Lecture 4: Capacity

Project info

1. Each project group consists of two students.
2. Each project group should as soon as possible, send an email to fredrik.rusek@eit.lth.se and mg7107ma-s@student.lu.se containing Name and email address to each project member.'
3. The project group should contact Fredrik Rusek to decide about project and articles!
4. Each group should write a project report.
5. The structure of the project report should follow journal articles published by IEEE. However, two columns are not needed.
6. The project report should be written in English with your own words, tables and figures, and contain 4-5 pages.
7. The report should be clearly written, and written to the other students in this course!
8. Observe copyright rules: "copy \& paste" is in general strictly forbidden!

Lecture 4: Capacity

Project info

9. Book a meeting with Mgeni at your earliest possible convenience in case you are interested in discussing how a good report should be written (book meetings with him via email). You can also discuss topics and articles with Mgeni
10. The project report should be sent in .pdf format to Mgeni before Wednesday 12 December, 17.00
11. Feedback on the reports will be provided in a meeting with Mgeni (book meetings with him via email)
12. Oral presentations in the week starting with Monday December 17
13. Each group should have relevant comments and questions on the project report and on the oral presentation of another group. NOTE! The project presentation should be clear and aimed to the other students in this course! After the oral presentation the project report and the presentation will be discussed (5 min).
14. Final report should be sent to Fredrik and Mgeni at latest January 11, 2019.

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$

Now, divide both sides with the bandwidth $\mathbf{W} \quad \frac{R_{b}}{W} \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$
or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$ We have seen this before, it is defined as...
Now, divide both sides with the bandwidth $\mathbf{W} \quad \frac{R_{b}}{W} \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$
or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$
We have seen this before, it is defined as bandwidth efficiency
Now, divide both sides with the bandwidth $\mathbf{W} \quad \rho=\frac{R_{b}}{W} \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$
or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$
We have seen this before, it is defined as bandwidth efficiency
Now, divide both sides with the bandwidth $\mathbf{W} \quad \rho \leq \frac{\mathcal{P}}{N_{0} W} d_{\mathrm{min}}^{2}$ Power efficiency

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$
or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$
We have seen this before, it is defined as bandwidth efficiency

Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\text {min }}^{2}}{\mathcal{X}} \text { Performance req }
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Bandwidth and power efficiencies are linked
Now, divide both sides with the bandwidth $\mathbf{W} \quad \rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Unit?
Now, divide both sides with the bandwidth W
$\rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\text {min }}^{2}}{\mathcal{X}}$
Power
Now, divide both sides with the bandwidth $\mathbf{W} \quad \rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}} \quad \mathbf{W}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$

Bandwidth

Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P} d_{\min }^{2}}{N(W) \mathcal{X}} \quad \frac{\mathbf{w}}{\mathrm{Hz}}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Spectral density
Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P}}{N_{0} V} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

$$
\frac{\mathrm{W}}{? \mathrm{~Hz}}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Spectral density
Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P}}{N_{0} V} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

$$
\frac{W}{W / H z H z}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Has no unit (dimensionless)
Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Dito
Now, divide both sides with the bandwidth W

$$
\rho \leq \frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Dito
Now, divide both sides with the bandwidth W

$$
\rho=\frac{\mathcal{P}}{N_{0} W} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Received signal-to-noise-power-ratio
Now, divide both sides with the bandwidth W
$\rho=\frac{\mathcal{P}}{N_{0} W} \frac{l_{\text {min }}^{2}}{\mathcal{X}}$

Lecture 4: Capacity

Power efficiency

We know from before (e.g., union bound) that $\quad P_{\mathrm{s}} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{E_{b}}{N_{0}}}\right)$

To meet a specific error probability target, this implies $\frac{E_{b}}{N_{0}} \geq \frac{\mathcal{X}}{d_{\text {min }}^{2}}$

We also know that the transmit power satisfies $\mathcal{P}=E_{b} R_{b}$
Thus, $\quad \frac{E_{b}}{N_{0}}=\frac{\mathcal{P}}{R_{b} N_{0}} \geq \frac{\mathcal{X}}{d_{\min }^{2}} \quad$ or, equivalently, $\quad R_{b} \leq \frac{\mathcal{P}}{N_{0}} \frac{d_{\min }^{2}}{\mathcal{X}}$
Definition
Now, divide both sides with the bandwidth W

$$
\rho \leq \mathcal{S N} \mathcal{R}_{r} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

Lecture 4: Capacity

Power efficiency

"BW efficiency" = "Signal-to-noise-power-ratio" x "Power efficiency"

$$
\rho \leq \mathcal{S N} \mathcal{R}_{r} \frac{d_{\min }^{2}}{\mathcal{X}}
$$

Lecture 4: Capacity

Shannon Capacity

Before going on, we go through what the term capacity means

Given a scalar channel of form $y=\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right)$
We know that the capacity is $\quad C=\log _{2}\left(1+\frac{A}{N_{0}}\right)$

But what does this mean?

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Build a codebook of all information sequences possible to send of length K

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Build a codebook of all information sequences possible to send of length K

$\begin{aligned} & 000000 \\ & 000000 \text {...... } \\ & 000000 . . \end{aligned}$	00 01 10
1111111	10
1111111	11

Sending K bits of information means:
pick one of the rows, and tell the receiver which row it is

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Build a codebook of codewords to send for each information word, length N

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots \ldots x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N} \\
& x_{2}{ }^{k}{ }_{1} x_{2}{ }^{k} x_{2} x_{2}{ }_{3} x_{2} x_{4} \ldots . . x_{2^{k}(N-1)} x_{2}^{k} N
\end{aligned}
$$

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
x_{2}{ }_{1}^{k_{1} x_{2}{ }^{k} x_{2} x_{2}^{k}{ }_{3} x_{2}^{k} 4 \ldots . . x_{2}^{k}(N-1)^{x_{2}^{k}} N}
$$

N

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Information book

If this is my data

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
x_{2}^{k_{1}} x_{2}^{k_{2}} x_{2}^{k_{3}} x_{2}^{k^{k}} \ldots . . x_{2}^{k}(N-1)^{x_{2}^{k}} N
$$

N

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Information book

If this is my data

Codebook

$$
\begin{aligned}
& \frac{X_{11} X_{12} X_{13} X_{14} \ldots . . X_{1(N-1)} X_{1 N}}{x_{21} X_{22} X_{23} X_{24} \ldots . . X_{2(N-1)} X_{2 N}} \\
& \text { I send this one }
\end{aligned}
$$

$$
x_{2}^{k_{1}} x_{2}^{k_{2}} X_{2}^{k_{3}} x_{2}^{k_{4}} \ldots . . x_{2}^{k}(N-1)^{x_{2}^{k}} N
$$

Lecture 4: Capacity

Shannon Capacity

As \times over this channel used N times

$$
\begin{aligned}
& y=\sqrt{A x+n,} n \sim C N\left(0, N_{0}\right) \\
& C=\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Information book

If this is my data

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
x_{2}^{k_{1}} x_{2}^{k_{2}} x_{2}^{k_{3}} x_{2}^{k^{k}} \ldots . . x_{2}^{k}(N-1)^{X_{2}^{k}} N
$$

Lecture 4: Capacity

Shannon Capacity

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Clearly, bit rate is K/N bits/channel use

Information book

000000	$\ldots .$.	00
000000		
000000.	01	
	10	

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
x_{2_{1}^{k}}{ }_{1} x_{2}^{k_{2}} x_{2}^{{ }^{k} 3} x_{2}^{x_{2}} 4 \ldots . . x_{2^{k}}^{k}(N-1)^{x^{k}} N
$$

Lecture 4: Capacity

Receiver observes
$y_{1} y_{2} y_{3} y_{4} \ldots . . y_{(N-1)} y_{N}$

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Information book

000000		
000000		
000000	$\ldots . .$.	00
0	10	

Codebook
$x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N}$
$x_{21} x_{22} x_{23} x_{24} \ldots . x_{2(N-1)} x_{2 N}$

$$
\overbrace{N}^{x_{2}^{k_{1}} x_{2}^{k_{2}} x_{2}^{k} x_{3} x_{2}^{k} \ldots \ldots . x_{2^{k}(N-1) x_{2}^{k} N}^{N}}
$$

Lecture 4: Capacity

Receiver observes
$y_{1} y_{2} y_{3} y_{4} \ldots . . y_{(N-1)} y_{N}$
Compare with this one

$$
d_{1}=\sum_{n=1}^{N}\left|y_{n}-x_{1 n}\right|^{2}
$$

Information book

000000	$\ldots . .$.
000000	00
000000
	10

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook
$x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N}$
$x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}$

$$
\underbrace{x_{2}^{k_{1}} x_{2}{ }_{2} x_{2}{ }_{3}^{k} x_{2}^{k_{4}^{k}} \ldots . . x_{2}^{k}(N-1) x_{2}^{k} N}_{N}
$$

Lecture 4: Capacity

Receiver observes
$y_{1} y_{2} y_{3} y_{4} \ldots . . y_{(N-1)} y_{N}$
Compare with this one
$d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}$

Information book $\begin{array}{ll}000000 & \text {..... } \\ 000000 \\ 000000 \text {..... } & 10\end{array}$

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook
$x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N}$
$x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}$

$$
\underbrace{x_{2}^{k_{1}} x_{2}^{k}{ }_{2} x_{2}^{k}{ }_{3} x_{2}^{k} 4 \ldots . x_{2}^{k}(N-1)^{x_{2}^{k}} N}_{N}
$$

Lecture 4: Capacity

Receiver observes
$y_{1} y_{2} y_{3} y_{4} \ldots . . y_{(N-1)} y_{N}$
Compare with this one

$$
d_{2 K}=\sum_{n=1}^{N}\left|y_{n}-x_{2 K}\right|^{2}
$$

Information book | 000000 | $\ldots .$. |
| :--- | :--- |
| 000000 | |
| 000000 | $\ldots .$. |
| 01 | 01 |

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
\frac{x_{2}^{x_{1} x_{2} x_{2} x_{2}{ }_{3} x_{2}^{k} k_{4} \ldots . . x_{2}^{k}(N-1) x^{k} N}}{N}
$$

Lecture 4: Capacity

Receiver observes
$Y_{1} Y_{2} Y_{3} Y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

000000	$\ldots . .$.	00
000000	$\ldots 1$	
000000	$\ldots .$.	10

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook
$x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N}$
$x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}$

Lecture 4: Capacity

Receiver observes
$Y_{1} Y_{2} Y_{3} Y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

So data is this one

$$
\begin{aligned}
y & =\sqrt{A} x+n, n \sim C N\left(0, N_{0}\right) \\
C & =\log _{2}\left(1+\frac{A}{N_{0}}\right)
\end{aligned}
$$

Codebook

$$
\begin{aligned}
& x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N} \\
& x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}
\end{aligned}
$$

$$
x_{2}{ }_{1}{ }_{1} x_{2}^{k}{ }_{2} x_{2}^{{ }^{k}} 3 x_{2}^{k} 4 \ldots . . x_{2^{k}}(N-1) x_{2}^{k} N
$$

Lecture 4: Capacity

Receiver observes
$y_{1} y_{2} y_{3} y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

So data is this one

This is ML decoding and is optimal
Capacity means the following

Codebook

Lecture 4: Capacity

Receiver observes
$Y_{1} y_{2} y_{3} Y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

So data is this one

This is ML decoding and is optimal
Capacity means the following

1. If $K / N \leq C$, and $K->\infty$ then $\operatorname{Prob}($ Correct detection) $=1$

Codebook

Lecture 4: Capacity

Receiver observes
$Y_{1} Y_{2} Y_{3} Y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

So data is this one

This is ML decoding and is optimal
Capacity means the following

1. If $K / N \leq C$, and $K->\infty$ then
$\operatorname{Prob}($ Correct detection) $=1$
2. If K / N > C, then
$\operatorname{Prob}($ Incorrect detection)=1
Codebook
$x_{11} x_{12} x_{13} x_{14} \ldots . . x_{1(N-1)} x_{1 N}$
$x_{21} x_{22} x_{23} x_{24} \ldots . . x_{2(N-1)} x_{2 N}$

$$
x_{2}{ }^{k}{ }_{1} x_{2}^{k}{ }_{2} x_{2}^{k^{k}} x_{2}^{k_{2}} 4 \ldots . . x_{2^{k}}(N-1) x_{2}^{k} N
$$

Lecture 4: Capacity

Receiver observes
$Y_{1} Y_{2} Y_{3} Y_{4} \ldots . . Y_{(N-1)} Y_{N}$
Take smallest

$$
d_{2}=\sum_{n=1}^{N}\left|y_{n}-x_{2 n}\right|^{2}
$$

Information book

So data is this one

To reach C, code-symbols must be Random complex Gaussian variables That is, generate codebook randomly

If it is generated with, say, 16QAM C cannot be reached

Codebook

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Interpretation of capacity:
Given a transmission of length T (seconds)

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Interpretation of capacity:
Given a transmission of length T (seconds)
And a number of bits K

Bits $0010111010110100 . .010011$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Interpretation of capacity:
Given a transmission of length T (seconds)
And a number of bits K
The bitrate is: K/T [bit/sec]

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Interpretation of capacity:
Given a transmission of length T (seconds)
And a number of bits K
The bitrate is: K / T [bit/sec]

If K / T is too high, then many errors

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Interpretation of capacity:
Given a transmission of length T (seconds)
And a number of bits K
The bitrate is: K/T [bit/sec]

If K / T is too high, then many errors
Shannon proved: Possible to have NO ERRORS if,

1) $T \rightarrow \infty$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C (i.e., to find a set of $s(t)$ signals)

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C (i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C (i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$
4. When W grows:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$C=-\log _{2}\left(1+\frac{P}{N_{0} W}\right)$
Grows linearly

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C (i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$
4. When W grows:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C
(i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$
4. When W grows:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Decreases logarihtmically

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C
(i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$
4. When W grows:

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

C $=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$ Grows

Facts:

1. C is not power, nor bandwidth efficiency (C is not dimensionless)
2. Not easy to reach C (i.e., to find a set of $s(t)$ signals)
3. There is no parameter called $d_{\text {min }}^{2}$
4. When W grows: C grows

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

| | |
| :--- | :--- | :--- |
| Bits $00101 \ldots$ | |
| Transmitter | |
| | |

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right) \quad \text { What is the limit? }
$$

Standard limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$C=W \log _{2}\left(1+\frac{\mathcal{P}}{N \text { (II }}\right) \quad$ What is the limit?

Standard limit Identify \times with W

$$
\lim _{x \rightarrow \infty} \times \mathrm{n}\left(1+\frac{A}{x}\right)=A
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=W \log _{2}(1+\sqrt{\mathcal{P}(W)}) \quad \text { What is the limit? }
$$

Standard limit Identify \times with W
Identify A with P/ N_{0}

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right) \quad \text { What is the limit? }
$$

Standard limit Identify \times with W

$$
\text { Identify } A \text { with } P / N_{0} \quad \text { Express } \log _{2}(x) \text { as } \ln (x) / \ln (2)
$$

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right) \quad$ What is the limit?

Standard limit
Carry out limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A \quad C_{\max }=\lim _{W \rightarrow \infty} \frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)=
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right) \quad$ What is the limit?

Standard limit
Carry out limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A \quad C_{\max }=\lim _{W \rightarrow \infty} \frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)=\frac{\mathcal{P}}{N_{0} \ln (2)}
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right) \quad$ What is the limit?

Standard limit
Carry out limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A \quad C_{\max }=\lim _{W \rightarrow \infty} \frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)=\frac{\mathcal{P}}{N_{0} \ln (2)}
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

| |
| :--- | :--- | :--- |
| Bits $00101 \ldots$ |

$$
C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Standard limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

But it grows to a limit

$$
C_{\max }=\frac{\mathcal{P}}{N_{0} \ln (2)}
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Standard limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

But it grows to a limit

$$
\begin{aligned}
C_{\max } & =\frac{\mathcal{P}}{N_{0} \ln (2)} \\
& =\frac{1}{\ln (2)}
\end{aligned}
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

$$
C=\frac{W}{\ln (2)} \ln \left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Standard limit

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{A}{x}\right)=A
$$

But it grows to a limit

$$
\begin{aligned}
C_{\max } & =\frac{\mathcal{P}}{N_{0} \ln (2)} \\
& =\frac{1}{\ln (2)} \\
& =1.4427
\end{aligned}
$$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Summary

1. We stated that the capacity of the above is $C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$ bits/second
2. We proved that for infinite bandwidth, the capacity is $C_{\max }=\frac{\mathcal{P}}{N_{0} \ln (2)}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Summary

1. We stated that the capacity of the above is $C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$ bits/second
2. We proved that for infinite bandwidth, the capacity is $C_{\max }=\frac{\mathcal{P}}{N_{0} \ln (2)}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$
Effect of increasing/decreasing W ?

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$
Effect of increasing/decreasing W ?

For large W, BW efficiency $=0$
For small W, BW efficiency $=\infty$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$
Effect of increasing/decreasing W ?

For large W, BW efficiency $=0$
For small W, BW efficiency $=\infty$

Bandwidth vs. Power efficiency
However $\mathcal{P}=C E_{b}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$
Effect of increasing/decreasing W ?

For large W, BW efficiency $=0$
For small W, BW efficiency $=\infty$

Bandwidth vs. Power efficiency
However $\mathcal{P}=C E_{b}$
So, $\frac{C}{W}=\log _{2}\left(1+\frac{C}{W} \frac{E_{b}}{N_{0}}\right)$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth efficiency
By definition, $\frac{C}{W}=\log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)$
Effect of increasing/decreasing W ?

For large W, BW efficiency $=0$
For small W, BW efficiency $=\infty$

Bandwidth vs. Power efficiency
However $\mathcal{P}=C E_{b}$
So, $\frac{C}{W}=\log _{2}\left(1+\frac{C}{W} \frac{E_{b}}{N_{0}}\right)$
Or, equivalently $\frac{E_{b}}{N_{0}}=\frac{2^{\frac{C}{W}}-1}{\frac{C}{W}}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth vs. Power efficiency
What happens if C / W grows?
However $\mathcal{P}=C E_{b}$
So, $\frac{C}{W}=\log _{2}\left(1+\frac{C}{W} \frac{E_{b}}{N_{0}}\right)$
Or, equivalently $\frac{E_{b}}{N_{0}}=\frac{2 \frac{C}{W}-1}{\frac{C}{W}}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth vs. Power efficiency
What happens if C/W grows? E_{b} / N_{0} grows as well

In fact, we have (check at home) that to have 0 error probability

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth vs. Power efficiency

What happens if C/W grows? E_{b} / N_{0} grows as well

In fact, we have (check at home) that to have 0 error probability

But, since E_{b} / N_{0} grows with C/W, there must be a minimum E_{b} / N_{0} achieved at vanishing C / W
Standard limit: $\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}=\ln (2)$

However $\mathcal{P}=C E_{b}$
So, $\frac{C}{W}=\log _{2}\left(1+\frac{C}{W} \frac{E_{b}}{N_{0}}\right)$
Or, equivalently $\frac{E_{b}}{N_{0}} \geq \frac{2^{\frac{C}{W}}-1}{\frac{C}{W}}$

Lecture 4: Capacity

Extension to continuous channel (Shannon '48)

System model:

Bandwidth vs. Power efficiency

What happens if C/W grows? E_{b} / N_{o} grows as well

In fact, we have (check at home) that to have 0 error probability

But, since E_{b} / N_{0} grows with C / W, there must be a minimum E_{b} / N_{0} achieved at vanishing C / W
Standard limit: $\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}=\ln (2)$

However $\mathcal{P}=C E_{b}$
So, $\frac{C}{W}=\log _{2}\left(1+\frac{C}{W} \frac{E_{b}}{N_{0}}\right)$
Thus $\lim _{C / W \rightarrow 0} \frac{E_{b}}{N_{0}} \geq \ln (2)(=-1.6 \mathrm{~dB})$

Lecture 4: Capacity

Lecture 4: Capacity

Lecture 4: Capacity

$$
\lim _{C / W \rightarrow 0} \frac{E_{b}}{N_{0}} \geq \ln (2) \quad(=-1.6 \mathrm{~dB})
$$

$$
\frac{E_{b}}{N_{0}} \geq \frac{2^{\frac{C}{W}}-1}{\frac{C}{W}}
$$

NOTE: Plot does not tell what the capacity is in bit/sec

Lecture 4: Capacity

Lecture 4: Capacity

Lecture 4: Capacity

Lecture 4: Capacity

$\lim _{C / W \rightarrow 0} \frac{E_{b}}{N_{0}} \geq \ln (2) \quad(=-1.6 \mathrm{~dB})$
$\frac{E_{b}}{N_{0}} \geq \frac{2^{\frac{C}{W}}-1}{\frac{C}{W}}$

Lecture 4: Capacity

NOTE: Plot does not tell what the capacity is in bit/sec

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Frequency response of channel

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Signal also have
frequency representation

Frequency response of channel

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Power spectral density is what matters
Frequency response of channel

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Constraint on $R(f)$?
Power spectral density is what matters Frequency response of channel

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Constraint on $\mathrm{R}(\mathrm{f})$? $\int_{-\infty}^{\infty} R(f) \mathrm{d} f=P$
Power spectral density is what matters

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Constraint on $\mathrm{R}(\mathrm{f})$? $\int_{-\infty}^{\infty} R(f) \mathrm{d} f=P$
Power spectral density is what matters

Frequency response of channel

Lecture 4: Capacity

Extension to frequency dependent channel

System model:

Conclusion: We should optimize the left plot, for the given right plot Constraint on left plot is $\int_{-\infty}^{\infty} R(f) \mathrm{d} f=P$
Power spectral density is what matters
Frequency response of channel

Lecture 4: Capacity

Frequency response of Noise

Power spectral density is what matters

Frequency response of channel

Lecture 4: Capacity

Frequency response of Noise

Transmitter
Bits 00101..

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

Channel
Noise $N(t), N_{0}$

Conclusion: We should optimize the left plot, for the given right plot Constraint on left plot is $\int_{-\infty}^{\infty} R(f) \mathrm{d} f=P$
Power spectral density is what matters

Frequency response of channel

Lecture 4: Capacity

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use

$$
C=W \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} W}\right)
$$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} \mathrm{~d} f}\right)$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece
We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{N_{0} \mathrm{~d} f}\right)$

For flat noise, $R_{N}(f)=N_{0} / 2$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{\mathrm{NO}_{0} f f}\right)$

$$
=2 R_{N}(f)
$$

For flat noise, $R_{N}(f)=N_{0} / 2$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{2 R_{N}(f) \mathrm{d} f}\right)$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{2 R_{N}(f) \mathrm{d} f}\right)$
How much power do we have?

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{2 R_{N}(f) \mathrm{d} f}\right)$
How much power do we have?
$2 \mathrm{~d} f R(f)|H(f)|^{2}$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

In this small piece We can use
$C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{2 R_{N}(f) \mathrm{d} f}\right)$
$=\mathrm{d} f \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right)$

Lecture 4: Capacity

$C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)$

Sum up

Capacity $\left(|H(f)|^{2}, R_{N}(f), R(f)\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f$

In this small piece We can use

$$
\begin{aligned}
& C=\mathrm{d} f \log _{2}\left(1+\frac{\mathcal{P}}{2 R_{N}(f) \mathrm{d} f}\right) \\
&=\mathrm{d} f \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right)
\end{aligned}
$$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \operatorname{Capacity}\left(|H(f)|^{2}, R_{N}(f), R(f)\right)
$$

Sum up

Capacity $\left(|H(f)|^{2}, R_{N}(f), R(f)\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f$

$$
=\frac{1}{2} \int_{-\infty}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f
$$

Lecture 4: Capacity

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \frac{1}{2} \int_{-\infty}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f
$$

Lecture 4: Capacity

How to solve the below problem? WATERFILLING

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \frac{1}{2} \int_{-\infty}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f
$$

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$
Step 2. Fill a bucket with P units of water

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$
Step 2. Fill a bucket with P units of water

Step 3. Pour it in the shape

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$
Step 2. Fill a bucket with P units of water

Step 3. Pour it in the shape

Step 4.
$R(f)$ is the
water-level

$$
C=\max _{R(f): \int R(f) \mathrm{d} f=P} \frac{1}{2} \int_{-\infty}^{\infty} \log _{2}\left(1+\frac{R(f)|H(f)|^{2}}{R_{N}(f)}\right) \mathrm{d} f
$$

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$
Step 2. Fill a bucket with P units of water

Step 3. Pour it in the

Step 4.
$R(f)$ is the
water-level

On Exam, $|H(f)|^{\wedge} 2$ would be "nice", such as

Lecture 4: Capacity

How to solve the below problem? WATERFILLING
Step 1. Find and plot $\frac{R_{N}(f)}{|H(f)|^{2}}$
Step 2. Fill a bucket with P units of water

Step 3. Pour it in the shape

Step 4.
$R(f)$ is the water-level

Observations:

1. Good channels get more power than bad
2. At very high SNRs, all channels get, roughly, the same power
