ETSF10 Part 3 Lect 2

DHCP, DNS, Security

Jens A Andersson Electrical and Information Technology

DHCP

- Dynamic Host Configuration Protocol
 bootp is predecessor
- Alternative: manual configuration
 - IP address
 - Net mask
 - Default gateway
 - DNS server(s)

Figure 21.7 BOOTP client and server on the same and different networks

a. Client and server on the same network

b. Client and server on different networks

21.0

TCP/IP Protocol Suite

Figure 18.9 Exchanging messages

DHCP address allocation

- Static
 - Static mapping MAC IP address
 - Client always get the same IP address
 - Used in clients home network
- Dynamic
 - Client gets IP address from pool
 - Used in open networks

DNS

- Domain Name System/Service
- Internets telephone book?
- "Name to Number"
- "Number to Name"
- Mail to which server
- Who's responsible
- More ...

Figure 25.1 Example of using the DNS service

Figure 25.2 Domain name space

Figure 25.8 DNS IN THE INTERNET

Figure 25.9 Generic domains

Table 25.1 Generic domain labels

Label	Description
aero	Airlines and aerospace companies
biz	Businesses or firms (similar to "com")
com	Commercial organizations
соор	Cooperative business organizations
edu	Educational institutions
gov	Government institutions
info	Information service providers
int	International organizations
mil	Military groups
museum	Museums and other nonprofit organizations
name	Personal names (individuals)
net	Network support centers
org	Nonprofit organizations
pro	Professional individual organizations

Figure 25.10 Country domains

23.13

Country domain

Figure 25.11 Inverse domain

Figure 25.4 FQDN and PQDN

- FQDN = Fully Qualified Domain Name
- PQDN = Partially Qualified Domain Name

Figure 25.5 Domains

Figure 25.7 Zones and domains

Figure 25.6 Hierarchy of name servers

Figure 25.12 Recursive resolution

Figure 25.13 Iterative resolution

Caching

• Boost efficieny

– Remember what you've learned

- Local host / client
- DNS servers
- (Zone transfer)
 - Request data of a zone
 - From primary to secondary DNS server

Figure 25.14 Query and response messages

a. Query

b. Response

Figure 25.15 Header format

Identification	Flags	
Number of question records	Number of answer records (all 0s in query message)	
Number of authoritative records (all 0s in query message)	Number of additional records (all 0s in query message)	

Adding new domains

- Apply / Register by Regstrar
- Registrar:
 - Commercial entity (many)
 - Accredited by ICANN

DDNS

- Host may change IP address
- DHCP updates primary name server with new binding (IP address Name)
- Authentication to update

Encapsulation

- UDP
 - Message less than 512 bytes
- TCP
 - Message more than 512 bytes
 - Example: Zone transfer

IP Sec

- IP Security
- Collection of protocols
- Security for packets on network layer
 - Alternative: Security at
 - application layer
 - transport layer

Figure 32.1 Common structure of three security protocols

MAC = Message Authentication Code

Figure 32.2 TCP/IP protocol suite and IPSec

Figure 32.3 Transport mode and tunnel modes of IPSec protocol

a. Transport mode

b. Tunnel mode

IP payload

IPSec-T

Figure 32.4 Transport mode in action

Figure 32.5 Tunnel mode in action

Two Protocols

- Authentication Header (AH)
 - Provides source authentication and data integrity
 - No privacy
- Encapsulating Security Payload (ESP)
 - Provides source authentication and data integrity
 - Privacy

Figure 32.6 Authentication Header (AH) Protocol in transport mode

Figure 32.7 Encapsulating Security Payload (ESP) Protocol in transport mode

Table 32.1 IPSec services

Services	AH	ESP
Access control		Yes
Message authentication (message integrity)		Yes
Entity authentication (data source authentication)		Yes
Confidentiality	No	Yes
Replay attack protection	Yes	Yes

Exchange secrets

- Bob and Alice must exchange secrets
- For that they need a secured channel
- For the secured channel they nedd to exchange secrets
- For that they need a secured channel

• . .

Asymetric encryption

- Pair of keys
 - Public, known by all
 - Private, secure, kept by owner
- Encrypt messages with receivers public key
 - Can only be decrypted with private key
- Sign/Authenticate messages with private key
 - Test with sender's public key

IPSec

- Security Associations
- Logical secured channel between two parties
- Internet Key Exchange (IKE)
 - Creates SAs (inbound and outbound) in a database

Figure 32.8 Simple inbound and outbound security associations

Figure 32.9 IKE components

Internet Key Exchange (IKE)

(Virtual) Private Network

- VPN
- Overlay network
- Alternative to a really private network

 Table 32.2
 Addresses for private networks

Prefix	Range	Total
10/8	10.0.0.0 to 10.255.255.255	2^{24}
172.16/12	172.16.0.0 to 172.31.255.255	2^{20}
192.168/16	192.168.0.0 to 192.168.255.255	2 ¹⁶

Figure 32.10 *Private network*

Figure 32.11 Hybrid network

Figure 32.13 A VPN

SSL/TLS

- Secure Sockets Layer Protocol
- Transport Layer Security
- TLS is IETF version of SSL

Figure 32.14 Location of SSL and TLS in the Internet model

Table 32.3 SSL cipher suite list

Cipher Suite	Key Exchange Algorithm	Encryption Algorithm	Hash Algorithm
SSL_NULL_WITH_NULL_NULL	NULL	NULL	NULL
SSL_RSA_WITH_NULL_MD5	RSA	NULL	MD5
SSL_RSA_WITH_NULL_SHA	RSA	NULL	SHA
SSL_RSA_WITH_RC4_128_MD5	RSA	RC4_128	MD5
SSL_RSA_WITH_RC4_128_SHA	RSA	RC4_128	SHA
SSL_RSA_WITH_IDEA_CBC_SHA	RSA	IDEA_CBC	SHA
SSL_RSA_WITH_DES_CBC_SHA	RSA	DES_CBC	SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA	RSA	3DES_EDE_CBC	SHA
SSL_DH_anon_WITH_RC4_128_MD5	DH_anon	RC4_128	MD5
SSL_DH_anon_WITH_DES_CBC_SHA	DH_anon	DES_CBC	SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA	DH_anon	3DES_EDE_CBC	SHA

Table 32.3 SSL cipher suite list (continued)

Cipher Suite	Key Exchange Algorithm	Encryption Algorithm	Hash Algorithm
SSL_DHE_RSA_WITH_DES_CBC_SHA	DHE_RSA	DES_CBC	SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA	DHE_RSA	3DES_EDE_CBC	SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA	DHE_DSS	DES_CBC	SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA	DHE_DSS	3DES_EDE_CBC	SHA
SSL_DH_RSA_WITH_DES_CBC_SHA	DH_RSA	DES_CBC	SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA	DH_RSA	3DES_EDE_CBC	SHA
SSL_DH_DSS_ <i>WITH_</i> DES_CBC_SHA	DH_DSS	DES_CBC	SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA	DH_DSS	3DES_EDE_CBC	SHA
SSL_FORTEZZA_DMS_ <i>WITH</i> _NULL_SHA	FORTEZZA_DMS	NULL	SHA
SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA	FORTEZZA_DMS	FORTEZZA_CBC	SHA
SSL_FORTEZZA_DMS_WITH_RC4_128_SHA	FORTEZZA_DMS	RC4_128	SHA

SSL

- Created by Netscape
- Authentictation
- Message integrity
- Confidentiallity

SSL Services

- Fragmentation
 - Create blocks of 2¹⁴ bytes or less
- Compression
- Message Integrity
- Confidentiality
- Framing

Figure 32.18 Processing done by the Record Protocol

Figure 32.15 Creation of cryptographic secrets in SSL

32.56

Figure 32.16 Four SSL protocols

Four protocols

- Record Protocol
 - The carrier
- Handshake Protocol
 - Authentication
 - Establishe cipher sets
 - Provides keys and security parameters
- ChangeCipherSPec Protocol
 - Crypotgraphic Secrets ready
- Alert Protocol
 - Signaling of abnormalities

Figure 32.17 Handshake Protocol

Firewalls

- Control system access
- Check/Drop packets
 - Network layer, Transport layer
 - Application layer

Figure 32.22 Firewall

Figure 32.23 Packet-filter firewall

Application Gateway

- Firewall on Application Layer
- Acts as
 - server against client
 - client against requested service
- Checks
 - if user's request is legitimate
 - application data integrity

Figure 32.24 *Example of proxy firewall for http*

