
Kurose & Ross
Chapter 3

Problem 1

The well-known port for HTTP is 80.
• Source port: 33000, destination port: 80.

• Source port: 80, destination port: 33000 (they are inverted).

• No, the HTTP protocol runs over a TCP connection.

• Yes, if supported by the server (almost all web servers do).  

Problem 15
It takes 12 microseconds (or 0.012 milliseconds) to send a packet, as 1500*8/10

9
=12

microseconds. In order for the sender to be busy 98 percent of the time, we must have
util = 0.98 = (0.012n) / 30.012 

or n approximately 2451 packets.

Problem 26
There are 232 = 4,294,967, 296 possible sequence numbers. 
a) The sequence number does not increment by one with each segment. Rather, it
increments by the number of bytes of data sent. So the size of the MSS is irrelevant -- the
maximum size file that can be sent from A to B is simply the number of bytes

representable by 2
32 ≈ 4.19 Gbytes .

b) The number of segments is 232/536 = 8.012.999 . 66 bytes of header get added to each
segment giving a total of 528,857,934 bytes of header. The total number of bytes transmitted is

232 + 528,857,934 = 4.824x109

Thus it would take 249 seconds to transmit the file over a 155~Mbps link.

Problem 32

Problem 46
• a) Let W denote the max window size measured in segments. Then, W*MSS/RTT =

10Mbps, as packets will be dropped if the maximum sending rate exceeds link capacity.
Thus, we have W*1500*8/0.15=10*10^6, then W is about 125 segments.  

• b) As congestion window size varies from W/2 to W, then the average window size is
0.75W=94 (ceiling of 93.75) segments. Average throughput is 94*1500*8/0.15 =7.52Mbps.  

• c) 94/2 *0.15 = 7.05 seconds, as the number of RTTs (that this TCP connections needs in
order to increase its window size from W/2 to W) is given by W/2. Recall the window size
increases by one in each RTT.

Chapter 4

Problem 10
In a P2P application, any participating Peer A should be able to initiate a TCP connection to any
other participating Peer B. The essence of the problem is that if Peer B is behind a NAT, it cannot
act as a server and accept TCP connections. This NAT problem can be circumvented if Peer A is
not behind a NAT. In this case, Peer A can first contact Peer B through an intermediate Peer C,
which is not behind a NAT and to which B has established an ongoing TCP connection. Peer A
can then ask Peer B, via Peer C, to initiate a TCP connection directly back to Peer A. Once the
direct P2P TCP connection is established between Peers A and B, the two peers can exchange
messages or files. This strategy is called connection reversal.

 

Extra Problems

3
10.10.0.0/21
10.10.8.0/22
192.168.1.0/25
192.168.1.192/26
192.168.2.0/24

4
Network id Net mask
10.0.0.0 255.255.252.0
10.0.4.0 255.255.254.0
10.0.6.0 255.255.255.0
10.0.8.0 255.255.254.0
10.0.10.0 255.255.255.0

10
Each global IP address is assigned 65535 ports. That gives simultaneous access to the outside interface to
65535 x 2 = 131070 hosts that are connected to the inside interface. However, a remote host will only have
access to 65535 ports at its local interface. Therefore no more than 65535 hosts can connect to a remote host
at the same time.

11
Let’s assume that the servers are assigned IP addresses 10.0.0.1 and 10.0.0.2 respectively. Also let’s assume
that the outside interface is assigned the global IP address 12.13.14.15. A NAT port forwarding table could
then look similar to this:
10.0.0.1:80 → 12.13.14.15:80
10.0.0.1:22 → 12.13.14.15:2201
10.0.0.2:25 → 12.13.14.15:25
10.0.0.2:22 → 12.13.14.15:2202

