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Baseband signals are time-variant

Fourier transforms are NOT have spread p&

A pure cosine has spread to other frequencies
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20(t) = = ) an(t) sin((we + wi) (1))

We assume that both z;(t) and zy(1) are Gaussian
distributed with mean O and variance o?

Envelope is Rayleigh distributed ¢, (t) = \/Z% (t) + 25 (1)

We would like to understand how severe the spectral broadening is
Intuatively, if the channel changes fast, there is a lot of broadening

How to measure “how fast something changes”
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What causes time-variance: Doppler Fr'orr! Dig.com 1: .
Fourier transform of covariance

Width is called Doppler spread Bp function is
Power Spectral Density (PSD)

We have, roughly, ¢ N —
9. teoh Bo Right plot tell us how power is

being spread due to time-variance

Covariance function
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Define coherence time 7., as the width of the covariance (according to some measure)




Lecture 9: Time variant channels

Summary so far

Wireless channels are time-variant

Input-output relation is z( Z o (t)s(t — 1, (t))




Lecture 9: Time variant channels

Summary so far

« Wireless channels are time-variant

+ Input-output relation is 2(t) = ) an(t)s(t — 7 (t))

* A pure cosine at frequency f, will
i. For ftime-invariant channels produce a pure cosine at f
ii. For ftime-variant channels produce a signal around f




Lecture 9: Time variant channels

Summary so far

Wireless channels are time-variant

Input-output relation is z(t) = Y an(t)s(t — mn(t))

A pure cosine at frequency f, will
i. For time-invariant channels produce a pure cosine at f,
ii. For time-variant channels produce a signal around f,

We measure how fast the channel changes by coherence time t_,,

] Transmitted signal Received signal
<>

coh T

amplitude
amplitude




Lecture 9: Time variant channels

Summary so far

Wireless channels are time-variant

Input-output relation is z(t) = Y an(t)s(t — mn(t))

A pure cosine at frequency f, will
i. For time-invariant channels produce a pure cosine at f,
ii. For time-variant channels produce a signal around f,

We measure spectral broadening with Doppler spread Bp

Transmitted signal Received signal

S(f) Z(f)
/g@




Lecture 9: Time variant channels

Summary so far

« Wireless channels are time-variant

Input-output relation is z(t) = Y an(t)s(t — mn(t))

A pure cosine at frequency f, will
i. For time-invariant channels produce a pure cosine at f,
ii. For time-variant channels produce a signal around f,

We measure spectral broadening with Doppler spread Bp

1
We have t.,, ~ B_D




Lecture 9: Time variant channels

Summary so far

Wireless channels are time-variant

Input-output relation is z(t) = Y an(t)s(t — mn(t))

A pure cosine at frequency f, will
i. For time-invariant channels produce a pure cosine at f,
ii. For time-variant channels produce a signal around f,

We measure spectral broadening with Doppler spread Bp

1
We have t., ~ —
coh BD
In industrial simulations, Bp is varied from low to high, thus it
is an input parameter to a system
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Consequences

Frequency division multiplexing

S(f)  oFDM signal Z(f)  oFDM signal

Time-invariant channel

il g

Signals stay where they are!

S(f) OFDM signal Z(f) OFDM signal

Time-variant channel

BOEH Y VAN
<—>
Bp

Guard space needed. Spectral efficiency loss
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| Received signal
1- I

Will we get the same signal, but shifted in frequency?
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| Received signal
1- I

The Doppler spread does not answer this question
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Natural question
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New concept: Coherence bandwidth

Compute covariance between the points generated from 2 signals at distance fa

cz(fa) = E{z(f,0)z"(f + fa,t)}
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New concept: Coherence bandwidth

Compute covariance between the points generated from 2 signals at distance fa

¢:(fa) = E{2(f,0)z"(f + fa,t)}
Ez(fA)

Coherence bandwidth
/lfc&h Delay spread
fA

Th, T

Frequency autocorrelation function delay power spectrum

Can be shown to be the delay power spectrum cr, (7-) — B {h2 (7_) t)}
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Consequence

Assume single carrier transmission with pulse shape p(t)

T

o
Requirement that received spectrum
is scaling of transmitted spectrum ?

W <« Bp
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Frequency-non-selective, slowly fading channel

1
Symbol rate R — T

S

Slow fading T, < ¢., or Bp < R, (equivalent)

Frequency non-selective 1V < Bp or T <« %

We know from dig com 1, that )/ = L R,

Conditions for Frequency-non-selective, slowly fading channel

f coh

k 1 /
kme% fwh < Ts < tcoh%B_D ; %BD<<RS <K 2 ~
co coh w
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Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutltiplied
with a complex constant

Underspread channel: By7T, <1

Conditions for Frequency-non-selective, slowly fading channel

kyT, ~ —

coh

1
< Ts < tcoh ~ B_D

coh
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Lecture 9: Time variant channels

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutltiplied
with a complex constant

Underspread channel: By7T, <1
Can we have Frequency-non-selective, slowly fading channels if BpT,., ~ 1

NO. Note that BpT,, is a channel parameter, out of our control

Conditions for Frequency-non-selective, slowly fading channel
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Lecture 9: Time variant channels

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutltiplied
with a complex constant

Underspread channel: By7T, <1

Assume an underspread channel. Complex baseband model becomes
es(t) and 05(t) describe signal

2(t) = aes(t) cos(wet + 05(t) + ) a and ¢ describe channel
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Lecture 9: Time variant channels

Frequency-non-selective, slowly fading channel

Significantly simplifed modelling. For complex basesband, signals are mutltiplied

with a complex constant

Underspread channel: By7T, <1

Assume an underspread channel. Complex baseband model becomes

z(t) = aes(t) cos(wet + 05(t) + @)

es(t) and 05(t) describe signal

a and ¢ describe channel
a Rayleigh ¢ Uniform

Conditions for Frequency-non-selective, slowly fading channel
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