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An introduction to OFDM  

Lecture notes in the course Digital communications, advanced course (ETTN01) 

Göran Lindell, Version 161115 

Section 1: Introduction 

The modulation technique referred to as OFDM (Orthogonal Frequency Division Multiplexing) is of 

particular interest since it is used today in a number of important and high-performing communication 

systems. Some examples are DVB-T, LTE (4G), WLAN, WIMAX. 

An OFDM signal extends over a 𝑇𝑠 second long time-interval, which is referred to as the OFDM 

signal (or symbol) interval. In practice, a new OFDM signal is sent every 𝑇𝑠 second, and the value of 

𝑇𝑠 depends on the application, e.g., 𝑇𝑠 = 1 ms, or smaller.  

An OFDM signal can be described as the sum of K different QAM signals, where all QAM signals use 

the same 𝑇𝑠-long time-interval. Hence, K QAM signals are simultaneously transmitted within the 

OFDM signal interval. The value of K is typically quite large, several hundred or several thousand. A 

large value of K immediately leads to the question how to implement an OFDM signal in practice. 

Even if a single QAM-signal is easy to implement (as we will see below), it is neither practical nor 

economical to implement say 1000 individual QAM-signals, and then add them to create an OFDM 

signal (every 𝑇𝑠). As we will see there are very elegant engineering solutions to this problem.  

The main purpose of these introductory lecture notes is to describe efficient, i.e. very fast and 

economical, implementations of the OFDM modulator (at the transmitter side) and the OFDM 

demodulator (at the receiver side). The importance of efficient implementations should not be under-

estimated, since the success of OFDM to a very large extent relies on the fact that efficient 

implementations exist!  
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The transmitter typically consists of a digital part followed by an analog part, where discrete-time and 

continuous-time operations are performed, respectively, see Figure 1. This figure illustrates the over-

all structure and operations performed by an OFDM transmitter within an OFDM symbol interval 𝑇𝑠.  

Digital-to-Analog (D/A) converters act as interface between the digital domain and the analog domain. 

In connection to the synthesis of an OFDM signal, the Inverse Discrete Fourier Transform (IDFT) 

plays a fundamental role in the digital domain while the analog domain typically includes filtering, 

mixing (frequency up-conversion) and power amplifying (PA) operations. The IDFT, the so-called 

cyclic prefix (CP), as well as the other operations indicated in Figure 1 will be further explained and 

clarified as we proceed in these lecture notes. A more detailed example of a transmitter structure is 

given in Figure 7 and Figure 8 on pages 27 and 31, respectively.  
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Figure 1. Illustrates the over-all structure and operations performed by an OFDM transmitter within an 

OFDM symbol interval 𝑇𝑠. 
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Figure 2. Illustrates the over-all structure and operations performed by an OFDM receiver within an 

OFDM symbol interval 𝑇𝑠. 

The received signal is a distorted and noisy version of the transmitted analog OFDM signal. The 

receiver typically consists of an analog part followed by a digital part, where continuous-time and 

discrete-time operations are performed, respectively, see Figure 2. This figure illustrates the over-all 

structure and operations performed by an OFDM receiver within an OFDM symbol interval 𝑇𝑠.  

Analog-to-Digital (A/D) converters act as interface between the analog domain and the digital domain. 

The analog domain of the receiver typically includes filtering, amplifying and mixing (frequency 

down-conversion) operations, while the Discrete Fourier Transform (DFT) plays a fundamental role in 

the digital domain. The values of the two parameters denoted  𝐿𝑟 and 𝑁𝑟 in Figure 2 depend on the 

sampling frequency used in the receiver, and these two values do not need to be the same as the values 

of the corresponding parameters 𝐿 and 𝑁 at the transmitter side in Figure 1. The DFT, as well as the 
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other operations indicated in Figure 2 will be further explained and clarified as we proceed in these 

lecture notes. A more detailed example of a receiver structure is given in Figure 10 and Figure 11 on 

pages 38 and 42, respectively. It should also be mentioned here that the decoding unit in Figure 2 may 

need to use several size-K input vectors, corresponding to several OFDM intervals, until the entire 

original sequence of information bits can be decoded. 

The physical communication link (or channel) is analog. Hence, the complete communication chain 

transmitter-channel-receiver consists of a mixture of digital and analog operations. More details about 

these operations will be given as we continue in these lecture notes.    

The literature on different aspects of OFDM is extensive and the reader is strongly recommended to 

investigate, e.g., the important database  IEEE Xplore [ http://ieeexplore.ieee.org/Xplore/DynWel.jsp ] to 

acquire information of recent advances related to OFDM, as well as tutorials. As examples of books 

that contain descriptions and/or applications of OFDM we have refs. [2]-[11].  

Each of the K QAM signals that constitute the OFDM signal has a different carrier frequency, which 

we refer to as a sub-carrier frequency. The choice of sub-carrier frequencies in OFDM is such that 

the frequency separation between neighboring sub-carriers is always equal to 𝑓𝛥 Hz. How to choose  

𝑓𝛥 will be explained in detail in the next section. The value of 𝑓𝛥 depends on the application.  

Let us number the K QAM signals from 0 up to K-1 according to increasing sub-carrier frequency. 

Then we have that the QAM signal with index 𝑘 has the sub-carrier frequency 𝑓𝑘 Hz, 

                                                      𝑓𝑘 = 𝑓0 + 𝑘𝑓𝛥,   𝑘 = 0,1,… , 𝐾 − 1                                       (1.1) 

The choice of the overall carrier frequency 𝑓𝑐 is in principle arbitrary, but here we define 𝑓𝑐 as the 

center frequency in the OFDM frequency band, i.e., 

                                                                  𝑓𝑐 = 𝑓0 +
𝐾−1

2
𝑓𝛥                                                          (1.2) 

It is seen in Equation (1.2) that if K is an odd number then  𝑓𝑐 coincide with the sub-carrier frequency 

𝑓(𝐾−1)/2. On the other hand, if K is an even number then 𝑓𝑐 is exactly in the middle between the two 

sub-carrier frequencies 𝑓(𝐾−2)/2 and 𝑓𝐾/2. In, e.g., LTE-applications the overall carrier frequency 𝑓𝑐 

typically is in the GHz range, and K is an odd number in the down-link while K is an even number in 

the up-link [9]. 

From Equation (1.1) the bandwidth of the OFDM signal is found to be approximately  (𝐾 + 1)𝑓𝛥 Hz 

(here we have also taken into consideration the bandwidth consumption  𝑓𝛥 at the two edges of the 

frequency band). In these lecture notes 𝐾 is typically  ≫ 1, and then the bandwidth, here denoted 

𝑊𝑂𝐹𝐷𝑀, of the OFDM signal is approximately 𝐾𝑓𝛥 Hz, i.e. 

                                                                      𝑊𝑂𝐹𝐷𝑀 ≈  𝐾𝑓𝛥 (Hz)                                                 (1.3)                         
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Let us now take a closer look at the QAM signal with index 𝑘, within the time-interval  0 ≤ 𝑡 ≤  𝑇𝑠 

where it can be expressed as, 

                           𝑔𝑟𝑒𝑐(𝑡)(𝑎𝑘,𝐼 cos(2𝜋𝑓𝑘𝑡) − 𝑎𝑘,𝑄 sin(2𝜋𝑓𝑘𝑡)) = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡}             (1.4) 

The left-hand side above is the conventional so-called I/Q description of a QAM signal. The pulse 

𝑔𝑟𝑒𝑐(𝑡) is a rectangular pulse equal to a constant value within the time-interval  0 ≤ 𝑡 ≤  𝑇𝑠, and it 

equals zero outside this time-interval. The information is carried by the pair  (𝑎𝑘,𝐼 , 𝑎𝑘,𝑄) of values, and 

there are 𝑀𝑘 unique pairs. Each pair is usually referred to as a signal point. The size of the QAM 

signal constellation with index 𝑘 is denoted 𝑀𝑘 and it is typically a power of 4 (4, 16, 64, 256,…).  

The right-hand side in Equation (1.4) is also a conventional description of a QAM-signal, and it uses 

complex notation. Observe that this description will be used almost exclusively in these lecture 

notes! In Equation (1.4) the complex number 𝑎𝑘 is defined as, 

                                               𝑎𝑘 = 𝑎𝑘,𝐼 + 𝑗𝑎𝑘,𝑄 ,      𝑘 = 0,1,… , 𝐾 − 1                                        (1.5) 

where  𝑎𝑘,𝐼 and 𝑎𝑘,𝑄 are the real part and the imaginary part of 𝑎𝑘, respectively. Hence, in this 

description the information is contained in the complex number 𝑎𝑘 (which also is referred to as a 

signal point). It is very important to understand that the two QAM-descriptions given in Equation 

(1.4) are identical! 

Due to the rectangular pulse shape, the Fourier transform of the QAM signal in Equation (1.4) is sinc-

shaped around the sub-carrier frequency 𝑓𝑘, with peak absolute value at 𝑓 = 𝑓𝑘, and it has zero-

crossings at the frequencies 𝑓 = 𝑓𝑘 + 𝑖/𝑇𝑠 (for any non-zero integer 𝑖). Hence, the width of the main-

lobe is 2/𝑇𝑠 Hz. 

We need a suitable description of the OFDM signal. By this is meant a description that is tailored to 

the modeling and implementation issues considered in these lecture notes. As will be more clear in 

section 2, it is convenient to introduce a so-called reference carrier frequency, denoted 𝑓𝑟𝑐, chosen to 

be one of the sub-carrier frequencies closest to the overall carrier frequency 𝑓𝑐. Based on the 

discussion in connection to Equation (1.2), the reference carrier frequency 𝑓𝑟𝑐 is defined by, 

                                                             𝑓𝑟𝑐 = 𝑓𝑐 = 𝑓(𝐾−1)/2                    if K is odd                    (1.6) 

                                                             𝑓𝑟𝑐 = 𝑓𝑐 − 𝑓𝛥/2 = 𝑓(𝐾−2)/2        if K is even                  (1.7) 

Furthermore, now we can express sub-carrier frequency 𝑓𝑘 by using 𝑓𝑟𝑐 as a reference in the following 

useful way, 

                                                 𝑓𝑘 = 𝑓𝑟𝑐 + 𝑔𝑘𝑓𝛥,   𝑘 = 0,1, … , 𝐾 − 1                                           (1.8) 

and this will be used a lot in section 2 where a baseband (low-frequency) version of the OFDM signal 

is investigated. The number 𝑔𝑘 in Equation (1.8) denotes an integer value defined by, 

                                    𝑔𝑘 = 𝑔0 + 𝑘 = 𝑘 − 𝑘𝑟𝑐 = 𝑘 − (𝐾 − 1)/2     if K is odd                            (1.9) 

                                     𝑔𝑘 = 𝑔0 + 𝑘 = 𝑘 − 𝑘𝑟𝑐 = 𝑘 − (𝐾 − 2)/2     if K is even                         (1.10) 
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where 𝑘𝑟𝑐 denotes the value of k corresponding to 𝑓𝑟𝑐, see Equations (1.6)-(1.7). As will be seen in 

section 2, 𝑔𝑘 is an alternative very useful way of numbering the corresponding K baseband sub-carrier 

frequencies. The parameter 𝑘 in Equation (1.1) numbers the sub-carrier frequencies from 0 to K-1, but 

𝑔𝑘 in Equation (1.8) instead numbers the sub-carrier frequencies relative to the reference carrier 

frequency 𝑓𝑟𝑐. It is also seen in Equations (1.8)-(1.10) that 𝑔0 = −𝑘𝑟𝑐  and that  𝑔𝑘 = 0  corresponds 

to the sub-carrier number 𝑘 = 𝑘𝑟𝑐 of the reference carrier frequency 𝑓𝑟𝑐, i.e. 𝑔𝑘𝑟𝑐 = 0.  

The numbers 𝑔𝑘 range from 𝑔0 to 𝑔𝐾−1,   

                                      𝑔𝑘 : −
𝐾−1

2
= 𝑔0, … , −1,0,1,… ,

𝐾−1

2
= 𝑔𝐾−1    if K is odd                     (1.11)                    

                                      𝑔𝑘:−
𝐾−2

2
= 𝑔0, … , −1,0,1,… ,

𝐾

2
= 𝑔𝐾−1         if K is even                    (1.12) 

Examples: If K=8 then 𝑔0 = −3, 𝑔3 = 0 and 𝑔7 = 4. If K=9 then 𝑔0 = −4, 𝑔4 = 0 and 𝑔8 = 4. 

By extending Equation (1.4) to describe the sum of K QAM signals, and also use the expression in 

Equation (1.8), i.e., 𝑓𝑘 = 𝑓𝑟𝑐 + 𝑔𝑘𝑓𝛥,   𝑘 = 0,1, … , (𝐾 − 1), a compact expression of an OFDM 

signal in the time-interval  0 ≤ 𝑡 ≤  𝑇𝑠 is obtained as, 

OFDM signal(t) = 𝑔𝑟𝑒𝑐(𝑡) ∑ 𝑅𝑒{𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡}  𝐾−1

𝑘=0 = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{∑ 𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡𝐾−1

𝑘=0 } = 

= 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑓0+𝑘𝑓𝛥)𝑡𝐾−1

𝑘=0 } = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑔0+𝑘)𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡𝐾−1

𝑘=0 } =              

= 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡𝐾−1

𝑘=0 }                                                                             (1.13)   

                                                                                                                                                                          

Equation (1.13) shows that an OFDM signal can be viewed as the sum of K QAM signals, and this is 

the most basic characteristics of an OFDM signal. It is also seen that an OFDM signal can be 

expressed in several ways. The last expression in Equation (1.13) will be used extensively in the next 

sections since this expression is a suitable starting point to find an efficient implementation of the 

OFDM signal.   

Let us now, as an example, take a closer look at Equation (1.13) for the special case when K is odd. In 

this case the OFDM signal in Equation (1.13) can be expressed as, 

OFDM signal(t) = = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋(−(𝐾−1)/2+𝑘)𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡𝐾−1

𝑘=0 } = 

= 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒 {(∑ 𝑎𝑙+(𝐾−1)/2𝑒
𝑗2𝜋𝑙𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡

(𝐾−1)/2
𝑙=−(𝐾−1)/2 }                                , if K is odd       (1.14)   

In a similar way we obtain from Equation (1.13) that for the special case when K is even, the OFDM 

signal can be expressed as, 

OFDM signal(t) = = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋(−(𝐾−2)/2+𝑘)𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡𝐾−1

𝑘=0 } = 

= 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒 {(∑ 𝑎𝑙+(𝐾−2)/2𝑒
𝑗2𝜋𝑙𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡

𝐾/2
𝑙=−(𝐾−2)/2 }                                 , if K is even     (1.15)   

Figure 3a on page 10 shows an example if 𝐾 = 8, and this figure roughly indicates some frequency-

domain properties of an OFDM signal. Figure 3a illustrates the main-lobes of the eight individual 

QAM-signals that constitute the OFDM signal. The side-lobes of each QAM-signal are, however, not 

shown in Figure 3a.  
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For the moment we do not know how to efficiently create an OFDM signal in practice if 𝐾 is large. As 

will be seen in section 2, the last expression in Equation (1.13) is indeed very useful to find an 

efficient implementation. Observe that both the numbering 𝑔𝑘 and the reference carrier frequency 𝑓𝑟𝑐 

are present in Equation (1.13). 

The number of coded bits carried by the OFDM signal in Equation (1.13) is denoted 𝐵𝑐, and 𝐵𝑐 =

∑ 𝑙𝑜𝑔2(𝑀𝑘)
𝐾−1
𝑘=0 . The coded bits are here assumed to be the output coded bits from a single encoder. 

The corresponding input bits to the encoder are the information bits, and we here assume that 𝐵𝑖 

information bits generate 𝐵𝑐 coded bits. Hence, the code rate of the encoder, denoted 𝑟𝑐, therefore is 

𝑟𝑐 = 𝐵𝑖/𝐵𝑐 (information bit per coded bit).   

The transmitted information bit rate, denoted 𝑅𝑏, then equals, 

                                                             𝑅𝑏 =
 𝑟𝑐∑ 𝑙𝑜𝑔2(𝑀𝑘)

𝐾−1
𝑘=0

 𝑇𝑠
 (bps)                                         (1.16) 

Furthermore, assuming also that K is >> 1 the bandwidth efficiency, denoted 𝜌, is                                                                               

                                                              𝜌 =
𝑅𝑏

𝑊𝑂𝐹𝐷𝑀
=
 𝑟𝑐∑ 𝑙𝑜𝑔2(𝑀𝑘)

𝐾−1
𝑘=0

 𝑇𝑠𝐾𝑓𝛥
   (bps/Hz)                     (1.17) 

As an example: If 𝑟𝑐 = 3/4, K=600, 𝑓𝛥 = 11000 𝐻𝑧, and if 64-QAM is used throughout, then 3600 

coded bits are sent every 𝑇𝑠. Furthermore, if  𝑇𝑠 = 0.1 ms then 𝑅𝑏 = 27 Mbps and 𝜌 = 4.09 bps/Hz. 

In case of uncoded, (i.e. 𝑟𝑐 = 1)  OFDM, though seldom used in practice, and if 𝑀𝑛 = 𝑀, then it is 

found from the above that the information bit rate equals  𝐾 𝑙𝑜𝑔2(𝑀)/𝑇𝑠 bps and this implies that the 

bandwidth efficiency then equals  
𝑙𝑜𝑔2(𝑀)

𝑇𝑠𝑓𝛥
  bps/Hz. 

The communication channel is assumed to be a multi-path channel. Such a channel typically distorts 

the transmitted OFDM signal such that, e.g., in the beginning of the OFDM symbol interval an initial 

relatively short transient behavior of the signal occurs. This will be described in detail in Section 5. 

The first part of the transmitted OFDM signal is referred to as the Cyclic Prefix (CP) and its duration 

is denoted 𝑇𝐶𝑃. In most cases 𝑇𝐶𝑃 ≪ 𝑇𝑠.  The main purpose of the CP is that the initial transient 

behavior of the multi-path channel output signal should occur within the duration of the CP. In a 

sense, the CP acts as a “guard interval” in the time-domain.  

The CP plays an important role at the receiver side since, as we will see in Sections 5-6, it is possible 

to completely eliminate interference between OFDM signals provided that the CP is properly chosen. 

Hence, as long as the CP is properly chosen, such inter-symbol interference (ISI) between OFDM 

signals will not be present in the receiver, and that is a major advantage of OFDM. More details about 

the CP will be given in Sections 3,5,6. 

The remaining part of the OFDM signal interval is referred to as the receiver’s observation interval 

and its duration is denoted 𝑇𝑜𝑏𝑠,  

                                                              𝑇𝑜𝑏𝑠 = 𝑇𝑠 − 𝑇𝐶𝑃                                                               (1.18)                                                                      

The receiver’s observation interval is the time-interval of the received signal that the receiver uses for 

extraction of the K received distorted and noisy signal points (which in turn are used by the decoding 

unit in Figure 2). Hence, for efficient operation this time interval should constitute the major part of 
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the OFDM symbol time 𝑇𝑠, i.e. 𝑇𝐶𝑃 ≪ 𝑇𝑠, since otherwise too much signal power is spent on a signal 

(the CP) that actually will not be used in the detection process in the receiver. Observe also from 

Equations (1.16) and (1.18) that 𝑇𝐶𝑃 enters into the expression for the information bit rate 𝑅𝑏. 

Let us here also briefly introduce the concept of the OFDM time-frequency grid (see, e.g., ref. [9]). 

This concept is usually clarified by a figure that has the K consecutive  sub-carrier frequencies on the 

vertical axis, and say P consecutive OFDM symbol intervals on the horizontal axis. This kind of figure 

gives a very useful overview of the over-all communication resources within the time-interval 𝑃𝑇𝑠 

(second). The overall communication resources above equal 𝐾𝑃 so-called resource units, 

corresponding to 𝐾𝑃 information carrying QAM signal points. 

As an example: Let us consider LTE-systems (Long-Term Evolution). In LTE (from ref. [9]), OFDM 

is used and 𝑓𝛥 =
1

𝑇𝑜𝑏𝑠
= 15 kHz (which means that 𝑇𝑜𝑏𝑠 = 66.67 μs, see Equation (2.1) in section 2). 

A typical OFDM symbol interval  𝑇𝑠 in LTE is 71.36 μs, and 14 consecutive OFDM signals are then 

generated every ms.  Furthermore, a so-called resource block in LTE typically consists of 12 

consecutive sub-carrier frequencies (covering 180 kHz) and 7 consecutive OFDM symbol intervals 

(covering 0.5 ms). Hence, such a resource block contains 84 resource units (i.e. 84 QAM signal 

points).  Within a 20 Mhz bandwidth typically 110 such resource blocks are defined, covering 19.8 

MHz and corresponding to K=1320.  

As an example: Let us consider the WLAN standard IEEE 802.11n (see ref. [11]). In this system 

OFDM is used with  K=117,  𝑓𝛥 = 312.5 kHz and 𝑇𝑠 = 4 μs (normal). Of the 117 subcarriers, the 3 

center subcarriers are set to zero, 108 subcarriers are used for data transmission, and 6 subcarriers are 

used as pilots. In case of  𝑟𝑐 = 5/6, and 64-QAM on each of the 108 subcarriers, the information bit 

rate equals 135 Mbps (see Equation (1.16). Furthermore, for this scheme 𝑊𝑂𝐹𝐷𝑀 ≈  36.6 MHz (the 

nominal bandwidth is 40 MHz).  

 

For future reference we here also give the definition of orthogonal signals. Two real or complex 

signals 𝑠(𝑡) and 𝑧(𝑡) are orthogonal over the time-interval 𝑡1 ≤ 𝑡 ≤  𝑡2 if and only if,   

                                                            ∫ 𝑠(𝑡)𝑧∗(𝑡)
𝑡2
𝑡1

𝑑𝑡 = 0                                                            (1.19)    

where the symbol * denotes conjugate. 
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The structure of these lecture notes is quite similar to the order of the operations indicated in Figure 1 

and in Figure 2. A short summary of  some basic relationships is given at several places in these 

lecture notes to make it easier to identify and locate important concepts and results.  

The last part of this introduction is a compact overview of the remaining sections in these lecture 

notes. 

Section 2: 

 How to obtain N time-domain complex samples of a complex baseband (low-frequency) 

OFDM signal by using the size-N IDFT (Inverse Discrete Fourier Transform). 

Section 3: 

 By adding L additional time-domain complex samples, corresponding to the CP (Cyclic 

Prefix), a new size-(L+N) sequence of complex samples is constructed 

 By using D/A converters, applied to the size-(L+N) complex sequence, the continuous-time 

(analog)  I- and Q-components of the desired  OFDM signal are created. 

Section 4: 

 By I/Q frequency up-conversion (mixing) to the carrier frequency and power amplifying the 

desired transmitted OFDM signal is created. 

Section 5: 

 How the OFDM signal is changed by the channel (H(f) and AWGN). 

Section 6: 

 Frequency down-conversion to baseband at the receiver side and extracting the information 

carrying I- and Q-components of the received distorted and noisy OFDM signal. 

 Sampling the received I- and Q-components (A/D conversion), and removal of the CP. 

 Using the size-N DFT (Discrete Fourier Transform) to obtain the K received distorted and 

noisy signal points. 

Section 7: 

 An alternative transmitter implementation (among several). If the same 𝐾 and 𝑓𝛥 as in 

sections 2-4 are used, then this alternative implementation requires a higher sampling 

frequency. The description given here is to a large extent influenced by the description in ref. 

[2]. 

Section 8: 

 An alternative receiver implementation (among several). If the same 𝐾 and 𝑓𝛥 as in section 6 

are used, then this alternative implementation requires a higher sampling frequency.     
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Section 2: A sampled version of a  𝑻𝒐𝒃𝒔-long baseband OFDM signal  

Our goal in this section is to use the size-N IDFT (Inverse Discrete Fourier transform) to efficiently 

create 𝑁 time-domain complex samples of a complex baseband OFDM signal, within the time-interval 

0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠. Observe however that these N samples will in Section 3 be time-shifted 𝑇𝐶𝑃 seconds to 

obtain the samples of the desired OFDM signal within the time-interval 𝑇𝐶𝑃 ≤ 𝑡 ≤  𝑇𝑠. 

In Section 3 we will also add the CP by adding 𝐿 additional samples to the already created 𝑁 samples, 

and the L samples correspond to the time-interval 0 ≤ 𝑡 ≤  𝑇𝐶𝑃.  As will be seen, the CP is constructed 

by adding a so-called periodic extension of the 𝑁 samples. In this way all 𝐿 + 𝑁 samples of a complex 

baseband OFDM signal, within the time-interval 0 ≤ 𝑡 ≤  𝑇𝑠, is obtained. The remaining steps are 

then D/A converters (also in Section 3) and frequency up-conversion (in Section 4). 

As was mentioned earlier the receiver´s observation interval constitutes the major part of the OFDM 

signal interval 𝑇𝑠. Hence the OFDM signal construction within the interval 𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠 is of course  

important.  

The sub-carrier frequency separation 𝑓𝛥 is a fundamental parameter in OFDM and it should be 

chosen such that, 

                                                                    𝑓𝛥 = 1/𝑇𝑜𝑏𝑠                                                                (2.1) 

Among other advantages, this choice makes it possible for all 𝐾 received QAM signals in the received 

OFDM signal to be  orthogonal over the receiver´s observation interval (see Equation (1.19)), and 

this is a fundamental desired property of an OFDM signal. Note however that the requirement in 

Equation (2.1) assumes an overall rectangular pulse within  𝑇𝑜𝑏𝑠, otherwise  all 𝐾 received QAM 

signals will not be orthogonal. 

Step 1: The equivalent complex baseband signal of a  𝑇𝑜𝑏𝑠-long OFDM signal . 

We now use the same kind of description as in Equation (1.13) to describe an OFDM signal within the 

time-interval 0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠, here denoted 𝑦(𝑡),  

                                    𝑦(𝑡) = 𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡𝐾−1

𝑘=0 } = 𝑅𝑒{𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡}                    (2.2)   

where 

                                  𝑥(𝑡) = 𝑥𝑅𝑒(𝑡) + 𝑗𝑥𝐼𝑚(𝑡) = ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡𝐾−1

𝑘=0 ,        0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠            (2.3)                

and 𝑥(𝑡) = 0 outside this interval. Observe that the signal 𝑥(𝑡) does not contain any high-frequency 

components, it contains frequency components around the so-called equivalent baseband sub-carrier 

frequencies:  

                                                𝑔0𝑓𝛥, … , −𝑓𝛥, 0, 𝑓𝛥, … . . , 𝑔𝐾−1 𝑓𝛥                                                 (2.4) 

where 𝑔𝑘 is defined in Equations (1.9)-(1.10). Consequently, the signal 𝑥(𝑡) contains only baseband 

frequencies (low frequencies) and 𝑥(𝑡) is referred to as the equivalent complex baseband signal of the 

OFDM signal y(t). Note that for the two cases K odd and K even, explicit expressions of the signal 

𝑥(𝑡) in Equation (2.3) can be identified in Equations (1.14)-(1.15).  

Observe in Equation (2.3) that the QAM symbol 𝒂𝒌 (k=0,1,…,(K-1)), is carried by the baseband 

sub-carrier frequency 𝒈𝒌𝒇𝜟 in the complex baseband OFDM signal 𝒙(𝒕)! 
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The frequency contents of the signals y(t) and  x(t),  denoted 𝑌(𝑓) and 𝑋𝑎(𝑓), respectively, are 

roughly indicated in Figure 3 below for an example where K=8. It is seen in Figure 3a that the high-

frequency OFDM signal y(t) carries the QAM-symbols 𝑎0, 𝑎1, … , 𝑎7 at the high-frequency sub-carrier 

frequencies 𝑓0, 𝑓1, … , 𝑓7, respectively. For the specific example shown in Figure 3a it is concluded that 

|𝑎7| is much larger than |𝑎0|, since the main-lobe around  𝑓7 is much higher than the main-lobe around  

𝑓0.  

Figure 3b shows the corresponding baseband situation where the complex baseband OFDM signal  

𝑥(𝑡) carries the QAM-symbols 𝑎0, 𝑎1, … , 𝑎7 at the baseband sub-carrier frequencies   

−3𝑓𝛥, −2𝑓𝛥, … ,4 𝑓𝛥 , respectively (according to Equation (2.4)). 

 

B/2

B

Figure 3a.

Figure 3b.

 

Figure 3a) A specific example where 𝐾 = 8, illustrating the main-lobes of the eight individual QAM 

signals that constitute the OFDM signal 𝑦(𝑡) in Equation (2.2). The side-lobes of each QAM-signal 

are, however, not shown in this figure. The Fourier transform  𝑌(𝑓) of the OFDM signal 𝑦(𝑡) is only 

roughly indicated by this figure. The short arrows show the eight sub-carrier frequencies. 

Furthermore, 𝑓𝑟𝑐 = 𝑓3 in this case. In this example it is also assumed that the specific set of 𝐾 signal 

points to be transmitted are such that |𝑎0| < |𝑎1| < |𝑎2| < ⋯ < |𝑎6| < |𝑎7|.                                                                                                                                                

Figure 3b) The baseband version of Figure 3a is here considered. Illustrating the main-lobes for the 

eight individual complex baseband QAM signals that constitute the complex baseband OFDM signal 

𝑥(𝑡) in Equation (2.3). The Fourier transform  𝑋𝑎(𝑓) of the complex baseband OFDM signal 𝑥(𝑡) is 

only roughly indicated by this figure. The arrows show the 8 baseband sub-carrier frequencies. 
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The high-frequency OFDM signal 𝑦(𝑡) in Equation (2.2) can be written as, 

                                    𝑦(𝑡) = 𝑅𝑒{𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡} = 𝑥𝑅𝑒(𝑡) cos(2𝜋𝑓𝑟𝑐𝑡) − 𝑥𝐼𝑚(𝑡) sin(2𝜋𝑓𝑟𝑐𝑡)        (2.5) 

Equation (2.5) is an important relationship since it shows that the OFDM-signal 𝑦(𝑡) is easily 

implemented as soon as we have created the real part 𝑥𝑅𝑒(𝑡) and the imaginary part 𝑥𝐼𝑚(𝑡) of  𝑥(𝑡). 

We should therefore focus on creating 𝒙(𝒕), since 𝒙𝑹𝒆(𝒕) and 𝒙𝑰𝒎(𝒕) then are easy to find. 

Let us first however investigate the Fourier transforms 𝑌(𝑓) and 𝑋𝑎(𝑓) in some more detail. We know 

that 𝑋𝑎(𝑓) denotes the Fourier transform of the complex baseband OFDM signal 𝑥(𝑡). The Fourier 

transform of the signal 𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡 that appears in Equation (2.5) then is, 

                                              ∫ 𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡𝑒−𝑗2𝜋𝑓𝑡
∞

−∞
𝑑𝑡 = 𝑋𝑎(𝑓 − 𝑓𝑟𝑐)                                       (2.6) 

and this is a pure frequency shift of 𝑋𝑎(𝑓). In general, the signal 𝑥(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡 is a complex signal and 

for such signals the Fourier transform does not possess symmetry properties around the frequency  

𝑓 = 0. However, the high-frequency OFDM signal 𝑦(𝑡) is real, and its Fourier transform 𝑌(𝑓) can be 

shown to be, 

                                               𝑌(𝑓) = (𝑋𝑎(𝑓 − 𝑓𝑟𝑐) + 𝑋𝑎
∗(−(𝑓 + 𝑓𝑟𝑐)))/2                                    (2.7) 

 𝑌(𝑓) (at positive frequencies only) and 𝑋𝑎(𝑓) are roughly indicated in Figure 3. Symmetry exists in 

𝑌(𝑓) since, e.g., |𝑌(𝑓)| = |𝑌(−𝑓)|. The symbol * denotes conjugate. 

 It is of great importance to understand the frequency content in the complex baseband OFDM 

signal 𝑥(𝑡). As is seen in Equation (2.3) the signal 𝑥(𝑡) is the sum of K complex baseband QAM 

signals. Let us denote these K individual complex baseband QAM signals by, 

                                                      𝑥𝑘(𝑡) = 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡,    𝑘 = 0,1, … , (𝐾 − 1)                                   (2.8) 

where each signal is zero outside the time-interval 0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠. The frequency content in the signal 

𝑥𝑘(𝑡) is denoted 𝑋𝑎,𝑘(𝑓) and  

                                                   𝑋𝑎,𝑘(𝑓) = 𝑎𝑘𝑇𝑜𝑏𝑠
𝑠𝑖𝑛(𝜋(𝑓−𝑓𝑥,𝑘)𝑇𝑜𝑏𝑠)

𝜋(𝑓−𝑓𝑥,𝑘)𝑇𝑜𝑏𝑠
 𝑒−𝑗𝜋(𝑓−𝑓𝑥,𝑘)𝑇𝑜𝑏𝑠                          (2.9)                           

where 

                                                                      𝑓𝑥,𝑘 = 𝑔𝑘𝑓𝛥 =
𝑔𝑘

𝑇𝑜𝑏𝑠
                                                     (2.10)              

is the baseband sub-carrier frequency of the signal 𝑥𝑘(𝑡). It is seen in Equation (2.9) that the Fourier 

transform of the individual complex baseband QAM signal 𝑥𝑘(𝑡) is sinc-shaped around the baseband 

sub-carrier frequency 𝑓𝑥,𝑘 = 𝑔𝑘𝑓𝛥, with peak absolute value |𝑎𝑘|𝑇𝑜𝑏𝑠, and it has zero-crossings at the 

frequencies 𝑓 = 𝑓𝑥,𝑘 + 𝑖𝑓𝛥 (for any non-zero integer 𝑖). Hence, the width of the main-lobe is 2𝑓𝛥. 

Observe, for future reference, that the signal point 𝑎𝑘 is easily found from the value of the Fourier 

transform in Equation (2.9) evaluated at the baseband sub-carrier frequency 𝑓 = 𝑓𝑥,𝑘 = 𝑔𝑘𝑓𝛥 since        

𝑋𝑎,𝑘(𝑓 = 𝑔𝑘𝑓𝛥) = 𝑎𝑘𝑇𝑜𝑏𝑠. 
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The frequency content in the complex baseband OFDM signal x(t), denoted Xa(f), is now easily found 

as the sum of the frequency contents of the individual signals 𝑥𝑘(𝑡), 

                                                                          𝑋𝑎(𝑓) = ∑ 𝑋𝑎,𝑘(𝑓)
𝐾−1
𝑘=0                                                     (2.11) 

Figure 3b) roughly indicates 𝑋𝑎(𝑓) for an example where 𝐾 = 8. 

 

A short summary of some basic relationships in step 1: 

 The definition of  𝑓𝛥 in Equation (2.1), and also the reason why this definition is chosen. 

 The relationship between  𝑥(𝑡) and 𝑦(𝑡) given by Equations (2.2)-(2.5). 

 Observe the close relationship between  𝑌(𝑓) and  𝑋𝑎(𝑓) as is indicated by Figures 3a and 3b 

(see also Equation (2.7)). 

 The Fourier transform 𝑋𝑎(𝑓) of  𝑥(𝑡) is given by Equations (2.9)-(2.11) and it is roughly 

illustrated in Figure 3b. 
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Step 2:  Samples of the complex baseband OFDM signal 𝑥(𝑡), and the IDFT. 

In connection to Equation (2.5) we emphasized the importance of creating the complex baseband 

OFDM signal 𝑥(𝑡). However, since K is large we do not know how to efficiently create this signal in a 

straight-forward way in the continuous-time domain.  The strategy here is therefore to create 𝑥(𝑡) 

indirectly by first constructing time-domain complex samples of 𝑥(𝑡). As we will see this strategy 

will turn out to be successful indeed. 

The sampling theorem, see ref. [1], states that if the highest frequency-component in a signal  𝑠(𝑡) is 

W Hz, then the signal 𝑠(𝑡) can be completely reconstructed from its samples, if the sampling 

frequency is at least 2W samples per second. 

As mentioned earlier, the K baseband sub-carriers in the complex baseband OFDM signal 𝑥(𝑡) are 

located from 𝑔0𝑓𝛥 Hz up to 𝑔𝐾−1𝑓𝛥 Hz. This means that the baseband bandwidth of 𝑥(𝑡) is 

approximately  (𝑔𝐾−1 + 1)𝑓𝛥 Hz (and the same bandwidth may therefore be assumed also for the real 

part and for the imaginary part).  

Using Equations (1.11) - (1.12), and assuming that 𝐾 ≫ 1, the baseband bandwidth of 𝒙(𝒕) is 

approximately 𝑲𝒇𝜟/𝟐 Hz. We therefore conclude that the sampling frequency 𝑓𝑠𝑎𝑚𝑝 should be 

larger than 𝐾𝑓𝛥 samples per second when constructing the time-domain complex samples of 𝑥(𝑡), and 

large enough such that the sampling theorem can be considered to be sufficiently fulfilled. Note that 

x(t) is not a band-limited signal.   

Let us now consider sampling the complex signal 𝑥(𝑡) in Equation (2.3) every 
𝑇𝑜𝑏𝑠

𝑁
 second, i.e. with N 

samples within the time-interval 0 ≤ 𝑡 <  𝑇𝑜𝑏𝑠. This corresponds to a sampling frequency 𝑓𝑠𝑎𝑚𝑝 equal 

to, 

                                                            𝑓𝑠𝑎𝑚𝑝 = 𝑁/𝑇𝑜𝑏𝑠 = 𝑁𝑓𝛥 > 𝐾𝑓𝛥                                           (2.12) 

samples per second, and N should be chosen larger than K, and large enough such that the sampling 

theorem can be considered to be sufficiently fulfilled.  

Let the column vector (or discrete-time signal)  𝒙 contain the N time-domain complex samples 

𝑥0, 𝑥1, … , 𝑥𝑁−1, of the signal 𝑥(𝑡) in Equation (2.3). This means that the sample 𝑥𝑛 is, 

                    𝑥𝑛 = 𝑥(𝑛𝑇𝑜𝑏𝑠/𝑁) = ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑛/𝑁𝐾−1

𝑘=0        𝑛 = 0,1… , (𝑁 − 1)                      (2.13) 

Observe that the right hand side of Equation (2.13) actually gives us a way to construct the desired 

samples 𝑥0, 𝑥1, … , 𝑥𝑁−1 of the complex baseband OFDM signal 𝒙(𝒕) (i.e. without actually sample 

the signal 𝒙(𝒕))!  

However, Equation (2.13) does not contain the desired size-N IDFT so therefore we need to do some 

additional work to get another expression for 𝑥𝑛 that contains the desired size-N IDFT. Furthermore, 

we also need an understanding of both the size-N DFT and the size-N IDFT to better understand why 

and how the former is applied at the receiver side and the latter at the transmitter side.  
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The DFT is closely connected to the Fourier transform 𝑋(𝜈) of the discrete-time signal 𝒙 in Equation 

(2.13). 𝑋(𝜈) is defined by, see ref. [1], 

 𝑋(𝜈) = ∑ 𝑥𝑛𝑒
−𝑗2𝜋𝜈𝑛𝑁−1

𝑛=0                                                                (2.14)  

Note in Equation (2.14) that the Fourier transform 𝑋(𝜈) is periodic in 𝝂 with period 1. Furthermore, 

the variable ν can be viewed as a normalized frequency variable, 𝜈 = 𝑓/𝑓𝑠𝑎𝑚𝑝. The periodicity in 𝜈 

is illustrated in Figure 4.  

0
                     -3/2                 -1                 -1/2                                        1/2                  1                   3/2

Figure 4. Illustrating that 𝑋(𝜈) is periodic in 𝜈 with period 1. The shape of  𝑋(𝜈) in this figure is an 

example of a Fourier transform of a discrete-time complex signal. 

Due to the periodic structure of 𝑋(𝜈) it is clear that it is important to understand the behavior of  𝑋(𝜈) 

in the fundamental interval  −1/2 ≤ 𝜈 ≤ 1/2 (corresponding to the frequency interval               

−𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2).   

Furthermore, let 𝑋𝑚 denote the frequency-domain sample of  𝑋(𝜈)  at 𝜈 = 𝑚/𝑁,  defined by 

 𝑋𝑚 = 𝑋(𝜈 = 𝑚/𝑁) = ∑ 𝑥𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑁𝑁−1

𝑛=0 ,      𝑚 = 0,1, … ,𝑁 − 1        (DFT)                         (2.15) 

This is the definition (see ref. [1]) of the size-N DFT (Discrete Fourier Transform) of the sequence 𝒙. 

However, for the moment we are particularly interested in the size-N IDFT (Inverse Discrete Fourier 

transform) which is defined by (see ref. [1]),  

 𝑥𝑛 =
1

𝑁
∑ 𝑋𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑁𝑁−1
𝑚=0 ,          𝑛 = 0,1,… , 𝑁 − 1                                  (IDFT)                      (2.16) 

Hence, as soon as we have determined the samples in the frequency domain 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑵−𝟏  we 

should use them in the size-N IDFT in Equation (2.16) to create the desired sequence of time-

domain samples 𝒙! The values 𝑋𝑚 will be determined in step 3. 

In practice, N is chosen to be a power of 2 since fast Fourier transform (FFT) algorithms then can be 

used to significantly speed up the calculations in Equations (2.15) - (2.16). 

It is clear from the above that the DFT results in frequency-domain samples of  𝑋(𝜈). Hence, 𝑋(𝜈) is 

important in the understanding of the DFT. One way to calculate 𝑋(𝜈) is to use the definition given in 

Equation (2.14). Another way to calculate 𝑋(𝜈) is to use the fact that the discrete-time signal (or 

vector) 𝒙 consists of time-domain samples of the continuous-time (analog) complex baseband OFDM 
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signal 𝑥(𝑡), and there should be a relationship between the frequency contents of these two signals 

(𝑋(𝜈) and 𝑋𝑎(𝑓), respectively).  

The Fourier transform of the signal 𝑥(𝑡) is 𝑋𝑎(𝑓) and it is given in Equation (2.11) and also roughly 

illustrated in Figure 3b.  

The relationship between 𝑋(𝜈) and  𝑋𝑎(𝑓)  can be shown to be (see ref. [1]),  

                                                              𝑋(𝜈) = 𝑓𝑠𝑎𝑚𝑝∑ 𝑋𝑎((𝜈 − 𝑘)𝑓𝑠𝑎𝑚𝑝)
∞
𝑘=−∞                                (2.17) 

This relationship is very useful indeed, since it gives us complete knowledge about 𝑋(𝜈), since 𝑋𝑎(𝑓)  

is known (from Equations (2.11) and (2.9)). Equation (2.17) tells us that 𝑋(𝜈) equals 

𝑓𝑠𝑎𝑚𝑝𝑋𝑎(𝜈𝑓𝑠𝑎𝑚𝑝) plus periodic repetitions of this function, spaced with normalized frequency 1 apart. 

Let us consider an example where 𝑋𝑎(𝑓) is given in Figure 5, and where the baseband bandwidth is 

denoted 𝑊. In Figure 5, 𝑋𝑎(𝑓) = 0 outside the frequency range −2𝑊/3 ≤ 𝑓 ≤ 𝑊.   Furthermore,  

assume that the sampling frequency 𝑓𝑠𝑎𝑚𝑝 =
8

3
𝑊 samples per second is used. The reader is 

recommended to apply Equation (2.17) to this example and show that 𝑋(𝜈) then will be identical to 

the Fourier transform given in Figure 4 on the previous page, and the peak value in Figure 4 then 

equals  𝑓𝑠𝑎𝑚𝑝𝐵.   

                                             
0

 

Figure 5. Illustrating 𝑋𝑎(𝑓). The shape of 𝑋𝑎(𝑓) in this figure is an example of a Fourier transform of 

an analog complex signal (and it does not follow the shape given by Equation (2.11)). 

 

A short summary of some basic relationships in step 2: 

 The definition of  𝑓𝑠𝑎𝑚𝑝 in Equation (2.12), and also the reason why this definition is chosen. 

 The expression of the time-domain samples given in Equation (2.13), and its derivation. 

 The definition of 𝑋(𝜈) in Equation (2.14), and the example given in Figure 4. 

 The definition of the size-N DFT  in Equation (2.15) and its connection to 𝑋(𝜈). 

 The definition of the size-N IDFT  in Equation (2.16), and its practical consequences at the 

transmitter side. 
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Step 3:  The relation between the sequences 𝑎0, 𝑎1, … , 𝑎𝐾−1 and  𝑋0, 𝑋1, … , 𝑋𝑁−1. 

Let us use Equation (2.13) to establish the connection between the sequences 𝑎0, 𝑎1, … , 𝑎𝐾−1 and  

𝑋0, 𝑋1, … , 𝑋𝑁−1. We rewrite Equation (2.13) in the following way, 

                                           𝑥𝑛 = 𝑥 (
𝑛𝑇𝑜𝑏𝑠

𝑁
) = ∑ 𝑎𝑘𝑒

𝑗2𝜋𝑔𝑘𝑛

𝑁𝐾−1
𝑘=0 = ∑ 𝑎𝑘𝑒

𝑗2𝜋(𝑔0+𝑘)𝑛/𝑁 =𝐾−1
𝑘=0   

                                                = ∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑔0+𝑘+𝑁)𝑛/𝑁−𝑔0−1

𝑘=0 + ∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑔0+𝑘)𝑛/𝑁 =𝐾−1

𝑘=−𝑔0
 

                                                = ∑ 𝑎𝑚−(𝑔0+𝑁)𝑒
𝑗2𝜋𝑚𝑛/𝑁𝑁−1

𝑚=𝑔0+𝑁
+ ∑ 𝑎𝑚−𝑔0𝑒

𝑗2𝜋𝑚𝑛/𝑁 =
𝑔𝐾−1
𝑚=0      

                                                 =
1

𝑁
∑ 𝑋𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑁𝑁−1
𝑚=0 , 𝑛 = 0,1,… , 𝑁 − 1                             (2.18)                                                                              

Inspection of Equation (2.18) yields the relationships below: 

                                                       𝑋𝑚 = 𝑁𝑎𝑚−𝑔0,       if   0 ≤ 𝑚 ≤ 𝑔𝐾−1                                  (2.19) 

                                                       𝑋𝑚 = 0,                   if   𝑔𝐾−1 + 1 ≤ 𝑚 ≤ 𝑔0 +𝑁 − 1           (2.20)                

                                                       𝑋𝑚 = 𝑁𝑎𝑚−(𝑔0+𝑁), if   𝑔0 +𝑁 ≤ 𝑚 ≤ 𝑁 − 1                      (2.21) 

The last expression in Equation (2.18) is identical to the size-N IDFT in Equation (2.16). The relation 

between the sequences 𝑎0, 𝑎1, … , 𝑎𝐾−1 and  𝑋0, 𝑋1, … , 𝑋𝑁−1 are given by Equations (2.19) – (2.21). 

As an example: Consider a situation with K=53 and N=64. In this case 𝑘𝑟𝑐 = −𝑔0 =
𝐾−1

2
= 26 and 

𝑔𝐾−1 =
𝐾−1

2
= 26. From Equations (2.19) – (2.21) it is then concluded that the sub-sequence 

𝑋0, 𝑋1, … , 𝑋26 contains the QAM signal points 𝑎26, 𝑎27, … , 𝑎52, the sub-sequence 𝑋27, 𝑋28, … , 𝑋37 

contains only zero values, and the sub-sequence 𝑋38, 𝑋39, … , 𝑋63 contains the QAM signal points  

𝑎0, 𝑎1, … , 𝑎25. 

As an example: Consider the WLAN standard IEEE 802.11n, see the example on page 7. Since  

K=117 then 𝑘𝑟𝑐 = −𝑔0 =
𝐾−1

2
= 58 and 𝑔𝐾−1 =

𝐾−1

2
= 58. Furthermore, assume that N=128. From 

Equations (2.19) – (2.21) it is then concluded that the sub-sequence 𝑋0, 𝑋1, … , 𝑋58 contains the QAM 

signal points 𝑎58, 𝑎59, … , 𝑎116, the sub-sequence 𝑋59, 𝑋60, … , 𝑋69 contains only zero values, and the 

sub-sequence 𝑋70, 𝑋71, … , 𝑋127 contains the QAM signal points  𝑎0, 𝑎1, … , 𝑎57. 

As an example: Let us consider a situation where K=8 and N=12. In this case 𝑘𝑟𝑐 = −𝑔0 =
𝐾−2

2
= 3 

and 𝑔𝐾−1 =
𝐾

2
= 4. From Equations (2.19) – (2.21) it is then concluded that the sub-sequence 

𝑋0, 𝑋1, 𝑋2𝑋3, 𝑋4 contains the QAM signal points 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, the sub-sequence 𝑋5, 𝑋6, 𝑋7, 𝑋8 

contains only zero values, and the sub-sequence 𝑋9, 𝑋10, 𝑋11 contains the QAM signal points 

𝑎0, 𝑎1, 𝑎2. 

Even though the relation between the size-K sequence of QAM signal points 𝑎0, 𝑎1, … , 𝑎𝐾−1 and   the 

size-N sequence of DFT frequency-domain samples 𝑋0, 𝑋1, … , 𝑋𝑁−1 is already established from 

Equations (2.18) – (2.21) above it may not be so easy to get an intuitive feeling concerning these 

results. Therefore additional background material, explanations, result and examples are provided 

below with the purpose that this material may help the student to increase its understanding and 

interpretation of the DFT and the IDFT.   
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Let us therefore take a closer look at the frequency-domain sample 𝑋𝑙 = 𝑋(𝜈 = 𝑙/𝑁) , where 𝑙 is an 

arbitrary integer. 𝑋(𝜈) is roughly indicated in Figure 6 for the example given in Figure 3b where 

𝐾 = 8. It is also assumed in Figure 6 that 𝑁 = 12, and this means that 𝑋(𝜈) is sampled at the 

normalized frequency 𝜈 = 𝑙/12 to obtain  𝑋𝑙. The arrows in this figure indicate where the samples  𝑋𝑙 

are obtained in the normalized frequency domain (i.e. in the 𝜈-domain). Observe that the bold indices 

in Figure 6 indicate the frequency-domain samples that are obtained from the size-12 DFT in 

Equation (2.15) on page 14.  

Note that the Fourier Transform 𝑋𝑎(𝑓) of 𝑥(𝑡) (see Figure 3b) appears frequency-normalized and 

repeatedly in Figure 6 (compare with Equation (2.17)). This means that the sequence of QAM symbols  

𝑎0, 𝑎1, … , 𝑎7 also appears repeatedly in this figure. The analog complex baseband QAM signal that 

carries the QAM symbol 𝒂𝒌 is located around the baseband sub-carrier frequency 𝒈𝒌𝒇𝜟 Hz  (see 

Figure 3b and Equation (2.10)), and in Figure 6 the corresponding discrete-time QAM signal 

appears in the 𝝂-domain around  𝝂 =
 𝒈𝒌

𝑵
 and periodically.   

Since 𝑋(𝜈) is periodic in 𝜈 with period 1, the frequency-domain sample obtained at 𝜈 =
𝑙

𝑁
 will give 

exactly the same result as the sample obtained at 𝜈 =
𝑙+𝑁

𝑁
. The samples 𝑋𝑙, 𝑋𝑙−𝑁 and 𝑋𝑙+𝑁 are 

therefore identical. 

As an example in Figure 6: since 𝐾 = 8 and 𝑁 = 12, the QAM symbol 𝑎3 appears at the sampling 

indices 𝑙 = ...-24,-12,0,12,24,.. (corresponding to 𝜈 = ⋯ ,−2,−1, 0, 1, 2, … ).       

                       -1                             -1/2                              0                              1/2                              1                  

    Sampling index l:                                                   -3            -1     0      1      2     3      4     5      6      7     8      9    10    11                        
 

Figure 6. Roughly indicating 𝑋(𝜈) for the specific example given in Figure 3b where 𝐾 = 8. It is in 

this figure also assumed that 𝑁 = 12 and the arrows indicate where the frequency-domain samples 𝑋𝑙 

are obtained. The bold indices indicate the frequency-samples that are used by the size-12 IDFT. 

Since 𝐾 = 8 and  𝑁 = 12  the QAM symbol 𝑎0 appears at the sampling indices  𝑙 =...-15,-3,9,21,..     

We know that the frequency interval between two successive sub-carrier frequencies is 𝑓𝛥 Hz. 

Furthermore, the normalized frequency parameter 𝜈 is 𝜈 =
𝑓

𝑓𝑠𝑎𝑚𝑝
=

𝑓

𝑁𝑓𝛥
. This means that in the 

normalized frequency domain, i.e. in the 𝜈-domain, the normalized frequency interval between two 

successive sub-carrier frequencies is  
𝑓𝛥

𝑁𝑓𝛥
=
1

𝑁
.  
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By definition we also know that the frequency-domain sample 𝑋𝑙 is obtained at the normalized 

frequency 𝜈 = 𝑙/𝑁. Hence, the spacing between two successive sampling instants is 1/𝑁 and, as was 

discussed above, this is identical with the spacing between two successive normalized baseband sub-

carrier frequencies. This is of fundamental importance since this implies that the 𝒍:th sampling 

instance then occurs at the sub-carrier frequency of a particular normalized baseband QAM 

frequency spectrum, or at its zero-crossings! See Equations (2.9)-(2.11), (2.17), and also Figure 6.  

Examples in Figure 6: The frequency-domain sample 𝑋0 is obtained with 𝑙 = 0 and  𝑋0 = 𝑁𝑎𝑘𝑟𝑐 =

12𝑎3. Hence, the frequency-domain sample 𝑋0 will therefore only carry information about the QAM 

symbol 𝑎𝑘𝑟𝑐 = 𝑎3. It should be noted that the multiplying factor 𝑁 above can be explained by 

Equations (2.19)-(2.21), or by taking a closer look at Equations (2.17), (2.11) and (2.9). An alternative 

explanation is also given below in conjunction with Equation (2.23). Furthermore, the sample 

𝑋𝑁−𝑘𝑟𝑐 = 𝑁𝑎0, which in this example means that 𝑋9 = 12𝑎0. Also, the sample 𝑋𝑁−1 = 𝑁𝑎𝑘𝑟𝑐−1, 

which in this example means that 𝑋11 = 12𝑎2.    

Note also in Figure 6, that the baseband sub-carrier frequency 𝑔7𝑓𝛥 = 4𝑓𝛥 appears at  𝜈 = 4/12. If N 

would be doubled to N=24 in Figure 6, then this baseband sub-carrier frequency would appear at 

𝜈 = 4/24 instead. In general, as N increases with K held fixed, the K normalized baseband sub-carrier 

frequencies will be more and more concentrated around the integer values of 𝜈. 

It is fruitful to take a closer look at the impact of the individual signal 𝑥𝑘(𝑡) on the frequency-domain 

sample 𝑋𝑙. Therefore, consider the Fourier transform of the discrete-time signal obtained if only time-

domain samples from  𝑥𝑘(𝑡) are considered, i.e. the Fourier transform of the discrete-time signal, 

                                                         𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑛/𝑁,           𝑛 = 0, 1, … , (𝑁 − 1)                                     (2.22) 

The Fourier transform of the discrete-time signal in Equation (2.22) can be expressed as, 

               ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑛/𝑁𝑒−𝑗2𝜋𝜈𝑛𝑁−1

𝑛=0 = 𝑎𝑘
sin (𝜋𝑁(𝜈−𝑔𝑘/𝑁))

sin (𝜋(𝜈−𝑔𝑘/𝑁))
𝑒−𝑗𝜋(𝜈−𝑔𝑘/𝑁)(𝑁−1)                          (2.23) 

To get the result in Equation (2.23) we have identified a geometric series in the left-hand side. By 

investigating Equation (2.23) for 𝜈 =
𝑔𝑘

𝑁
 we find that the value equals 𝑎𝑘𝑁. Also, by investigating 

Equation (2.23) for  𝜈 =
𝑔𝑘+𝐽

𝑁
 , where  𝐽 = 1,2,… , (𝑁 − 1), we find that the value equals zero.     

Hence, the value of Equation (2.23) is 𝑎𝑘𝑁 if 𝜈 =
𝑔𝑘

𝑁
+ 𝑖, where 𝑖 denotes an arbitrary integer 

(periodicity).   

As a consequence of the above we conclude that if the Fourier transform in Equation (2.23) is sampled 

at the normalized frequency  𝜈 = 𝑙/𝑁, then a non-zero result is obtained only if 𝑙 = 𝑔𝑘 + 𝑖𝑁, where 𝑖 

denotes an arbitrary integer, and the non-zero result equals the value 𝑎𝑘𝑁.  

 

 

 

 



 

19 
 

Therefore, if the specific frequency-domain sample 𝑋𝑙 is non-zero then only one of the K QAM 

signals will contribute to the value of 𝑋𝑙,  

                                                              𝑋𝑙 = 𝑎𝑘𝑁                                                                            (2.24) 

and the particular value of  𝑘  is defined by, 

                                                             𝑔𝑘 = 𝑙 − 𝑖𝑁                                                                          (2.25) 

This means that we now can determine the N frequency-domain samples 𝑋𝑙, 𝑙 = 0, 1, … , (𝑁 − 1) 

that are obtained from the size-N DFT in Equation (2.15) on page 14.   

For 0 ≤ 𝑙 ≤ 𝑔𝐾−1 we find from Equation (2.25) that 𝑔𝑘 = 𝑙, and the corresponding value of 𝑘 is 

known from Equations (1.8)-(1.9). Therefore,  

                                                      𝑘 = 𝑘𝑟𝑐 + 𝑔𝑘 = 𝑘𝑟𝑐 + 𝑙                                                              (2.26) 

                                                      𝑋𝑙 = 𝑁𝑎𝑘𝑟𝑐+𝑙          𝑙 = 0,1… , 𝑔𝐾−1                                             (2.27) 

Observe that Equation (2.27) is equivalent with Equation (2.19). 

For 𝑔0 +𝑁 ≤ 𝑙 ≤ (𝑁 − 1) we find from Equation (2.25) that 𝑔𝑘 = 𝑙 − 𝑁, and the corresponding 

values of  𝑘 and 𝑋𝑙 are (𝑔0 = −𝑘𝑟𝑐),  

                                                      𝑘 = 𝑘𝑟𝑐 + 𝑔𝑘 = 𝑘𝑟𝑐 + 𝑙 − 𝑁                                                    (2.28) 

                                                      𝑋−𝑘𝑟𝑐+𝑁+𝑘 = 𝑁𝑎𝑘        𝑘 = 0,1,… (𝑘𝑟𝑐 − 1)                             (2.29) 

Observe that Equation (2.29) is equivalent with Equation (2.21). 

For the intermediate interval (𝑔𝐾−1 + 1) ≤ 𝑙 ≤ (𝑔0 +𝑁 − 1), that covers the remaining (N-K) 

frequency-domain samples, the values of these samples are 𝑋𝑙 = 0. Compare with Figure 6 on page 17 

where  (𝑁 − 𝐾) = 4 and where  𝑋5 = 𝑋6 = 𝑋7 = 𝑋8 = 0. 

It should be noted that the results on 𝑋𝑙 above are identical with the results obtained in Equations 

(2.19) – (2.21). 

Observe from Equations (2.27) and (2.29) that the desired sequence 𝑋0, 𝑋1, … , 𝑋𝑁−1 is very easy to 

construct by using the K signal-points, and (𝑁 − 𝐾) zeroes! This is shown below. 

If we first construct the size-N sequence 𝑁𝑎0, 𝑁𝑎1, . . , 𝑁𝑎𝐾−1, 0,0, . . ,0, and then “left-rotate” this 

sequence 𝑘𝑟𝑐 positions ( or “right-rotate” this sequence (𝑔0 +𝑁)  positions), then the desired 

sequence 𝑋0, 𝑋1, … , 𝑋𝑁−1 in Equations (2.27) and (2.29)  is obtained!  

Consider as an example the case K=8 and N=12. In this case 𝑘𝑟𝑐 = 3 and 𝑔𝐾−1 = 4, and the desired 

sequence 𝑋0, 𝑋1, … , 𝑋11 then equals: 𝑁𝑎3, 𝑁𝑎4, 𝑁𝑎5, 𝑁𝑎6, 𝑁𝑎7, 0,0,0,0,𝑁𝑎0, 𝑁𝑎1, 𝑁𝑎2. See also 

Figure 6.  
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The final step is to calculate the size-N IDFT, 

                                                    𝑥𝑛 =
1

𝑁
∑ 𝑋𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑁𝑁−1
𝑚=0 ,          𝑛 = 0,1,… ,𝑁 − 1                    (2.30) 

In practice, N is chosen to be a power of 2 since fast Fourier transform (FFT) algorithms can then be 

used to significantly speed up the calculations in equation (2.30). 

Equation (2.30) is the desired final expression to compute the discrete-time signal 𝒙, i.e. the  𝑵 time-

domain samples of the complex baseband OFDM signal 𝒙(𝒕). Equation (2.30), i.e. the size-N IDFT, 

is computationally very efficient when implemented using FFT algorithms (if N is chosen to be a 

power of 2). The sequence 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑵−𝟏 is given by Equations (2.27) and (2.29) or alternatively 

by Equations (2.19)-(2.21). See also the construction (“rotation”) given above. See also Figure 7 on 

page 27.  

The (𝑁 − 𝐾) zeroes in the sequence 𝑋0, 𝑋1, … , 𝑋𝑁−1  may be interpreted as using zero-valued signal-

points at baseband sub-carrier frequencies located at the edges but outside of the OFDM frequency 

band.  

As an example of an application let us consider LTE-systems (Long-Term Evolution). In LTE (from 

ref. [9]), OFDM is used and 𝑓𝛥 =
1

𝑇𝑜𝑏𝑠
= 15 kHz which means that 𝑇𝑜𝑏𝑠 = 66.67 μs. Furthermore, 

assume that, e.g., K=720 sub-carriers are used and that N=1024 is chosen. The OFDM bandwidth is 

then approximately 𝐾𝑓𝛥 = 10.8 MHz around the carrier frequency, and the chosen sampling 

frequency is  𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 = 15.36 Msample per second. A typical OFDM interval in LTE is 71.36 

μs, and 14 OFDM signals (i.e. 14 size-1024 IDFT calculations) are then generated every ms.  

It is clear from the numbers in the example above that very fast and computationally efficient 

implementations are required to be able to build the state-of-the-art communication systems of today. 

It is recommended that the reader reflects over the implementation parameters given in the example 

above, including the size of the unit and its power-consumption (and cooling requirements). 

It should also be mentioned here that the “rotation” operation described on the previous page can 

alternatively be expressed as a matrix multiplication. Define the size-K column vector 𝒂 by 𝒂𝑡𝑟 =

(𝑎0 𝑎1…𝑎𝐾−1), where “tr” denotes transpose. Furthermore, define the size-N column vector 𝑿 by 

𝑿𝑡𝑟 = (𝑋0 𝑋1…𝑋𝑁−1).  

Then, by examining Equations (2.27) and (2.29), the “rotation” operation can be described by the 

following expression, 

                                                                        𝑿 = 𝑁𝑸𝑡𝒂                                                           (2.31) 

where the size NxK matrix  𝑸𝑡 has the value one in the (i,j):th elements given below (the rows are 

numbered from 0 to (N-1), and the columns are numbered from 0 to (K-1) : 

                                (𝑖, 𝑗): (0, 𝑘𝑟𝑐), (1, 𝑘𝑟𝑐 + 1), (2, 𝑘𝑟𝑐 + 2),… , (𝑔𝐾−1, 𝐾 − 1)                    (2.32) 

                  (𝑖, 𝑗): (𝑁 − 𝑘𝑟𝑐 , 0), (𝑁 − 𝑘𝑟𝑐 + 1,1) , (𝑁 − 𝑘𝑟𝑐 + 2,2),… , (𝑁 − 1, 𝑘𝑟𝑐 − 1)         (2.33) 

The total number of matrix element positions given in Equations (2.32)-(2.33) is K, and the value of 

each corresponding  matrix element is one. For the remaining matrix elements in 𝑸𝑡 the value is zero. 
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Note that the operation in Equation (2.31) automatically places N-K zeroes in the sequence 𝑿 since the 

matrix 𝑸𝑡 has N-K rows that contain only zeroes. Furthermore, every column in the matrix 𝑸𝑡 has 

only one element that is equal to one. See the two examples below.   

Example: If K=8 and N=12 in Equations (2.32)-(2.33), then 𝑸𝑡 equals (𝑘𝑟𝑐 = 3 and 𝑔7 = 4) : 

𝑸𝑡 =

(

 
 
 
 
 
 
 
 
 

𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎)

 
 
 
 
 
 
 
 
 

 

 

Example: If K=9 and N=12 in Equations (2.32)-(2.33), then 𝑸𝑡 equals (𝑘𝑟𝑐 = 4 and 𝑔8 = 4) : 

𝑸𝑡 =
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For future reference let us also observe that the vector 𝒂 can be recovered from the vector 𝑿 by a “re-

rotation”, 

                                                                          𝒂 =
1

𝑁
𝑸𝑟𝑿                                                           (2.34) 

where the size KxN matrix  𝑸𝑟 is defined by, 

                                                                           𝑸𝑟 = 𝑸𝑡
𝑡𝑟                                                           (2.35) 

Furthermore, the size KxK matrix 𝑸𝑟𝑸𝑡 is the identity matrix, while the size NxN matrix 𝑸𝑡𝑸𝑟 has K 

ones and N-K zeroes on the main diagonal (and the remaining elements are zero).             
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Let us now introduce a compact and convenient description of the DFT and IDFT operations that is 

based on matrices. Therefore, consider the (symmetric) size NxN matrix 𝑭  with matrix elements 𝐹𝑘,𝑛, 

                                                                 𝐹𝑚,𝑛 = 𝑒
−𝑗2𝜋𝑚𝑛/𝑁                                                       (2.36) 

The sequence (column vector) of frequency-domain samples 𝑿 obtained from the DFT operation in 

Equation (2.15) can then be written as, 

                                                                     𝑿 = 𝑭𝒙                                   (DFT)                      (2.37) 

and the column vector 𝒙 contains the N time-domain complex samples 𝑥0, 𝑥1, … , 𝑥𝑁−1, of the signal 

𝑥(𝑡) in Equation (2.3).  

In the same way consider the (symmetric) size NxN matrix 𝑮 with matrix elements 𝐺𝑚,𝑛, 

                                                                 𝐺𝑚,𝑛 = 𝑒
𝑗2𝜋𝑚𝑛/𝑁                                                          (2.38) 

The sequence of time-domain samples 𝒙 obtained from the IDFT operation in Equation (2.16) can then 

be written as, 

                                                                     𝒙 =
1

𝑁
𝑮𝑿                                   (IDFT)                     (2.39) 

 By combining Equation (2.31) and Equation (2.39) we obtain the compact description, 

                                                                  𝒙 =
𝟏

𝑵
𝑮𝑁𝑸𝑡𝒂                                                                (2.40) 

The matrices 𝑭  and 𝑮 are such that the size NxN matrix 
1

𝑁
𝑭𝑮 is the identity matrix. Furthermore, for 

future reference (in section 6), by combining Equation (2.34), Equation (2.37) and Equation (2.40) we 

obtain the equalities, 

                                         𝒂 =
1

𝑁
𝑸𝑟𝑿 =

1

𝑁
𝑸𝑟𝑭𝒙 =

1

𝑁
𝑸𝑟𝑭

𝟏

𝑵
𝑮𝑁𝑸𝑡𝒂                                          (2.41) 
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An alternative way to determine the impact of the individual signal 𝑥𝑛(𝑡) on 𝑋𝑙 is to first use 

Equation (2.17) to determine the Fourier transform of the discrete-time signal in Equation (2.22). The 

second step is then to sample this Fourier transform at 𝜈 = 𝑙/𝑁 and investigate its value.    

We have already found the Fourier transform of the analog signal 𝑥𝑛(𝑡), see Equation (2.9), and it was 

found that its spectrum is sinc-shaped around the baseband sub-carrier frequency 𝑔𝑘𝑓𝛥 Hz , with peak 

absolute value |𝑎𝑘|𝑇𝑜𝑏𝑠, and with zero-crossings at the frequencies 𝑓 = 𝑔𝑘𝑓𝛥  + 𝑖𝑓𝛥 (for any non-zero 

integer 𝑖). Hence, the width of the main-lobe is 2𝑓𝛥 Hz. 

From Equation (2.17) it is also known how to obtain the Fourier transform of the discrete-time signal 

if the Fourier transform of the corresponding analog signal is known. 

Therefore, the Fourier transform of the discrete-time signal in Equation (2.22) equals,  

            𝑓𝑠𝑎𝑚𝑝𝑋𝑎,𝑘(𝜈𝑓𝑠𝑎𝑚𝑝) = 𝑓𝑠𝑎𝑚𝑝𝑎𝑘𝑇𝑜𝑏𝑠
𝑠𝑖𝑛(𝜋(𝜈𝑓𝑠𝑎𝑚𝑝−

𝑔𝑘
𝑇𝑜𝑏𝑠

)𝑇𝑜𝑏𝑠)

𝜋(𝜈𝑓𝑠𝑎𝑚𝑝−
𝑔𝑘
𝑇𝑜𝑏𝑠

)𝑇𝑜𝑏𝑠
 𝑒
−𝑗𝜋(𝜈𝑓𝑠𝑎𝑚𝑝−

𝑔𝑘
𝑇𝑜𝑏𝑠

)𝑇𝑜𝑏𝑠
           (2.42) 

plus periodic repetitions of this function, spaced with normalized frequency 1 apart.  

Let us now use that 𝑓𝑠𝑎𝑚𝑝 = 𝑁/𝑇𝑜𝑏𝑠. Then Equation (2.42) is simplified to, 

                                   𝑓𝑠𝑎𝑚𝑝𝑋𝑎,𝑘(𝜈𝑓𝑠𝑎𝑚𝑝) = 𝑁𝑎𝑘
𝑠𝑖𝑛(𝜋𝑁(𝜈−𝑔𝑘/𝑁))

𝜋𝑁(𝜈−𝑔𝑘/𝑁)
 𝑒−𝑗𝜋𝑁(𝜈−𝑔𝑘/𝑁)                         (2.43) 

An important observation now is that sampling the frequency-function in equation (2.43), at the 

normalized frequency  𝜈 = 𝑙/𝑁, results in a non-zero value only if  𝑙 = 𝑔𝑘, and this non-zero value 

equals 𝑎𝑘𝑁.  

So, the impact on 𝑋𝑙 from the individual signal 𝑥𝑛(𝑡) is therefore found to be equal to 𝑎𝑘𝑁 only for 

the indices 𝑙 = 𝑔𝑘 + 𝑖𝑁, where 𝑖 denotes an arbitrary integer (due to the periodicity in 𝜈 with period 

1),  and zero for any other 𝑙. Observe that this is exactly the same result as was obtained earlier in 

connection to Equation (2.24) following an alternative path.  

It is  instructive to compare Equation (2.43) with Equation (2.23), especially in the fundamental 

interval  −1/2 ≤ 𝜈 ≤ 1/2. The reason why these two expressions are different is that the Fourier 

transform in equation (2.23) includes the total effect of aliasing (aliasing is a consequence when the 

chosen sampling frequency does not satisfy the sampling theorem, and the effect of aliasing therefore 

decreases as N increases), while equation (2.43) only represents the contribution to the Fourier 

transform given by the term corresponding to the index k=0 in Equation (2.17).  

In the next section we will add (append) the so-called cyclic prefix (CP) to the vector 𝒙 of time-

domain samples (see Equation (2.30)), and also use digital-to-analog (D/A) converters to create the 

analog real signals that are needed in the construction of the desired OFDM signal. 
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A short summary of some basic relationships in step 3: 

 The size-N input sequence to the IDFT, i.e. the frequency-domain samples obtained from the 

DFT, are obtained from Equations (2.18) - (2.21) (note that N-K samples are equal to zero). 

 The examples on page 16 are strongly recommended. 

 Figure 6 on page 17 illustrates 𝑋(𝜈) for a specific case, and this figure also indicates where 

the QAM symbols are located along the normalized frequency axis. Observe that the bold 

indices in this figure indicate those frequency-domain samples that are used by the size-12 

IDFT.  

 The Examples in Figure 6  on page 18 are strongly recommended. 

 The size-N input sequence to the IDFT, i.e. the frequency-domain samples obtained from the 

DFT, are also given by Equations (2.27) and (2.29) (the remaining N-K samples are equal to 

zero). Observe the “rotation” construction on page 19! 

 Observe the practical importance of Equation (2.30). See also Figure 7 on page 27.  

 Compact matrix descriptions are found on pages 20-22.   
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Section 3: The Cyclic Prefix (CP) and Digital-to-Analog (D/A) conversion  

Adding (appending) the Cyclic prefix (CP) 

In the previous section we found how the size-N IDFT could be used to efficiently create 𝑁 time-

domain complex samples of the equivalent complex baseband OFDM signal 𝑥(𝑡) in Equations (2.2) 

and (2.3). These N samples will in this section be time-shifted 𝑇𝐶𝑃 seconds and they then become the 

time-domain samples of the OFDM signal 𝑥(𝑡 − 𝑇𝐶𝑃) within the time-interval 𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠, i.e. 

within the observation interval of the receiver. We will in this section also specify the remaining L  

time-domain samples of the OFDM signal that correspond  to the cyclic prefix (CP) within the time-

interval 0 ≤ 𝑡 ≤  𝑇𝐶𝑃.  

The OFDM signal that we are in progress to synthesize has a CP of duration 𝑇𝐶𝑃  in the beginning of 

the OFDM signal interval 𝑇𝑠, and the remaining part of the OFDM signal has duration 𝑇𝑜𝑏𝑠=𝑇𝑠 − 𝑇𝐶𝑃. 

As was mentioned in the first section, the main purpose of the CP is to allow for the initial transient 

behavior of the multi-path channel output signal to occur within the duration of the CP. In a sense, the 

CP acts as a “guard interval” in the time-domain. 

It is also very important that the duration of the cyclic prefix is at least as large as the duration of the 

impulse response of the channel. This will be explained in detail in section 5. An additional 

requirement is that 𝑇𝐶𝑃 ≪ 𝑇𝑠.  

As an example: In LTE (from [9]) a typical choice of 𝑇𝐶𝑃 is  𝑇𝐶𝑃 = 4.69 μs which is 6.57 % of the 

OFDM symbol interval 𝑇𝑠. 

In this section we will construct the CP by adding (appending) 𝑳 additional time-domain samples 

before the already created 𝑵 samples. As will be seen, the CP is constructed by adding a so-called 

size-L periodic extension of the 𝑁 samples. In this way all 𝐿 + 𝑁 samples of a complex baseband 

OFDM signal within the time-interval 0 ≤ 𝑡 ≤  𝑇𝑠 is obtained, and 𝑇𝐶𝑃 = 𝐿𝑇𝑜𝑏𝑠/𝑁. The remaining 

steps is then D/A converters (also in this section) and frequency up-conversion (in section 4). 

Now observe that the signal 𝑥(𝑡) in Equation (2.3) has duration 𝑇𝑜𝑏𝑠. However, the expression that is 

used to define 𝑥(𝑡) equals ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡𝐾−1

𝑘=0 , and this expression is periodic in 𝒕 with period  𝑻𝒐𝒃𝒔. 

Therefore, this expression is identical within the two time-intervals  −𝑇𝐶𝑃 ≤ 𝑡 ≤ 0  and             

(𝑇𝑜𝑏𝑠 − 𝑇𝐶𝑃) ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠. Observe now that the waveform corresponding to the first time-interval 

−𝑇𝐶𝑃 ≤ 𝑡 ≤ 0  is used to define the so-called cyclic prefix (CP). Furthermore, L samples of this   

waveform that defines the CP will be identical to the L last samples in the size-N vector 𝐱, since the L 

last samples in  𝐱 are samples that correspond to the latter time-interval  (𝑇𝑜𝑏𝑠 − 𝑇𝐶𝑃) ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠. 

So, if we consider the expression  ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡𝐾−1

𝑘=0  only within the time-interval −𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠 it 

defines an OFDM signal, and the OFDM signal interval is 𝑇𝑠 = 𝑇𝐶𝑃 + 𝑇𝑜𝑏𝑠. Furthermore, all L+N 

time-domain samples are known since the size-N vector 𝐱 has already been created, and, as was 

described above, the L samples corresponding to the CP are identical to the last L samples in 𝐱.  

Since we should have a causal OFDM signal we need to introduce a time-delayed version of the 

expression studied above. With a time delay equal to 𝑇𝐶𝑃 seconds we get the expression    

∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0  within the OFDM signal interval  0 ≤ 𝑡 ≤  𝑇𝑆. This is the final desired 

expression for the synthesized complex baseband OFDM signal.     
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What remains to be done in the digital domain is to construct a new size-(L+N) vector 𝒖 that contains 

all (L+N) time-domain samples of the expression  ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0  within the OFDM signal 

interval  0 ≤ 𝑡 ≤  𝑇𝑆. 

Based on the discussion about periodicity above let us therefore construct a new size-(L+N) vector 𝒖 

as a so-called  periodic extension of the size-N vector 𝐱. This means that the L last samples in 𝒙 are 

copied and placed as the first L samples in 𝒖. The remaining N samples in 𝒖 are identical to 𝒙. This 

means that,   

                                 𝑢0 = 𝑥𝑁−𝐿,…, 𝑢𝐿−1 = 𝑥𝑁−1, 𝑢𝐿 = 𝑥0,…, 𝑢𝐿+𝑁−1 = 𝑥𝑁−1.                         (3.1) 

The construction of the vector 𝒖 above implies that the first L samples in  𝒖 are identical with the last 

L samples in 𝒖 , and this reflects the periodicity discussed above.  

The duration of the OFDM signal interval is 𝑇𝑠, and it can be expressed as,   

                                                    𝑇𝑠 =
(𝐿+𝑁)𝑇𝑜𝑏𝑠

𝑁
= 𝑇𝐶𝑃 + 𝑇𝑜𝑏𝑠                                                      (3.2)  

The vector 𝒖 in equation (3.1) contains (L+N) time-domain complex samples of a complex 

baseband OFDM signal defined over the entire OFDM signal interval 𝟎 ≤ 𝒕 ≤  𝑻𝒔.  This complex 

baseband OFDM signal is here denoted 𝒖(𝒕), and based on the previous discussion in this section, 

the OFDM signal 𝒖(𝒕) is,   

                 𝑢(𝑡) = 𝑢𝑅𝑒(𝑡) + 𝑗𝑢𝐼𝑚(𝑡) = ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0 ,      0 ≤ 𝑡 ≤  𝑇𝑠                      (3.3) 

and 𝑢(𝑡) equals zero outside this interval. The OFDM signal 𝑢(𝑡) in Equation (3.3) includes the CP of 

duration 𝑇𝐶𝑃 and also the observation interval of duration 𝑇𝑜𝑏𝑠. Furthermore, the m:th sample in the 

vector 𝒖 is, 

                                       𝑢𝑚 = 𝑢(𝑚𝑇𝑜𝑏𝑠/𝑁),   𝑚 = 0,1, … , (𝐿 + 𝑁 − 1)                                      (3.4)  

As we will see in section 4, and in analogy with Equations (2.2) and (2.5), the desired real high-

frequency OFDM signal, here denoted 𝑠(𝑡), is obtained as,         

                     𝑠(𝑡) = 𝑅𝑒{𝑢(𝑡)𝑒𝑗2𝜋𝑓𝑟𝑐𝑡} = 𝑢𝑅𝑒(𝑡) cos(2𝜋𝑓𝑟𝑐𝑡) − 𝑢𝐼𝑚(𝑡) sin(2𝜋𝑓𝑟𝑐𝑡)                (3.5) 

Our work in the discrete-time (digital) domain is now finished and it is time to enter the continuous-

time (analog) domain. The practical way to do this is to use D/A converters. 
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D/A conversion 

In analogy with Equation (3.5) the construction of the desired real high-frequency OFDM signal 𝑠(𝑡) 

is straight-forward (𝑠𝐼(𝑡) = 𝑢𝑅𝑒(𝑡), and 𝑠𝑄(𝑡) = 𝑢𝐼𝑚(𝑡)), 

                                               𝑠(𝑡) = 𝑠𝐼(𝑡) cos(2𝜋𝑓𝑟𝑐𝑡) − 𝑠𝑄(𝑡) sin(2𝜋𝑓𝑟𝑐𝑡)                        (3.6) 

Hence, we first need to construct the two analog signals 𝑠𝐼(𝑡) and 𝑠𝑄(𝑡) that correspond to the real 

part  𝒖𝑅𝑒 and to the imaginary part 𝒖𝐼𝑚 of the vector 𝒖 in Equations (3.1) and (3.4), respectively, 

where     

                                                              𝒖 = 𝒖𝑅𝑒 + 𝑗𝒖𝐼𝑚                                                               (3.7)    

These two real-valued sequences each feeds a separate D/A converter as is illustrated in Figure 7, and 

the samples in each sequence arrive with the rate 𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥  samples per second.  

 

Add CP

Re{ } D/A

D/AIm{ }
  

  Analog I-component of the 
OFDM signal

Analog Q-compont of the 
OFDM signal

   
IDFT

 

Figure 7. Block diagram illustrating the operations in the digital domain, and the transition to the 

analog domain. The IDFT is given in Equation (2.30) (and in Equation (2.18)). 

Let 𝑠𝐼(𝑡) denote the analog output signal (i.e. the I-component of the OFDM signal) that results from 

the sequence (or vector) 𝒖𝑅𝑒. In the same way, let 𝑠𝑄(𝑡) denote the analog output signal (i.e. the Q-

component of the OFDM signal) that results from the sequence (or vector) 𝒖𝐼𝑚.  

We will now go through the D/A conversion of the discrete-time signal  𝒖𝑅𝑒 to the continuous-time 

(analog) signal  𝑠𝐼(𝑡). 

The ideal goal of the D/A converter is to create as output signal an continuous-time (analog) voltage 

waveform that preserves the samples in 𝒖𝑅𝑒 in the time-domain, and also preserves the frequency 

content of 𝒖𝑅𝑒 within the fundamental interval   −𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2, i.e. within the normalized 

interval  −1/2 ≤ 𝜈 ≤ 1/2 (compare with Figure 6 on page 17, but assume now a spectrum that is 

symmetric around 𝜈 = 0, since 𝒖𝑅𝑒 is a real sequence). Ideally, given the samples in 𝒖𝑅𝑒, and given 

the sampling frequency 𝑓𝑠𝑎𝑚𝑝, the output analog waveform can be determined and it is unique.   

The overall operation of the D/A converter may be interpreted as an interpolation, and typically this 

can be achieved by constructing the signal 𝑠𝐼(𝑡) as, 

                                                         𝑠𝐼(𝑡) = ∑ 𝑢𝑅𝑒,𝑚
𝐿+𝑁−1
𝑚=0 𝑔𝑖(𝑡 −

𝑚𝑇𝑜𝑏𝑠

𝑁
)                                         (3.8) 

where 𝑔𝑖(𝑡) is referred to as an interpolation filter or reconstruction filter. Note in Equation (3.8) that 

𝑠𝐼(𝑡) is created by multiplying the m:th sample 𝑢𝑅𝑒,𝑚 with a time-dependent and m-dependent  

function  𝑔𝑖(𝑡 −
𝑚𝑇𝑜𝑏𝑠

𝑁
), and then  all L+N such contributions are added.  
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Hence, in general the value 𝑠𝐼(𝑡) is created using all elements in the vector 𝒖𝑅𝑒. However, as is also 

seen in Equation (3.8), the total contribution to the output 𝑠𝐼(𝑡) from the individual sample 𝑢𝑅𝑒,𝑚 

equals, 

                                                                          𝑢𝑅𝑒,𝑚𝑔𝑖(𝑡 −
𝑚𝑇𝑜𝑏𝑠

𝑁
)                                                       (3.9) 

and Equation (3.8) is the superposition of L+N such contributions.  

Furthermore, at the m:th sampling-time we know that 𝑠𝐼 (
𝑚𝑇𝑜𝑏𝑠

𝑁
) = 𝑢𝑅𝑒,𝑚 which means that             

𝑔𝑖(𝑡 = 0) = 1, and 𝑔𝑖 (𝑡 =
𝑙𝑇𝑜𝑏𝑠

𝑁
) = 0 where 𝑙 is any non-zero integer.  

It is therefore reasonable to assume that the contribution in Equation (3.9) is large at, and around, 

𝑡 =
𝑚𝑇𝑜𝑏𝑠

𝑁
 and then gets  “smaller” as 𝑡 moves away from this value. In summary; the filter 𝑔𝑖(𝑡) 

should have its peak value 1 at  𝑡 = 0 , should be equal to zero at 𝑡 =
𝑙𝑇𝑜𝑏𝑠

𝑁
 where 𝑙 is any non-zero 

integer, and in general “decay” as |𝑡| increases.    

Let 𝑈𝑅𝑒(𝜈) denote the Fourier transform of the discrete-time signal 𝒖𝑅𝑒, and let 𝑆𝐼(𝑓) denote the 

Fourier transform of the output continuous-time signal 𝑠𝐼(𝑡). An important observation is that 

Equation (3.8) can be interpreted as an analog filtering operation, where 𝑔𝑖(𝑡) is the impulse 

response of the filter and 𝐺𝑖(𝑓) denotes the transfer function of the filter.  

The analog input signal to the filter may be expressed as  ∑ 𝑢𝑅𝑒,𝑚
𝐿+𝑁−1
𝑚=0 𝛿(𝑡 −

𝑚𝑇𝑜𝑏𝑠

𝑁
). It is left as an 

exercise to the reader to show that, with 𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥,    

                                                                          𝑆𝐼(𝑓) = 𝑈𝑅𝑒(𝜈 = 𝑓/𝑓𝑠𝑎𝑚𝑝)𝐺𝑖(𝑓)                                  (3.10) 

Note that since 𝑈𝑅𝑒(𝜈) is periodic in 𝜈 with period 1, the Fourier transform  𝑈𝑅𝑒(𝜈 = 𝑓/𝑓𝑠𝑎𝑚𝑝) of the 

analog input signal is periodic in 𝒇 with period 𝒇𝒔𝒂𝒎𝒑. 

Hence, to extract only the desired frequency content in 𝒖𝑅𝑒 corresponding to the fundamental 

frequency interval  −𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2  the transfer function 𝑮𝒊(𝒇) of the filter should have 

low-pass characteristics with an ideal cut-off frequency equal to 𝑓𝑠𝑎𝑚𝑝/2 Hz.    

It is here instructive to investigate some properties of the ideal reconstruction filter. This filter can be 

derived from the sampling theorem and the result is a filter with infinite duration, see ref. [1],  

                                                                       𝑔𝑖,𝑖𝑑𝑒𝑎𝑙(𝑡) =
sin (𝜋𝑓𝑠𝑎𝑚𝑝𝑡)

𝜋𝑓𝑠𝑎𝑚𝑝𝑡
                                          (3.11)                                  

If this ideal filter is used in Equation (3.8) then we find that the particular sample 𝑠𝐼(𝑡 = 𝑘𝑇𝑜𝑏𝑠/𝑁) =

𝑠𝐼(𝑡 = 𝑘/𝑓𝑠𝑎𝑚𝑝) = 𝑢𝑅𝑒,𝑘, and this is due to the zero-crossings in 𝑔𝑖,𝑖𝑑𝑒𝑎𝑙(𝑡).  

Furthermore, this ideal filter is actually an ideal low-pass filter i.e. having a non-zero (and symmetric) 

transfer function only within the frequency interval −𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2, 

                                                   𝐺𝑖,𝑖𝑑𝑒𝑎𝑙(𝑓) = 1/𝑓𝑠𝑎𝑚𝑝 ,    − 𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2                      (3.12) 

Hence, using this ideal filter in Equation (3.8) indeed extracts only the fundamental frequency interval. 
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However, there are some practical difficulties with the ideal filter such as its non-causal property and 

the infinite duration of its impulse response.  

Instead of trying to implement a single filter 𝑔𝑖(𝑡) with sufficiently good properties, it is common to 

split 𝑔𝑖(𝑡) into two filters denoted 𝑔𝑖,1(𝑡) and 𝑔𝑖,2(𝑡). First the simpler filter 𝑔𝑖,1(𝑡) is used in 

Equation (3.8). The resulting analog signal from this filter is then filtered with the second filter 𝑔𝑖,2(𝑡). 

The final output signal from the second filter then has the Fourier transform, 

                                    𝑈𝑅𝑒(𝜈 = 𝑓/𝑓𝑠𝑎𝑚𝑝)𝐺𝑖,1(𝑓)𝐺𝑖,2(𝑓) = 𝑈𝑅𝑒(𝜈 = 𝑓/𝑓𝑠𝑎𝑚𝑝)𝐺𝑖(𝑓)                     (3.13) 

Hence, the convolution between  𝑔𝑖,1(𝑡) and 𝑔𝑖,2(𝑡) equals the overall filter 𝑔𝑖(𝑡). 

A typical choice of the first filter is  𝑔𝑖,1(𝑡) = 1 in the time-interval 0 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠/𝑁 , and 𝑔𝑖,1(𝑡) = 0 

outside this interval. The analog output signal from this filter is then a so-called staircase-function, i.e. 

the output signal consists of a sequence of  𝑇𝑜𝑏𝑠/𝑁-long rectangular pulses where the amplitude of the 

m:th pulse equals the value of the sample 𝑢𝑅𝑒,𝑚. Therefore, this choice of filter is referred to as S/H 

filter (Sample-and-Hold). 

The Fourier transform of the S/H filter 𝑔𝑖,1(𝑡) above is, 

                                                           𝐺𝑖,1(𝑓) =
1

𝑓𝑠𝑎𝑚𝑝

𝑠𝑖𝑛(𝜋𝑓/𝑓𝑠𝑎𝑚𝑝)

𝜋𝑓/𝑓𝑠𝑎𝑚𝑝
 𝑒−𝑗𝜋𝑓/𝑓𝑠𝑎𝑚𝑝                                    (3.14)          

which is significantly different then 𝐺𝑖,𝑖𝑑𝑒𝑎𝑙(𝑓) in Equation (3.12). 

To improve the D/A conversion above let us, as an example, choose the second filter as 𝑔𝑖,2(𝑡) =

𝑓𝑠𝑎𝑚𝑝𝑔𝑖,1(𝑡)  where 𝐺𝑖,1(𝑓) is given by Equation (3.14). The overall filter 𝑔𝑖(𝑡) is then triangular, 

with peak value equal to 1 at  𝑡 = 𝑇𝑜𝑏𝑠/𝑁 and with duration 2𝑇𝑜𝑏𝑠/𝑁 (symmetric around 𝑡 = 𝑇𝑜𝑏𝑠/

𝑁). Observe that the analog output signal from this second filter then consists of straight lines 

connecting the sample values. Observe also that a time-delay equal to 𝑇𝑜𝑏𝑠/𝑁 (corresponding to a 

sampling interval) here is obtained. 

The Fourier transform of the overall triangular filter 𝑔𝑖(𝑡) is, 

                                                                𝐺𝑖(𝑓) =
1

𝑓𝑠𝑎𝑚𝑝
(
sin(

𝜋𝑓

𝑓𝑠𝑎𝑚𝑝
)

𝜋𝑓

𝑓𝑠𝑎𝑚𝑝

)2  𝑒−𝑗2𝜋𝑓/𝑓𝑠𝑎𝑚𝑝                              (3.15) 

and with this filter a more efficient overall low-pass filtering is obtained. Furthermore, the phase 

function is a linear function of frequency over the fundamental frequency interval of interest, and it is 

seen in the exponential in Equation (3.15) that the linear phase corresponds to the time-delay 𝑇𝑜𝑏𝑠/𝑁 

(=1/𝑓𝑠𝑎𝑚𝑝). 

In case additional improvements in the D/A conversion process are needed additional low-pass 

filtering can be implemented. One possibility may be to try to synthesize an overall interpolation filter 

that is a symmetrically time-truncated and time-delayed version of the ideal filter. There is also the 

possibility of digital filtering of the sequence 𝒖𝑅𝑒 before D/A-conversion, which may relax the 

requirements on the analog interpolation filter. It should however be observed that efficient high 

precision (e.g. 16 bits per sample or more) D/A and A/D converters operating at high sampling 

frequencies are challenging to implement in practice, and different implementation strategies may be 

used.       
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This concludes our introductory treatment on D/A-converters. To simplify the presentations in the next 

sections we will here assume that the two signals 𝑠𝐼(𝑡) and 𝑠𝑄(𝑡) are almost perfectly reconstructed 

using almost ideal D/A-converters in Figure 7 on page 27. This means that we will assume throughout 

that both 𝑆𝐼(𝑓) and 𝑆𝑄(𝑓) can be closely approximated to be ideal. Hence, it is assumed that both 

these frequency functions are equal to zero outside the frequency interval −𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2, 

and within this interval they are equal to, 

                                 𝑆𝐼(𝑓) =
1

𝑓𝑠𝑎𝑚𝑝
𝑈𝑅𝑒 (𝜈 =

𝑓

𝑓𝑠𝑎𝑚𝑝
) ,     𝑖𝑛   − 𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2                   (3.16)                

                                 𝑆𝑄(𝑓) =
1

𝑓𝑠𝑎𝑚𝑝
𝑈𝐼𝑚 (𝜈 =

𝑓

𝑓𝑠𝑎𝑚𝑝
) ,     𝑖𝑛   − 𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2                  (3.17)                       

In the time domain Equations (3.16)-(3.17) mean that we assume that (from Equation (3.3)), 

                                     𝑠𝐼(𝑡) + 𝑗𝑠𝑄(𝑡) = ∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0 ,      0 ≤ 𝑡 ≤  𝑇𝑠                        (3.18) 

We are now ready for the final stages in the transmitter, i.e. frequency up-conversion, power 

amplification and the antenna coupling unit.  

 

A short summary of some basic relationships in Section 3: 

 Equation (3.1) specifies the size-(L+N) vector of time-domain samples that represents the 

entire OFDM signal interval. See also Equation (3.4). 

 Observe that the first L samples in  𝒖 are identical with the last L samples in 𝒖. 

 The cyclic prefix is represented by the first L samples in the vector 𝒖, see also Equation (3.2). 

 Observe the importance of Equations (3.3) and (3.5).  

 Figure 7 on page 27 illustrates the operations in the digital domain, and the transition to the 

analog domain. 

 Observe the interpretation of the D/A conversion process as an analog filter operation. 

 The consequences of D/A conversion using a “sample-and-hold” reconstruction filter or a 

“triangular” reconstruction filter, respectively, are discussed on page 29.  

 Observe in Equations (3.16)-(3.18) and in Figure 7 that (ideally) the continuous-time I and Q 

signals of the desired OFDM signal are obtained after the D/A units.   

 

 

 

 

 

 

 

 



 

31 
 

Section 4: Frequency up-conversion and power amplification   

Similar to Equation (3.6) the construction of the OFDM signal 𝑠(𝑡) is straight-forward,  

                                  𝑠(𝑡) = 𝑠𝐼(𝑡) cos(2𝜋𝑓𝑟𝑐𝑡 + 𝜙) − 𝑠𝑄(𝑡) sin(2𝜋𝑓𝑟𝑐𝑡 + 𝜙)                              (4.1) 

where 𝑠𝐼(𝑡) and 𝑠𝑄(𝑡) are given in Equation (3.18). Note however that in Equation (4.1) we have also 

taken into account the actual phase 𝜙 of the high-frequency signal oscillators (mixer stage). This is 

illustrated in Figure 8 for the case when 𝐾 is odd for which 𝑓𝑟𝑐 = 𝑓𝑐.  

To obtain an OFDM signal with sufficient signal power, a power amplifier (PA) is needed. This means 

that if the amplifier amplifies the input signal amplitude with a factor 𝐴 then the signal power is 

changed with a factor 𝐴2.  

It should be remembered that an OFDM signal basically equals the summation of K QAM signals, see 

e.g., Equation (1.13). Therefore, we can expect that there will be time-intervals where the OFDM 

signal is weak due to destructive addition of the K signals. In the same way we can expect that there 

will be time-intervals where the OFDM signal is strong due to constructive addition of the K signals. 

Hence, there will be amplitude (envelope) variations in the OFDM signal, and if these variations are 

too large they will cause some problems concerning the implementation of the power amplifier. The 

so-called Peak-to-Average-Power-Ratio (PAPR, see, e.g., ref. [9]) is a common parameter to 

quantify the instantaneous power variation in a signal. For signals with high PAPR it is a challenge to 

implement power-efficient and low-cost power amplifiers, and this is especially important in, e.g., the 

uplink in mobile communication systems.  

                      

Power 
amplifier

Antenna
coupling unit

s(t)

                                             

Figure 8. Block diagram illustrating frequency up-conversion (mixer stage) to the carrier frequency (K 

is odd), the power amplifier, and the antenna coupling unit. The OFDM signal 𝑠(𝑡) is given in 

Equation (4.1). 

The last block in Figure 8 is the antenna coupling unit which is the interface to the antenna. Finally, 

the OFDM signal is radiated from the antenna as an electro-magnetic wave propagating in space. 

We have here only briefly mentioned the power amplifier and the antenna. The reader is recommended 

to study these important parts in more advanced literature. 

In the next section we will investigate how the multi-path channel changes the transmitted OFDM 

signal.   
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Section 5: The multi-path (linear filter) channel, and the additive white Gaussian noise (AWGN)   

The OFDM signal 𝑠(𝑡) in Equation (4.1) is amplified and transmitted through a multi-path channel (or 

a linear filter channel), and in this section we will determine how the transmitted signal is changed by 

this channel. It is here assumed that the filter can be considered to be time-invariant over a few OFDM 

symbol intervals.  

Since the channel is linear it is convenient to first determine how the QAM signal with index k in the 

OFDM signal is changed by the channel. The result obtained will then also tell us how the remaining 

K-1 QAM signals are changed by the channel. 

Using Equations (3.18) and (4.1) we conclude that the transmitted  QAM signal that carries the signal 

point 𝑎𝑘 can be expressed as,  

               𝐴𝑅𝑒{𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝑒𝑗(2𝜋𝑓𝑟𝑐𝑡+𝜙)} = 𝐴𝑅𝑒{𝑎𝑘𝑒

𝑗(2𝜋𝑓𝑘𝑡+𝜃𝑘)},     0 ≤ 𝑡 ≤  𝑇𝑠        (5.1) 

and this signal is zero outside the OFDM symbol interval. 𝐴 denotes the amplitude amplification in the 

power-amplifier. The sub-carrier frequency is (see also Equation (1.8)) 𝑓𝑘, 𝑓𝑘 = 𝑓𝑟𝑐 + 𝑔𝑘𝑓𝛥, and the 

phase 𝜃𝑘  in Equation (5.1) is, 

                                                       𝜃𝑘 = −
2𝜋𝑔𝑘𝑇𝐶𝑃

𝑇𝑜𝑏𝑠
+ 𝜙                                                          (5.2)  

The linear filter channel has the (real) impulse response ℎ(𝑡), and its input signal is denoted 𝑞(𝑡), see 

also Figure 9.   

                                                     

h(t)
H(f)

 

Figure 9. Illustrating a linear filter channel (e.g. a multi-path channel). 

In case the linear filter is a multi-path channel with 𝑃 signal paths its impulse response may be 

expressed as, 

                                                              ℎ(𝑡) = ∑ 𝛼𝑝𝛿(𝑡 − 𝜏𝑝)
𝑃
𝑝=1                                                    (5.3) 

If we assume (for simplicity) that the delays in the multi-path channel are numbered in increasing 

order then we have that  𝜏1 < 𝜏2 < ⋯ < 𝜏𝑃. Furthermore, in this case it is easy to identify the 

duration of the impulse response, here denoted 𝑇𝑐ℎ, to be equal to the largest delay, i.e. 𝑇𝑐ℎ = 𝜏𝑃.   

It is also straight-forward to obtain the transfer function 𝐻(𝑓) of the multi-path channel in Equation 

(5.3), 

                                                  𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 = ∑ 𝛼𝑝
𝑃
𝑝=1

∞

−∞
𝑒−𝑗2𝜋𝑓𝜏𝑝                            (5.4) 
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Let us now investigate the output signal, here denoted 𝑧(𝑡), from a channel that can be represented by 

the impulse response ℎ(𝑡). The assumptions below are made, 

 The input signal 𝑞(𝑡) is given by Equation (5.1). 

 It is assumed that the impulse response  ℎ(𝑡) = 0 outside the time-interval  0 ≤ 𝑡 ≤ 𝑇𝑐ℎ. 

 It is assumed that 𝑇𝐶𝑃 ≥ 𝑇𝑐ℎ (in practice we also have that  𝑇𝑠 ≫ 𝑇𝐶𝑃). 

The convolutional integral gives us a way to calculate the output signal 𝑧(𝑡), 

                                                  𝑧(𝑡) = ∫ ℎ(𝑥)𝑞(𝑡 − 𝑥)𝑑𝑥
∞

−∞
= ∫ ℎ(𝑥)𝑞(𝑡 − 𝑥)𝑑𝑥

𝑇𝑐ℎ
0

                    (5.5) 

Since the function 𝑞(𝑡) equals zero outside the interval 0 ≤ 𝑡 ≤ 𝑇𝑠, the function 𝑞(𝑡 − 𝑥) in Equation 

(5.5) equals zero outside the interval (𝑡 − 𝑇𝑠) ≤ 𝑥 ≤ 𝑡.  

The output signal  𝑧(𝑡) is therefore zero outside the time-interval 0 ≤ 𝑡 ≤ 𝑇𝑠 + 𝑇𝑐ℎ. However, to 

calculate the output signal within this interval it is convenient to study the three sub-intervals below. 

𝟎 ≤ 𝒕 ≤ 𝑻𝒄𝒉: 

In this time-interval the output signal  𝑧(𝑡) in Equation (5.5) is, 

                                                   𝑧(𝑡) = ∫ ℎ(𝑥)𝐴𝑅𝑒{𝑎𝑘𝑒
𝑗(2𝜋𝑓𝑘(𝑡−𝑥)+𝜃𝑘)}𝑑𝑥

𝑡

0
                                  (5.6) 

and this is the initial transient behavior of the output signal.  

𝑻𝒄𝒉 ≤ 𝒕 ≤ 𝑻𝒔: 

In this time-interval the output signal 𝑧(𝑡) in Equation (5.5) is, 

𝑧(𝑡) = ∫ ℎ(𝑥)𝐴𝑅𝑒{𝑎𝑘𝑒
𝑗(2𝜋𝑓𝑘(𝑡−𝑥)+𝜃𝑘)}𝑑𝑥

𝑇𝑐ℎ
0

= 𝐴𝑅𝑒{𝑎𝑘𝑒
𝑗(2𝜋𝑓𝑘𝑡+𝜃𝑘) ∫ ℎ(𝑥)𝑒−𝑗2𝜋𝑓𝑘𝑥𝑑𝑥

𝑇𝑐ℎ
0

}       (5.7) 

Observe that the integral on the right-hand side equals the transfer function of the filter, evaluated at 

the sub-carrier frequency 𝑓𝑘, i.e. 𝐻(𝑓𝑘)! 

Therefore, we can write, 

                                                       𝑧(𝑡) = 𝐴𝑅𝑒{𝑎𝑘𝐻(𝑓𝑘)𝑒
𝑗(2𝜋𝑓𝑘𝑡+𝜃𝑘)}                                           (5.8) 

This result is indeed very important and it should be compared with the input signal in Equation (5.1). 

Equation (5.8) shows that within the time-interval 𝑇𝑐ℎ ≤ 𝑡 ≤ 𝑇𝑠 the output signal is also a QAM 

signal, but the signal point 𝑎𝑘 is distorted to be 𝑎𝑘𝐻(𝑓𝑘). Multiplication with 𝐻(𝑓𝑘) =

|𝐻(𝑓𝑘)|𝑒
𝑗𝑎𝑟𝑔(𝐻(𝑓𝑘)) means that the original signal point 𝑎𝑘 is attenuated with  |𝐻(𝑓𝑘)| and phase 

rotated with 𝑎𝑟𝑔(𝐻(𝑓𝑘)).  

𝑻𝒔 ≤ 𝒕 ≤ 𝑻𝒔 + 𝑻𝒄𝒉: 

In this time-interval the output signal  𝑧(𝑡) in Equation (5.5) is, 

                                                   𝑧(𝑡) = ∫ ℎ(𝑥)𝐴𝑅𝑒{𝑎𝑘𝑒
𝑗(2𝜋𝑓𝑘(𝑡−𝑥)+𝜃𝑘)}𝑑𝑥

𝑇𝑐ℎ
𝑡−𝑇𝑠

                              (5.9) 

and this is the ending transient behavior of the output signal.  
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Now, if the input signal to the filter equals the OFDM signal 𝐴𝑠(𝑡) where 𝑠(𝑡) is given by Equations 

(3.18) and (4.1) we conclude that the input  OFDM signal can be expressed as,  

INPUT OFDM: 𝐴𝑠(𝑡) = 𝐴𝑅𝑒{(∑ 𝑎𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃))𝑒𝑗(2𝜋𝑓𝑟𝑐𝑡+𝜙)𝐾−1

𝑘=0 },    0 ≤ 𝑡 ≤  𝑇𝑠             (5.10) 

or alternatively as, 

INPUT OFDM: 𝐴𝑠(𝑡) = 𝐴𝑅𝑒{∑ 𝑎𝑘
𝐾−1
𝑘=0 𝑒𝑗(2𝜋𝑓𝑘𝑡+𝜃𝑘)},                                 0 ≤ 𝑡 ≤  𝑇𝑠             (5.11) 

and this input OFDM signal is zero outside the OFDM symbol interval. The sub-carrier frequency 𝑓𝑘, 

the phase 𝜃𝑘 and the reference carrier frequency 𝑓𝑟𝑐 are given in connection to Equation (5.1). 

Applying the results in Equations (5.6)-(5.9) to each of the K input QAM signals, and using that 

𝑇𝐶𝑃 ≥ 𝑇𝑐ℎ we find that the output signal 𝒛(𝒕) is also an OFDM signal in the time-interval 

𝑻𝑪𝑷 ≤ 𝒕 ≤ 𝑻𝒔, where it can be expressed as, 

OUTPUT OFDM:   𝑧(𝑡) = 𝐴𝑅𝑒{(∑ 𝑎𝑘𝐻(𝑓𝑘)𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃))𝑒𝑗(2𝜋𝑓𝑟𝑐𝑡+𝜙)𝐾−1

𝑘=0 },   𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠  (5.12)                                                       

or alternatively as,  

OUTPUT OFDM:  𝑧(𝑡) = 𝐴𝑅𝑒{∑ 𝑎𝑘𝐻(𝑓𝑘)
𝐾−1
𝑘=0 𝑒𝑗(2𝜋𝑓𝑘𝑡+𝜃𝑘)},                             𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠    (5.13) 

Furthermore, in the relatively short time-intervals 0 ≤ 𝑡 ≤  𝑇𝐶𝑃 and  𝑇𝑠 ≤ 𝑡 ≤ 𝑇𝑠 + 𝑇𝐶𝑃 the output 

signal 𝑧(𝑡) contains a transient behavior. Note that if the next input OFDM signal starts at 𝑡 = 𝑇𝑠 then 

the corresponding initial output transient will coincide (i.e. overlap) with the ending output transient of 

the current OFDM signal. This overlap of OFDM signals may cause inter-symbol interference in the 

receiver unless counter-measures are made at the receiver side. As we will see in section 6, a simple 

solution can be used in the receiver to eliminate the possibility of such inter-symbol interference. 

The signal appearing at the receiving antenna (see Figure 10 on page 38) can be expressed as, 

                                                              𝑧(𝑡) + 𝑛(𝑡) + 𝛾(𝑡)                                                          (5.14) 

where 𝑧(𝑡) is the desired signal described in Equations (5.12)-(5.13) and in the text just below these 

equations. The term 𝑛(𝑡) in Equation (5.14) is assumed to be additive white Gaussian noise (AWGN). 

The power spectral density of the random process 𝑛(𝑡) equals a constant over the entire frequency axis 

(“white”), and this constant is denoted  𝑁0 /2. The signal 𝛾(𝑡) in Equation (5.14) represents all other 

signals that may be present at the receiving antenna. The frequency content of 𝛾(𝑡), within the 

bandwidth occupied by 𝑧(𝑡), is assumed to be virtually zero. Hence, the only in-band disturbance 

assumed in these lecture notes are in-band noise originating from 𝑛(𝑡).    

This completes the description of the communication channel studied in these lecture notes. In the next 

sections we will investigate different steps in the receiver and also show how the K received distorted 

and noisy signal-points efficiently can be extracted by using the DFT. 

A short summary of some basic relationships in Section 5: 

 The assumptions for the analysis in this section are given on page 33. 

 Observe the important practical consequences of Equations (5.7)-(5.8).  

 Observe the initial transient and the ending transient at the output of the channel.  

 Compare Equations (5.10)-(5.11) with Equations (5.12)-(5.13)! 
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Section 6: The Receiver: Frequency down-conversion, sampling (A/D), removal of the CP, and 

the DFT  

The ultimate goal of the receiver is to, as good as possible, recover the sequence of information bits 

that corresponds to the original sequence of K QAM signal points  𝑎0, 𝑎1, … , 𝑎𝐾−1. To obtain this goal 

the first sub-goal of the receiver typically is to extract the corresponding K received distorted and 

noisy signal points, and the purpose of this section is to show how the DFT can be used to accomplish 

this.  

The second, and last, sub-goal is to use the sequence of K received distorted and noisy signal points as 

input to a suitable decoding algorithm, see Figure 2 on page 2. The output sequence from the decoding 

algorithm is the receiver´s decision of the original sequence of information bits that was sent from the 

transmitter. In these lecture notes decoding algorithms will not be investigated, so the interested reader 

is recommended to study more advanced literature on this topic. 

Before going into details concerning frequency down-conversion to baseband let us start with a 

fundamental example of how a received noisy QAM signal point may be extracted from a received  

noisy QAM signal. This example is very important since it gives a good illustration to why the DFT 

can be used in OFDM receivers to extract the K received noisy signal points.   

In this example we assume that the received signal 𝑟(𝑡) equals (compare with Equation (1.4)), 

                                     𝑟(𝑡) = 𝑏𝐼 cos(2𝜋𝑓𝐵𝑡) − 𝑏𝑄 sin(2𝜋𝑓𝐵𝑡) + 𝑛(𝑡) , 0 ≤ 𝑡 ≤ 𝑇                    (6.1) 

Hence, the received signal is a single QAM signal disturbed by AWGN, and our goal in this example 

is to show how to extract the received noisy signal point. Basic decision theory tells us that in this case 

the receiver should use two orthonormal basis functions, here denoted 𝜓1(𝑡) and  𝜓2(𝑡). These (real) 

functions should satisfy the two conditions, 

                                                         ∫ 𝜓1(𝑡)𝜓2(𝑡)
𝑇

0
𝑑𝑡 = 0                (orthogonal)                        (6.2) 

                                                ∫ 𝜓1(𝑡)
2𝑇

0
𝑑𝑡 = ∫ 𝜓2(𝑡)

2𝑇

0
𝑑𝑡 = 1       (normalization)                   (6.3) 

In this example the choice of orthogonal basis functions are, 

                                                     𝜓1(𝑡) = cos(2𝜋𝑓𝐵𝑡)/𝐶 ,                   0 ≤ 𝑡 ≤ 𝑇                             (6.4) 

                                                     𝜓2(𝑡) = − sin(2𝜋𝑓𝐵𝑡)/𝐶 ,                0 ≤ 𝑡 ≤ 𝑇                             (6.5) 

where 𝐶 is a normalization constant chosen such that Equation (6.3) is satisfied. It is also assumed that  

𝑓𝐵 and 𝑇 are such that Equation (6.2) is satisfied. 

The received noisy signal point consists of two coordinates since a QAM signal is assumed in this 

example. The first coordinate, denoted 𝑟1, is the correlation between the received signal and the first 

basis function, 

                                                       𝑟1 = ∫ 𝑟(𝑡)𝜓1(𝑡)
𝑇

0
𝑑𝑡 = 𝐶𝑏𝐼 + 𝑛1                                               (6.6) 

and the second coordinate is calculated in a similar way, 

                                                       𝑟2 = ∫ 𝑟(𝑡)𝜓2(𝑡)
𝑇

0
𝑑𝑡 = 𝐶𝑏𝑄 + 𝑛2                                              (6.7)                                       
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In Equations (6.6)-(6.7) 𝑛1 and  𝑛2 denotes non-desired noise contributions from the AWGN 𝑛(𝑡). It 

can be shown that these two noise contributions each have a Gaussian probability density function, 

zero mean and variance  𝑁𝑜/2. Furthermore, they are also independent. Note that Equations (6.6)-(6.7) 

may be interpreted as frequency down-conversion to baseband.   

The two values (𝑟1, 𝑟2) in Equations (6.6)-(6.7) define the received noisy signal point and they are of 

fundamental importance in the decision process. 

Let us now express the complex value  𝑟 in the following way, 

                                             𝑟 = 𝑟1 + 𝑗𝑟2 = ∫ 𝑟(𝑡)𝑒−𝑗2𝜋𝑓𝐵𝑡
𝑇

0
𝑑𝑡/𝐶 = 𝑅(𝑓𝐵)/𝐶 = 𝐶𝑏 + 𝑛               (6.8) 

where 𝑏 = 𝑏𝐼 + 𝑗𝑏𝑄 and 𝑛 = 𝑛1 + 𝑗𝑛2. 

It is now very important to observe in Equation (6.8) that the received noisy signal point 𝑟 can be 

found by calculating the Fourier transform 𝑅(𝑓) of the received signal 𝑟(𝑡) over the time 

interval 𝟎 ≤ 𝒕 ≤ 𝑻, and then sample 𝑅(𝑓) at  𝑓 = 𝑓𝐵 to obtain 𝑅(𝑓𝐵).  As will be seen later on, 

using the DFT in an OFDM receiver can be viewed as a natural extension of this result.  

It is now time to focus on frequency down-conversion to baseband. 
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Frequency down-conversion to baseband: 

The input signal to the receiving antenna is given in Equation (5.14) on page 34, and the first part of 

the receiver is illustrated in Figure 10 on the next page. It is seen in Figure 10 that the antenna 

coupling unit is followed by a band-pass (BP) filter. This filter may have a relatively large pass-band 

to allow for several frequency bands that might be of interest to the receiver, e.g. the OFDM frequency 

band that contains the signal 𝑧(𝑡) in Equation (5.13). Signals located outside the pass-band of the 

band-pass filter are rejected (more attenuated) and are of no interest to the receiver.  

The received signal is normally a very weak signal and it needs to be amplified. However, with weak 

signals additional noise can be very hurtful to the signal-to-noise-ratio, and therefore a low-noise 

amplifier (LNA) is used in the receiver. LNA:s are designed with the purpose to keep the internal 

generated noise to a minimum, and only a very small loss in signal-to-noise ratio due to the LNA is 

acceptable.    

It is in principle possible to extract the K received distorted and noisy signal points directly from the 

output signal of the LNA, here denoted 𝑦𝑟(𝑡). We learned from the previous example in this section, 

see Equation (6.8), that the received distorted and noisy signal point with index k is found if we 

evaluate the Fourier transform of 𝑦𝑟(𝑡) at 𝑓 = 𝑓𝑘, i.e., if we calculate the value   

                                           ∫ 𝑦𝑟(𝑡)𝑒
−𝑗2𝜋𝑓𝑘𝑡

𝑇𝑠
𝑇𝐶𝑃

𝑑𝑡,          𝑘 = 0,1,… , 𝐾 − 1                                     (6.9) 

Since the sub-carrier frequency separation is 𝑓𝛥 = 1/𝑇𝑜𝑏𝑠 and since the sub-carrier frequency 𝑓𝑘 is at a 

high frequency, different QAM-signals are virtually orthogonal, see Equation (1.19), and this implies 

that there will be no “leakage” from the other (K-1) QAM-signals in the value given by Equation 

(6.9). 

However, instead of doing the calculations at high frequencies as in Equation (6.9) it is, as we will see,  

much more practical and efficient to do the calculations in baseband, and especially in the digital 

domain by using the DFT. This means that we need to create a baseband spectrum from the high 

frequency OFDM spectrum that is contained in the signal 𝑦𝑟(𝑡).  

Let us use the reference frequency 𝑓𝑟𝑐 of the received OFDM signal in the demodulation process, and 

we know from section 1 that 𝑓𝑟𝑐 = 𝑓𝑘𝑟𝑐.                                      

Frequency down-conversion is illustrated in Figure 10 for the case when K is odd for which 𝑓𝑟𝑐 = 𝑓𝑐. 

It is seen in this figure that the LNA is followed by multipliers and low pass filters, and this part is 

referred to as homodyne reception. The goal of homodyne reception is frequency down-conversion 

to baseband and thereby obtain the desired baseband components, denoted 𝑟𝐼(𝑡) and 𝑟𝑄(𝑡), such 

that, 

                                                𝑅𝐼(𝑓) + 𝑗𝑅𝑄(𝑓) = 𝑌𝑟(𝑓 + 𝑓𝑟𝑐),              |𝑓| ≤ 𝑊𝑙𝑝                         (6.10)   

where 𝑊𝑙𝑝 denotes the baseband cut-off frequency (bandwidth) of each low-pass filter in Figure 10. 
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Figure 10. Illustrating the first part of the receiver: the antenna coupling unit, band-pass filter, low-

noise amplifier (LNA) and a homodyne unit for frequency down-conversion  and extracting the 

baseband signals 𝑟𝐼(𝑡) and  𝑟𝑄(𝑡). It is here assumed that K is odd for which 𝑓𝑟𝑐 = 𝑓𝑐. 

The output signal 𝑦𝑟(𝑡) from the LNA in Figure 10 may contain several applications located in 

different frequency bands, but the receiver is here only interested in the frequency band that contains 

the desired OFDM signal 𝑧(𝑡).   

We know the reference carrier frequency 𝑓𝑟𝑐 and the approximate bandwidth 𝐾𝑓𝛥 of the desired 

signal 𝑧(𝑡) in Equation (5.13) on page 34. Therefore, the frequency of the oscillator signals in Figure 

10 should be tuned to 𝑓𝑟𝑐 Hz and the bandwidth 𝑊𝑙𝑝 of the low pass filters should be 

approximately 𝑊𝑙𝑝 ≈ 𝐾𝑓𝛥/2 Hz. In Figure 10, the actual phase of the high-frequency oscillator signals 

is denoted 𝜙𝑟.   

Now let 𝑟1(𝑡) denote only the part of the signal 𝑦𝑟(𝑡) that occupies the same part of the spectrum as 

the desired OFDM signal does. This means that the signal (𝑦𝑟(𝑡) − 𝑟1(𝑡)) has no frequency 

components within the approximate frequency range  𝑓𝑟𝑐 −
𝐾𝑓𝛥

2
≤ 𝑓 ≤ 𝑓𝑟𝑐 +

𝐾𝑓𝛥

2
 , and the signal 

(𝑦𝑟(𝑡) − 𝑟1(𝑡))  will therefore (ideally) not contribute to the signals 𝑟𝐼(𝑡) and  𝑟𝑄(𝑡) in Figure 10, 

only the signal 𝑟1(𝑡) will.   

So, the high-frequency signal 𝑟1(𝑡) is therefore important and it can be expressed as, 

                                                  𝑟1(𝑡) = 𝑅𝑒{(𝑟1,𝐼(𝑡) + 𝑗𝑟1,𝑄(𝑡))𝑒
𝑗2𝜋𝑓𝑟𝑐𝑡}                                     (6.11) 

where, using Equation (5.12), the corresponding complex baseband signal is found to be, 

      𝑟1,𝐼(𝑡) + 𝑗𝑟1,𝑄(𝑡) = 𝐴∑ 𝑎𝑘𝐻(𝑓𝑘)𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝑒𝑗𝜙𝐾−1

𝑘=0 𝐺1(𝑓𝑘) + 𝑛1(𝑡),     𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠   (6.12) 

The frequency function 𝐺1(𝑓𝑘) represents the combined effect of the band-pass filter and the LNA on 

the QAM signal with index k, and the complex signal 𝑛1(𝑡) represents “white” baseband noise 

(assuming that |𝐺1(𝑓)| is constant within the OFDM spectrum). 

Let us now, for convenience, assume that the two low-pass filters in Figure 10 are almost ideal, i.e. it 

is here assumed that the transfer function of each filter is constant within the approximate frequency 

range −𝐾𝑓𝛥/2 ≤ 𝑓 ≤ 𝐾𝑓𝛥/2, and has a high attenuation at all other frequencies. 
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By studying the homodyne part in Figure 10, and also using Equation (6.11), we conclude that the two 

outputs 𝑟𝐼(𝑡) and 𝑟𝑄(𝑡) from the low-pass filters can be determined from the relationship below, 

                      

𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡) = [ 𝑟1(𝑡)𝑒
−𝑗(2𝜋𝑓𝑟𝑐𝑡+𝜙𝑟)]𝐿𝑃 = [𝑅𝑒{(𝑟1,𝐼(𝑡) + 𝑗𝑟1,𝑄(𝑡))𝑒

𝑗2𝜋𝑓𝑟𝑐𝑡}𝑒−𝑗(2𝜋𝑓𝑟𝑐𝑡+𝜙𝑟)]𝐿𝑃 (6.13) 

where the notation [𝑐(𝑡)]𝐿𝑃 means “baseband (or low-frequency) component of 𝑐(𝑡)”.  

The reader is recommended to start with the right-hand side of Equation (6.13) and show that,  

                                        𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡) =
(𝑟1,𝐼(𝑡)+𝑗𝑟1,𝑄(𝑡))𝑒

−𝑗𝜙𝑟

2
⊛ 𝑔𝑙𝑝(𝑡)                                   (6.14)   

where the symbol ⊛ in Equation (6.14) denotes convolution, and 𝑔𝑙𝑝(𝑡) denotes the impulse 

response of each low-pass filter (the transfer function is denoted 𝐺𝑙𝑝(𝑓)). Combining Equations (6.12) 

and (6.14), we obtain the important result, 

          𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡) = ∑ 𝑎𝑘𝐻𝑒𝑞(𝑓𝑘)𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0 +𝑤(𝑡),     𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠                     (6.15) 

Observe that a so-called “equivalent channel” 𝐻𝑒𝑞(𝑓𝑘) is introduced in Equation (6.15), and the noise 

is represented by the complex signal 𝑤(𝑡) (assumed to be “white” baseband noise).  

The “equivalent channel” is a very important and convenient concept since it represents the 

combined effect of all sub-blocks in the complete communication chain. Mathematically, we have 

from Equations (6.12) and (6.14) that, 

                    𝐻𝑒𝑞(𝑓𝑘) = 𝐻𝑒𝑞,𝑘 = 𝐴𝐻(𝑓𝑘)𝑒
𝑗𝜙𝐺1(𝑓𝑘)𝑒

−𝑗𝜙𝑟𝐺𝑙𝑝(𝑓𝑘 − 𝑓𝑟𝑐 = 𝑔𝑘𝑓𝛥)/2                       (6.16) 

It is seen in Equations (6.15)-(6.16) that 𝐻𝑒𝑞(𝑓𝑘), alternatively 𝐻𝑒𝑞,𝑘, includes, e.g., the physical 

channel filter model, the band-pass filter, the LNA, and the low-pass filters. Since 𝐻𝑒𝑞,𝑘 =

|𝐻𝑒𝑞,𝑘|𝑒
𝑗𝑎𝑟𝑔(𝐻𝑒𝑞,𝑘) the phase 𝑎𝑟𝑔(𝐻𝑒𝑞,𝑘) may also include (absorb) a phase-component that is a 

consequence of the specific description used in Equation (6.15). 

Note that for the result in Equation (6.15) to be valid, the duration of the overall impulse response 

should not exceed 𝑇𝐶𝑃 (compare with Equation (5.7)). Another way to rephrase this is to say that if 

virtually all of the energy in the overall impulse response is contained within the time-interval 

0 ≤ 𝑡 ≤ 𝑇𝐶𝑃, then Equations (6.15)-(6.16) are sufficiently accurate, and this is typically the case in 

well-designed communication systems. 

Observe also that the description  in Equation (6.15) is independent of the specific implementation of 

the OFDM signal at the transmitter side. 

From Equations (6.15)-(6.16) it is concluded that 𝐻𝑒𝑞,𝑘 represents the overall attenuation and rotation 

of the original signal point 𝑎𝑘. Hence, the original signal point 𝑎𝑘 is distorted and it appears as  

𝑎𝑘𝐻𝑒𝑞,𝑘 at the receiver side.   Therefore, as we will see, the value 𝑎𝑘𝐻𝑒𝑞,𝑘 is a very important 

component in the corresponding received noisy signal point. In most cases the physical channel 

filter 𝐻(𝑓) causes random and frequency dependent attenuation and rotation, so called fading. Hence, 

the sent K QAM signals may then be treated differently by the channel (concerning attenuation and 

rotation).  
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In case the remaining blocks in the communication chain overall act as a frequency independent 

complex constant, denoted B, then we have  𝐻𝑒𝑞,𝑘 = 𝐻(𝑓𝑘)𝐵.  

Instead of calculating Equation (6.9) to obtain the received distorted and noisy signal point with index 

k we can  calculate the Fourier transform of the complex signal  (𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡)) in Equation (6.15), 

and evaluate this Fourier transform at the baseband sub-carrier frequency 𝑓 = 𝑓𝑘 − 𝑓𝑟𝑐 = 𝑔𝑘𝑓𝛥. The 

reason for this is the frequency shift down to baseband that is performed by the homodyne unit (see 

Equation (6.10) on page 37), which implies that the spectral characteristics of the high-frequency 

signal 𝑟1(𝑡) at the high frequency 𝑓𝑘 Hz will, except for the factor 𝑒−𝑗𝜙𝑟  in Equation (6.14) and the 

influence of 𝐺𝑙𝑝(𝑔𝑘𝑓𝛥), be the same as the spectral characteristics of the low-frequency signal  

(𝑟𝐼(𝑡) + 𝑗𝑟𝑄(𝑡)) at the baseband frequency (𝑓𝑘 − 𝑓𝑟𝑐) = 𝑔𝑘𝑓𝛥 Hz. However, as we will see, the DFT 

will instead be used to extract the K received distorted and   noisy signal points.  

It should also be mentioned here that most decoding algorithms need knowledge about the overall 

channel parameters 𝐻𝑒𝑞,𝑘 , 𝑘 = 0,1, … (𝐾 − 1). Therefore, a channel estimation algorithm is needed 

in the receiver. The result of this algorithm will be channel parameter estimates. Normally, completely 

known so-called pilot-symbols or channel-reference symbols are transmitted at specific sub-carriers 

and in specific OFDM symbol intervals in the OFDM time-frequency grid. Based on the received 

signal at the corresponding sub-carrier and OFDM interval, the corresponding channel parameter can 

be estimated. From all these specific estimates (two-dimensional “samples”) it is possible to 

reconstruct an estimate of the two-dimensional channel filter, and thereby obtain estimates of  

𝐻𝑒𝑞,𝑘 ,   𝑘 = 0,1, … (𝐾 − 1) over several say P consecutive OFDM symbol intervals. In these lecture 

notes we will not analyze any channel estimation algorithms, so the interested reader is recommended 

to study more advanced literature on this topic.    

This completes the description of the analog part of the receiver in Figure 10. In the next sub-section 

we will study the transition to the digital domain by assuming ideal sampling (A/D). 
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Sampling (A/D) and removal of the CP: 

In this sub-section only ideal A/D converters are considered and by this we mean instantaneous 

sampling and infinite precision in the samples. See also Figure 11 on the next page. As an example, 

consider ideal sampling of the signal 𝑟𝐼(𝑡) at 𝑡 = 𝑡0. With infinite precision the value obtained is then 

𝑟𝐼(𝑡0), in contrast to if finite precision is used where a quantized value of 𝑟𝐼(𝑡0) instead is the result 

(and it is represented by a finite number of bits). In practice A/D converters are non-ideal, and efficient 

“close to ideal” A/D converters are non-trivial to implement. However, in these lecture notes we 

assume that the non-ideal A/D converters are fast and accurate enough such that we may approximate 

them with ideal A/D converters.  

One goal in this sub-section is to obtain sampled versions of the two signals  𝑟𝐼(𝑡) and  𝑟𝑄(𝑡) in 

Figures 10-11. Using the same arguments that was used in step 2 in Section 2, we conclude that the 

sampling frequency 𝑓𝑠𝑎𝑚𝑝 may be chosen as  𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥  samples per second, and N should be 

chosen larger than K (compare with Equation (2.12)), and large enough such that the sampling 

theorem can be considered to be sufficiently fulfilled. Observe that the choice of N to use in the 

receiver is a decision of the engineers of the receiver, and it does not need to be the same value as was 

chosen at the transmitter side (which typically is unknown in many cases). In general, how the 

transmitted OFDM signal was created may not be known at the receiver side (consider, e.g., the up-

link in a multi-user  mobile communication application).     

Corresponding to the current OFDM interval 0 ≤ 𝑡 ≤ 𝑇𝑠, the two sequences of samples generated 

from the  A/D converters in Figure 11 are  𝑟𝐼(𝑚𝑇𝑜𝑏𝑠/𝑁) and 𝑟𝑄(𝑚𝑇𝑜𝑏𝑠/𝑁), respectively, 𝑚 =

0,1,… , (𝐿 + 𝑁 − 1).   

Note however that the first L samples (the CP) will here not be used in the detection process and 

these samples are therefore ignored in the future, see Figure 11!  

This means that the signal interval where an overlap between OFDM signals may occur is ignored by 

the receiver, and thereby possible inter-symbol interference between OFDM signals is eliminated 

in the receiver (provided that 𝑇𝑐ℎ ≤ 𝑇𝐶𝑃), see also Section 5. Since the CP is assumed to be much 

smaller than 𝑇𝑠 the loss of ignoring the CP is here assumed to be acceptable.   

The remaining N samples (after removal of the CP) represent the receiver’s observation interval and 

they are extremely important. These samples are collected in the two vectors  𝒓𝐼 and  𝒓𝑄 defined 

below (see also Figure 11), 

                                             𝑟𝐼,𝑛 = 𝑟𝐼((𝐿 + 𝑛)𝑇𝑜𝑏𝑠/𝑁),    𝑛 = 0,1,… ,𝑁 − 1                                (6.17) 

                                             𝑟𝑄,𝑛 = 𝑟𝑄((𝐿 + 𝑛)𝑇𝑜𝑏𝑠/𝑁),   𝑛 = 0,1,… ,𝑁 − 1                              (6.18) 

We now create the complex size-N vector 𝒓 as, 

                                                                𝒓 = 𝒓𝐼 + 𝑗𝒓𝑄                                                                   (6.19)    

From Equation (6.15) on page 39 it is seen that the discrete-time signal  𝒓 contains samples of the 

complex baseband signal 𝑥𝑟(𝑡), where 𝑥𝑟(𝑡) is defined as, 

        𝑥𝑟(𝑡) = 𝑟𝐼(𝑡 + 𝑇𝐶𝑃) + 𝑗𝑟𝑄(𝑡 + 𝑇𝐶𝑃) = ∑ 𝑎𝑘𝐻𝑒𝑞,𝑘𝑒
𝑗2𝜋𝑔𝑘𝑓𝛥𝑡𝐾−1

𝑘=0 + 𝑤′(𝑡),   0 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠     (6.20) 
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The signal 𝑥𝑟(𝑡) in Equation (6.20) should be compared with the signal 𝑥(𝑡) in Equation (2.3) on 

page 9. 

Observe in Equation (6.20) that the effects of the complete communication chain are that the 

original signal point 𝒂𝒌 is changed (distorted) to 𝒂𝒌𝑯𝒆𝒒,𝒌, 𝒌 = 𝟎, 𝟏,… (𝑲 − 𝟏),  and that Gaussian 

baseband noise is present in the corresponding complex baseband OFDM signal 𝒙𝒓(𝒕) at the 

receiver side. 

 

Remove 
the CP

Rearranging 
and remove 
(N-K) noise 

samples

A/D
D
F
T

Equ.(6.22)
A/D

Remove 
the CP

 

Figure 11. Illustrating sampling, removal of the CP, and the size-N DFT in the receiver to extract the K 

received distorted and noisy signal points collected in the size-K vector 𝒓𝑑. 
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Using the DFT: 

The remaining investigation of the receiver aims to extract the K received distorted and noisy signal 

points. The received signal point carried by the high-frequency subcarrier frequency 𝑓𝑘 can be found 

by calculating the Fourier transform of the signal 𝑥𝑟(𝑡) in Equation (6.20) at the corresponding 

baseband sub-carrier frequency 𝑔𝑘𝑓𝛥 Hz. However, to efficiently obtain the 𝐾 received distorted and 

noisy signal points with the size-N DFT, let us continue as follows.   

Consider the Fourier transform of the discrete-time signal 𝒓 in equation (6.19), 

                                                            𝑅(𝜈) = ∑ 𝑟𝑛𝑒
−𝑗2𝜋𝜈𝑛𝑁−1

𝑛=0                                               (6.21) 

Remember from, e.g., Figure 6 on page 17 that 𝑅(𝜈) is periodic in 𝜈 with period 1. Furthermore, the 

Fourier transform of the signal 𝑥𝑟(𝑡) in Equation (6.20) appears as a very significant part of 𝑅(𝜈) 

within the fundamental interval  −1/2 ≤ 𝜈 ≤ 1/2 , see Equation (2.17), and the example in 

connection to Figure 5 on page 15.    

As has been pointed out several times the 𝐾 received distorted and noisy signal points can be extracted 

by calculating the Fourier transform at 𝐾 specific frequencies, i.e. by sampling the Fourier transform 

at 𝐾 specific frequencies.  

Since the DFT results in frequency-domain samples it is very well suited for extracting the desired 

signal points.    

Let us therefore calculate the size-N DFT of the discrete-time signal 𝒓,   

                                       𝑅𝑚 = 𝑅(𝜈 = 𝑚/𝑁) = ∑ 𝑟𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑁𝑁−1

𝑛=0 ,   𝑚 = 0,1,… ,𝑁 − 1            (6.22) 

In practice, N is chosen to be a power of 2 since fast Fourier transform (FFT) algorithms can then be 

used to significantly speed up the calculations in Equation (6.22). 

In Figure 11 on the previous page the size-N column vector 𝑹 contains the frequency-domain samples 

𝑅𝑚.  

Observe that the frequency-domain sample 𝑅𝑚 is obtained at the normalized frequency (compare with 

Figure 6 on page 17), 

                                                    𝜈 =
𝑚

𝑁
=
𝑚𝑓𝛥

𝑁𝑓𝛥
                                                                             (6.23) 

By comparing the frequency-domain sample 𝑅𝑚 with the frequency-domain sample 𝑋𝑚 obtained in 

Section 2, we conclude that the sample 𝑅0 contains the value  𝑎𝑘𝑟𝑐𝐻𝑒𝑞,𝑘𝑟𝑐, and that the sample 𝑅𝑁−1 

contains the value 𝑎(𝑘𝑟𝑐−1)𝐻𝑒𝑞,(𝑘𝑟𝑐−1).     

To be more precise we can express 𝑹 as, 

                                                                  𝑹 = 𝑿𝑟 +𝒘𝑟                                                             (6.24) 

where  𝑿𝑟 is the noise-free part of  𝑹, and 𝒘𝑟 is the noise vector. 
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Let us also introduce the size-K column vector  𝓗𝒂, where 𝒂 is the size-K column vector containing 

the K original QAM symbols. 𝓗 is a size KxK matrix containing the equivalent channel parameters 

𝐻𝑒𝑞,𝑘 on the main diagonal, and the off-diagonal elements are equal to zero.  

This means that, 

                                            (𝓗𝒂)𝑡𝑟 = (𝑎0𝐻𝑒𝑞,0  𝑎1𝐻𝑒𝑞,1… . 𝑎𝐾−1𝐻𝑒𝑞,𝐾−1)                                (6.25) 

Hence, the size-K column vector 𝓗𝒂 contains the K noise-free received distorted signal points. 

By comparing with the general results obtained in Section 2 we deduce that 𝑿𝑟 in Equation (6.24) is a 

“rotated” version of  𝓗𝒂, or more precisely from Equation (2.31) on page 20.  

                                                              𝑿𝑟 = 𝑁𝑸𝑡𝓗𝒂                                                                    (6.26) 

As examples, the first value in 𝑿𝑟 is  𝑋𝑟,0, which is contained in the frequency-domain sample 

𝑅0 = 𝑅(𝜈 = 0), equals  𝑋𝑟,0 = 𝑁𝑎𝑘𝑟𝑐𝐻𝑒𝑞,𝑘𝑟𝑐. The last value in 𝑿𝑟 is   𝑋𝑟,(𝑁−1), which is contained in 

the frequency-domain  sample 𝑅𝑁−1 = 𝑅 (𝜈 =
𝑁−1

𝑁
), equals  𝑋𝑟,(𝑁−1) = 𝑁𝑎(𝑘𝑟𝑐−1)𝐻𝑒𝑞,(𝑘𝑟𝑐−1).  

From Equation (6.24) the output size-N vector  𝑹 from the DFT can then be expressed as, 

                                                            𝑹 = 𝑁𝑸𝑡𝓗𝒂+𝒘𝑟                                                               (6.27) 

To recover the K received distorted and noisy signal points we “re-rotate” the vector 𝑹 according to 

Equation (2.34) on page 21, 

                                      𝒓𝑑 =
1

𝑁
𝑸𝑟𝑹 = 𝑸𝑟𝑸𝑡𝓗𝒂+

1

𝑁
𝑸𝑟𝒘𝑟 = 𝓗𝒂+ 𝜼                                        (6.28) 

Observe that the elements in the size-K column vector 𝒓𝒅 in Equation (6.28) are the desired 

received distorted and noisy signal points, 

                                  𝑟𝑑,𝑘 = 𝑎𝑘𝐻𝑒𝑞,𝑘 + 𝜂𝑘 ,       𝑘 = 0,1,… , (𝐾 − 1)                            (6.29) 

where 𝜂𝑘 denotes additive complex Gaussian noise. Note also that the operation in Equation (6.28) 

automatically ignores the (N-K) positions in 𝑹 that contain only out-of-band noise. 

The results in Equations (6.28)-(6.29) are extremely important! See also Figure 11 on page 

42. 

The next step in the receiver is to feed the vector 𝒓𝑑 to the decoding unit (compare with Figure 2 on 

page 2). However, decoding algorithms are not covered in these lecture notes.  
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For the special case of uncoded OFDM (though rarely used in practice) we should decode each 

attenuated and rotated square QAM signal constellation separately. In this case it is well known that 

ML symbol decoding of the n:th 𝑀𝑛- ary  QAM signal constellation (square) is based only on 𝑟𝑑,𝑛 and 

it yields the symbol error probability 𝑃𝑠,𝑘 equal to, 

  𝑃𝑠,𝑘 = 4(1 −
1

√𝑀𝑘
)𝑄 (√

𝑑𝑚𝑖𝑛,𝑘
2 Ɛ𝑏,𝑘

𝑁0,𝑘
′ )− 4(1 −

1

√𝑀𝑘
)
2

𝑄2(√
𝑑𝑚𝑖𝑛,𝑘
2 Ɛ𝑏,𝑘

𝑁0,𝑘
′ ) ,   𝑘 = 0,1… ,𝐾 − 1   (6.30) 

where  𝑑𝑚𝑖𝑛,𝑘
2  is the normalized squared minimum Euclidean distance in the  received QAM signal 

constellation with index k and, 

                                                                𝑑𝑚𝑖𝑛,𝑘
2 =

3𝑙𝑜𝑔2(𝑀𝑘)

𝑀𝑘−1
                                                        (6.31)               

Furthermore, Ɛ𝑏,𝑘 denotes the average received signal energy per information bit in the  received 

QAM signal space with index k, and Ɛ𝑏,𝑘 is proportional to |𝐻𝑒𝑞,𝑘|
2. The variance of the noise, in each 

dimension in the two-dimensional signal space with index k, is here 𝑁0,𝑘
′ /2.                       

In the next sections we will take a look at some alternative implementations that are possible in case 

the sampling frequency is approximately at least twice as high as the sampling frequency used so far 

in these lecture notes (assuming the same values of  𝐾 and  𝑓𝛥) . 

 

A short summary of some basic relationships in Section 6: 

 Observe in Equation (6.8) that the received noisy signal point 𝑟 can be found by calculating 

the Fourier transform 𝑅(𝑓) of the received signal 𝑟(𝑡) over the time interval 0 ≤ 𝑡 ≤ 𝑇, and 

then sample 𝑅(𝑓) at  𝑓 = 𝑓𝐵 to obtain 𝑅(𝑓𝐵).   

 Figure 10 on page 38 illustrates the first part of the receiver, including the homodyne unit. 

 Observe the result in Equation (6.15), and also the concept “equivalent channel” parameter 

on page 39. 

 Figure 11 on page 42 illustrates sampling, removal of the CP, and the size-N DFT. 

 After removal of the CP, the relationships defined by Equations (6.17)-(6.20) are obtained. 

 The size-N output sequence 𝑹 from the DFT can be described by Equation (6.27). 

 After “re-rotation” the final desired result is obtained, see Equations (6.28)-(6.29) and Figure 

11. This result, i.e. the K complex values in the vector 𝒓𝒅, is extremely important and it is 

delivered to the decoding unit in Figure 2 on page 2.  
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Section 7: An alternative transmitter implementation  

In this section we will study an alternative implementation of the transmitter that is possible if the 

sampling frequency is approximately at least twice as high than the sampling frequency used in 

Sections 2-4 (where 𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 > 𝐾𝑓𝛥) if the same 𝐾 and 𝑓𝛥 are used. A higher sampling frequency 

normally implies a higher cost, e.g., for D/A converters. However, as we will see, interesting and 

useful alternative implementations can then be obtained. The description given here is to a large extent 

influenced by the description in ref. [2]. 

Let us repeat the description of an OFDM signal in the time-interval  0 ≤ 𝑡 ≤  𝑇𝑠 according to  

Equation (1.13), 

                                             𝑂𝐹𝐷𝑀 𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{∑ 𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡𝐾−1

𝑘=0 }                       (7.1) 

The frequency content, for positive frequencies, is roughly indicated in Figure 3a on page 10.  A 

significant difference however, compared to Sections 2-4 is that here we assume that the K sub-carrier 

frequencies in the OFDM signal in Equation (7.1) have relatively low frequencies. More specifically 

it is here assumed that the sub-carrier frequency 𝑓𝑘 equals, 

                                                         𝑓𝑘 = (𝑁𝑔 + 𝑘)𝑓𝛥,         𝑘 = 0,1,… , 𝐾 − 1                           (7.2) 

where 𝑁𝑔 (𝑁𝑔 ≥ 1)  is an integer design parameter and it is typically relatively small. One purpose of 

the parameter 𝑁𝑔 may be to have a suitable guard band in the frequency domain around  𝑓 = 0, e.g., to 

simplify filtering (this will be more clear later in this section). In case a higher over-all carrier 

frequency is desired frequency up-conversion as illustrated in Figure 12 on page 49 may be used.   

We start the synthesis process with the OFDM signal 𝑠(𝑡) in Equation (7.3) below which is defined 

within the time-interval  0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠, 

𝑠(𝑡) = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{∑ 𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡𝐾−1

𝑘=0 } =
𝑔𝑟𝑒𝑐(𝑡)

2
(∑ 𝑎𝑘𝑒

𝑗2𝜋𝑓𝑘𝑡𝐾−1
𝑘=0 + ∑ 𝑎𝑘

∗𝑒−𝑗2𝜋𝑓𝑘𝑡𝐾−1
𝑘=0 )              (7.3)                                                                                                                                                                                                                                                                                                                                                                                         

and the bandwidth of 𝑠(𝑡), including the 𝑁𝑔 unused sub-carriers, is approximately equal to 

(𝑁𝑔 + 𝐾)𝑓𝛥 Hz. 

Let us now determine N time-domain real samples of the real signal 𝑠(𝑡) in Equation (7.3) within the 

time interval 0 ≤ 𝑡 ≤  𝑇𝑜𝑏𝑠 (compare with Section 2). From the description in Equations (7.2)-(7.3), 

we find that the sampling frequency can be chosen as  𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 where, 

                                                                 𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 > 2(𝑁𝑔 + 𝐾)𝑓𝛥                                          (7.4) 

Hence, the sampling frequency in this section is approximately at least twice as high as in Sections 2-

4 (for the same values of 𝐾 and 𝑓𝛥). 

Let the vector  𝒔 contain the N real samples 𝑠0, 𝑠1, … , 𝑠𝑁−1 of the real signal 𝑠(𝑡), where  

 𝑠𝑛 = 𝑠(𝑛𝑇𝑜𝑏𝑠/𝑁) =
1

2
(∑ 𝑎𝑘𝑒

𝑗2𝜋(𝑁𝑔+𝑘)𝑓𝛥𝑛𝑇𝑜𝑏𝑠/𝑁𝐾−1
𝑘=0 +∑ 𝑎𝑘

∗𝑒−𝑗2𝜋(𝑁𝑔+𝑘)𝑓𝛥𝑛𝑇𝑜𝑏𝑠/𝑁𝐾−1
𝑘=0 )              (7.5) 
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Observe now that the multiplication (or scaling) factor ½ that appears in Equation (7.5) will be 

ignored below. It is assumed that this can be compensated for later in the transmitter chain, e.g., in the 

power amplifier (PA). 

The expression in Equation (7.5) can then be expressed as, 

𝑠𝑛 = 𝑠 (
𝑛𝑇𝑜𝑏𝑠
𝑁

) = ∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑁𝑔+𝑘)𝑛

𝑁

𝐾−1

𝑘=0

+∑ 𝑎𝑘
∗𝑒−

𝑗2𝜋(𝑁𝑔+𝑘)𝑛

𝑁

𝐾−1

𝑘=0

= 

= ∑ 𝑎𝑘𝑒
𝑗2𝜋(𝑁𝑔+𝑘)𝑛

𝑁

𝐾−1

𝑘=0

+∑ 𝑎𝑘
∗𝑒−

𝑗2𝜋(𝑁𝑔+𝑘−𝑁)𝑛

𝑁

𝐾−1

𝑘=0

= 

  

= ∑ 𝑎𝑚−𝑁𝑔𝑒
𝑗2𝜋𝑚𝑛
𝑁

𝑁𝑔+𝐾−1

𝑚=𝑁𝑔

+ ∑ 𝑎𝑁−𝑁𝑔−𝑚
∗ 𝑒

𝑗2𝜋𝑚𝑛
𝑁

𝑁−𝑁𝑔

𝑚=𝑁−𝑁𝑔−𝐾+1

, 𝑛 = 0,1, … , (𝑁 − 1) 

                                                                                                                                                    (7.6) 

Continuing as in Section 2, we need the Fourier transform 𝑆(𝜈) of the discrete-time signal 𝒔 in 

Equation (7.6), and  𝑆(𝜈)  is defined by, 

 𝑆(𝜈) = ∑ 𝑠𝑛𝑒
−𝑗2𝜋𝜈𝑛𝑁−1

𝑛=0                                                                 (7.7)  

We are especially interested in the frequency-domain samples 𝑆𝑚 of  𝑆(𝜈), given by the size-N DFT,  

                           𝑆𝑚 = 𝑆(𝜈 = 𝑚/𝑁) = ∑ 𝑠𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑁𝑁−1

𝑛=0 ,   𝑚 = 0,1, … ,𝑁 − 1    (DFT)         (7.8) 

It should be observed that since the discrete-time signal 𝒔 is real there are symmetries in its Fourier 

transform 𝑆(𝜈). 

As in Section 2, we need to specify the size-N sequence of frequency-domain samples 𝑆0, 𝑆1, … , 𝑆𝑁−1 

since this sequence will be used as input sequence to the size-N IDFT to create the desired sequence of 

time-domain samples 𝒔.  

Note that we may express 𝑁 as, 

                                                            𝑁 = 2(𝑁𝑔 + 𝐾) − 1 + 𝑁𝑥                                                    (7.9) 

where 𝑁𝑥 ≥ 0 is a number of  zero-valued samples 𝑆𝑚 (determined by the choice of 𝑁), and the 𝑁𝑥 

zero-valued samples are located symmetrically around 𝜈 = 1/2. A relatively large value of  𝑁𝑥 may 

simplify the filtering operation in the D/A converter in order to extract the fundamental frequency 

interval  −𝑓𝑠𝑎𝑚𝑝/2 ≤ 𝑓 ≤ 𝑓𝑠𝑎𝑚𝑝/2, see also Section 3.   
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If we compare with the situation treated in Section 2, and also use the final expression in Equation 

(7.6), it is concluded from Equation (7.6) that the frequency-domain samples 𝑆0, 𝑆1, … , 𝑆𝑁−1 can be 

specified as: 

For 𝑁𝑔 ≤ 𝑚 ≤ 𝑁𝑔 + 𝐾 − 1 we find that 𝑆𝑚 is, 

                                                       𝑆𝑁𝑔+𝑘 = 𝑁𝑎𝑘 , 0 ≤ 𝑘 ≤ 𝐾 − 1                                                 (7.10) 

For (𝑁 − (𝑁𝑔 + 𝐾 − 1)) ≤ 𝑚 ≤ (𝑁 − 𝑁𝑔) we find that 𝑆𝑚 is,  

                                                       𝑆𝑁−(𝑁𝑔+𝐾−1)+𝑘 = 𝑁𝑎𝐾−1−𝑘
∗  ,     0 ≤ 𝑘 ≤ 𝐾 − 1                       (7.11) 

The remaining (𝑁 − 2𝐾) samples in the sequence  𝑆0, 𝑆1, … , 𝑆𝑁−1 are all equal to zero. 

Consider as an example the case K=3, 𝑁𝑔 = 2 and N=12. In this case the desired sequence 

𝑆0, 𝑆1, … , 𝑆11 then equals: 0,0,𝑁𝑎0, 𝑁𝑎1, 𝑁𝑎2, 0,0,0, 𝑁𝑎2
∗ , 𝑁𝑎1

∗ , 𝑁𝑎0
∗ , 0. Here, 𝑁𝑥 = 3. 

Consider a similar example where K=3, 𝑁𝑔 = 2 and N=11. In this case the desired sequence 

𝑆0, 𝑆1, … , 𝑆10 then equals: 0,0,𝑁𝑎0, 𝑁𝑎1, 𝑁𝑎2, 0,0,𝑁𝑎2
∗ , 𝑁𝑎1

∗, 𝑁𝑎0
∗ , 0. Here, 𝑁𝑥 = 2. 

Hence, the size-N sequence of frequency-domain samples 𝑆0, 𝑆1, … , 𝑆𝑁−1 is now completely 

determined and the desired size-N sequence of time-domain real samples 𝒔 is created using the size-N 

IDFT, 

                                                    𝑠𝑛 =
1

𝑁
∑ 𝑆𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑁𝑁−1
𝑚=0 , 𝑛 = 0,1,… ,𝑁 − 1          (IDFT)           (7.12) 

In practice, N is chosen to be a power of 2 since fast Fourier transform (FFT) algorithms can then be 

used to significantly speed up the calculations in Equation (7.12). See also Figure 12 on page 49. 

To create the CP we proceed in the same way as in Section 3. Therefore, if we for a moment allow 

the definition of the signal 𝑠(𝑡) in Equation (7.3) to be valid for all 𝑡, then it is seen that the signal 

construction of 𝑠(𝑡) is such that 𝑠(𝑡) is periodic in 𝑡 with period  𝑇𝑜𝑏𝑠, i.e. 𝑠(𝑡) = 𝑠(𝑡 + 𝑇𝑜𝑏𝑠). This 

means, e.g., that 𝑠(−𝑡1) = 𝑠(𝑇𝑜𝑏𝑠 − 𝑡1).    

We now want to preserve the OFDM signal properties in the 𝑁 time-domain samples that represent 

𝑠(𝑡), but over an extended period of time. This can conveniently be done by using the inherent 

periodicity in 𝑠(𝑡) discussed above. Hence, let us therefore construct a new size-(L+N) vector 𝒖 as a 

so-called periodic extension of the size-N vector 𝒔. This means that the L last samples in 𝒔 are copied 

and placed as the first L samples in 𝒖. The remaining N samples in 𝒖 are identical to 𝒔. This means 

that,   

                                 𝑢0 = 𝑠𝑁−𝐿,…, 𝑢𝐿−1 = 𝑠𝑁−1, 𝑢𝐿 = 𝑠0,…, 𝑢𝐿+𝑁−1 = 𝑠𝑁−1.                         (7.13) 

The construction of the vector 𝒖 above implies that the first L samples in  𝒖 are identical with the last 

L samples in 𝒖 , and this reflects the periodicity discussed above.  

The duration of the OFDM signal interval is 𝑇𝑠, and it can be expressed as,   

                                                    𝑇𝑠 =
(𝐿+𝑁)𝑇𝑜𝑏𝑠

𝑁
= 𝑇𝐶𝑃 + 𝑇𝑜𝑏𝑠                                                      (7.14)  



 

49 
 

The vector 𝒖 in Equation (7.13) contains (L+N) real samples of a real OFDM signal defined over 

the entire OFDM signal interval 𝟎 ≤ 𝒕 ≤  𝑻𝒔.  This OFDM signal is here denoted 𝒖(𝒕), where 

𝒖(𝒕) is a delayed version of the expression that defines the signal 𝒔(𝒕) in Equation (7.3), or more 

precisely,  

                                     𝑢(𝑡) = 𝑔𝑟𝑒𝑐(𝑡)𝑅𝑒{∑ 𝑎𝑘𝑒
𝑗2𝜋𝑓𝑘(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0 },      0 ≤ 𝑡 ≤  𝑇𝑠               (7.15) 

and 𝑢(𝑡) equals zero outside this interval. Furthermore, the m:th sample in the real vector 𝒖 is, 

                                       𝑢𝑚 = 𝑢(𝑚𝑇𝑜𝑏𝑠/𝑁),   𝑚 = 0,1, … , (𝐿 + 𝑁 − 1)                                      (7.16)  

The final operation is to send the real sequence 𝒖 to a D/A converter (compare with Section 3), and 

the ideal output from the D/A will be the desired OFDM signal 𝑢(𝑡), see Figure 12. Note that only a 

single D/A converter is needed here, but on the other hand it operates with approximately at least 

twice as high sampling frequency compared to the sampling frequency used in Sections 2-4 (for the 

same values of  𝐾 and 𝑓𝛥). 

 

The overall carrier frequency 𝑓𝑐,𝑢 of the created OFDM signal 𝑢(𝑡) is, 

                                                                 𝑓𝑐,𝑢 = 𝑓0 +
𝐾−1

2
𝑓𝛥 = (𝑁𝑔 +

𝐾−1

2
)𝑓𝛥                                (7.17)                                      

and typically 𝑓𝑐,𝑢 is a relatively low frequency. 

In case the OFDM signal 𝑢(𝑡) needs to be up-converted to a higher overall carrier frequency 𝑓𝑐, 

mixing and filtering according to Figure 12 is a possibility. The local oscillator frequency 𝑓𝑙 used in 

the mixing operation in Figure 12 should then be chosen as, 

                                                                𝑓𝑙 = 𝑓𝑐 − 𝑓𝑐,𝑢 = 𝑓𝑐 − (𝑁𝑔 +
𝐾−1

2
)𝑓𝛥                                (7.18) 

 

IDFT
Equ.(7.12)

Add 
CP
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BP PA

Antenna
coupling unit

 

Figure 12. Illustrating how to create the OFDM signal  𝑢(𝑡) in Equation (7.15). The size-N IDFT in 

Equation (7.12) is used and N is given by Equation (7.4). The construction of the sequence 

𝑆0, 𝑆1, … , 𝑆𝑁−1 is given by Equations (7.10)-(7.11). This figure also includes a possible frequency up-

conversion to a higher carrier frequency 𝑓𝑐. The band-pass (BP) filter is then centered around  𝑓𝑐, and 

PA means the power amplifier.   

The requirements on the band-pass filter in Figure 12 can be somewhat relaxed due to the 

parameter 𝑁𝑔, since this parameter gives a guard band in the frequency domain equal to  2𝑁𝑔𝑓𝛥 Hz 

that separates the lower sideband from the desired upper sideband (which is the up-modulated OFDM 

signal).   
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As an example consider an OFDM signal 𝑢(𝑡) with the parameters: K=420,  𝑁𝑔 = 20, and  𝑓𝛥 = 4 

kHz. The values of the sub-carrier frequencies 𝑓0 and 𝑓𝐾−1 then equals 𝑓0 = 80 kHz and 𝑓𝐾−1 =

1.756 Mhz. In this case N should be chosen larger than 880. If N is chosen to be N=1024 then the 

sampling frequency 4.096 MHz is used, and 𝑁𝑥 = 145.  

A short summary of some basic relationships in Section 7: 

 N time-domain real samples of the real OFDM signal are specified in Equation (7.6).  

 The size-N input sequence to the IDFT, i.e. the frequency-domain samples obtained from the 

DFT are given by Equations (7.10)-(7.11) (the remaining N-2K samples are equal to zero). 

 Observe the importance of Equation (7.12), since the output sequence from the IDFT is the 

sequence of time-domain real samples specified by Equation (7.6). See also Figure 12.  

 Equation (7.13) specifies the size-(L+N) vector of time-domain real samples that represents 

the entire OFDM signal interval (i.e. including the CP).  

 The cyclic prefix is represented by the first L time-domain samples, see also Equation (7.14). 

 Observe the importance of Equation (7.15), and the transmitter implementation in Figure 12.  
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Section 8: An alternative receiver implementation   

In this section we will study an alternative implementation of the receiver that is possible if the 

sampling frequency is approximately at least twice as high than the sampling frequency used in 

Section 6 (where 𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 > 𝐾𝑓𝛥) if the same 𝐾 and 𝑓𝛥 are used. A higher sampling frequency 

normally implies a higher cost, e.g., for A/D converters. However, as we will see, interesting and 

useful alternative implementations can then be obtained. 

In this section it is assumed that at a certain stage in the receiver the real noisy OFDM signal 𝑟(𝑡) is 

available where, 

                                                                𝑟(𝑡) = 𝑢𝑟(𝑡) + 𝑤(𝑡)                                                       (8.1) 

In Equation (8.1) the signal 𝑢𝑟(𝑡) denotes the noise-free part of  𝑟(𝑡), and it is assumed that the 

received real OFDM signal 𝑢𝑟(𝑡) here can be expressed as, 

                                      𝑢𝑟(𝑡) = 𝑅𝑒{∑ 𝑎𝑘𝐻𝑒𝑞,𝑘𝑒
𝑗2𝜋𝑓𝑘(𝑡−𝑇𝐶𝑃)𝐾−1

𝑘=0 },         𝑇𝐶𝑃 ≤ 𝑡 ≤ 𝑇𝑠                  (8.2) 

where the different sub-carrier frequencies are, 

                                                      𝑓𝑘 = (𝑁𝑔 + 𝑘)𝑓𝛥                         𝑛 = 0,1, … , 𝐾 − 1                      (8.3) 

The sub-carrier frequencies 𝑓𝑘 here have relatively low frequencies, since 𝑁𝑔 (𝑁𝑔 ≥ 1) is an integer 

design parameter of the receiver assumed to have a relatively small value. 

Similar to Section 6 the “equivalent channel” parameter 𝐻𝑒𝑞,𝑘 in Equation (8.2) represents the 

combined effect, associated with sub-carrier frequency  𝑓𝑘, of  sub-blocks in the communication chain, 

compare with Equation (6.16). Since 𝐻𝑒𝑞,𝑘 = |𝐻𝑒𝑞,𝑘|𝑒
𝑗𝑎𝑟𝑔(𝐻𝑒𝑞,𝑘) the phase 𝑎𝑟𝑔(𝐻𝑒𝑞,𝑘) may also 

include (absorb) a phase-component that is a consequence of the specific description of 𝑢𝑟(𝑡) used in 

Equation (8.2). 

The signal 𝑤(𝑡) in Equation (8.1) represents band-limited (low-pass) additive “white” Gaussian noise 

within the bandwidth of 𝑢𝑟(𝑡), i.e. within the approximate frequency range  |𝑓| ≤ (𝑁𝑔 + 𝐾)𝑓𝛥.  

Observe that the description of 𝑢𝑟(𝑡) in Equation (8.2) is independent of the particular implementation 

method used at the transmitter side when implementing the transmitted OFDM signal.  

We now want to obtain a sampled version of the real signal  𝑟(𝑡). Using the same arguments that was 

used in step 2 in Section 2, we conclude that the sampling frequency 𝑓𝑠𝑎𝑚𝑝 can be chosen as  𝑓𝑠𝑎𝑚𝑝 =

𝑁𝑓𝛥 samples per second, and  

                                                        𝑓𝑠𝑎𝑚𝑝 = 𝑁𝑓𝛥 > 2(𝑁𝑔 +𝐾)𝑓𝛥                                                (8.4) 

and large enough such that the sampling theorem ([1]) is sufficiently fulfilled. Hence, the sampling 

frequency in this section is approximately at least twice as high as in Section 6 (for the same values of 

𝐾 and 𝑓𝛥). 

Note that the choice of N to use in the receiver is a decision of the engineers of the receiver, and it 

does not need to be the same value as was chosen at the transmitter side (which typically also is 

unknown in many cases). 
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Corresponding to the current OFDM interval 0 ≤ 𝑡 ≤ 𝑇𝑠, the  sequence of real time-domain samples 

generated from the  A/D converter in Figure 13 below is  𝑟(𝑚𝑇𝑜𝑏𝑠/𝑁), 𝑚 = 0,1,… , (𝐿 + 𝑁 − 1).   

Note however that the first L samples (the CP) will usually not be used in the detection process and  

these samples are therefore removed. This means that the signal interval where an overlap between 

OFDM signals may occur is ignored by the receiver, and thereby possible inter-symbol interference 

between OFDM signals is eliminated in the receiver (provided that 𝑇𝑐ℎ ≤ 𝑇𝐶𝑃), see also Section 5. 

Since the CP is assumed to be much smaller than 𝑇𝑠, the loss of ignoring the CP is here assumed to be 

acceptable.   

The remaining N samples are extremely important and they are collected in the real vector 𝒓 having 

elements 𝑟𝑛 defined by, 

                                             𝑟𝑛 = 𝑟((𝐿 + 𝑛)𝑇𝑜𝑏𝑠/𝑁),    𝑛 = 0,1,… ,𝑁 − 1                                (8.5) 

From Equations (8.1)-(8.2) it is concluded that the discrete-time signal  𝒓, see also Figure 13, is a 

sampled version of the signal 𝑥𝑟(𝑡), where 𝑥𝑟(𝑡) is, 

        𝑥𝑟(𝑡) = 𝑟(𝑡 + 𝑇𝐶𝑃) = 𝑅𝑒{∑ 𝑎𝑘𝐻𝑒𝑞,𝑘𝑒
𝑗2𝜋𝑓𝑘𝑡𝐾−1

𝑘=0 } + 𝑤′(𝑡),          0 ≤ 𝑡 ≤ 𝑇𝑜𝑏𝑠                   (8.6) 
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Figure 13. Illustrating a possible way to extract the K received distorted and noisy signal points. The 

real noisy OFDM signal 𝑟(𝑡) is given by Equations (8.1)-(8.3), and it is assumed to be available at a 

certain stage in the receiver. The size-N DFT in Equation (8.8) is used and N is given by Equation 

(8.4). The final desired result 𝒓𝑑 is given in Equations (8.12)-(8.13).     

 

Using the DFT: 

The remaining investigation of the receiver aims to find the K received distorted and noisy signal 

points. To efficiently obtain these signal points with the size-N DFT, let us continue as follows.     

Consider the Fourier transform of the real discrete-time signal 𝒓 in Equation (8.5), 

                                                            𝑅(𝜈) = ∑ 𝑟𝑛𝑒
−𝑗2𝜋𝜈𝑛𝑁−1

𝑛=0                                               (8.7) 

Remember from, e.g., Figure 4 on page 14 that 𝑅(𝜈) is periodic in 𝜈 with period 1. Note however that 

𝑅(𝜈) in Equation (8.7) exhibit symmetries since the time-domain samples in 𝒓 are real. Furthermore, 

the Fourier transform of the signal 𝑥𝑟(𝑡) in Equation (8.6) appears as a very significant part of 𝑅(𝜈) 

within the fundamental interval  −1/2 ≤ 𝜈 ≤ 1/2 , see Equation (2.17) on page 14 and the example in 

connection to Figure 5 on page 15.   
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As has already been mentioned the K received distorted and noisy signal points can be obtained by 

calculating the Fourier transform of the signal 𝑥𝑟(𝑡) in Equation (8.6) at K specific frequencies, i.e. by 

sampling the Fourier transform at K specific frequencies. Since the DFT results in frequency-

domain samples it is very well suited for extracting the desired signal points.       

Let us therefore calculate the size-N DFT of the discrete-time signal 𝒓,   

                                       𝑅𝑚 = 𝑅(𝜈 = 𝑚/𝑁) = ∑ 𝑟𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑁𝑁−1

𝑛=0 , 𝑚 = 0,1,… ,𝑁 − 1            (8.8) 

In practice, N is chosen as a power of 2 since fast Fourier transform (FFT) algorithms can then be 

used to significantly speed up the calculations in Equation (8.8). 

In Figure 13 on the previous page the size-N column vector 𝑹 contains the frequency-domain samples 

𝑅𝑚.  

The frequency-domain sample 𝑅𝑚 is obtained at the normalized frequency 

                                                                𝜈 =
𝑚

𝑁
=
𝑚𝑓𝛥

𝑁𝑓𝛥
                                                              (8.9)  

We can now write 𝑹 as, 

                                                                  𝑹 = 𝑿𝑟 +𝒘𝑟                                                             (8.10) 

where  𝑿𝑟 is the noise-free part of  𝑹, and 𝒘𝑟 is the noise vector. The element with index m in the 

vector 𝑿𝑟 is denoted 𝑋𝑟,𝑚.  

By comparing the signal 𝑠(𝑡) in Equation (7.3) with the signal 𝑥𝑟(𝑡) in Equation (8.6), it is concluded 

from the result in Equation (7.10) that the sequence of K values  𝑋𝑟,𝑁𝑔 , 𝑋𝑟,𝑁𝑔+1, … , 𝑋𝑟,𝑁𝑔+𝐾−1 is 

identical with the sequence of values (𝑁𝑎0𝐻𝑒𝑞,0, 𝑁𝑎1𝐻𝑒𝑞,1, … . , 𝑁𝑎𝐾−1𝐻𝑒𝑞,𝐾−1).  

The desired received distorted and noisy signal points, denoted 𝑟𝑑,𝑘, are thereby found since, 

                              𝑟𝑑,𝑘 =
1

𝑁
𝑅𝑁𝑔+𝑘 = 𝑎𝑘𝐻𝑒𝑞,𝑘 +

1

𝑁
𝑤𝑟,𝑁𝑔+𝑘            , 𝑘 = 0,1, … , 𝐾 − 1                   (8.11) 

This fundamental result can be expressed in the same way as in Section 6, 

                                                      𝒓𝑑 = 𝓗𝒂+ 𝜼                                                               (8.12) 

where the elements in the size-K column vector 𝒓𝒅 are the desired received distorted and 

noisy signal points, 

                                               𝑟𝑑,𝑘 = 𝑎𝑘𝐻𝑒𝑞,𝑘 + 𝜂𝑘 ,       𝑘 = 0,1, … , (𝐾 − 1)                    (8.13) 

where 𝜂𝑘 denotes additive complex Gaussian noise.  

The results in Equations (8.12)-(8.13) are extremely important! See also Figure 13 on the 

previous page. Note that these results have the same form as the corresponding results that was 

obtained in Section 6.  

The next step in the receiver is to feed the vector 𝒓𝑑 to the decoding unit (compare with Figure 2 on 

page 2). However, decoding algorithms are not covered in these lecture notes.  
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This concludes these lecture notes where an introduction to OFDM has been given. Examples of   

IDFT-based implementations at the transmitter side, and DFT-based implementations at the receiver 

side have been the focus of these lecture notes.   

 

A short summary of some basic relationships in Section 8: 

 Observe the assumptions given by Equations (8.1)-(8.3). 

 The sampling frequency is specified in Equation (8.4). 

 Figure 13 on page 52 illustrates sampling, removal of the CP, and the size-N DFT. The input 

sequence to the DFT contains N time-domain real samples that corresponds to the observation 

interval of the receiver. 

 After removal of the CP, the relationships defined by Equations (8.5)-(8.6) are obtained. 

 The size-N DFT output sequence can be described by Equation (8.10). See also the text that 

follows this equation. Equation (8.11) shows how the desired signal points are obtained from 

the frequency-domain samples. 

 The final desired result is obtained in Equations (8.12)-(8.13), see also Figure 13. This result, 

i.e. the K complex values in the vector 𝒓𝑑, is extremely important and it is delivered to the 

decoding unit. 
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