ETSF05:

Models/Paradigmes
ARQ

Routing algorithms

Network engineering

High performance

- Reliability
- Critical infrastructure
- Speed
- Throughput
- Latency
- Security
- Authentication
- Encryption

Network models

Too complicated

- Divide and conquer
- Layered architecture
- Hierarchy
- Specialisation

- Simplification

Communication stack

Communication from A to B

TCP/IP logical connections

Models

- Micro computers (master - slave)
- Client-server
- Client-Server Paradigm

Peer-to-peer

- Peer-to-peer (P2P) Paradigm

Client-Server paradigm

Application

Data request

Data delivery

Module supporting application

Peer-to-peer

Control protocols (link level)

Error control

- Discovery
- Retransmission

May occur at higher layers too (cf. TCP) (ARQ)

- Correction

Flow control (ARQ)

- Stop-and-wait
- Go-back-N
- Selective Repeat

Flow Control

Frames requested

Stop-and-wait ARQ flow diagram

- Ineffective
- Long wait states, especially over long links

Sliding window (sender)

$\xrightarrow{\text { Move window as ACKs are received }}$

Go-Back-N ARQ

Most commonly used error control ACK (this or next) Based on sliding-window
Use window size to control n mber of outstanding frames While no errors occu, the destination will acknowledge incoming frames as usual

- RR=receive ready, or piggybacked acknowledgment If the destination station detects an error in a frame, it may send a negative acknowledgment ACK (previous or this)
- Destination will discard that frame and all future frames until the frame in error is received correctly
- Transmitter must go back and retransmit that frame and all subsequent frames

Go-Back-N

Selective-Reject (ARQ)

Also called selective retransmission or selective repeat
Only rejected/missing frames are retransmitted
Subsequent frames are accepted by the receiver and buffered Minimizes retransmission
Receiver must maintain large enough buffer
More complex logic in transmitter

- Less widely used

Useful for links with long propagation delay, e.g satellite, also at transport layer (TCP)

Congestion control

Higher layers

- Control injection of traffic to follow free capacity over several links
- Works together with ARQ mechanisms
- Later in TCP

Routing - How to find the best way?

Flooding means that an incoming frame is echoed on all outgoing ports. Hop count is used to avoid loops.

Instead, how to find the best path?

Routing algorithms (no mobility)

- The art of finding a least cost tree of a graph
- From sender to receiver
- From every node to all other nodes

Three variants

- Distance Vector
- Link State
- Path Vector
- Policy-based routing

Routing algorithms (mobility)

Key consideration, rate of change

- Above approaches may not converge
- Flooding
- Record route
- Source routing
- Geographic routing etc.

Covered in ETSN 10, Network Architecture and Performance

Network graph

A network can be represented as a graph of nodes and links

Least-hop path

Find the shortest path between all nodes

Least-hop path

E.g. From A to all other nodes

Link cost

Every link in the graph has an associated cost The cost can have many dimentions, e.g.:

- Raw link speed
- Latency
- Link load
- Distance
- Medium
- Etc.

Graph

A graph consists of nodes (N) and edges (E) with weights $w(e)$.
Example (undirected graph)

	$=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
E	$w(e)$
AB	3
AD	1
BC	1
BD	1
BE	1
CE	3
DE	3

Least-cost path

- In network graphs, weights are positive and additative.
- A Least-cost path is a path with minimum total cost

Routing table

- Routing core idea: each router makes independent decision of where to forward a packet
- Keeps a table of rules for next hop The problem is:
- How to fill in the table?
- Updating table as something changes?

Distance vector routing

All known shortest paths are shared with neighbours

- Periodically
- When changes occur

Routing tables are updated with

- New entries
- Changed costs
"Global knowledge spread locally"

Least cost alg 1 Bellman-Ford

Find shortest path from source node s to the rest.
Let $d(n)$ be cost from s to n
Init:

$$
\begin{gathered}
d(s)=0 \\
d(n)=\infty, n \neq s \\
\text { for } \mathrm{i}=1 \text { to }|N|-1
\end{gathered}
$$

for each $n \in N$

$$
\begin{array}{ll}
d(n)=\min _{u \in N}\{d(u)+w(u, n)\} & \text { // Find shortest path from node } \\
& / / \mathrm{u} \text { to node } \mathrm{n} \text { in a single step }
\end{array}
$$

Keep track of the shortest path

Example: Bellman-Ford

Nod	A	B	C	D	E
init	0	∞	∞	∞	∞
$i=1$	0	3	∞	1	∞
$i=2$	0	2	4	1	4
$i=3$	0	2	3	1	3
$i=4$	0	2	3	1	3

I gives all possible nodes i hops away

Bellman-Ford's algorithm graph view

a. General case with three intermediate nodes

$$
D_{x y}=\min \left\{\left(c_{x a}+D_{a y}\right),\left(c_{x b}+D_{b y}\right),\left(c_{x c}+D_{c y}\right) \ldots\right\}
$$

b. Updating a path with a new route

$$
D_{x y}=\min \left\{D_{x y},\left(c_{x z}+D_{z y}\right)\right\}
$$

Network graph as a tree

Distance vector for A after network converged

Node	Dist
A	0
B	2
C	3
D	1
E	3

Updates

$$
\mathrm{A}[]=\min (\mathrm{A}[], \operatorname{cost}(\mathrm{A}-\mathrm{B})+\mathrm{B}[])
$$

A, original

Nod	Dist
A	0
B	3
D	1

Update from B		A, updated	
Nod	Dist	Nod	Dist
A	3	A	0
B	0	B	2
C	1	C	4
D	1	D	1
E	1	E	4

Distance Vector, things to ponder

- Periodic updates!?
- Problem when edges and nodes disappear.
- How discovering neighbours?
- How discover a neighbour disappearing?

More on distance vector

Later:

- Count to infinity
- Two, three node instability
- Split Horizon
- Poison Reverse
- Routing protocol RIP

Link state routing, principle

Local topology flooded to entire network

- At every change
- Periodically (in reality seldom)

Every node constructs own database
Routing table updated with

- New entries
- Changes in cost
"Local knowledge is spread globally"

Least cost alg 2
 Dijkstra

Find shortest path from source node s to the rest.
Let $d(n)$ be cost from s to $n, E=$ set of nodes
Init:

$$
\begin{aligned}
& d(s)=0 \\
& d(n)=\infty, n \neq s \\
& \mathrm{P}=s
\end{aligned}
$$

// Permanent
while $\mathrm{P} \subset E$
$\mathrm{d}(\mathrm{u})=$ neigbours (last in P)
$u=\arg \min _{u \notin P} d(u)$
$\mathrm{P}=P \cup u$
// Find lowest weight to last permanent's neighbors, add d(u) to tentative
// Add u to permanent

SPF example with graph

Dijkstra table

Visited	L(A)	L(B)	L(C)	L(D)	L(E)
ϕ	0	∞	∞	∞	∞
$\{\mathrm{~A}\}$		$3: \mathrm{A}$	∞	$1: \mathrm{A}$	∞
$\{\mathrm{A}, \mathrm{D}\}$		$2: \mathrm{D}$	∞		$4: \mathrm{D}$
$\{\mathrm{A}, \mathrm{D}, \mathrm{B}\}$			$3: B$		$3: \mathrm{B}$
$\{\mathrm{A}, \mathrm{D}, \mathrm{B}, \mathrm{C}\}$					$3: \mathrm{B}$
$\{\mathrm{A}, \mathrm{D}, \mathrm{B}, \mathrm{C}, \mathrm{E}\}$					

Exemple link state database

	A	B	C	D	E
A	0	3	∞	1	∞
B	3	0	1	1	1
C	∞	1	0	∞	3
D	1	1	∞	0	3
E	∞	1	3	3	0

∞ means node unknown
0 distance to self

Link State Advertisements

Link State, things to ponder

- Periodic updates!?
- Problem with nodes and edges that disappear.
- Discover that neighbour disappeared?
- Discover new neighbour?

More on link state

Later:

- Routing protocol OSPF
- The Area concept, how to limit flooding

Path Vector Routing

- Add path vector for every destination
- Resembles Distance Vector
- Path Vector contains info on entire path to destination
- Find best path among many possible
- Policy Based Routing
- Only use paths through acceptable nodes
- Do not use paths where self is a node (loop!)
- Path vector length often most important parameter

Spanning trees in path-vector routing

Path vectors made at boot time

Updating path vectors

Note:
X []: vector X
Y: node Y

Event 1: C receives a copy of B's vector

New C		Old C		D
A $\mathrm{C}, \mathrm{B}, \mathrm{A}$		C, B, A	A	
B C, B		C, B	B	D, B
C C	C		C	D, C
D C, D		C, D	D	D
E C, E		C, E	E	D, E
C[]$=\operatorname{best}(\mathrm{C}[], \mathrm{C}+\mathrm{D}[\mathrm{]})$				

Event 2: C receives a copy of D's vector

More about path vector

Later:

- Autonomous systems, AS
- Routing between domains
- Policy routing
- Routing protocol BGP

Comparison of LS and DV algorithms

Message complexity
LS: with n nodes, E links, $\mathrm{O}(\mathrm{nE})$ msgs for full knowledge, changes sent to all nodes
DV: exchange between neighbours only

Speed of Convergence

LS:

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm requires $\mathrm{O}(\mathrm{nE})$ msgs
- may have oscillations

DV:

- Convergence time may be slower
- may be routing loops
- count-to-infinity problem

