ETSF10 Part 2 Lect 2

Performance, UDP, TCP, Congestion Control (TCP), QoS

Jens A Andersson Electrical and Information Technology

Bandwitdh-Delay Product

- How much data fills the link
- Important for example in congestion avoidance
 - Delay = Round Trip Time (RTT)
 - Go-Back-N can send more bits per RTT

Error is checked in these paths by the data link layer Error is not checked in these paths by the data link layer

Today

- TCP
- Congestion Control in TCP
- Quality of Service (QoS)

Figure 23.16 TCP segment format

Figure 23.13 Stream delivery

Figure 23.14 Sending and receiving buffers

Figure 23.15 TCP segments

The following shows the sequence number for each segment:

Segment 1	 Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2	 Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3	Sequence Number: 12,001 (range: 12,001 to 13,000)
Segment 4	 Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5	 Sequence Number: 14,001 (range: 14,001 to 15,000)

URG: Urgent pointer is valid ACK: Acknowledgment is valid PSH: Request for push RST: Reset the connection SYN: Synchronize sequence numbers FIN: Terminate the connection

URG	ACK	PSH	RST	SYN	FIN
-----	-----	-----	-----	-----	-----

Figure 23.18 Connection establishment using three-way handshaking

Figure 23.19 Data transfer

Figure 23.20 Connection termination using three-way handshaking

23.14

Figure 23.21 Half-close

23.15

Flow control

- Sliding window
- Byte oriented
 - Send chunks of bytes in segment
- Implemented as pointers into a memory buffer

Error control

- ACK recieved data
- Go-Back-N ARQ
 - Resend from lost segment or error
 - Even segments after error/lost that are correct
- Retransmission timer!
 - Adjusted according to RTT
 - Or three duplicate ACKs (fast retransmission)

Figure 23.24 Normal operation

23.20

Figure 23.25 Lost segment

23.21

Figure 23.26 Fast retransmission

Congestion Control and QoS

- Congestion Control
 - Try to avoid congestion
- Quality of Service
 - Create an appropriate environment for the traffic
 - Not the same as Service Quality(?)

Figure 24.1 Traffic descriptors

Figure 24.2 Three traffic profiles

Figure Packet delay and throughput as functions of load

Figure 24.3 Queues in a router

Figure 24.5 Congestion control categories

Figure 24.6 Backpressure method for alleviating congestion

Figure 24.7 *Choke packet*

Congestion Control in TCP

- Slow start (state)
 - Exponential Increase
- Congestion avoidance (state)
 - Additive Increase
- Congestion detection (occation to act upon)
 - Multiplicative Decrease
- Congestion Windows Size (short: cwnd)
 - Remember: window size = min(receiver window, congestion window)

Figure 24.8 Slow start, exponential increase

Figure 24.9 Congestion avoidance, additive increase

24.33

Reaction to congestion detection

- If detection is by time-out, a new slow start phase starts.
- If detection is by three ACKs, a new congestion avoidance phase starts.
- Time out = probably congestion both channels
- 3 ACKS = probably congestion only in sending channel

Figure 24.10 TCP congestion policy summary

24.35

Figure 24.11 Congestion example

Improve QoS

- Scheduling
- Traffic shaping

Figure 24.15 Flow characteristics

Figure 24.16 FIFO queue

Figure 24.17 Priority queuing

Figure 24.18 Weighted fair queuing

Figure 24.19 Leaky bucket

24.42

Figure 24.20 Leaky bucket implementation

Figure 24.21 Token bucket

Leaky bucket

Token bucket

