Lecture 4: Capacity

Project info

Each project group consists of two students.

Each project group should as soon as possible, send an email to fredrik.rusek@eit.lth.se and

containing Name and email address to each project member. NOTE: email should have
subject: ETTNO1PROJECT

The project group should contact Fredrik Rusek to decide about project and articles!

Each group should write a project report.

The structure of the project report should follow journal articles published by IEEE. However,

two columns are not needed.

The project report should be written in English with your own words, tables and figures, and

contain 4-5 pages.
The report should be clearly written, and written to the other students in this course!

Observe copyright rules: “copy & paste” is in general strictly forbidden!
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Project info

9. The project report should be sent in .pdf format to Fredrik before Thursday 12 December, 17.00

10. Oral presentations in the week starting with Monday December 16

11. Each group should have relevant comments and questions on the project report and on the
oral presentation of another group. NOTE! The project presentation should be clear and aimed
to the other students in this course! After the oral presentation the project report and the

presentation will be discussed (5 min).

Final report should be sent to Fredrik at latest January 10, 2020.




Lecture 4: Capacity

Power efficiency

E
We know from before (e.g., union bound) that P, < c@) ( dﬁﬁnﬁb)
0




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < c@) ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < c@) ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

E,_ P _ X
ThUS, Ny B Ry Ny — d?

min




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

min

Ry _ P d&
W = NoW X

Now, divide both sides with the bandwidth W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Th Ey, P >?C' N R<77dfmn
e No Ry Ny — dlzmn or, equivalently, p < FQ v

We have seen this before, it is defined as...

P d?.
o o . . . < min
Now, divide both sides with the bandwidth W _ NoW X




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

We have seen this before, it is defined as bandwidth efficiency

— @ < P dIQIlin

Now, divide both sides with the bandwidth W p = WS NoW A




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

We have seen this before, it is defined as bandwidth efficiency

Now, divide both sides with the bandwidth W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

We have seen this before, it is defined as bandwidth efficiency

P2,

d. .d b .d . b d ‘d <
Now, divide both sides with the bandwidth W p= NJV@ Performance req




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

Bandwidth and power efficiencies are linked
P d?nin

. . . . . < i
Now, divide both sides with the bandwidth W p < NoW &




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Ey P X P dZ.

— > i Ry < —22
Thus, No  RyNo = & or, equivalently, R, < No X

Now, divide both sides with the bandwidth W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7—7 .)C' 7) d2-
Thus, N, RyNo = 2 or, equivalently, R, < —

min

Now, divide both sides with the bandwidth W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

X

2

min

To meet a specific error probability target, this implies % >
0

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

Bandwidth
P d?

min

- . : : <
Now, divide both sides with the bandwidth W p < W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

Spectral density

P dZ,
Now, divide both sides with the bandwidth W p S i
WX




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

Spectral density

P d, w
Now, divide both sides with the bandwidth W p S i
) X W/Hz Hz




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

Has no unit (dimensionless)

Now, divide both sides with the bandwidth W P S—




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

Dito

Now, divide both sides with the bandwidth W




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < Zmin
Thus, No  RyNo = & or, equivalently, R, < No X

Dito
P dIQIIiI]

Now, divide both sides with the bandwidth W N —




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

Received signal-to-noise-power-ratio

2
Now, divide both sides with the bandwidth W p %’ i




Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that P, < cQ ( dﬁﬁn%)
0

To meet a specific error probability target, this implies % > df
0

min

We also know that the transmit power satisfies P = EyR,

Eb 7-) .)C' 7) d2

= > i R, < — ~min
Thus, No  RyNo = & or, equivalently, R, < No X

Definition

2

Now, divide both sides with the bandwidth W p < SNR, d?n




Lecture 4: Capacity

Power efficiency

“BW efficiency” = “Signal-to-noise-power-ratio” x “Power efficiency”
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Shannon Capacity

Before going on, we go through what the term capacity means

Given a scalar channel of form ¢ — VvV Az +n, n~ CN(0, Np)

We know that the capacity is

But what does this mean?



Lecture 4: Capacity

=V OO

Build a codebook of all information
sequences possible to send of length K

000000 ..... 00
000000 ..... 01
000000 ..... 10
1111111 ... 10
‘ 1111111 ... 11 ’




Lecture 4: Capacity

=V OO

Build a codebook of all information
sequences possible to send of length K

000000 ..... 00
000000 ..... 01
000000 ..... 10 Sending K bits of information means:
pick one of the rows, and tell the receiver
which row it is
1111111 ... 10
‘ 1111111 ... 11 ’




Lecture 4: Capacity

=V OO

Build a codebook of codewords to send
for each information word, length N

Information book

000000 ..... 00 X11X12X13X14 - X1(N-1)X
000000 . 01 VA
000000 ... 10 217222223724 «-e-: 2(N-1)*2N
1111111 ... 10

‘ 1111111 ... 11 ’ XK X FoX KX K g woore XFN-XEN




Lecture 4: Capacity

=V OO

Information book Codebook

888888 ..... 8? X11X12X13X14 -eer X3N-1)XIN

000000 .. 10 Xer¥aaXes¥aa e X2N-DX2N
1111111 ... 10

‘ 1111111 ... 11 ‘ XK X FoX KX K g woore XFN-XEN

B | )
K N




Lecture 4: Capacity

=V OO

Information book Codebook
Q00000 .. Q0 X11X12X13X14 -ver Xy(N-1)XIN
000000 ... 10 Xer¥aaXes¥aa e X2N-DX2N

If this is my data

1111111 ... 10
‘ 1111111 ... 11 ‘ XK X FoX KX K g woore XFN-XEN

B | )
K N




Lecture 4: Capacity

=V OO

Information book Codebook
Q00000 .. Q0 X11X12X13X14 oooe. XyN-)XIN
000000 ... 10 Xor*aaRasa4 - F2AN-DXRN
If this is my data I send this one
1111111 ... 10
‘ 1111111 ... 11 ‘ XK X FoX KX K g woore XFN-XEN

B | )
K N




Lecture 4: Capacity

Shannon Capacity

As x over this channel used N times

Information book Codebook
Q00000 .. Q0 X11X12X13X14 oooe. XyN-)XIN
000000 ... 10 Xor*aaRasa4 - F2AN-DXRN

If this is my data

1111111 ... 10
‘ 1111111 ... 11 ‘ XK X FoX KX K g woore XFN-XEN

B | )
K N




Lecture 4: Capacity

=V OO

Clearly, bit rate is K/N bits/channel use
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Receiver observes y=vVAzx+n, n~ CN(0,Np)
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Receiver observes
Y1Y2YsYs ... Y(IN-DYN

Take smallest

N
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Information book
000000 .. 00

Lecture 4: Capacity
Yy = \/E:L‘—I—’n,, n ~ CN(0, Ny)

Codebook

000000

..... 10

So data is this one

1111111
‘1111111

..... 10
..... 11 ‘

X11X12X13X14 -.... X1(N-DXIN

X21X22X23X24 ...

- X2(N-1)X2N

XX KX K3 X K4
]

..... XZK(N_I)Xf N

J

N
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Receiver observes This is ML decoding and is optimal
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Receiver observes This is ML decoding and is optimal
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Take smallest 1. If K/N ¢ C, and K-> then
N Prob(Correct detection)=1
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Receiver observes This is ML decoding and is optimal
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Receiver observes To reach C, code-symbols must be
Random complex Gaussian variables
Y1Y2Y3Y4 - YIN-DIN That is, generate codebook randomly
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Extension to continuous channel (Shannon '48)

System model:

Transmitter
Bits 00101..
—_—

Interpretation of capacity:

s(t)

PIW] ————

Channel

Noise N(1), N,

‘l' Receiver

r(t)

—> —_> ML

Given a transmission of length T (seconds)

And a number of bits K

The bitrate is: K/T [bit/sec]

If K/T is too high, then many errors
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Extension to continuous channel (Shannon '48)

System model:
Noise N(1), N,
Channel

Transmitter ‘l' Receiver

i r(t
Bits 00101 .. P W] s(1) (1) "

Interpretation of capacity:
Given a transmission of length T (seconds)

And a number of bits K
Bits 0010111010110100...010011

The bitrate is: K/T [bit/sec] \ Y J
K

If K/T is too high, then many errors
Shannon proved: Possible to have NO ERRORS if, K

: P
)T 50 2) TJI_I&T:C:WIO&(lWLNOW)
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Extension to continuous channel (Shannon '48)

System model:
Noise N(1), N,
Channel

Transmitter ‘l' Receiver

Bits 00101 .. t r(t)
1000 L pwy D m

Decreases logarihtmically

C @ e (1 L P Facts:
’ NoW 1. Cis not power, nor bandwidth efficiency
Grows linearly (C is not dimensionless)

2. Not easy to reach C
(i.e., to find a set of s(t) signals)

3. There is no parameter called di;;,
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Extension to continuous channel (Shannon '48)

System model:
Noise N(1), N,
Channel

Transmitter ‘l' Receiver

Bits 00101 .. t r(t)
1000 ) ppwn s D5 m

@W10g2 (1+ P ) Facts:
NoW 1. Cis not power, nor bandwidth efficiency

Grows (C is not dimensionless)

2. Not easy to reach C
(i.e., to find a set of s(t) signals)

3. There is no parameter called d;,;,

2

4. When W grows: C grows
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Channel
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1000 L pwy D m

But it grows to
a limit
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Extension to continuous channel (Shannon '48)

System model:
Noise N(1), N,
Channel

Transmitter ‘l' Receiver

Bits 00101 .. t r(t)
1000 L pwy D m

C = Wlog, (1 -

P What is the limit?
NoW

Standard limit

lim zln (1+ é) = A
T—00 xT
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Extension to continuous channel (Shannon '48)

System model:
Noise N(1), N,
Channel

Transmitter ‘l' Receiver

Bits 00101 .. t r(t)
1000 L pwy D m
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Extension to continuous channel (Shannon '48)
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Summary

1. We stated that the capacity of the above is C'= W log, (1 + NP
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2. We proved that for infinite bandwidth, the capacity is NoIn(2)
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Extension to continuous channel (Shannon '48)

System model:
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Extension to frequency dependent channel

System model:

Noise N(1), N,
Channel
Transmitter ‘l' Receiver

Bits 00101.. [ ] st M L Oh W ”
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Conclusion: We should optimize the left plot, for the given right plot

Constraint on left plot is / h R(f)df =P
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Frequency response of Noise
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Frequency response of Noise
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Frequency response of Noise We need to find this formula
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Conclusion: We should optimize the left plot, for the given right plot
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Power spectral density is what matters Frequency response of channel
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C = max Capaci 2
R(f):[ R(f)df=P pacity (|H (f)|", Bn(f), R(f))

In this small piece
Sum up We can use

P
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Capacity (|H(/) P, Bx(£), B(S)) o s (157 )
2
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How to solve the below problem? WATERFILLING

Step 1. Find and plot iy (f )
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Step 1. Find and plot Ry (f)
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Step 2. Fill a bucket with P

units of water
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C = max / log, (1 +
R(f):f R(f)df=P 2 J_
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How to solve the below problem? WATERFILLING

Step 1. Find and plot Ry (f)
[H(f)|?

Step 2. Fill a bucket with P
units of water

Step 3. Pour it in the ‘
shape
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Step 1. Find and plot Ry (f)
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Step 2. Fill a bucket with P
units of water

i
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Step 4.
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How to solve the below problem? WATERFILLING

Step 1. Find and plot Lin (f)
[H(f)|?

Step 2. Fill a bucket with P
units of water

Step 3. Pour it in the
shape

Step 4.
R(f) is the
water-level

P
qd.ll.rl'_ IHl.fll HNITI
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On Exam, |H(f)|"2
would be “nice”, such as -
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How to solve the below problem? WATERFILLING

Step 1. Find and plot Ry (f)
[H(f)|?

Step 2. Fill a bucket with P
units of water

-~ f’
Step 3. Pour it in the E ’
shape

Step 4.

R is the — Observations:

1. Good channels get more power than bad
2. At very high SNRs, all channels geft,
roughly, the same power




