}} \ll T_s \ll t_{\rm coh} \approx \frac{1}{B_{\rm D}} \quad \frac{t}{t_{\rm coh}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\rm coh}}{k_w} \approx \frac{1}{k_w T_m}$$

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutitiplied with a complex constant

Underspread channel: $B_{\mathcal{D}}T_m \ll 1$

Can we have Frequency-non-selective, slowly fading channels if

NO. Note that $B_{\mathcal{D}}T_m$ is a channel parameter, out of our control

Conditions for Frequency-non-selective, slowly fading channel $k_w T_m \approx \frac{k_w}{f_{\rm coh}} \ll T_s \ll t_{\rm coh} \approx \frac{1}{B_{\rm D}}$ $\frac{t}{t_{\rm coh}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\rm coh}}{k_w} \approx \frac{1}{k_w T_m}$

 $B_{\mathcal{D}}T_m \approx 1$

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutitiplied with a complex constant

Underspread channel: $B_{\mathcal{D}}T_m \ll 1$

Assume an underspread channel. Complex baseband model becomes

$$z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$$

 a and ϕ describe signal

Conditions for Frequency-non-selective, slowly fading channel

$$k_w T_m \approx \frac{k_w}{f_{\rm coh}} \ll T_s \ll t_{\rm coh} \approx \frac{1}{B_{\rm D}} \quad \frac{t}{t_{\rm coh}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\rm coh}}{k_w} \approx \frac{1}{k_w T_r}$$

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutitiplied with a complex constant

Underspread channel: $B_{\mathcal{D}}T_m \ll 1$

Assume an underspread channel. Complex baseband model becomes

$$z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$$

$$conditions for Frequency-non-selective, slowly fading channel$$

$$k_w T_m \approx \frac{k_w}{f_{\rm coh}} \ll T_s \ll t_{\rm coh} \approx \frac{1}{B_{\rm D}}$$

$$\frac{t}{t_{\rm coh}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\rm coh}}{k_w} \approx \frac{1}{k_w T_m}$$

$$\begin{aligned} & \text{Frequency-non-selective, slowly fading channel} \\ a \text{ Rayleigh } p_a(x) &= \frac{2x}{b} \exp\left(-\frac{x^2}{b}\right), \ x \geq 0 \quad E\{a\} = \frac{\sqrt{\pi b}}{2} \\ & E\{a^2\} = b \end{aligned}$$

$$& \phi \text{ Uniform } p_{\phi}(y) = \frac{1}{2\pi}, \ -\pi \leq y \leq \pi \end{aligned}$$

$$& z(t) = ae_s(t) \cos(\omega_c t + \theta_s(t) + \phi) \qquad e_s(t) \text{ and } \theta_s(t) \text{ describe signal} \\ & a \text{ and } \phi \text{ describe channel} \end{aligned}$$

$$& \text{Conditions for Frequency-non-selective, slowly fading channel}$$

$$& k_w T_m \approx \frac{k_w}{f_{\text{coh}}} \ll T_s \ll t_{\text{coh}} \approx \frac{1}{B_{\text{D}}} \qquad \frac{t}{t_{\text{coh}}} \approx B_{\mathcal{D}} \ll R_s \ll \frac{f_{\text{coh}}}{k_w} \approx \frac{1}{k_w T_m} \end{aligned}$$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Normal formula for error probability Constant in front of Q() is unimportant

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

This is instantaneous error rate !!! We don't really care about that

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

This is instantaneous error rate !!! We don't really care about that

Example

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

Is BER $100/10^6 = 10^{-4}$?

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

This is instantaneous error rate !!! We don't really care about that

Example

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

Is BER $100/10^6 = 10^{-4}$?

No, only for the channel we got

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

- Generate a channel a
- Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q\left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}}\right)$$

First way

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

What does this mean in view of the first approach?

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

First way

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

That the channel we randomly generated was "better than average"

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

What does this mean in view of the first approach?

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

First way

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

And for that channel, the BER is 10⁻⁴ when averaged over noise distribution

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

What does this mean in view of the first approach?

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

First way

- Generate a random channel a
- Simulate 10⁶ BPSK symbols
- Get 100 bit errors

And for that channel, the BER is 10⁻³ when averaged over noise distribution

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

 $P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$

Channel dependent

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

 $P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$

Channel dependent

We should take an expectation, But of which variable, a or P_b ? This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Over this one, since

 $\mathsf{E}(\mathsf{f}(x)) \neq \mathsf{f}(\mathsf{E}(x))$

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Putting the average here would mean: "Simulate only the performance at the average SNR value" This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR)

• Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR) • Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Not good, since Q() is not linear

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR) • Generate a channel a • Send and receive a BPSK

END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Not good, since Q() is not linear

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR) • Generate a channel a • Send and receive a BPSK

END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

$$P_b \approx Q \left(\sqrt{a^2 \frac{E_b d_{\min}^2}{N_0}} \right)$$

Not good, since Q() is not linear

This is instantaneous error rate !!! We don't really care about that

Example

Better way Repeat 10⁶ times (FOR) • Generate a channel a

• Send and receive a BPSK END

Measure a total of 1000 bit errors

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

This is instantaneous error rate !!! We don't really care about that

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

$$\bar{P}_b = \int_0^\infty \Pr(\operatorname{error} | a = x) p_a(x) \mathrm{d}x$$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

$$\bar{P}_b = \int_0^\infty \Pr(\operatorname{error}|a=x) p_a(x) dx = E\left\{\Pr(\operatorname{error}|a)\right\}$$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

$$\bar{P}_b = \int_0^\infty \Pr(\operatorname{error}|a=x) p_a(x) dx = E\left\{\Pr(\operatorname{error}|a)\right\}$$

 $= \log derivation$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

$$\bar{P}_b = \int_0^\infty \Pr(\operatorname{error}|a=x) p_a(x) dx = E\left\{\Pr(\operatorname{error}|a)\right\}$$

 $= \log \text{ derivation}$ $= \frac{1}{2 + d_{\min}^2 \mathcal{E}_b / N_0 + \sqrt{2 + d_{\min}^2 \mathcal{E}_b / N_0} \sqrt{d_{\min}^2 \mathcal{E}_b / N_0}}$ $\mathcal{E}_b = E\{a^2\} E_{b,sent} = b E_{b,sent}$

Frequency-non-selective, slowly fading channel

 $z(t) = ae_s(t)\cos(\omega_c t + \theta_s(t) + \phi)$

Bit error rate?

$$\bar{P}_b = \int_0^\infty \Pr(\operatorname{error}|a=x) p_a(x) dx = E\left\{\Pr(\operatorname{error}|a)\right\}$$

$$= \log \text{ derivation}$$

$$= \frac{1}{2 + d_{\min}^2 \mathcal{E}_b / N_0 + \sqrt{2 + d_{\min}^2 \mathcal{E}_b / N_0} \sqrt{d_{\min}^2 \mathcal{E}_b / N_0}}$$

$$\mathcal{E}_b / N_0 \text{ large } 1$$

$$= \frac{1}{2d_{\min}^2 \mathcal{E}_b / N_0}$$

$$\mathcal{E}_b = E\{a^2\}E_{b,sent} = bE_{b,sent}$$

Example 9.1, p. 592

Assume that equally likely, binary orthogonal FSK signals, with equal energy, are sent from the transmitter. Hence, $s_i(t) = \sqrt{2E_{b,sent}/T_b} \cos(2\pi f_i t)$ in $0 \le t \le T_b$, i = 0, 1.

These signals are communicated over a Rayleigh fading channel, i.e. the received signal is (see (9.38)),

$$r(t) = a\sqrt{2E_{b,sent}/T_b}\cos(2\pi f_i t + \phi) + N(t)$$

Assume that the incoherent receiver in Figure 5.28 on page 397 is used. From (5.109) it is known that for a given value of a,

$$P_b = \frac{1}{2} e^{-a^2 E_{b,sent}/2N_0}$$

since $a^2 E_{b,sent}$ then is the average received energy per bit.

For the Rayleigh fading channel, and the same receiver, P_b can be calculated by using (9.43),

$$P_b = \int_0^\infty \Pr\{error|a = x\} p_a(x) = E\{\Pr\{error|a\}\}$$

Example 9.1, p. 592

$$E\{\Pr\{error|a\}\} = E\left\{\frac{1}{2} e^{-a^2 E_{b,sent}/2N_0}\right\} = E\left\{\frac{1}{2} e^{-a_1^2 E_{b,sent}/2N_0}\right\} \cdot E\left\{e^{-a_2^2 E_{b,sent}/2N_0}\right\}$$

See page 184
$$P_b = \frac{1/2}{1 + \frac{E_{b,sent}}{N_0} \cdot \frac{E\{a^2\}}{2}} = \frac{1}{2 + \mathcal{E}_b/N_0}$$

Observe the dramatic increase in P_b due to the Rayleigh fading channel. P_b is no longer exponentially decaying in \mathcal{E}_b/N_0 , it now decays essentially as $(\mathcal{E}_b/N_0)^{-1}$! As an example, assuming $\mathcal{E}_b/N_0 = 1000$ (30 dB), we obtain

$$P_b = \begin{cases} 0.5e^{-500} \approx 3.6 \cdot 10^{-218} & , & AWGN \\ (1002)^{-1} \approx 10^{-3} & , & Rayleigh + AWGN \end{cases}$$

Lecture 10: Trellis coded modulation

Slides to be updated next year.....

Shannon Capacity

Before going on, we go through what the term capacity means

Given a scalar channel of form $y=\sqrt{A}x+n,\ n\sim CN(0,N_0)$ We know that the capacity is $C=\log_2\left(1+rac{A}{N_0}
ight)$

But what does this mean?

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of all information sequences possible to send of length K

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of all information sequences possible to send of length K

Sending K bits of information means:

pick one of the rows, and tell the receiver which row it is

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of codewords to send for each information word, length N

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Information book

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Information book

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Shannon Capacity

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Shannon Capacity

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Shannon Capacity

As x over this channel used N times

$$y = \sqrt{Ax + n}, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Clearly, bit rate is K/N bits/channel use

Receiver observes

 $y_1y_2y_3y_4 \dots y_{(N-1)}y_N$

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Information book

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Receiver observes

 $y_1y_2y_3y_4 \dots y_{(N-1)}y_N$

Compare with this one

$$d_{2K} = \sum_{n=1}^{N} |y_n - x_{2K_n}|^2$$

....

.....

Κ

10

11

Information book

000000.....00000000.....01000000.....10

1111111

1111111

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Receiver observes

Y1**Y**2**Y**3**Y**4 **Y**(N-1)**Y**N

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

So data is this one

This is ML decoding and is optimal

Capacity means the following

1. If K/N ≤ C, and K->∞ then Prob(Correct detection)=1

Codebook

 $\boldsymbol{x}_{2^{K}1}\boldsymbol{x}_{2^{K}2}\boldsymbol{x}_{2^{K}3}\boldsymbol{x}_{2^{K}4} \ \ \boldsymbol{x}_{2^{K}(N-1)}\boldsymbol{x}_{2^{K}N}$

Receiver observes

Y1**Y**2**Y**3**Y**4 **Y**(N-1)**Y**N

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

So data is this one

This is ML decoding and is optimal

Capacity means the following

 If K/N ≤ C, and K->∞ then Prob(Correct detection)=1
 If K/N > C, then Prob(Incorrect detection)=1

Codebook

 $X_{11}X_{12}X_{13}X_{14}$ $X_{1(N-1)}X_{1N}$ **X**₂₁**X**₂₂**X**₂₃**X**₂₄ **X**_{2(N-1)}**X**_{2N}

 $\boldsymbol{\times}_{2^{k_1}}\boldsymbol{\times}_{2^{k_2}}\boldsymbol{\times}_{2^{k_3}}\boldsymbol{\times}_{2^{k_4}} \dots \boldsymbol{\times}_{2^{k_{(N-1)}}}\boldsymbol{\times}_{2^{k_N}}$

Receiver observes

Y1**Y**2**Y**3**Y**4 **Y**(N-1)**Y**N

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

So data is this one

To reach C, code-symbols must be Random complex Gaussian variables That is, generate codebook randomly

If it is generated with, say, 16QAM C cannot be reached

Codebook

 $X_{11}X_{12}X_{13}X_{14}$ $X_{1(N-1)}X_{1N}$ $X_{21}X_{22}X_{23}X_{24}$ $X_{2(N-1)}X_{2N}$

×2^k1×2^k2×2^k3×2^k4 ×2^k(N-1)×2^kN

Lessons learned:

- Good signals are random
- Not all signals can be sent
- Hard to decode
- We need the two first bullets, But in a controlled way

Chapter 8

Trellis-coded Signals

Figure 8.1: a) Block coding, $r_c = k/n$. b) Convolutional coding, $r_c = 1/2$.

Digital communications - Advanced course: week 3

Figure 8.2: a) Rate $r_c = 1/2$ convolutional encoder combined with QPSK; b) Rate $r_c = 2/3$ convolutional encoder combined with 8-PSK, from [63], [64].

(b [i-1], b [i-2], b [i-3])

Figure 8.4: a) A rate 1/2 convolutional encoder combined with QPSK signal alternatives; b) A specific input sequence b[i]; c) The corresponding path in the trellis; d) A trellis section, and a table containing all relevant parameters.

Digital communications - Advanced course: week 3

		Current state $\sigma[i]$							
		(000)	(001)	(010)	(011)	(100)	(101)	(110)	(111)
$\overset{I}{\overset{N}{\underset{T}{p}}} \begin{pmatrix} b_2[i] \\ b_1[i] \end{pmatrix}$		0	1	2	3	4	5	б	7
	(3)	0/0	0/2	1/1	1/3	0/4	0/6	1/5	1/7
	(°)	2/4	2/6	3/5	3/7	2/0	2/2	3/1	3/3
	(b)	4/2	4/0	5/3	5/1	4/6	4/4	5/7	5/5
	(i)	6/6	б/4	7/7	7/5	6/2	6/0	7/3	7/1
		σ[i+1] / m [i]							

b)

Figure 8.6: a) An example of TCM, from [63]–[64]; b) The mappings $F(\cdot, \cdot)$ and $G(\cdot, \cdot)$; c) A trellis section.

Memory (redundancy, dependancy) is introduced among the sent signal alternatives!

This gives us some new properties like, e.g.,:

Which of the following signal sequences are impossible?

1. $s_3(t), s_2(t - T_b), s_1(t - 2T_b), s_1(t - 3T_b)$ 2. $s_3(t), s_2(t - T_b), s_2(t - 2T_b), s_1(t - 3T_b)$ 3. $s_3(t), s_1(t - T_b), s_0(t - 2T_b), s_2(t - 3T_b)$ 4. $s_3(t), s_1(t - T_b), s_3(t - 2T_b), s_1(t - 3T_b)$

Note: In the uncoded case all signal sequences are possible.

Find the "missing" signal, in the sequence below,

 $s_1(t), s_3(t-T_b), ?, s_2(t-3T_b), s_3(t-4T_b), s_0(t-5T_b)$

Note: This is not possible to do in the uncoded case!

Digital communications - Advanced course: week 4 2.32 Let us here study adaptive coding and modulation according to the block diagram below.

$$\mathbf{b} \longrightarrow \text{Encoder} \xrightarrow{\mathbf{c}} \{s_{\ell}(t)\}_{\ell=0}^{\mathsf{M-1}} \longrightarrow \mathbf{s}(t)$$

$$\bar{E}_{sent} = r_c \log_2(M) E_{b,sent} = \frac{k}{n} \log_2(M) E_{b,sent}$$
(8.4)

$$R_{s} = 1/T_{s} = \frac{1}{r_{c}} \cdot \frac{1}{\log_{2}(M)} \cdot R_{b} = \frac{1}{k/n} \cdot \frac{1}{\log_{2}(M)} \cdot R_{b}$$
(8.5)

$$W = c \cdot R_s \tag{8.6}$$

Typically, the bandwidth W is fixed and given but: the rate of the encoder the number of signal alternatives and the bit rate can be <u>ADAPTIVE</u>, see (8.5)-(8.6)! We have memory in the sequence of sent signal alternatives!

Some sequences are impossible, see problem!

Only "good" sequences are sent!

Digital communications - Advanced course: week 3