Project info

- 1. Each project group consists of two students.
- Each project group should as soon as possible, send an email to <u>fredrik.rusek@eit.lth.se</u> and <u>mg7107ma-s@student.lu.se</u> containing Name and email address to each project member.'
- 3. The project group should contact Fredrik Rusek to decide about project and articles!
- 4. Each group should write a project report.
- 5. The structure of the project report should follow journal articles published by IEEE. However, two columns are not needed.
- 6. The project report should be written in English *with your own words, tables and figures,* and contain 4-5 pages.
- 7. The report should be clearly written, and written to the other students in this course!
- 8. Observe copyright rules: "copy & paste" is in general strictly forbidden!

Project info

- 9. Book a meeting with Mgeni at your earliest possible convenience in case you are interested in discussing how a good report should be written (book meetings with him via email). You can also discuss topics and articles with Mgeni
- 10. The project report should be sent in .pdf format to Mgeni before Wednesday 12 December,17.00
- 11. Feedback on the reports will be provided in a meeting with Mgeni (book meetings with him via email)
- 12. Oral presentations in the week starting with Monday December 17
- 13. Each group should have relevant comments and questions on the project report and on the oral presentation of another group. NOTE! The project presentation should be clear and aimed to the other students in this course! After the oral presentation the project report and the presentation will be discussed (5 min).
- 14. Final report should be sent to Fredrik and Mgeni at latest January 11, 2019.

Power efficiency

We know from before (e.g., union bound) that $P_{
m s}$

$$_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies
$$rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$$

Thus,
$$rac{E_b}{N_0} = rac{\mathcal{P}}{R_b N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Now, divide both sides with the bandwidth W $\frac{I}{I}$

$$rac{R_b}{W} \le rac{\mathcal{P}}{N_0 W} rac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$
We have seen this before, it is defined as...
Now, divide both sides with the bandwidth W $\left(\frac{R_b}{W}\right) \le \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$

Power efficiency

We know from before (e.g., union bound) that P_i

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

We have seen this before, it is defined as bandwidth efficiency

Now, divide both sides with the bandwidth W
$$ho = rac{R_b}{W} \leq rac{\mathcal{P}}{N_0 W} rac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$
We have seen this before, it is defined as bandwidth efficiency
Now, divide both sides with the bandwidth W $\rho \le \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$ Power efficiency

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

We have seen this before, it is defined as bandwidth efficiency

$$ho \leq rac{\mathcal{P}}{N_0 W} rac{d^2_{\min}}{\mathcal{X}}$$
 Performance req

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Bandwidth and power efficiencies are linked

$$p \leq rac{\mathcal{P}}{N_0 W} rac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P_i

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Unit?

$$p \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P_{i}

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Power

Now, divide both sides with the bandwidth W

$$p \le \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

W

Power efficiency

We know from before (e.g., union bound) that P_{i}

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Bandwidth

Now, divide both sides with the bandwidth W

$$ho \leq rac{\mathcal{P} \quad d_{\min}^2}{N \mathcal{W} \quad \mathcal{X}}$$

W

Hz

Power efficiency

We know from before (e.g., union bound) that P_i

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Spectral density

$$\rho \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}} \qquad \frac{\mathsf{W}}{\mathsf{? Hz}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Spectral density

$$p \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

W W/Hz Hz

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Has no unit (dimensionless)

$$p \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Dito

$$p \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \ge \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \le \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Dito

$$\rho \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P_{i}

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Received signal-to-noise-power-ratio

$$p \leq \frac{\mathcal{P}}{N_0 W} \frac{d_{\min}^2}{\mathcal{X}}$$

Power efficiency

We know from before (e.g., union bound) that P

$$P_{\rm s} \le cQ\left(\sqrt{d_{\min}^2 \frac{E_b}{N_0}}\right)$$

To meet a specific error probability target, this implies $rac{E_b}{N_0} \geq rac{\mathcal{X}}{d_{\min}^2}$

We also know that the transmit power satisfies $\mathcal{P}=E_bR_b$

Thus,
$$\frac{E_b}{N_0} = \frac{\mathcal{P}}{R_b N_0} \geq \frac{\mathcal{X}}{d_{\min}^2}$$
 or, equivalently, $R_b \leq \frac{\mathcal{P}}{N_0} \frac{d_{\min}^2}{\mathcal{X}}$

Definition

$$\rho \leq \mathcal{SNR}_r \frac{d_{\min}^2}{\mathcal{X}}$$

Shannon Capacity

Before going on, we go through what the term capacity means

Given a scalar channel of form
$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$

We know that the capacity is $C = \log_2\left(1 + \frac{A}{N_0}\right)$

But what does this mean?

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of all information sequences possible to send of length K

Shannon Capacity

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of all information sequences possible to send of length K

Sending K bits of information means:

pick one of the rows, and tell the receiver which row it is

Shannon Capacity

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Build a codebook of codewords to send for each information word, length N

 $\begin{array}{c} x_{11}x_{12}x_{13}x_{14} \ \ x_{1(N-1)}x_{1N} \\ x_{21}x_{22}x_{23}x_{24} \ \ x_{2(N-1)}x_{2N} \end{array}$

 $\boldsymbol{x}_{2^{k_1}}\boldsymbol{x}_{2^{k_2}}\boldsymbol{x}_{2^{k_3}}\boldsymbol{x}_{2^{k_4}} \dots \boldsymbol{x}_{2^{k_{(N-1)}}}\boldsymbol{x}_{2^{k_N}}$

Information book

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Information book

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

N

Shannon Capacity

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Shannon Capacity

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Shannon Capacity

As x over this channel used N times

$$y = \sqrt{Ax + n}, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

$$y = \sqrt{Ax} + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Clearly, bit rate is K/N bits/channel use

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Receiver observes

 $y_1y_2y_3y_4 \ \cdots \ y_{(N-1)}y_N$

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Information book

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

N

Receiver observes

 $y_1y_2y_3y_4 \ \cdots \ y_{(N-1)}y_N$

Compare with this one

$$d_{2K} = \sum_{n=1}^{N} |y_n - x_{2K_n}|^2$$

.....

Κ

10

11

Information book

000000....00000000....01000000....10

1111111

1111111

$$y = \sqrt{A}x + n, \ n \sim CN(0, N_0)$$
$$C = \log_2\left(1 + \frac{A}{N_0}\right)$$

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

Receiver observes

 $y_1y_2y_3y_4$ $y_{(N-1)}y_N$

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

This is ML decoding and is optimal

Capacity means the following

 If K/N ≤ C, and K->∞ then Prob(Correct detection)=1

Codebook

 $X_{11}X_{12}X_{13}X_{14}$ $X_{1(N-1)}X_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

 $\mathbf{x}_{2^{k}1}\mathbf{x}_{2^{k}2}\mathbf{x}_{2^{k}3}\mathbf{x}_{2^{k}4} \dots \mathbf{x}_{2^{k}(N-1)}\mathbf{x}_{2^{k}N}$

Receiver observes

 $y_1y_2y_3y_4 \dots y_{(N-1)}y_N$

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

This is ML decoding and is optimal

Capacity means the following

 If K/N ≤ C, and K->∞ then Prob(Correct detection)=1
 If K/N > C, then Prob(Incorrect detection)=1

Codebook

 $x_{11}x_{12}x_{13}x_{14}$ $x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

 $X_{2^{k_{1}}}X_{2^{k_{2}}}X_{2^{k_{3}}}X_{2^{k_{4}}} \dots X_{2^{k_{(N-1)}}}X_{2^{k_{N}}}X_{2^{k_{N}}}$

Receiver observes

 $\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \mathbf{y}_4 \dots \mathbf{y}_{(N-1)} \mathbf{y}_N$

Take smallest

$$d_2 = \sum_{n=1}^{N} |y_n - x_{2n}|^2$$

Information book

To reach C, code-symbols must be Random complex Gaussian variables That is, generate codebook randomly

If it is generated with, say, 16QAM C cannot be reached

Codebook

 $x_{11}x_{12}x_{13}x_{14} \dots x_{1(N-1)}x_{1N}$ $x_{21}x_{22}x_{23}x_{24}$ $x_{2(N-1)}x_{2N}$

 $\mathbf{x}_{2^{k}1}\mathbf{x}_{2^{k}2}\mathbf{x}_{2^{k}3}\mathbf{x}_{2^{k}4} \dots \mathbf{x}_{2^{k}(N-1)}\mathbf{x}_{2^{k}N}$

Extension to continuous channel (Shannon '48)

Bandwidth vs. Power efficiency

What happens if C/W grows?

 E_b/N_0 grows as well

In fact, we have (check at home) that to have O error probability

But, since $E_{\rm b}/N_0$ grows with C/W, there must be a minimum $E_{\rm b}/N_0$ achieved at vanishing C/W

Standard limit:
$$\lim_{x \to 0} \frac{2^x - 1}{x} = \ln(2)$$

However $\mathcal{P} = CE_b$

So,
$$\frac{C}{W} = \log_2 \left(1 + \frac{C}{W} \frac{E_b}{N_0} \right)$$

Or, equivalently $\frac{E_b}{N_0} \ge \frac{2^{\frac{C}{W}} - 1}{\frac{C}{W}}$

Extension to continuous channel (Shannon '48)

Bandwidth vs. Power efficiency

What happens if C/W grows?

 E_b/N_0 grows as well

In fact, we have (check at home) that to have O error probability

But, since $E_{\rm b}/N_0$ grows with C/W, there must be a minimum $E_{\rm b}/N_0$ achieved at vanishing C/W

Standard limit: $\lim_{x \to 0} \frac{2^x - 1}{x} = \ln(2)$

However $\mathcal{P} = CE_b$

So,
$$\frac{C}{W} = \log_2 \left(1 + \frac{C}{W} \frac{E_b}{N_0} \right)$$

Thus $\lim_{C/W \to 0} \frac{E_b}{N_0} \ge \ln(2)$ (= -1.6dB)

$$C = \max_{R(f): \int R(f) df = P} \operatorname{Capacity}(|H(f)|^2, R_N(f), R(f))$$
Sum up
Capacity(|H(f)|^2, R_N(f), R(f)) = \int_0^\infty \log_2\left(1 + \frac{R(f)|H(f)|^2}{R_N(f)}\right) df
In this small piece
We can use
 $C = df \log_2\left(1 + \frac{\mathcal{P}}{2R_N(f)df}\right)$
 $= df \log_2\left(1 + \frac{R(f)|H(f)|^2}{R_N(f)}\right)$
Image: the standard definition of the

$$C = \max_{R(f):\int R(f)df=P} \operatorname{Capacity}(|H(f)|^2, R_N(f), R(f))$$

Sum up

Capacity
$$(|H(f)|^2, R_N(f), R(f)) = \int_0^\infty \log_2 \left(1 + \frac{R(f)|H(f)|^2}{R_N(f)}\right) df$$

= $\frac{1}{2} \int_{-\infty}^\infty \log_2 \left(1 + \frac{R(f)|H(f)|^2}{R_N(f)}\right) df$

 Good channels get more power than bad
 At very high SNRs, all channels get, roughly, the same power