Lecture 7: OFDM

Recall: If x(t) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

Then z(t) = A, cos(w.t) — B, sin(w,t), Ty <t < T

A, +iB, = (A+iB)H(w.)
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Recall: If x(t) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

Then z(t) = A, cos(w.t) — B, sin(wct), Ty <t < Ty
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We can transmit multiple signals at different sub-carriers:
This is OFDM

Carrier
We have l

K—-1
J o OFDM signal = grec(t) Y  Re{ay, exp(i2n fit)}
k=0 T

f

Complex data (A+iB)
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Recall: If x(t) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

Then z(t) = A, cos(w.t) — B, sin(wct), Ty <t < Ty

A, +iB, = (A+iB)H(w.)

We can transmit multiple signals at different sub-carriers:
This is OFDM

One signal
We have

K—1
OFDM signal = grec(t) Re{ay exp(i2w frt)}

f k=0
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This i
his is OFDM All signals

We have l

OFDM signal = gpec (1) Z Re{ay exp(i27 fi.t)}
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Recall: If x(t) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

Then z(t) = A, cos(w.t) — B, sin(wct), Ty <t < Ty

A, +iB, = (A+iB)H(w.)
We can transmit multiple signals at different sub-carriers:
This is OFDM
We have
OFDM signal = grec (1)

/ = Grec(t) Z_: Re{ay exp(i27(fo + kfa)t)}

k=0
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Recall: If x(t) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

Then z(t) = A, cos(w.t) — B, sin(wct), Ty <t < Ty

A, +iB, = (A+iB)H(w.)

We can transmit multiple signals at different sub-carriers:
This is OFDM

We have

OFDM signal = grec (1)

—1
= grec(t) >  Re{ar exp(i2mgy fat) exp(i27 frct)}
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1f K 1s odd

1f K 1s even

We can transmit multiple signals at different sub-carriers:

This is OFDM

We have

K—-1

OFDM signal = grec(t) Y  Re{ay exp(i27 fit)}
k=0

—1

= grec(t) >  Re{ar exp(i2mgy fat) exp(i27 frct)}
0
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OFDM signal = Re{x(t) exp(i27 frct)} 0 <t < Tips

K—-1

2(t) = grec(t) > ar exp(i2mgp fat)
k=0

We can transmit multiple signals at different sub-carriers:
This is OFDM

We have

K—-1

OFDM signal = grec(t) Y  Re{ay exp(i27 fit)}
k=0

—1

= grec(t) >  Re{ar exp(i2mgy fat) exp(i27 frct)}
0

g = ..-2,-1,0,1,2,..
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OFDM signal = Re{x(t) exp(i27 frct)} 0 <t < Tips
K—1

2(t) = grec(t) > ar exp(i2mgp fat)
k=0

Important: fAT s > 1

We can transmit multiple signals at different sub-carriers:

This is OFDM

We have

K—-1

OFDM signal = grec(t) Y  Re{ay exp(i27 fit)}
k=0

—1

= grec(t) >  Re{ar exp(i2mgy fat) exp(i27 frct)}
0

g = ..-2,-1,0,1,2,..
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OFDM signal = Re{x(t) exp(i27 frct)} 0 <t < Tips
K—1

2(t) = grec(t) > ar exp(i2mgp fat)
k=0

To synthesize the signal, we

1. Sample the OFDM signal
2. Check how we can efficiently construct those samples
3. Perform D/A conversion
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1. Sample the OFDM signal
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Sampling theorem: Sample twice as fast the highest frequency component

Total bandwidth Worpy = K fa
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OFDM signal = Re{xz(t) exp(i27 frct)} 0 <t < Tops
K—1

2(t) = grec(t) > ar exp(i2mgp fat)
k=0

To synthesize the signal, we
1. Sample the OFDM signal

2. Check how we can efficiently construct those samples
3. Perform D/A conversion

How often do we need to sample?
Sampling theorem: Sample twice as fast the highest frequency component

Total bandwidth Worpy = K fa

At baseband Worpm =~ Kfa/2  fsamp > Kfa
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OFDM signal = Re{z(t) exp(i27 fret)} 0 <t < Thps
K—1
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To synthesize the signal, we
1. Sample the OFDM signal

2. Check how we can efficiently construct those samples
3. Perform D/A conversion

How often do we need to sample?
Sampling theorem: Sample twice as fast the highest frequency component

Total bandwidth Worpy = K fa
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N samples per symbol  f..mp = N/Tops
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OFDM signal = Re{z(t) exp(i27 fret)} 0 <t < Thps
K—1

2(t) = grec(t) > ar exp(i2mgp fat)
k=0

To synthesize the signal, we
1. Sample the OFDM signal

2. Check how we can efficiently construct those samples
3. Perform D/A conversion

How often do we need to sample?
Sampling theorem: Sample twice as fast the highest frequency component

Total bandwidth Worpy = K fa
At baseband Worpm =~ Kfa/2  fsamp > Kfa

N samples per symbol [,y = N/Tops = Nfa > K fa
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OFDM signal = Re{x(t) exp(i27 frct)} 0 <t < Tips

N

i2ﬂ_gk‘ fAnTobs )

fsamp = N/Tobs — NfA
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OFDM signal = Re{x(¢

QC(t) = Grec (t)

xn, = x(nTyps/N) =

i2ﬂ_gk fAnTobs
N

(iZﬂgkn)
ar eXp
N

The above gives a formula for how to compute
the samples of the OFDM signal
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OFDM signal = Re{xz(t) exp(i27 frct)} 0 <t < Tops
i 12T gEn
Ty = kz_o ar exXp ( ]\g]_k )

Let us now compute the Fourier transform of the samples

(as of now, for no particular reason)
N-1

X(v) = Z T, exp (—i27wvn)

n=0
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OFDM signal = Re{xz(t) exp(i2nf,ct)} 0 <1t < Tops

K-1 :
_— Z 0 X 12T gKn
n k N

k=0

Let us now compute the Fourier transform of the samples

(as of now, for no particular reason)
N-1

X(v) = Z T, exp (—i27wvn)

n=0
Take N samples of this Fourier transform
(as of now, for no par"ricular' reason)

1 2Tmn
Xm N mn
X(m/N) Z T exp( N )
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Let us now compute the Fourier transform of the samples
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N-1
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127NN
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OFDM signal = Re{xz(t) exp(i27 frct)} 0 <t < Tops
i 12T gEn
Ty = kz_o ar exXp ( ]\g]_k )

Let us now compute the Fourier transform of the samples

(as of now, for no particular reason)
N_1 IDFT is VERY fast.

X(v) = Z Ty exp (—i2wvn) wweekin(:;\:vgit x, FAST if
m

n—
Take N samples of this Fourier transform
(as of now, for no particular reason)

Nl 9 1 = 12Tmn
szz:mnexp(—Z 7;\7;1%) CUn:NZXmeXP( N )
n=0

m=0

DFT IDFT
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Logics

We have {a,}
We need {x,}

N

N-1
1 12mmn
We know that z, = N E X, exp ( )

m=0

And that this can be computed FAST
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Logics

We have {a,}
We need {x,}

N

N-1
1 12mmn
We know that z, = N E X, exp ( )

m=0

And that this can be computed FAST

Conclusion: We need to link {a,} and {X,}
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N
Variable substitutions

m = g9+ k + N|

i (iZ?T(g() +k+ N)n
Z A €XP

k=0
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i (iZ?T(g() +k+ N)n
Z A €XP

N
Variable substitutions

m = g9+ k + N|

N-1 .
(zmen

= Z am—(go—|—N) exXp N
m=go+N

k=0
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This we know from the IDFT
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go+N<m<N-1
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Altogether,

1. Take a block of K data symbols {a,}

Xm:Nam—goa OimégK—l

Xm =0, gr1+1<m<go+N-1

Xm:Nam—(go—l—N)a g+ N<m<N-—-1
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Altogether,

1. Take a block of K data symbols {a,}

2. Select a sampling rate, by choosing N 2> K

Xm:Nam—go: 0<m < grx_1

Xm =0, gr1+1<m<go+N-1

Xm:Nam—(go—l—N)a g+ N<m<N-—-1
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Altogether,
1. Take a block of K data symbols {a,}
2. Select a sampling rate, by choosing N 2> K

3. Find N values {X,} according to the box below

Xm:Nam—go: 0<m < grx_1

Xm =0, gr1+1<m<go+N-1

Xm:Nam—(go—l—N)a gD‘|‘N§mSN_1
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Altogether,

1. Take a block of K data symbols {a,}

2. Select a sampling rate, by choosing N 2> K

3. Find N values {X,} according to the box below

4. Compute {x,} using an IDFT

Ty — N ZXmeXp

m=0

Xm =0,

0<m<grg_1

gr-1+1<m<go+ N —1

Xm:Nam—(go—l—N)a gD‘|‘N§mSN_1
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Altogether,
1. Take a block of K data symbols {a,}
2. Select a sampling rate, by choosing N 2> K

3. Find N values {X,} according to the box below

4. Compute {x,} using an IDFT

Ty = — X €Xp
/ NmZ::O

Speed: N2 multiplications 0<m < gr_1

Xm =0, gr1+1<m<go+N-1

Xm:Nam—(go—l—N)a gD‘|‘N§mSN_1
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Altogether, FFT = “Fast Fourier transform”
1. Take a block of K data symbols {a,}
2. Select a sampling rate, by choosing N=2- > K

3. Find N values {X,} according to the box below

4. Compute {x,} using an IFFT 1 V-1 (z’men)

Ty — N ZXmeXp

m=0

Speed: N? multiplicati Xm=Nam—yg,, 0<m<gg_y

m = 0, 1+1<m< N -1
Speed: Nlog,N A O gx1tl=m=got

N

Xm:Nam—(go—l—N)a g+ N<m<N-—-1
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Time = Nlog,(N)
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Left to do
1.

2. D/A conversion

3. Modulation to band-pass

4. Recevier
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Left to do

1. Add a cyclic prefix to deal with channel effects

2. D/A conversion
3. Modulation to band-pass

4. Recevier
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x(t), symbol 1 x(1), symbol 2 x(1), symbol 3

Channel

x(1), symbol 1 x(t), symbol 2 x(t), symbol 3

o e
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x(t), symbol 1 x(1), symbol 2 x(1), symbol 3

Channel

x(1), symbol 1 x(t), symbol 2 x(t), symbol 3

I — .

|
Useful part
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data Data

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data % Data

Whatever is sent here

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data % Data

Whatever is sent here

Channel

Is partly ending up here,
and therefore lost

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data N Data % Data

However, whatever is sent here

Channel

Is partly ending up here,
and therefore useful

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3

W\ Data %
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data % Data

To regain, this

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data 7% Data % Data

To regain, this
Put it here 9

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3

Useful part
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
CcP Data CP  Data CP Data

Called cyclic prefix (CP)

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
CcP Data CP  Data CP Data

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3

\ J
|

Useful part, should be length T,
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3

CcP Data CP Data CP Data
\ J

|
=T +TCP

obs

Channel

x(t), symbol 1 x(t), symbol 2 x(t), symbol 3

\ J
|

Useful part, should be length T,
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
CP Data " cP  Data CP  Data
\ J

|
T, =T

(3 obs

+ TCp

Summary:




Lecture 7: OFDM

Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data Data

L'J

Summary:
1. Marked region is partly lost since it interferes with next block




Lecture 7: OFDM

Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data Data Data

SR

Summary:
1. Marked region is partly lost since it interferes with next block
2. First part is partly lost, since previous block interferes with it
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data cP Data Data

SR

Summary:
1. Marked region is partly lost since it interferes with next block

2. First part is partly lost, since previous block interferes with it
3. Put the last part in the first part, call it CP
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Solution

x(t), symbol 1 x(1), symbol 2 x(1), symbol 3
Data | cP Data Data

S

\ J
|

Ts = Tobs + Tcp

Summary:

1. Marked region is partly lost since it interferes with next block
2. First part is partly lost, since previous block interferes with it
3. Put the last part in the first part, call it CP

4. Length of data block should be T, =1/f,
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Solution

x(t), symbol 1 x(1), symbol 2 x(t), symbol 3

Data CP Data Data

S

\ J
|

Ts = Tobs + Tcp

Summary:
. Marked region is partly lost since it interferes with next block
. First part is partly lost, since previous block interferes with it
. Put the last part in the first part, call it CP
. Length of data block should be T, =1/f,
. No proof, yet, why this should be good, but it is plausible, since the
lost part is present in the beginning
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Solution

x(t), symbol 1 x(1), symbol 2 x(t), symbol 3
Data CP Data Data

S

\ J
|

Ts = Tobs + Tcp

Summary:

1. Marked region is partly lost since it interferes with next block

2. First part is partly lost, since previous block interferes with it

3. Put the last part in the first part, call it CP

4. Length of data block should be T, =1/f,

5. No proof, yet, why this should be good, but it is plausible, since the
lost part is present in the beginning
6. Spectral efficiency loss
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Formulas

K—-1

z(t) = Z ax, exp (127 gy fat),
k=0
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Formulas

K—-1

x(t) = Z aj exp(12mgi fat)

k=0

T

Periodic with period T, = 1/f,
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Formulas

K—-1

Y apexp(i2mgpfat), —Tep <t < Tops

k=0

T

Has properties that we want: first part (left of O) equals last part
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Formulas

CP

K-1

x(t) = Z a exp(i2wgi fa(t —Tep), 0<1t < Ty

k=0

T

Make causal
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Altogether,
. Take a block of K data symbols {a,}
. Select a sampling rate, by choosing N 2> K

. Find N values {X,} according to the box below

. Compute {x,} using an IDFT

iy — =— Z X, €Xp
. Add last L samples . m=0

to the beginning

0<m<gx_1
Xm =0, gr1+1<m<go+N-1

Xm:Nam—(go—l—N)a gD‘|‘N§mSN_1
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Left to do
1. Add a cyclic prefix to deal with channel effects
2. D/A conversion

3. Modulation to band-pass

4. Receiver <«
Explanation of 1

comes in 4

Warning: numbering of steps is not the same as in the compendium
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OFDM signal = Re{x(t) exp(i27 f,.t)}

K-1
x(t) = 0<t<T,
k=0
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OFDM signal = Re{x(t) exp(i27 f,.t)}

K-1

Y arexp(i2rgpfalt — Tep)), 0<t<T,
k=0

w, = IFFT(X)
Xm = Nam—gm 0<m< JgK -1
Xm=0, ggx-1+1<m<go+N-—-1

Xm:Nafm—(go—l—N)7 go+N<m<N-1

X = [;UJN_L UN—-r+1 +--UN—-1 Up .. .uN_l]

J

|
CP
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OFDM signal = Re{x(t) exp(i27 f,.t)}

K-1

Z ag exp(i2mgr fa(t — 1)),
k=0

U, = IFFT(X)

Xm=Nam—_g,, 0<m<grg g
Xm=0, gg 1+1<m<gy+N-1

Xm:Nafm—(go—l—N)7 go+N<m<N-1

X = [;UJN_L UN—-r+1 +--UN—-1 Up .. .uN_l]

J

|
CP
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OFDM signal = Re{x(t) exp(i27 f,.t)}

:C(t) — Z .C(,‘gg(t — g/fsamp)
12

U, = IFFT(X)

Xm=Nam—_g,, 0<m<grg g

Xm=0, gp1+1<m<gy+ N -1

Xm:Nafm—(go—l—N)7 go+ N<m<N-1

X = [;UJN_L UN—-T+1 ...UN_lluO ...uN_l]
|

CP
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OFDM signal = Re{x(t) exp(i27 f,.t)}

Qj(t) — Z .Cl,‘gg(t - e/fsamp)
12

U, = IFFT(X)

Xm=Nam—_g,, 0<m<grg g

Xm=0, gp1+1<m<gy+ N -1

Xm:Nafm—(go—l—N)7 g+N<m<IN-1

X = [;UJN_L UN—-T+1 ...UN_lluO ...uN_l]
|

CP
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OFDM signal = Re{x(t) exp(i27 f,.t)}

Qj(t) — Z .Cl,‘gg(t - e/fsamp)
12

Gideal (t) —

SIN(7 fsampt)

7Tfsa,m]::’t

Alternative (suboptimal)

A

N
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OFDM signal = Re{x(t) exp(i27 f,.t)}

Qj(t) — Z .Cl,‘gg(t - e/fsamp)
12

Gideal (t) —

SIN(7 fsampt)

7Tfsa,m]::’t

Alternative (suboptimal)

N
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OFDM signal = Re{x(t) exp(:27 f,ct)}

Qj(t) — Z .Cl,‘gg(t - e/fsamp)
12

Alternative (suboptimal)

N

Gideal (t) —

SIN(7 fsampt)

ﬂ-fsampt

gsz’mple(t) — tri(t)A
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Left to do
1. Add a cyclic prefix to deal with channel effects
2. D/A conversion

3. Modulation to band-pass

4. Receiver <«
Explanation of 1

comes in 4

Warning: numbering of steps is not the same as in the compendium
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Left to do
1. Add a cyclic prefix to deal with channel effects

2. D/A conversion

3. Modulation to band-pass OFDM signal = Re{x(t) exp(i27 f,.ct) }

4. Receiver
Very simple

Warning: numbering of steps is not the same as in the compendium
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Left to do
1. Add a cyclic prefix to deal with channel effects

2. D/A conversion

3. Modulation to band-pass OFDM signal = Re{x(t) exp(i27 fr.ct) }

4. Receiver Next lecture

Warning: numbering of steps is not the same as in the compendium




