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Recap Execute ML/MAP receiver

1. ML T = argmﬁin |r — Sg||2

System model:
2. MAP

2
—S
m = arg max P(f) exp =5
2. White Gaussian noise 1(t) = s,(t) + N(t) l Ny

1. A known signal set {Sg(t)}é\ial

Signal space expansion

1. Find orthonormal basis functions giving
smallest N such that
N

se(t) = Z 5¢,nPn(t)

mn

Express signal set as vectors s,(t) <> sy

Map received signal to signal space
= [ 16t
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Execute ML/MAP receiver

1. ML T = argmﬁin |r — Sg||2

2. MAP
A r — sy||?
We now ask for the error | ™ =argmax P(f)exp (— NOEH )
probability, i.e.,
P; = Pr(m # m)

o (1)
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What does signal set look like? Regular spacing

A

1 = arg min ||r — sp||?

= " which arrow above is the shortest”
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m = argmﬁin Ir — s¢||* = 4
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

Symbol error probability
M-1

P = Pr(ih # m) Z Pr(m # my|my sent)Pr(m, sent)
£=0

By law of fotal probability
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Pr(m # my|my sent)Pr(m, sent)

Pr(m # my|my sent)

M—1
1 1
= M|Pr(rh # mg|myg sent )|+ i ; Pr(m # myg|m, sent)
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

Symbol error probability When do we get an error? Exactly when r ¢ T’

min

2

r=So+w What is required for that to happen? w; >

AlWGYS True (unless multiplying with negative number)

i \L Dhrin
Pr(m # mg|mg sent) = Pr (wl > Dmm) =Pr NN
2 No/2  24/Ny/2
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

Symbol error probability When do we get an error? Exactly when r ¢ T’

min

2

r=So+w What is required for that to happen? w; >

Zero-mean Gaussian, variance 1
Var(aX)=a2Var(X)

Dy D...
Pr(m 75 molmo sent) = Pr | w; > —— — Pr min
(. # molmo sent) = Pr (uy > 22 & : Nm)
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

Symbol error probability When do we get an error? Exactly when r ¢ T’

min

2

r=So+w What is required for that to happen? w; >

By definition
|

Dmin Dmin \ll Dr2nin
Pr(m # mg|mg sent) = Pr (wl > 5 )-Pr (z> \/m>=Q 9N,
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

Symbol error probability

M-1
1 1
= Pr(m # m) = MPr(ﬁz # mg|mo sent) + T Z Pr(m # myg|my sent)
(=1

& Dmin Dmin
Pr(m # mg|mg sent) = Pr (wl > 5 )- Pr (Z > m) =@
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M-1

Z Pr(m # myg|my sent)
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D2

min 1

2N, i

Dmin
2

Pr(m # mg|mg sent) = Pr (wl >
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N2 | M=2
2N, +M E_Zl Pr(m # myg|m, sent)
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing

S S
s A

I's 'y I's
w1

Symbol error probability When do we get an error? Exactly when r ¢ T'),

What is required for that to happen?
When is P(A or B) = P(A) + P(B) > wy > 2 o1y « _ Dmin
When A and B cannot happen at 2 2
the same time

Case I-b | Pr(m # my|my sent) =
1<i<M-2
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Case I: M-PAM What is dimensionality, N? 1

What does signal set look like? Regular spacing
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w1

Symbol error probability When do we get an error? Exactly when r ¢ T'),

What is required for that to happen?

When is P(A or B) = P(A) + P(B) ?
When A and B cannot happen at
the same time These two cannot happen simultaneously

Case I-b

Pr(m # my|mg sent) =
1<i<M-2
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Case I: M-PAM What is dimensionality, N? 1
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Symbol error probability When do we get an error? Exactly when r ¢ T'),

What is required for that to happen?
> Dmin < Dmin
I‘ —
un 9 or wq 9

Are these equal ?

A Dmin
Pr(m # my|my sent) :@Ul >
1<i<M—-2
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s -
I's 'y I's
«—
w1

Symbol error probability When do we get an error? Exactly when r ¢ T'),

What is required for that to happen?
> Dmin < Dmin
I‘ —
un 9 or wq 9

Are these equal ? Yes, since Gaussian pdf is symmetric

A Dmin
Pr(m # my|my sent) :@Ul >
1<i<M—-2
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( D
wq >

min Dmin
P <—
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Case II: non-regular 4-PAM

{se(t)})lo" = {—3ag(t), —2ag(t), 2ag(t), 3ag(t)} E, =1

Illustration in signal space?

2a 3a

S% ?3
Iy I3

Pr(m # my|my sent)Pr(m, sent)

Case II-b Pr(m # m|m; sent) =
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Case II: non-regular 4-PAM
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Illustration in signal space?
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Case II: non-regular 4-PAM

{se(t)})lo" = {—3ag(t), —2ag(t), 2ag(t), 3ag(t)} E, =1

Illustration in signal space?

a
Case II-b Pr(m # mi|m; sent) = Pr (’wl < —§> +Pr(w; > 2a)
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—3av?2 —v2a V2a  3av?2

S0 S S S
° 01 ! A oS
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Case IT: QPSK What is dimensionality, N? 2

What does signal set look like in signal space?

What are cordinates if E.=E
(E, is average energy per symbol) E/2
[ ] -

Math model of received signal

71 = S¢,1 + W1
T2 = S¢2 + W2

What does the signals look like in the time-domain? We don't know, could be

1.84(t) = Ayg(t) cos(2m fot) — Beg(t) sin(27 f.t)

2. Send one PAM signal today. Send one tomorrow.
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T

By symmetry
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Math model of received signal

= Sp,1 T W1
= Sp,2 T W2

M-1
Pr(m # m) = Z Pr(m # my|my sent)Pr(my sent) = Pr(m # mg|mg sent)
=0

Pr(m # mg|mg sent) = 1 — Pr(1h = myg|mq sent)

|

Standard trick
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What are cordinates if E.=E
(E, is average energy per symbol) E/2
°

Math model of received signal

= Sp,1 T W1
= Sp,2 T W2

M-1
Pr(m # m) = Z Pr(m # my|my sent)Pr(my sent) = Pr(m # mg|mg sent)
=0

Pr(rin # mo|mg sent) = 1 — Pr(m = mg|mg sent) = 1 — Pr(r € Ty)

D E
—1-—Pr U&Hdu

Independent ? Yes, we proved that last lecture
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(E, is average energy per symbol) E/2
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Bit error probability ? Depends on bit-mapping. Assume the above mapping

Observe (important): The left bit decides if we are to the left or to the right
The right bit decides if we are up or down

We make a mistake in the left bit iff (assume we are down) w9 > \/ F / 2

We make a mistake in the right bit iff (assume we are to the left) W1 > \/ E / 2
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Case IT: QPSK What is dimensionality, N? 2

What does signal set look like in signal space?

What are cordinates if E.=E Iy
(E, is average energy per symbol) E/2
Math model of received signal |
= Sp,1 + W1 _L
( J
= S§p.2 + W2

Bit error probability ? Depends on bit-mapping. Assume the above mapping

Observe (important): The left bit decides if we are to the left or to the right
The right bit decides if we are up or down

E
We make a mistake in the left bit iff with probability @ |1/~

No
E
We make a mistake in the right bit iff with probability @ No
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Case IT: QPSK What is dimensionality, N? 2

What does signal set look like in signal space?

What are cordinates if E.=E Iy
(E, is average energy per symbol) E/2
Math model of received signal |

= Sp,1 + W1 .
— S¢.2 + wWo

Bit error probability ? Depends on bit-mapping. Assume the above mapping

Observe (important): The left bit decides if we are to the left or to the right
The right bit decides if we are up or down

E
Py =@ VN
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Lecture 3: Error Probabilities

Case II: QPSK

e

11

Ps from Pb Py = Pr(bit 1 or bit 2 in error)

When is P(A or B) = P(A) + P(B) ?
When A and B cannot happen at
the same time

Can both bits be in error at the same time? YES
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Case II: QPSK

Ps from Pb Py = Pr(bit 1 or bit 2 in error)

P(A or B) = P(A) + P(B) - P(A and B)
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Equal Independent
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Case II: QPSK

Ps from Pb P, = Pr(bit 1 or bit 2 in error)
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= 2Pr(bit 1 in error) — [Pr(bit 1 in error)]2
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3 cases:

1. 4 Corner points

2. 4v/M — 8 Edge points

3. M —4vM +4 Interior points

1 — Prob {”.1 _L]miu 1 _L}min < 1o <

7.
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Case III: M-QAM

3 cases:
1. 4 Corner points

2. 4v/M — 8 Edge points

3. M —4vM +4 Interior points

1— f"ruh{—@ < Wy
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Lecture 3: Error Probabilities

Case III: M-QAM

3 cases:
1. 4 Corner points

2. 4v/M — 8 Edge points

3. M —4vM +4 Interior points

Verify at home

P = ﬁ? (VM-1) Q ( y"f 22%?) — 4 (VDM-1)? @* ( ’v’f f,' , M-ary QAM

(5.50)
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Case IV: M-PSK

Decision region Pr(correct decision) = P (wq)P(ws)dwidws
So

So = 4|~ Closed form complicated




