
Department of Electrical- and Information Technology

Transport layer

Department of Electrical- and Information Technology Björn Landfeldt

Outline

• UDP
• TCP

– Header
– Opening and closing connections
– Some TCP protocol mechanisms

• Flow control
• Timers and retransmission
• Congestion control

– TCP performance
– Conclusions

Department of Electrical- and Information Technology Björn Landfeldt

TCP/IP Reference Model

Department of Electrical- and Information Technology Björn Landfeldt

UDP

•UDP - User Datagram Protocol
•RFC 768
•UDP == “ip with ports”
•client/server both “bind” to a port and send
and receive messages via a port
•port is 0..64k-1
•well-known ports associated with servers

Department of Electrical- and Information Technology Björn Landfeldt

UDP contd.

• UDP provides unreliable connectionless delivery
– no error or flow control

• there is a checksum, but it is configured on/off per host
• checksum is over ip pseudo header, udp header, and

data
• if 0 value is sent, means checksum off

Department of Electrical- and Information Technology Björn Landfeldt

UDP Encapsulation

Department of Electrical- and Information Technology Björn Landfeldt

UDP Header

Department of Electrical- and Information Technology Björn Landfeldt

Pseudo Header

• udp (and tcp) optionally performs checksum across whole payload,
with ‘ip pseudo-header’

– 32 bit source ip address
– 32 bit dest. ip address
– 1 byte zero
– 1 byte proto = 17 (UDP)
– 2 bytes UDP length == 12 bytes in all

• original idea was to include IP addresses (etc) into checksum as a
form of authentication (little used)

Department of Electrical- and Information Technology Björn Landfeldt

Applications that use UDP

• regular, broadcast oriented
– routing daemons (rip and routed)

• streaming apps
– do not want tcp error and flow control

• multicast apps (eg audio conferencing)
– tcp can’t handle, so udp only alternative

• short message-oriented (don’t want connection overhead)
– snmp, dns

• applications must use own recovery mechanisms as appropriate

Department of Electrical- and Information Technology Björn Landfeldt

TCP Introduction

• TCP - Transmission Control Protocol
• reliable, connection-oriented stream protocol (UDP is not)
• delivers to the receiver the exact stream sent
• required because underlying network (IP) is imperfect

– loss, out of order due to routing, or corruption
– TCP service makes it look reliable

Department of Electrical- and Information Technology Björn Landfeldt

Introduction

• RFC 793 and host requirements RFC 1122
• TCP has own jargon:

–segment: a TCP unit of transfer
–MSS: maximum segment size: max segment one TCP

side can send another, negotiated at connection time
(or default)

–ports: for identifying end-points
–socket: for identifying connections

Department of Electrical- and Information Technology Björn Landfeldt

TCP Properties

• stream orientation: stream of octets (bytes) passed between sender
and receiver

• byte stream is full duplex: two streams
– two independent streams joined by piggybacking

• piggybacking: one data stream carries control info for the other data
stream (going the other way)

• unstructured stream
– TCP arbitrarily divides streams into segments
– doesn’t show segment boundaries to applications

Department of Electrical- and Information Technology Björn Landfeldt

TCP Properties

• unstructured stream
– but you can still structure your i/o calls as “messages” or structures if you

want
• connection oriented

– connect – data transfer - disconnect
– client connects and server listens/accepts

• TCP provides flow control
– receiver ‘paces’ the sender so cannot be overwhelmed

Department of Electrical- and Information Technology Björn Landfeldt

TCP Properties

• error and loss handling is in TCP
– end to end (critical TCP function)

• congestion detection end to end
– backs off if it thinks net is congested

• complex protocol
– can treat telnet (interactive) and ftp (bulk transfer) differently + acks/timers,

etc.

Department of Electrical- and Information Technology Björn Landfeldt

TCP Sliding Windows

• TCP uses byte count (not packet count) for sequencing:
each byte in the stream has it’s own sequence number

• For example, using 20-byte segments:
First segment – sequence number 0
Second segment – sequence number 20
Third segment – sequence number 40
Etc.

Department of Electrical- and Information Technology Björn Landfeldt

TCP Sliding Windows

• receiver controls sliding window size
– window ‘advertisement’ in ACK packets
– sender adjusts window size accordingly

• can stop all sending by advertising window size of 0
–flow control

Department of Electrical- and Information Technology Björn Landfeldt

Flow Control

• flow control occurs because the receive side controls
the window size

• if window advert = 0, the sender cannot send data
– re-opened by a subsequent ACK, but:
– sender will send window probe (1 byte of data) to

see if window is open (ack might be lost).
(Separate timer for this function called
‘persistence timer’)

• sender can also control flow rate via its window size
• this is end to end flow control

Department of Electrical- and Information Technology Björn Landfeldt

TCP Encapsulation

Department of Electrical- and Information Technology Björn Landfeldt

TCP Segment Header

Department of Electrical- and Information Technology Björn Landfeldt

Header Explained

• header sent with every TCP segment
• segment may be just a header: a control message (SYN/

FIN/ACK) with no data
• view TCP as 2 send/receive data streams with control

information (eg ACK) sent back the other way
(piggybacking)

Department of Electrical- and Information Technology Björn Landfeldt

Header

• source port: 16 bits, the TCP source port
• destination port: 16 bits
• sequence number: 1st data octet in this segment (from

send to recv): 32 bit space
• ack: if ACK flag set, next expected sequence number

(piggybacking; i.e., we are talking about the flow the other
way)

Department of Electrical- and Information Technology Björn Landfeldt

Header

• hlen: number of 32 bit words in header (usually 5)
• reserved: not used
• flags

– URG: - urgent pointer field significant
– ACK:- ack field significant (this pkt is an ACK!)
– PSH: - push function (send now!)
– RST: - reset (give up on) the connection (error)
– SYN: - initial synchronization packet (start

connect)
– FIN: - final hang-up packet (end connect)

Department of Electrical- and Information Technology Björn Landfeldt

Header

• window: advertises size of window that recv-side will
accept (flow control)

• checksum: 16 bits, pseudo-header, tcp header, and data
• urgent pointer: offset from sequence number, points to

data following urgent data (URG flag must be set)
• options - e.g., Max Segment Size (MSS)

Department of Electrical- and Information Technology Björn Landfeldt

TCP Open / Close

• TCP distinguishes passive and active open
• servers usually do passive open, means they LISTEN
• clients usually do active open, means they connect
• reach ESTABLISHED state after 3-way handshake

Department of Electrical- and Information Technology Björn Landfeldt

Three Way Handshake

Department of Electrical- and Information Technology Björn Landfeldt

Open State Machine

Department of Electrical- and Information Technology Björn Landfeldt

Closing TCP Connection

• connections are full duplex and it is possible to shutdown one side
at a time

– initiated when application does ‘close’
• really just two 2-way handshakes (send FIN, recv replies with ACK

per channel)
• open/close handshakes withstand most loss and duplicate

scenarios, but
• interesting problem: how do you make sure last ACK got there (can’t

ACK it...)

Department of Electrical- and Information Technology Björn Landfeldt

Close State Machine

Department of Electrical- and Information Technology Björn Landfeldt

Timeout and Retransmission

• Round Trip Times (RTTs) on the Internet can be
highly variable during a session

• So, how to decide a timeout period value?
• if too long, response not good if timeout occurs
• if too short, spurious retransmissions

– (and increased congestion, which increases RTT)
• TCP uses an adaptive retransmission algorithm

Department of Electrical- and Information Technology Björn Landfeldt

Plot of RTTs for 100 Datagrams

Nowadays
delay is
lower.

But still
same
variance

Department of Electrical- and Information Technology Björn Landfeldt

Adaptive Timeout and Retransmission

• Start with a default value of TO
• Update TO using ACKs to measure Sample RTTs

– Difference: time ACK x received vs segment x sent
• Simple Algorithm:

– First measure RTT (SRTT = Sample RTT))
– Estimate mean RTT (ERTT) through

• ERTT = (1-a)*Old ERTT + a*SRTT (0=<a<1)
– Recompute timeout period

–TO = z*ERTT (z originally = 2)
– (Choice of ‘a’ determines responsiveness to change)

Department of Electrical- and Information Technology Björn Landfeldt

TCP Retransmission Timer Estimates vs
Plotted RTTs

Department of Electrical- and Information Technology Björn Landfeldt

Adaptive Timeout and Retransmission

• Does not cope well with high levels of RTT variance
(common in the Internet)

• Complex Algorithm:
– As above for SRTT and ERTT
– Estimate Deviation (DRTT) as

• DRTT= (1-b)*DRTT + b*(SRTT-ERTT)
– TimeOut=ERTT+4*DRTT

Department of Electrical- and Information Technology Björn Landfeldt

Timer Backoff (Karn’s Algorithm)

• acks can be ambiguous with regard to RTT estimates
due to retransmitted segments

• only use unambiguous acks for RTT
– where segment has been transmitted once only

• if no acks at all are received tcp will use a modified
form of exponential backoff of the timeout period

• if ack packets start showing up, backoff is removed

Department of Electrical- and Information Technology Björn Landfeldt

Delayed Acks

• don’t send ACK immediately, wait for reverse flow data to show up
so that ACK can piggyback (free ride – no need for an extra TCP
segment)

• but don’t wait for ever: delay typically is 200 ms (max 500ms)
• this is a receiver-side timer

Department of Electrical- and Information Technology Björn Landfeldt

Nagle Algorithm

• traditional telnet inefficient: we have 40 bytes of header for 1 echoed
byte of data

• rfc 896: Nagle algorithm = delayed transmit
• while waiting for an ACK, can accumulate more data in sender

buffer before sending it
– data is ‘clumped’ before sending

• accumulated data is sent when, either
– an ACK is received, or
– maximum segment size is accumulated

Department of Electrical- and Information Technology Björn Landfeldt

Nagle contd.

• only affects sender who sends small data amounts
– fast senders keep the buffer full

• algorithm is said to be “self-clocking”: you can go as fast as round
trip latency will allow since you wait for return ACK

• some applications do not want nagle algorithm, they want to send
small data chunks (eg mouse clicks) immediately

– TCP_NODELAY socket option turns this off
– uses PUSH flag in TCP header

Department of Electrical- and Information Technology Björn Landfeldt

Congestion Control

• routers may drop packets as buffers run out = congestion
• routers don’t have effective mechanisms to indicate congestion to

sender
• sending apps send as fast as they can

– early Internet collapse
• TCP now assumes packet loss to be due to congestion (assumes

packet damage to be rare)

Department of Electrical- and Information Technology Björn Landfeldt

Congestion Avoidance

• TCP uses slow start and multiplicative decrease to deal with
congestion
– Van Jacobson (1988) outlined these ideas

• slow-start roughly: whenever starting a connection or recovering
from congestion,

– start congestion window at the size of 1 or a few segments
– increase window size by one with each ACK (additive increase)
– At a threshold, change to linear increase and open up by 1/window

segments per ack. (congestion avoidance phase)
– often called open up by one segment / round

Department of Electrical- and Information Technology Björn Landfeldt

TCP Congestion COntrol

ssthresh

Size

Time

Department of Electrical- and Information Technology Björn Landfeldt

Congestion Control

• multiplicative decrease - upon loss of a segment,
– reduce the congestion window by half
– down to a minimum of one segment.

• For those segments that remain in the send window,
backoff the retransmission timer exponentially because of
congestion.

Department of Electrical- and Information Technology Björn Landfeldt

Retransmissions

• TCP uses both ‘Go back-N’ and selective repeat for retransmissions
• If timeout: Go Back-N and go into slow start (go back to the segment

that caused the timeout and retransmit from there)
• Improvement: if three repeat acks (same sequence number) then

selective repeat
– Infers that a segment is lost, so
– fast retransmit, before a timeout occurs

Department of Electrical- and Information Technology Björn Landfeldt

Routers and Congestion RED

• routers might use a simple queue-drop mechanism
– Buffers all full: drop packets at end of queue, call this a “tail-drop” policy
– on heavily multiplexed router TCP connections may lose more than one

packet and be forced into slow-start
• routers may use Random Early Detection (or RED) – basically:

randomly discard packets in queue at a certain saturation point
– thus avoid tail-drop synchronisation

Department of Electrical- and Information Technology Björn Landfeldt

TCP Performance

• mid 80’s: performance limited by speed of sending hosts
• now can achieve good utilisation
• eg 2 hosts on an ethernet can get about 94% utilisation

– assuming zero propagation delay
• but window size (buffer size) can be the bottleneck

Department of Electrical- and Information Technology Björn Landfeldt

TCP Performance

• Bandwidth/Delay product determines optimal buffer size
• Buffer size too small => throughput constraints

Round-trip
Delay

BW

Department of Electrical- and Information Technology Björn Landfeldt

TCP Performance

• Simple example: determine effective throughput and Utilisation of a
pipe,

– Raw BW = 10 Mbps, RTT = 1000 ms, Window = 64 kbyte (maximum)
• Data transmitted before blocked = 64k*8 = 512 kbit
• Unblock in 1s: effective throughput = 512k/1 = 0.512Mbps
• Pipe capacity (BW/delay product) = 10Mbps*1 = 10 Mbit
• U = 0.512 / 10 = 5.1%

Department of Electrical- and Information Technology Björn Landfeldt

TCP over Wireless

• TCP still needs to evolve!
• Wired: loss assumed due to congestion
• Wireless: loss often due to radio characteristics
• TCP makes wrong assumption
• Reacts wrongly – unnecessary backoff

– Further optimisations have been proposed

