
ETSF05:
Models/Paradigmes
ARQ
Routing algorithms

Network engineering
High performance

¨Reliability
● Critical infrastructure

¨Speed
● Throughput
● Latency

¨Security
● Authentication
● Encryption

3

Core

Service
providers

EPC Mobile

Aggregation
Access

in-Home

Network models

Too complicated
• Divide and conquer

¨Layered architecture
¨Hierarchy

¨Specialisation
¨Simplification

Communication stack

2.5

TCP/IP logical connections

Models

• Micro computers (master – slave)
• Client-server

• Client-Server Paradigm

• Peer–to-peer
• Peer-to-peer (P2P) Paradigm

9

Client-Server paradigm

10

Data request

Data delivery

❚Application
❚Module supporting
❚application

Peer-to-peer

11

Data exchange tracker

Data location query

Tracker may be
distributed

Control protocols (link level)

Error control
¨Discovery

¨Retransmission
(ARQ)

¨Correction

Flow control (ARQ)
¨Stop-and-wait

¨Go-back-N

¨Selective Repeat 12

May occur at higher
layers too (cf. TCP)

Flow Control

13

Producer

Sender

Consumer

Receiver
Frames ”pushed”

Frames requested

Stop-and-wait ARQ
flow diagram

14

• Ineffective
• Long wait states, especially

over long links

Sliding window (sender)

16

0 1 2 3 4 5 6 7 0 1 2 3 4 56 7.

Completed transmissions Transmission window Not yet processed frames

Frames allowed to transmit
Transmitted frames

Acknowledged frames

Move window as ACKs are received

Go-Back-N ARQ
Most commonly used error control
Based on sliding-window
Use window size to control number of outstanding frames
While no errors occur, the destination will acknowledge
incoming frames as usual

¨RR=receive ready, or piggybacked acknowledgment
If the destination station detects an error in a frame, it may
send a negative acknowledgment

¨REJ=reject
¨Destination will discard that frame and all future frames until

the frame in error is received correctly
¨ Transmitter must go back and retransmit that frame and all

subsequent frames

ACK (this or next)

ACK (previous or this)

Go-Back-N

19

ACK2

ACK4

ACK4

Selective-Reject (ARQ)

Also called selective retransmission or selective repeat
Only rejected/missing frames are retransmitted
Subsequent frames are accepted by the receiver and buffered
Minimizes retransmission
Receiver must maintain large enough buffer
More complex logic in transmitter

¨ Less widely used
Useful for links with long propagation delay, e.g satellite, also
at transport layer (TCP)

Congestion control

Higher layers
¨Control injection of traffic to follow free capacity over

several links
¨Works together with ARQ mechanisms
¨Later in TCP

21

22

Routing – How to find the best way?
Flooding means that an incoming frame is echoed on all
outgoing ports. Hop count is used to avoid loops.

Instead, how to find the best path?

B

Routing algorithms (no mobility)

• The art of finding a least cost tree of a graph
• From sender to receiver

• From every node to all other nodes

• Three variants
• Distance Vector

• Link State

• Path Vector
• Policy-based routing

23

Routing algorithms (mobility)

Key consideration, rate of change
¨Above approaches may not converge

¨Flooding

¨Record route

¨Source routing

¨Geographic routing etc.

Covered in ETSN 10, Network Architecture and
Performance

24

25

Network graph

A network can be represented as a graph of nodes and
links

A

D

B

E

C

26

Least-hop path

Find the shortest path between all nodes

A

D

B

E

C

27

Least-hop path

E.g. From A to all other nodes

A

D

B

E

C

28

Link cost
Every link in the graph has an associated cost
The cost can have many dimentions, e.g.:
• Raw link speed
• Latency
• Link load
• Distance
• Medium
• Etc.

Graph

N={A,B,C,D,E}

29

A graph consists of nodes(N) and edges (E) with
weights w(e).
Example (undirected graph)

E w(e)
AB 3

AD 1

BC 1

BD 1

BE 1

CE 3

DE 3

30

Least-cost path

• In network graphs, weights are positive and additative.
• A Least-cost path is a path with minimum total cost

A

D

B

E

C1

1
1 1

Routing table

• Routing core idea: each router makes
independent decision of where to forward a
packet

• Keeps a table of rules for next hop
• The problem is:

• How to fill in the table?

• Updating table as something changes?

34

Distance vector routing

All known shortest paths are shared with neighbours
¨Periodically

¨When changes occur

Routing tables are updated with
¨New entries

¨Changed costs

”Global knowledge spread locally”

Least cost alg 1
Bellman-Ford
Find shortest path from source node s to the rest.
Let !(#) be	cost	from	. to #

Keep track of the shortest path
36

Init:
!(.) = 0
! # = ∞, # ≠ .

for i = 1	67 8 − 1
for each # ∈ 8

! # = min<∈={! ? + A(?, #)}	 // Find shortest path from node
// u to node n in a single step

37

Example: Bellman-Ford

Nod A B C D E

init 0 ∞ ∞ ∞ ∞
i=1 0 3 ∞ 1 ∞
i=2 0 2 4 1 4

i=3 0 2 3 1 3

i=4 0 2 3 1 3

❚ i gives all possible nodes i hops away

Bellman-Ford’s algorithm graph view

20.38

!"# = min (") + !)# , (", + !,# , ("- + !-# …

!"# = /01 !"#, ("2 + !2#

A

D

B

E

C1

1
1 1

39

Network graph as a tree

Node Dist

A 0

B 2

C 3

D 1

E 3

Distance vector for A after
network converged

Updates

43

Nod Dist

A 0

B 3

D 1

Nod Dist

A 3

B 0

C 1

D 1

E 1

A[] = min(A[], cost(A-B) + B[])

Nod Dist

A 0

B 2

C 4

D 1

E 4

A, updatedA, original Update from B

Distance Vector, things to ponder

• Periodic updates!?
• Problem when edges and nodes disappear.
• How discovering neighbours?
• How discover a neighbour disappearing?

44

More on distance vector

Later:
• Count to infinity

• Two, three node instability
• Split Horizon

• Poison Reverse

• Routing protocol RIP

45

Link state routing, principle

Local topology flooded to entire network
¨At every change

¨Periodically (in reality seldom)

Every node constructs own database
Routing table updated with

¨New entries

¨Changes in cost

”Local knowledge is spread globally”
46

Least cost alg 2
Dijkstra
Find shortest path from source node ! to the rest.
Let "($) be	cost	from	! to $, 0 = !23	45	$4"2!

47

Init:
"(!) = 0
" $ = ∞, $ ≠ !
P = ! // Permanent

while P ⊂ 0
d(u) = neigbours (last in P)

: = ;<=min
@∉B

"(:) // Find lowest weight to last permanent’s

neighbors, add d(u) to tentative
P = C	⋃	: // Add	: to permanent

SPF example with graph

48

A

D

B

E

C3

1

A

D

B

E

C3

1
2

4

A

D

B

E

C

1
2

4

3

3

A

D

B

E

C

1
2

3

3
6

A

D

B

E

C

1
2

3

3

Rotnod

Permanent nod

Preliminär nod

Potentiell väg

Permanent väg

Dijkstra table

Visited L(A) L(B) L(C) L(D) L(E)
! 0 ∞ ∞ ∞ ∞
{A} 3:A ∞ 1:A ∞
{A,D} 2:D ∞ 4:D

{A,D,B} 3:B 3:B
{A,D,B,C} 3:B

{A,D,B,C,E}

49

Exemple link state database

51

A B C D E
A 0 3 ∞ 1 ∞

B 3 0 1 1 1

C ∞ 1 0 ∞ 3

D 1 1 ∞ 0 3

E ∞ 1 3 3 0

∞ means node unknown
0 distance to self

Link State Advertisements

52

Nod Kostn

B 3

D 1

Nod Kostn

A 3

C 1
D 1

E 1

Nod Kostn

B 1
E 3

Nod Kostn

A 1

B 1
E 3

Nod Kostn

B 1

C 3
D 3

Updated at change!

Link State, things to ponder

• Periodic updates!?
• Problem with nodes and edges that disappear.
• Discover that neighbour disappeared?
• Discover new neighbour?

54

More on link state

Later:
• Routing protocol OSPF
• The Area concept, how to limit flooding

55

Path Vector Routing
• Add path vector for every destination
• Resembles Distance Vector

• Path Vector contains info on entire path to destination

• Find best path among many possible
• Policy Based Routing

• Only use paths through acceptable nodes
• Do not use paths where self is a node (loop!)
• Path vector length often most important parameter

56

Spanning trees in path-vector routing

Path vectors made at boot time

Updating path vectors

More about path vector

Later:
• Autonomous systems, AS
• Routing between domains
• Policy routing
• Routing protocol BGP

60

Comparison of LS and DV algorithms

Message complexity
LS: with n nodes, E links, O(nE) msgs for
full knowledge, changes sent to all nodes
DV: exchange between neighbours only

Speed of Convergence
LS:

¨ O(n2) algorithm requires O(nE) msgs
¨ may have oscillations

DV:
¨ Convergence time may be slower
¨ may be routing loops
¨ count-to-infinity problem

