Lecture 6: Channel model (Ch.3) & coding (Ch8)

So far, we did not care much about the channel. Now we do.

We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.
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So far, we did not care much about the channel. Now we do.

We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.

General model for bandpass x(t): LB(t) = CCI(t) COS (wct) —XQ (t) sin(wct)

Easily verified. Do at home E)Re{zc exp zwct)}

Where .CTZ‘(t) =Xy (t) -+ ?:ZEQ (t)

“Complex baseband representation”
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So far, we did not care much about the channel. Now we do.

We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.

General model for bandpass x(t): aj(t) = CCI(t) COS (wct) —XQ (t) sin(wct)

= Re{Z(t) exp(iw.t)

Where .CTZ‘(t) =Xy (t) -+ iZEQ (t)

Can be seen as “book-keeping”. Allows to use 1 signal instead of 2 when doing math
..or when speaking: “.. assume now that the signal jj(t) is sent..”

“.. assume now that the signals 'y (t) and L) (t) are sent..”
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h(T)z(t — 7)dr




Lecture 6: Channel model (Ch.3) & coding (Ch8)
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Real Real Real
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h(7)x(t — 7)dr = / h(7)Re{Z(t — 7) exp(iw.(t — 7)) }dT

— o0




Lecture 6: Channel model (Ch.3) & coding (Ch8)

So far, we did not care much about the channel. Now we do.

Real Real Real
We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.

General model for bandpass x(t): aj(t) = CCI(t) COS (wct) —XQ (t) sin(wct)

= Re{Z(t) exp(iw.t)}

Where .CTZ‘(t) =Xy (t) -+ iZEQ (t)

z(t) = /OO h(7)x(t — 7)dr = /OO h(7)Re{Z(t — 7) exp(iw.(t — 7)) }dT
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So far, we did not care much about the channel. Now we do.

Real Real Real
We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.

General model for bandpass x(t): aj(t) = CCI(t) COS (wct) —XQ (t) sin(wct)

= Re{Z(t) exp(iw.t)}

Where .CTZ‘(t) =Xy (t) -+ iZEQ (t)

/OO h(7)x(t — 7)dr = /OO h(7)Re{Z(t — 7) exp(iw.(t — 7)) }dT

— 0O — o0

= Re {exp(iwct) /oo h(T)Re{z(t — 7) exp(iwc(—T))dT}

—00 typo
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Real Real Real
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So far, we did not care much about the channel. Now we do.

Real Real Real
We study the following setup x(t) ——={ h(t) F———= z(t)

Figure 3.11: Bandpass filtering.

Assumptions: \fh% /-\ /\xﬁ )

1. h(t) of duration T, \,Th N N T,
2. x(t) is QAM of duration T, a:( ) = Acos(w.t) — Bsin(w.t), 0 <t < Ty

— /A2 + B2 cos(wet + 1)

3. Low signaling rate T, > T},

oo

2(t) = Re {exp(iwct) /

— 0

h(T)Re{Z(t — 7) exp(iwc(—T))dT}
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The convolution
z(t) = x(t) = h(t)

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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The convolution
z(t) = x(t) = h(t)

duration T ,+T,

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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x(t)

h(t)
AL A X
o S N S T,

The convolution
z(t) = x(t) = h(t)

z(t)

<

z(0) obtained by multiplying and integrating
the above curves

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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x(t)

h(t)
AN aVa
o N\ N4 T,

The convolution
z(t) = x(t) = h(t)

z(T,/2) obtained by multiplying and
integrating the above curves

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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‘ h(t) x(t)

/\(\f\/\
) OZE /A O

The convolution

z(t) = x(t) = h(t)

z(T,) obtained by multiplying and integrating
the above curves

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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h(t) x(t)

RO\ a\
=

4 T,
The convolution
z(t) = x(t) = h(t)

-

1/w T, T.+T,
z(1/w_+T,) obtained by multiplying and

integrating the above curves
Clearly the samel!

oo

2(t) = Re {exp(iwct) /

— 0

h(T)Re{Z(t — 7) exp(iwc(—T))dT}
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ANEIFANN
\ZAERa v

The convolution
z(t) = x(t) = h(t)

-

1/w+T, 2/w +T,

Clearly the samel!

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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The convolution
z(t) = x(t) = h(t)

-

Th \ 1 /wc"'Th

Some value

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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x(t)

T,

The convolution
z(t) = x(t) = h(t)

-

Th \ l/wc"'Th \ Z/Wc'"Th

Some value

Same value

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}



Lecture 6: Channel model (Ch.3) & coding (Ch8)
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‘ h(t) Last time we have periodicity x(t)

/\f\
o NS

Iuhon

The convo
) * h(t)

2(t) =

N
nv
(

Z(T)

m [\ [
‘ \/(/w T, \/zm T,

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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‘ h(t) Last time we have periodicity x(t)

/\f\
o NS

Iu1'|on

The convo
) * h(t)

2(t) =

N
nv
(

Z(T)

M [\ [\
‘ \/(/w +T, \/Z/W +T, \1_‘5 T +T,

\

z(Ts)

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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‘ h(t) Last time we have periodicity x(t)

/AN NEYA AN
AT U A AV

The convolution
z(t) = x(t) = h(t)

N N\

‘ Th u/wc+Th \/Z/wc"'.rh \y Ts"'Th

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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‘ h(t) x(t)

/N I\ [\
" A O A

The convolution
z(t) = x(t) = h(t)
z(1)

N\ N\ [
T, Um;n \/2/wc+rh \Ts

Let us now focus on T, < t < T,

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}



Lecture 6: Channel model (Ch.3) & coding (Ch8)

z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
T, U/ngh \j’./w;Th \Ts

#(t) = A+iB
By definition

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

2(t) = Re {exp(iwct) /_i h(T)Re{Z(t — T) exp(iwc(—T))dT}
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z(1) The convolution

N\ /N [\ 2(t) = x(t) % h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Alive in O<t<T,

2(£) = Re {exp(iwct) /_ O;e{:%(t ) exp(iwc(—T))dT}
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

of inTeresT:Z(t), 1y <t <1,
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z(1) The convolution

N\ /N [\ 2(t) = z(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of inTeresT:Z(t), 1 < tﬁ
Th

Z(t) = Re < exp(iw,t) /0 h(T)Re{Z(t — 7) exp(iw.(—7))dT
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation




Lecture 6: Channel model (Ch.3) & coding (Ch8)

z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

of inTeresT:Z(t), 1y <t <T7T 0<t—7<T, -1}
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z(1) The convolution

N\ /N [\ 2(t) = x(t) % h(¢)

‘ Th u/ we+Ty \_j’-/w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

of inTeresT:Z(t), 1y <t <1,

z(t) =Re {exp(iwct) /0 h h(T) VA2 + B2 exp(iw. (v — T))dT}

Typo fixed
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

‘ T, U/ngh \j’./w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

of inTeresT:Z(t), 1y <t <1,

z(t) = Re {exp(iwct)/o h h(T) \/AQ + B2 exp(iwc(li — T))dT}

Constants wrt integration
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of interest: z(t), Ty, <t < T

z(t)=Re | exp(i(w.t + v))
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

‘ T, U/ngh \j’./w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of interest: z(t), Ty, <t < T Definition of..

2(£)= Re 4 expli(wet + »)) V42 1 B2 /0 " h(r) exp(—iw,7)d
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

‘ T, U/ngh \j’./w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of interest: Z(t), T, <t<T, Definition of Fourier transform

2(£)= Re 4 expli(wet + »)) V42 1 B2 /0 " h(r) exp(—iw,7)d
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of interest: z(t), Ty, <t < T

2(t) = Re {exp(i(wct +))VA2 + BQH(wC)}
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

T, U/ngh \j’./w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

By definition By manipulation

Of interest: z(t), Ty, <t < T

2(t) = Re{exp( (wet + v + ¢p(we))) VA2 + B2|H( wc)]}



Lecture 6: Channel model (Ch.3) & coding (Ch8)

z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

T, U/ngh \j’./w;Th \Ts
#(t) = A+ iB = /A2 + B2 exp(iv)

Recall z(t) = Acos(w.t) — Bsin(w.t), 0 <t < Tj

= /A2 + B2 cos(wet + v)

2(t) = Re{exp( (wet + v + ¢p(we))) VA2 + B2|H( wc)]}
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z(1) The convolution

N\ /N [\ 2(t) = z(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

Recall z(t) = Acos(w.t) — Bsin(w.t), 0 <t < Tj

= /A2 + B2 cos(wet + v)

z(t) = A; cos(wet) — B, sin(wct), Tp <t < Ty
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z(1) The convolution

N\ /N [\ 2(t) = z(t) * h(t)
‘ T, U/ngh \j’./w;Th \Ts

#(t) = A+ iB = /A2 + B2 exp(iv)

Altogether: A, +iB, = (A+iB)H(w.)

z(t) = A; cos(wet) — B, sin(wct), Tp <t < Ty
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z(1) The convolution

N\ /N [\ 2(t) = 2(t) * h(t)

Th U/WC"'T" \-/Z/WC*'Th \-rs

#(t) = A+ iB = /A2 + B2 exp(iv)

Altogether: A, +iB, = (A+iB)H(w.)

Lesson learned (important): For low-rate inputs, A QAM signal is
changed into a new QAM signal, but coordinates are changed in signal by
a multiplication with H(w_), w. being the carrier-frequency
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What does a “low-rate” signal look like in the Frequency domain?
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What does a “low-rate” signal look like in the Frequency domain?

very narrow

f

Putting many next to eachother would result in:

1. Non-interfering transmissions
2. Simple equalization (input-output relation is just a scaling)

This is the basis of OFDM
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What does a normal channel look like in the frequency domain?

N N
2(t) = x(t) = Z a0t —T1;) | = Z a;x(t —7;) (3.126)
i=1 i=1

el

Impulse response h(t)

Channel compises N paths
between tx and rx

N
H(f)=F{h(t)} = Y ae /™ (3.128)

Rough sketch:

EXAMPLE 3.20

It is seen in this figure that the two signal paths add constructively or de-
structwvely (fading) depending on the frequency. Furthermorve, if o1 = a2
then |H(f)| iz very close to zero at certain frequencies (so-called deep fades)!




b)

Figure 8.1: a) Block coding, r. = k/n. b)

Chapter 8

Trellis-coded Signals

b [i] | Block encoder m [1] . E%{rr} lﬂ;—-
R;, rate k/n Re=Rynk | sq(0)
] — =
— / T‘—f \
T kK parity bits
information bits — -

n

Modulo-2 addition

|
bl bfi2 lore 1| s0® | s
(1] = Delay —e={ Delay [1- ]:: Delay bli-3] I\ m [, or —=
Ry, L ~ 100
. -7

Rs=2Rp

Convolutional coding,

Digital communications - Advanced
course: week 3

Coded binary symbols

.= 1;2 .

S7
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Figure 8.2: a) Rate r. = 1/2 convolutional encoder combined with QPSK; b)
Rate r. = 2/3 convolutional encoder combined with 8-PSK, from [63], [64].
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Figure 8.4: a) A rate 1/2 convolutional encoder combined with QPSK signal
alternatives; b) A specific input sequence bi]; ¢) The corresponding path in the
trellis; d) A trellis section, and a table containing all relevant parameters.
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Figure 8.6: a) An example of TCM, from [63]-[64]; b) The mappings F{-,-) and
G- -); e) A trellis section.
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Memory (redundancy, dependancy) is introduced among the sent signal alternatives!

This gives us some new properties like, e.g.,:

Which of the following signal sequences are impossible?

s3(t), sa(t — Tb), s1(t — 2T3), s1(t — 3Tp)

s3(t), sa(t — 1), s2(t — 2T, 81 (t — 3T3)

s3(t), s1(t — Ts), so(t — 2T), sa(t — 3T%)

sa(t).s1(t — Tp), sa(t — 2T%), s1(t — 3T%) Note: In the uncoded case all signal sequences
are possible.

L

Find the “missing” signal, in the sequence below,

HIUH,I Fi3l.i? — Tb:l 7, "‘2“ — q!rTb:I -"'1'3|:1!L — '—11'_‘{,:.1.. -":hj[;f- — GT,I_-,.\.I

Note: This is not possible to do in the uncoded case!
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2.32 Let us here study adaptive coding and modulation according to the block
diagram helow,.

b —» Encoder € » {SE{I}}E;E — s(t)
— ‘ ke , Lo
E.w-r;-!" = Te l‘jgi[ﬂf,:'Eb_m-rrf = - ]032':\JHLI]EJJ_.Hf-m [b"l'
"

_ 1 1 1 1 i

R.=1/T, = — Ry = — R B0
b r. logs(M) E kE/n log, (M) E |

W =c- K, (8.6)

Typically, the bandwidth W is fixed and given but:
the rate of the encoder

the number of signal alternatives

and the bit rate can be ADAPTIVE, see (8.5)-(8.6)!
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We have memory in the sequence
of sent signal alternatives!

Some sequences are impossible, see problem!

Only “good” sequences are sent!
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